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Abstract

The motivation for this work arose from initial efforts in magnetohydrodynamics

(MHD) flow control when plasma generated at high Mach numbers allows for elec-

tromagnetic actuators to change the characteristics of the flow. In the context of

gradient-based optimization, this dissertation focuses on the problem of efficiently es-

timating the sensitivity of a given function of interest with respect to a large number

of variables, in environments modeled by complex equations.

The discrete adjoint approach emerges as the best suitable option to deal with

such complex equations and, in addition, allows for the use of automatic differen-

tiation (AD) tools in the derivation of the adjoint solver. The selective application

of AD is the central idea behind the Automatic Differentiation adjoint (ADjoint)

approach. This approach has the advantages that it is applicable to arbitrary sets of

governing equations and cost functions, and it is exactly consistent with the gradi-

ents that would be computed by exact numerical differentiation of the original solver.

Furthermore, the approach is largely automatic, thus avoiding the lengthy develop-

ment times usually required to develop discrete adjoint solvers for partial differential

equations. It takes days, not years, to construct the ADjoint solver.

Sensitivities of aerodynamic coefficients with respect to several types of parame-

ters, totaling over a half million variables, are computed and successfully validated

against finite-difference approximations. The overall performance and accuracy of

the method is shown to be better than conventional continuous adjoint approaches.

The increased memory requirements can be eliminated at the expense of larger com-

putational times for the ADjoint, that would bring the computational performance

roughly on par with that of the best continuous adjoint solvers.
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Chapter 1

Introduction

1.1 Motivation

The history of the evolution of computers has been an impressive one, in particular

during the last 50 years [116]. While the abacus was invented more than two thou-

sand years ago by the Chinese, it was only with the advent of World War II that

significant progress in computational capabilities started. The early computers were

room-sized, relay-based calculators that performed binary arithmetic. The move from

analog machines using relays and vacuum tubes to electronic computers, progressed

through diode logic and transistor technology in the 50’s. In the late 60’s, the tran-

sition from discrete transistors to integrated circuits took place, and machines like

the CRAY supercomputer with a power capable of 30 Mflop/s were produced. As

of June of 2007, the list of supercomputers in service [154] keeps growing and it is

currently topped by the IBM BlueGene/L system, installed at DOEs Lawrence Liv-

ermore National Laboratory (LLNL) in the USA, with an overwhelming performance

of 280.6 Tflop/s. Even today’s personal computers, with their multi-core processors,

offer such a staggering computational power that any engineer or researcher can easily

have access to such capabilities.

Obviously, the evolution of Computational Fluid Dynamics (CFD) followed that

of the digital computer. While the early numerical solutions were restricted to the

1
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potential flow equations on grids with a few thousand nodes, Direct Numerical Sim-

ulations (DNS) are now performed using more than 30 billion nodes [148]. At an

academic level, graduate students now code their own Euler or Navier–Stokes flow

solvers on their laptops. At an industrial level, Reynolds-Averaged Navier–Stokes

(RANS) are commonplace.

Among all the phenomena in fluid mechanics, the one that triggered this disser-

tation was that of magnetohydrodynamics (MHD). A significant amount of work in

the analysis of high-speed MHD has been carried out during the past decade. The

governing equations for this class of problems can be extremely complex, especially

if chemical reactions and turbulence effects are taken into account. Nevertheless, to

date, accurate computational models have already been used to predict some of these

complex flows, such the flow through a scram-jet that powers a hypersonic vehicle [31].

Despite reasonably matured MHD analysis tools, the fact is that the designs are

still arrived at using very rudimentary computational design tools. There has even

been some work done to control the flow in scram-jet inlets using MHD [45, 36, 145,

44], but none of these efforts employ formal design methods. The most common prac-

tice still relies on parametric studies [96]. More significant is the lack of publications

on hypersonic design, demonstrating that very little effort has been devoted to design

applications or to automate these flow control processes.

The main reasons for this lack of design focus have been that the analysis tools

are still in the process of maturing and that the cost of the simulations is sufficiently

large that design applications are beyond the reach of existing computing resources.

However, given that the analysis of MHD flows (with all the appropriate sim-

plifications) has reached a certain level of maturity and that computational power

has grown and become accessible, it is now important that an efficient design frame-

work be built around high-speed MHD prediction capabilities that can be used in

multi-disciplinary optimization (MDO) applications.
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1.2 Generic design problem

In the context of optimization, a generic design problem can be posed as the mini-

mization of a function of interest, I, (also called cost function or figure of merit) with

respect to a vector of design variables, x, while satisfying a set of linear or non-linear

constraints. The cost function depends directly on the design variables and on the

state of the system, w, that may result from the solution of the governing equations

of the problem. Thus we can write the vector-valued function I as

I = I (x,w(x)) . (1.1)

For a given input vector x, the solution of the governing equations subject to

appropriate boundary conditions yields a state vector, w, thus establishing the de-

pendence of the state of the system on the design variables. We denote these governing

equations by

R (x,w(x)) = 0 . (1.2)

In mathematical terms, this design problem can be expressed as

Minimize I (x,w(x))

w.r.t. x , (1.3)

subject to R (x,w(x)) = 0

Ci (x,w(x)) = 0 i = 1, ...,m ,

where Ci (x,w(x)) = 0 represents m additional constraints that may or may not

involve the flow solution.

When using a gradient-based optimizer to solve the design problem (1.3), the

sensitivity of both the cost function I and the constraints Ci with respect to the

design variables x are required. That is, dI
dx

and dCi

dx
have to be determined. This

optimization process is illustrated in figure 1.1.

This dissertation focuses on efficiently estimating the gradient (also designated

as sensitivity or first derivative) of the function of interest (or vector of functions)
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Figure 1.1: Schematic of a generic gradient-based optimization algorithm.

with respect to a very large number of design variables, in flow problems modeled by

complex governing equations.

1.3 Control theory

The control theory approach, also called the adjoint method since the necessary gradi-

ents are obtained through the solution of the adjoint equations of the governing equa-

tions, emerges as an excellent candidate in achieving that goal. The adjoint method

has already been mathematically well documented by Giles [55] and Lewis [84] and,

being a semi-analytic method, it is capable of computing derivatives with the same

precision as the quantity that is being differentiated and can potentially also be very

efficient.

Adjoint methods have been used to perform sensitivity analysis of partial differ-

ential equations (PDEs) for over three decades. These methods were first applied to

optimal control problems and thereafter used to perform sensitivity analysis of linear

structural finite element models. The first application to fluid dynamics was due

to Pironneau [128]. The method was then extended by Jameson to perform airfoil

shape optimization [73] and since then it has been used to design laminar flow air-

foils [34] and to optimize airfoils suitable for multi-point operation [122]. The adjoint

method has also been extended to three-dimensional problems, leading to applica-

tions such as aerodynamic shape optimization of wings [77, 81] and complete aircraft

configurations [138, 139, 74], as well as aero-structural design [106, 105]. The adjoint
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theory has since been generalized for multi-disciplinary systems [107] and for MHD

problems, using both the ideal model [97] and the low magnetic Reynolds number

approximation [99, 98].

The adjoint method is extremely valuable because it provides a very efficient

method to compute the sensitivity of a given function of interest with respect to

many parameters by solving a system of equations of size equivalent to the governing

equations of the flow. When using gradient-based optimization algorithms, the effi-

ciency and accuracy of the sensitivity computations have a significant effect on the

overall performance of the optimization. Thus, having an efficient and accurate sensi-

tivity analysis capability is very important to constructing high-fidelity (and possible

multi-disciplinary) design frameworks.

Given the value of adjoint methods, it seems odd that their application to aerody-

namic shape optimization is not more ubiquitous. In fact, while adjoint methods have

already found their way into commercial structural analysis packages, they have yet

to proceed beyond research CFD solvers. One of the main obstacles is the complexity

involved in the development and implementation of adjoint methods for nonlinear

PDEs. In addition, since the adjoint equations are typically derived by hand, sev-

eral simplifications are often done in order to make the derivation possible or just to

expedite the code development phase. Even so, the development of an approximate,

continuous adjoint solver for the RANS equations can require well over a year of te-

dious work for highly-qualified researchers with experience in this field. This is true

even with significant approximations that have been shown to have a detrimental

effect on the accuracy of the sensitivity derivatives, as demonstrated by Dwight [35].

1.4 Automatic differentiation

The solution to this problem might be Automatic Differentiation (AD) [60]. This

approach relies on a tool that, given the original solver, creates code capable of

evaluating the derivatives of quantities computed by the solver with respect to a

number of parameters (that are typically inputs to the solver).

There are two different modes of operation for automatic differentiation tools: the
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forward and the reverse modes. The forward mode propagates the required sensitivity

at the same time as the solution is being computed. To use the reverse mode, the

solver has to be run to convergence first, with intermediate variable values stored for

every iteration. These intermediate variables are then used by the reverse version

of the code to find the sensitivities. The forward mode is analogous to the finite-

difference method, but without problems of step-size sensitivity. The reverse mode is

similar to the adjoint method and is also efficient when computing the sensitivity of

a function with respect to many parameters.

One drawback of the reverse mode is that the memory requirements can be pro-

hibitively expensive in the case of iterative solvers, such as those used in CFD, because

they require a large number of iterations to achieve convergence and many interme-

diate results may need to be stored.

Although efforts have been pursued to minimize the increase in memory require-

ments arising from iterative solvers [37], the fact remains that given typical parallel

computing resources, it is still very difficult to apply reverse mode ideas to large-

scale problems. The reverse mode of automatic differentiation has been applied to

iterative PDE solvers by a few researchers with limited success [28, 54, 67, 82]. The

main problems in each of these applications were the prohibitive runtime and memory

requirements for the solution of three-dimensional problems.

In order to tackle these deficiencies, an efficient approach that uses AD tools to

derive the corresponding adjoint equations is adopted, that follows the work that has

been recently described by Martins et al. [101] and requires very little coding effort.

This approach has already been successfully tested for both the Euler [102] and MHD

equations [98].

1.5 Outcome of the research project

The objective of this dissertation is to turn the development of adjoint solvers into

a routine and quick task that only requires the use of pre-existing code to compute

the residuals of the governing equations (including boundary conditions) and the

functions of interest.
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This work employs a discrete adjoint formulation, that emerges as the best suitable

option to deal with the complex equations, such those that govern MHD, and with

the nature of the functions of interest that may be used in relevant design problems.

The end goal of this effort is to enable the development of discrete adjoint solvers

for arbitrary PDEs in days, rather than years, so that the adjoint information may

be used in a variety of applications including sensitivity analysis and, possibly, error

estimation. To achieve this goal, and taking advantage of using a discrete adjoint

formulation, the Automatic Differentiation adjoint (ADjoint) approach is proposed,

in which automatic differentiation is used to compute only certain terms of the dis-

crete adjoint equations, and not to differentiate the entire solver. These terms can

then be used, together with standard techniques for the iterative solution of large

linear systems, such as the preconditioned Generalized Minimum Residual (GMRES)

algorithm [144], to carry out sensitivity analysis.

The major advantages of this method are that it is generic (applicable to any PDE

solver), largely automatic, and exactly consistent with the flow solver. Because the

process of automatic differentiation allows us to treat arbitrary expressions exactly,

the sensitivities produced are perfectly consistent with those that would be obtained

from an exact numerical differentiation of the original solver. Thus, typical approxi-

mations made in the development of adjoint solvers by hand differentiation (such as

neglecting contributions from the variations resulting from turbulence models, spec-

tral radii, artificial dissipation and upwind formulations) are not made here.

While the ADjoint method does not constitute a fully automatic way of obtaining

sensitivities like pure automatic differentiation, it is much faster in terms of execution

time and drastically reduces the memory requirements. In addition, when compared

to the conventional continuous adjoint method, the proposed approach requires a

much shorter implementation time and can be used to develop the discrete adjoint of

an arbitrary solver with a greatly reduced probability of programming errors.

This methodology then aims to provide an important component, the efficient

sensitivity analysis capability, toward the advance in the use of automated optimiza-

tion using the control theory approach, applied to arbitrary complex flows, such as

hypersonics and MHD.
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1.6 Dissertation outline

This dissertation is structured in such a way that all the relevant background material

is first reviewed, followed by a detailed description of implementation of the proposed

methodology. Results obtained from the application to several test cases are then

presented and final conclusions are drawn.

Starting with chapter 2, a brief review of the literature highlights the extreme

complexity that might arise from current computational fluid dynamics (CFD) prob-

lems, in particular those dealing with hypersonic flow and magnetohydrodynamics.

The complexity of the PDEs governing such flows is shown and light is shed on the

possibility of performing flow control using magnetic effects.

Next, within the context of optimal control using a gradient-based optimizer, the

available methods to estimate gradients of functions of interest with respect to control

(design) variables are revisited in chapter 3, together with their advantages and dis-

advantages. Among the several analytic sensitivity analysis methods, special interest

is given to the adjoint and automatic differentiation methods. This chapter ends with

a discussion of the proposed novel hybrid approach — the ADjoint approach — that

combines the desired good features of both the adjoint and automatic differentiation

methods.

Then, a mathematical description of the physical models used in this work, in

particular the governing equations of hypersonic flow under the influence of magnetic

fields, is presented in chapter 4.

The most significant contribution of this dissertation is given in chapter 5, that

covers the formulation of the discrete adjoint equations using the ADjoint approach.

There, the various components of the design method developed are presented in a

generic form applicable to any set of governing equations, regardless of their com-

plexity.

That is followed by the results, in chapter 6, that cover the progress made since

the early test cases using relatively small problems and hand-differentiated functions

to larger and more complex applications using automatically differentiated functions,
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involving up to half million design variables. The precision of the computed adjoint-

based sensitivities is established and the performance of the hybrid ADjoint method

is analyzed. Each of the adjoint solvers constructed is ultimately used in sample

design problems, demonstrating their potential capabilities of making part of a larger

optimization framework.

Lastly, in chapter 7, the conclusions drawn from the present research as well as

some remarks concerning future work are made. This dissertation ends with some

forecasts about the possible generalized use of the presented methodology in state-of-

the-art high-fidelity design frameworks across not only academia but mainly industry.



Chapter 2

Magnetohydrodynamics

2.1 Hypersonic flow

Since the moment the Wright brothers debuted the first powered, heavier-than-air

machine that achieved sustained and controlled flight, back in 1903, a quest for faster

and faster aircraft took place. More than one hundred years have gone by and the

transonic and supersonic frontiers have been crossed. However, the hypersonic regime

still poses challenging problems that include fluid mechanics, propulsion, materials

and structures, and stability and control.

Whereas the term supersonic speed is well defined as being greater than the speed

of sound (Mach>1), the term hypersonic speed is somewhat nebulous, but often

accepted as speeds greater than five times the speed of sound (Mach 5+).

During the last few years, there has been renewed interest in hypersonic flight,

leading to an extensive number of conceptual studies [63, 62]. In July 2002, the world’s

first experimental flight of an air-breathing supersonic ramjet (scramjet) engine took

place in Australia, as a result of the HyShot research project led by the Center for

Hypersonics at the University of Queensland [24], demonstrating the possibility of

supersonic combustion under flight conditions. This success attracted widespread

interest in Australia’s hypersonics research and has been succeeded by the Australian

Hypersonics Initiative [3]. However, it was not until March 2004 that significant

advances in hypersonic flight were made, in particular with the successful flight test of

10
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the NASA X-43 [119], a hypersonic scramjet-powered research aircraft. The following

year, NASA released an integrated hypersonic technology demonstration roadmap, as

part of the Next Generation Launch Technology (NGLT) program, which triggered

a feasibility study on the X-43D by the Future Hypersonic Flight Demonstration

Office, with the objective of developing a baseline conceptual design, assessing its

performance, and identifying the key technical issues [79].

More recently, the Air Force Research Laboratory (AFRL), Pratt & Whitney

Rocketdyne (PWR), and NASA successfully tested the hypersonic Ground Demon-

stration Engine (GDE-2) [165] using hydrocarbon fuels and a thermally-balanced

setup. The descendant of this effort is the current hypersonics program, the X-51,

involving the AFRL, the Defense Advanced Research Projects Agency (DARPA),

NASA, PWR and The Boeing Company. NASA just completed tests of the X-1 en-

gine (April of 2007), the successor of the GDE-2 built by PWR, and will continue to

test the X-2 engine which will be the flight engine for X-51 [166]. The airframe is being

designed by Boeing and the demonstrator is scheduled to fly by 2009. Simultaneously,

DARPA is proceeding along with the Falcon program [30], a scramjet reusable missile,

and a number of other efforts are being pursued at NASA and abroad.

There are still many technical and scientific obstacles to overcome but the commu-

nity is getting closer and closer to the stage where hypersonic flight may be possible.

With that in mind, it is now the time to start looking at ways to optimize such designs

in an efficient manner.

2.2 Chemically reacting flow and thermal

non-equilibrium

When air flows at hypersonic speeds around vehicles, strong shock waves emerge in

the regions of intense flow deceleration. There, much of the mean flow kinetic energy

is converted into internal energy, namely translational and vibrational energy, which

causes the temperature of the air to increase dramatically. In turn, this temperature

increase leads to the dissociation and ionization of the air and a plasma is generated.
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Under these conditions, the air is no longer in thermodynamic equilibrium, as the

chemical processes occur in a time-scale comparable to the flow time-scale. The

reacting air is said to be in non-equilibrium and must be described by finite-rate

chemical reaction relations. This thermal and chemical non-equilibrium makes the

analysis of such flows extremely complex and computationally expensive due to the

high stiffness of the chemical equations that need to span several time scales.

There have been several efforts modeling these hypersonic chemically reacting

flows. The usual flow governing equations, such as the Navier–Stokes (NS) equations,

have to be solved coupled to finite-rate chemistry models. Back in 1985, Park made

one of the first computations, considering a one-dimensional flow through a duct,

using a complex model of air comprised of eleven species and seventeen reactions [127].

In the early 90’s, the axisymmetric NS equations were strongly coupled to a five-

species, five-reaction model, in the study of a nozzle flow by Walters et al. [160] or a

blunt body by Josyula et al. [80]. Ten years later, the first numerical MHD simulations

of chemically reacting flows were made, but were still restricted to two-dimensions:

Damevin and Hoffmann [29] used a five-species, seventeen-reaction chemical model,

loosely coupled to the ideal MHD equations, to analyze the flow around a blunt body;

the viscous MHD equations together with seven-species, twelve-reaction model were

used by Deb and Agarwal [31] in the performance study of MHD-bypass scramjet

inlets.

Even though the loose coupling, in contrast to strong, between the NS or MHD

equations and the chemical model, and the use of implicit time-integration schemes

have helped to mitigate the computational cost, the complexity of this set of equations

still poses a challenge today.

2.3 Flow control using magnetic effects

Since the medium, in a hypersonic flow, can be locally charged, the possibility opens

up to use electromagnetic actuators to optimally control the flow. These actuators

can generate magnetic fields that induce an acting force on the flow, as given by the
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Lorentz force,

FLorentz = q(E + u×B) , (2.1)

where FLorentz is the force exerted on a fluid particle moving with velocity u, whose

electric charge is q, subject to an electric field E and a magnetic field B. Considering

the magnetic field alone, the flow particle will experience a force as illustrated in

figure 2.1. Thus, the intensity and direction of the applied magnetic field determines

the force exerted on the flow.

Figure 2.1: Lorentz (magnetic) force.

Several studies have already been made to evaluate the potential use of this phe-

nomenon in hypersonic flow control applications. As early as 1967, experimental

observations were made by Nowak et al. [124], revealing that the bow shock stand-off

distance and drag increased, in re-entry vehicles, with the application of moderately

strong magnetic fields. In that same year, Porter and Cambel [131] made a the-

oretical investigation on this same subject using similarity analysis, corroborating

those observations. Four years later, one of the first numerical analysis of the MHD

blunt body problem was performed by Coakley and Porter [26]. This problem has

been revisited recently but some of the results are contradictory with respect to the

possible to drag reduction, as seen on the work of Agarwal and Augustinus [2] and

Gaitonde and Poggie [46]. Since then, many other applications have been developed.

The concept of MHD energy-bypass scramjet inlets was proposed by Gaitonde and

Poggie [49, 43], and MacCormack [94], among others. The potential heat transfer

mitigation through magnetic control in a hypersonic blunt body flow has also been

analyzed by Poggie [129, 130]. Shock-shock interaction and boundary-layer separa-

tion suppression have also been shown possible by Gaitonde [44], and Gaitonde and
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Miller [45]. Another possible flow control utility was tackled by Brian et al. [36],

who studied Mach reflection for double-fin scram-jet inlet configurations for different

magnetohydrodynamic forces. Even the replacement of movable control surfaces by

the use of glow discharges in plasma flows was evaluated in the work of Shang et

al. [145].

As mentioned in section 1.1, all of these experiments have been based on ei-

ther trial-and-error or parametric studies and no formal design approach has been

employed yet. However, any of these problems can be viewed as an optimization

problem in which a cost function must be minimized by varying a set of control vari-

ables, while satisfying a specific set of constraints. One alternative to carry out these

optimizations is to use a gradient-based non-linear optimizer, following the algorithm

shown in figure 1.1.

To tackle this kind of optimization problem, two important conditions must be

met: the flow must be accurately predicted and the sensitivities of the cost and

constraint functions must be computed at reasonable expense, with respect to a sig-

nificant number of parameters. As for the first condition, in order to model the flow,

one must couple the flow governing equations (typically the Navier–Stokes equations)

to the Maxwell equations, leading to a new set of equations called the magnetohydro-

dynamic (MHD) equations. Details of these models are reviewed in section 2.4. The

second condition poses the most interesting challenge since, despite all the work that

has been done trying to control hypersonic flow, no true effort has appeared to pose

this problem from the point of view of nonlinear programming. The methodology

presented in this dissertation focuses on mitigating this gap.
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2.4 Magnetohydrodynamic analysis models

Continuum mechanics

The Knudsen number (Kn) is a dimensionless number defined as the ratio of the

molecular mean free path length to a representative physical length scale,

Kn =
λ

L
=

kBT√
2πσ2PL

, (2.2)

where kB is the Boltzmann’s constant, T is the temperature, σ is the particle diameter

and P is the total pressure. This parameter is useful for determining whether statis-

tical mechanics or the continuum mechanics formulation of fluid dynamics should be

used. If the Knudsen number is near or greater than one, the mean free path of a

molecule is comparable to a length scale of the problem, the continuum assumption of

fluid mechanics is no longer a good approximation, and a statistical model like direct

simulation Monte Carlo has to be used. For Knudsen numbers considerably less than

one, the fluid can be treated as a continuum where the field variables are considered

averages over the microscopic behavior within an infinitesimal control volume. In

this case, the traditional equations governing a flow field, such as the Navier–Stokes

equations with no-slip boundary conditions, are valid.

In terms of aircraft or spacecraft flying at hypersonic speeds in the atmosphere,

Sugimura showed that the minimum altitude at which the free-molecule flow assump-

tion is valid is approximately 120 km and the flow-field can be characterized as near-

continuum up until 70 km [151]. As such, the hypersonic flow simulations in this work

will be restricted to the stratosphere, as pictured in figure 2.2, so that the Knudsen

number remains everywhere small and the continuous mechanics assumption holds.

Complexity and completeness of MHD models

The analysis of plasma flows under the presence of magnetic fields is designated as

magnetohydrodynamics (MHD) and the scientific community has already devoted

much effort into its analysis.

In general, the set of governing equations that model MHD flows are obtained by
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Figure 2.2: Regions of the atmosphere.

coupling the Navier–Stokes to the Maxwell equations. This coupling is strong, in the

sense that the velocity field given by the former equations shows in the convective

terms of the latter, and the electro-magnetic field modeled by the latter appears as

additional force and energy terms in the former equations. The resulting equations

are called the full MHD model [42].

Many interesting and important problems arise in astro-physical, solar, magneto-

spheric, and thermonuclear research which can be described by the MHD equations.

The complexity of these problems often prohibits an analytical investigation and/or

only some of the variables can be observed or measured experimentally; thus the

researcher has to rely on numerical simulations.

In order to cope with the extreme complexity of the full MHD analysis, several

simplified models have been developed. The problem might first be approached by

ignoring the viscous effects and the heat transfer, as well as no electrostatic force, no

displacement current and no resistivity. Under these assumptions, the MHD equations

reduce to the ideal MHD formulation [9, 132]. Also, low magnetic Reynolds number

approximations make the solution of the magnetic field unnecessary [130], since the

magnetic field is assumed to be decoupled from the velocity field.

The completeness of the MHD models can be extended with the addition of tur-

bulence models and chemical reactions. The inclusion of turbulence models, such as

the Baldwin–Lomax and the κ-ε model, into ideal MHD formulations have been done

by Dietiker and Hoffmann [33], and Gaitonde and Poggie [47, 50]. It is interesting to
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notice that the former authors found evidence that the presence of a magnetic field

decreases the skin friction in turbulent regions, suggesting that a re-laminarization

process takes place. If chemical reactions are taken into account the chemical model

of the reacting gas has to be included in the governing equations, which dramatically

increases the computational cost, as mentioned in section 2.2. This has been shown

in the work of Damevin and Hafmann [29], where a complete comparison of the ideal

MHD and the Euler solutions, considering frozen, equilibrium and non-equilibrium

chemical states has been done.

Another good example of the increasingly added accuracy and difficulty in an-

alyzing the flow at hypersonic speeds with magnetic effects can be seen from Mac-

Cormack’s work [90, 91, 92, 93], in which the two-dimensional ideal MHD approach

evolved into a three-dimensional viscous model with chemical reactions, dealing with

both external and internal flows.

In this dissertation, the fluid flow under the influence of magnetic fields has been

modeled with both the ideal and low Reσ approximation MHD equations. These are

described in detail in sections 4.1 and 4.2, respectively.

Numerical schemes

In many situations, MHD flows develop features, such as steep gradients, shock waves,

contact discontinuities, and shear layers, that require the use of modern high resolu-

tion numerical schemes to be resolved.

Many of the well established numerical schemes were initially developed for aero-

dynamics [69] and only recently have they been extended to the system of MHD

equations. The main reason for this delay is that the structure of the MHD equa-

tions is much more complex so those schemes become rather complicated and often

need modifications to handle accurately the degeneracies and instabilities of the MHD

equations.

The stringent stability criteria and the need for efficient algorithms led to the de-

velopment of modern shock capturing schemes based on upwind methods. These algo-

rithms take into account the direction of signal propagation for the purpose of splitting
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and differencing the inviscid fluxes. Among the many upwind schemes, the most pop-

ular are based on the Roe’s approximate linearized Riemann solver [134, 132] and on

the flux splitting techniques of Steger–Warming or Van Leer [156, 40, 41, 80]. While

the Riemann solvers usually produce sharp and monotonic profiles, they often require

entropy fixes and switches to other methods. Other widely used schemes include the

Jameson–Schmidt–Turkel [78] and the MacCormack [88] differencing schemes.

The most common higher-order extension of upwind schemes are the Total Vari-

ation Diminishing (TVD) schemes and these can be extended to MHD equations as

well. If an upwind MHD numerical scheme satisfies the TVD conditions, it enables a

stable computation with high-resolution and effective shock capturing, with sharper

profiles, while avoiding spurious oscillations. The Monotonic Upwind Schemes for con-

servation Laws (MUSCL) approach efficiently constructs TVD schemes from Roe’s

or flux-splitting schemes. A thorough comparison of some Flux Corrected Transport

(FCT) and TVD Numerical schemes for MHD problems is shown in the work of Tóth

and Odstrčil [155].

In 1988, Brio and Wu [20] showed a method to construct an upwind finite-

difference scheme for the one-dimensional ideal MHD equations adopting Roe’s lin-

earization procedure. Four year later, Tanaka [153] extended it to three dimensions,

using a finite-volume method based on the conservation laws, by recognizing that

the ideal MHD equations are symmetric with the rotation of the space. Shang and

Gaitonde [146] extended Van Leer’s MUSCL approach to higher-order accuracy using

an upwind-biased third-order scheme in 1993

Later, in 2001, Gaitonde proposed a high-resolution scheme for the 3-D full MHD

equations using 4th- and 6th-order compact (or Padé-type) schemes [39, 42].

As far as time integration schemes are concerned, the explicit classical multi-

stage Runge–Kutta (RK) schemes are the most widespread, even if the time step is

restricted by the Courant-Friedrichs-Lewy (CFL) condition (4.41), because of their

straightforward implementation. However, this time-step restriction gets even worse

for the system of MHD equations since its fastest propagation wave, the fast magneto-

acoustic wave (see figure B.1), is even faster than the conventional acoustic wave,
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which translates to smaller allowable time steps as the magnetic field intensity in-

creases. Examples of its use can be found in the work of Powell et al. [133], where

upwind schemes based on an approximate Riemann solver for MHD are integrated in

time using an explicit, two-stage, RK time-stepping scheme.

The alternative to explicit schemes is the use of implicit schemes to overcome

time-step limitations, at the expense of a significantly more elaborate programming

implementation. MacCormack has been a long time proposer of implicit discretiza-

tion schemes using approximate factorization procedures and has already successfully

applied these to MHD problems [87, 89]. Gaitonde and Poggie [47] have developed a

loosely coupled, approximately-factored, implicit method, also to overcome time-step

limitations of explicit classical Runge–Kutta schemes.

When selecting a numerical scheme among all the currently available ones, prop-

erties like robustness, numerical diffusion, production of spurious oscillations and

computational efficiency should be taken into account. Regardless, the fact is that

the complexity of some of the latest MHD schemes make their implementation ex-

tremely, if not prohibitively, difficult for the non-specialized researcher.



Chapter 3

Sensitivity analysis methods

The designation sensitivity analysis refers to the estimation of the first directional

derivative of one or more functions with respect to one or more independent variables.

This field of study becomes relevant when we recall the optimization problem (1.3).

As mentioned in section 1.2, the solution of a design problem using a gradient-based

optimizer requires to evaluation of the sensitivity of both the objective and constraint

functions with respect to the design variables, as depicted in figure 1.1. Let f be a

generic scalar quantity representing the function of interest that is function of a set

of parameters xi,

f = f(xi) , i = 1, . . . , Nx , (3.1)

where Nx is the number of parameters. Then, it becomes necessary to calculate the

derivatives
df

dxi

, i = 1, . . . , Nx . (3.2)

More often than not, these calculations can be the costliest step in the optimization

cycle. As such, it is extremely important to devote special care to the way this step is

achieved, taking into account not only the number of design variables, Nx, we might

be interested in but also how expensive it is to evaluate the function f and how

important the accuracy of the estimate is.

Several methods are available to estimate the derivatives (3.2) and they are revis-

ited in the following sections, together with their respective advantages, disadvantages

20
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and applicability. Further details about these standard methods can be found in the

book by Griewank [60].

This chapter ends with the introduction of a hybrid method, the ADjoint method,

that addresses the requirements to accomplish the targeted dissertation goals.

3.1 Finite-differences

The most widely used method to compute derivatives is the finite-differencing (FD)

method. This method makes use of the Taylor’s series expansion of the function f

about a given point x,

f(x+ ∆x) = f(x) + ∆x
∂f(x)

∂x
+

∆x2

2!

∂2f(x)

∂x2
+ · · ·+ ∆xn

n!

∂nf(x)

∂xn
+ · · · , (3.3)

where ∆x is the perturbation step, to derive formulas for derivatives with arbitrary

order of accuracy.

For instance, solving equation (3.3) for the first derivative results in the 1st-order

forward-difference formula,

∂f

∂x
≈ f(x+ ∆x)− f(x)

∆x
+O(∆x) . (3.4)

If the expansion (3.3) is done for (x − ∆x), the resulting formula is the backward-

difference formula. On the other hand, a 2nd-order accurate formula can be obtained

by writing the expansion for both (x + ∆x) and (x − ∆x), and combining the two.

The result is the central-difference formula,

∂f

∂x
≈ f(x+ ∆x)− f(x−∆x)

2∆x
+O(∆x2) . (3.5)

A detailed look at these approximations, as well as higher-order approximations, can

be found in Lomax et al. [85].

From the above expressions, it follows immediately that the implementation of

this method is very easy, thus its wide-spread use, as it only requires the function

evaluation capability. This is usually embedded in the flow solver itself so all is left
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is to modify the input (or boundary) flow conditions to account for the perturbed

design variable, corresponding to the step xi +∆xi, and re-evaluate the flow solution.

If either a 1st-order forward- or back-difference was selected, it would require Nx + 1

flow solver evaluations to compute the full gradient vector, whereas the 2nd-order

estimate (3.5) would need as many as 2Nx +1. This is to say that the computational

cost of this method is proportional to the number of design variables.

However, this need for flow re-evaluations makes this method impractical for prob-

lems with a large number of design variables, since the large number (Nx) of expensive

function evaluations translates into a prohibitively costly computational process, thus

inappropriate for the intent of this dissertation.

Moreover, this method also suffers from a large sensitivity to the choice of step

size. If ∆x is chosen too large, the derivative estimate might be inaccurate because of

the large truncation error; if it is made too small, then subtractive cancellation might

occur and the estimate is again inaccurate. A thorough discussion about subtractive

cancellation issues can be found in the work of Martins [104]. Finding the sweet spot

of ∆x is often problem dependent so prior effort expended before using the resulting

estimated derivative values.

3.2 Complex-step derivative

The complex-step derivative approximation can also be derived using a Taylor series

expansion, similar to the finite-difference approximation, but instead of using a real

perturbation step, it uses a pure imaginary step.

Even though it was pioneered back in the late 60’s by Lyness and Moler [86], only

recently has this method been rediscovered by Squire and Trapp [149] and used to

obtain a very simple formula for estimating the first derivative of a real function. One

of the first applications to CFD happened just at the turn of the 21st century in the

work of Martins et al. [109], who performed sensitivity analysis on a two-dimensional,

cell-centered, finite-volume solver for the Euler equations. Around the same time,

Anderson et al. [7] carried out sensitivity analysis for the three-dimensional Navier-

Stokes equations.
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The first derivative formula can be easily recovered by considering a real function,f ,

and expand it about a real point x using the Taylor’s series expansion (3.3),

f(x+ i∆x) = f(x) + i∆x
∂f(x)

∂x
− ∆x2

2!

∂2f(x)

∂x2
+ · · ·+ (i∆x)n

n!

∂nf(x)

∂xn
+ · · · , (3.6)

where the imaginary unit is defined as i =
√
−1, according to complex calculus. The

function f has now become complex valued so taking the imaginary parts of both

sides of expression (3.6), dividing it by ∆x and solving for the first derivative, yields

the desired expression,

∂f

∂x
≈ Im[f(x+ i∆x)]

∆x
+O(∆x2) . (3.7)

Comparing the approximation (3.7) to the FD central-difference formula (3.5), it

can be seen that even though it retains 2nd-order accuracy, it only requires Nx + 1

complex function evaluations.

This estimate is not subject to subtractive cancellation error, since it does not

involve a difference operation, which constitutes a tremendous advantage over the

finite-difference approximations (3.4) and (3.5). In fact, the derivative estimate is

practically insensitive to small step sizes so they can be made extremely small, where

the lower limit depends only on the type of finite-precision arithmetic being used.

To implement this method in a flow solver coded in a language that supports

complex-arithmetic, it is necessary to make a few changes to the code, namely sub-

stitute all real type variable declarations with complex declarations and define all

functions and operators that are not defined for complex arguments. Only then can a

desired input variable be perturbed by a complex-step and the derivative estimated by

the formula (3.7). A point worth noting is that the complex-step method is equivalent

to the forward-mode of automatic differentiation using operator overloading [111].

This method has already been proved to be very accurate, extremely robust and

surprisingly easy to implement in design problems [112]. Nevertheless, the cost of

estimating the derivative using this method is still proportional to the number of

design variables, which is further aggravated by the fact that the run time of the
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complex-valued code might take up to three times longer to run when compared to

the original real-valued code. Consequently, this method is also unsuited for the class

of design problems targeted by this dissertation.

3.3 Symbolic differentiation

The use of a symbolic differentiation commercial packages such as Maple [161], Mat-

lab(with Maple’s symbolic toolbox) [162] or Mathematica [163] can solve the problem

of obtaining expressions for the derivatives. This method avoids truncation errors but

usually these packages have problems in handling large expressions and the time/space

usage for computing derivatives can be enormous. In the worst case it can even

cause the program to crash. Furthermore, common sub-expressions are usually not

identified in the expressions and this leads to unnecessary computations during the

evaluation of the derivatives.

As an illustration, given the vector function f ,{
f1

f2

}
=

{
2x2(4x1 + 3cos(x2))

(x1 + 5x2
2)/2

}
, (3.8)

the exact Jacobian (matrix of sensitivities) can be easily calculated, resulting

∂f

∂x
=

[
8x2 8x1 + 6cos(x2)− 6x2sin(x2)

1/2 5x2

]
. (3.9)

Using Maple to perform the task through symbolic manipulation produces the

results shown in figure 3.1. As expected, the results match the analytic expres-

sions (3.9). However, it is easy to understand that the use of such tools is restricted

explicit functions of low dimensionality and they cannot be applied to large iterative

solvers, such as the ones employed in CFD, to compute the gradients of the form (3.2).



3.4. AUTOMATIC DIFFERENTIATION 25

> with(linalg):

Warning, the protected names norm and trace have been redefined and
unprotected

> x := vector( [x1, x2] );

> f := vector( [2*x2*(4*x1+3*cos(x2)), (x1+5*x2^2)/2 ] );

x := [x1 , x2 ]

f :=
[
2 x2 (4 x1 + 3 cos(x2 )),

1
2

x1 +
5
2

x2 2

]
> df_dx := jacobian(f, x);

df dx :=

[
8 x2 8 x1 + 6 cos(x2 )− 6 x2 sin(x2 )
1
2

5 x2

]

Figure 3.1: Symbolic differentiation using Maple.

3.4 Automatic differentiation

Automatic differentiation, also known as computational or algorithmic differentiation,

is a sensitivity analysis method based on the systematic application of the chain rule

of differentiation to computer programs. One of the implementations of the method

relies on tools that automatically produce a program that computes user-specified

derivatives based on the original program.

The sequence of operations in any computational algorithm can be cast in the

form

ti = fi(t1, t2, . . . , ti−1) , i = n+ 1, n+ 2, . . . ,m , (3.10)

where each function fi is either a unary or binary operation. t1, t2, . . . , tn are the

independent variables, which in this work assume the role of design variables x, and

tn+1, tn+2, . . . , tm are the dependent variables, that include all the intermediate vari-

ables in the algorithm, among which we can find the outputs of interest, I. Applying

the chain rule to the algorithm (3.10) yields

∂ti
∂tj

=
i−1∑
k=1

∂fi

∂tk

∂tk
∂tj

, j = 1, 2, . . . , n . (3.11)

The result is an automatically generated new code, corresponding to the differentiated
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version of the original one.

Although this approach is as accurate as an analytic method, it is potentially

much easier to implement since everything is done automatically. However, the run

time of the algorithmic differentiated version compared with the real-valued code is

approximately two times longer.

3.4.1 Forward and reverse modes

There are two different modes of operation for automatic differentiation – the for-

ward and the reverse modes – depending on how the derivatives given by the chain

rule (3.11) are propagated.

The forward mode propagates the required sensitivity at the same time as the

solution is being computed. In terms of index notation, one independent variable is

selected, choosing j and keeping it fixed, and then the expression is worked forward

in the index i until the desired derivative is obtained. Thus, this mode is well-suited

when evaluating the sensitivity of many functions with respect to one parameter.

On the other hand, the reverse mode requires the function to be computed first,

with intermediate variable values stored. These intermediate variables are then used

by the reverse version of the code to find the sensitivities. This mode works by fixing

i, corresponding to the desired output to be differentiated, and working the way

backward in the index j all the way down to the independent variables. As such, it

is the desired mode to compute the sensitivity of one function with respect to many

parameters.

Further details about the two different modes of differentiation, illustrated with

examples, can be found in the work of Mader et al. [95].

In the context of CFD, the code that evaluates the function of interest, f , is

typically an iterative solver. The two modes are directly related to the direct and

adjoint methods of sensitivity analysis. The counterparts of the state variables in

the semi-analytic methods are the intermediate variables, and the residuals are the

lines of code that compute those quantities. As such, the use of AD in reverse mode

requires the solver to be run to convergence first, with intermediate variable values
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stored for every iteration. Consequently, the memory requirements easily become

prohibitive because the flow solvers generally require a large number of iterations to

achieve convergence.

3.4.2 Source transformation or operator overloading

There are two methods for implementing automatic differentiation – source code trans-

formation and operator overloading.

The automatic differentiation implementation using source transformation re-

quires the whole source code to be processed by a parser. The parser introduces

additional lines of code corresponding to all the derivative calculations while gener-

ating the differentiated version of the source code. Therefore, the resulting code is

greatly enlarged and it becomes practically unreadable. This fact might constitute an

implementation disadvantage as it becomes impractical to debug this new extended

code. Also, every time the original code is changed, it is necessary to re-run the

parser to obtain the updated corresponding differentiated version. Despite the fact

that this method generates new code that is unmaintainable, it brings the important

advantage that it tends to yield considerably faster code.

The automatic differentiation implementation using operator overloading defines

a new user-defined type that is used instead of real numbers. This new type includes

not only the value of the original variable, but the derivative as well. Therefore, to use

this method, it is required that the source code be written in a modern programming

language, such as Fortran 90 or C++, that supports derived data types. All the

intrinsic operations and functions have to be redefined (overloaded) for the new type

in order for the derivative to be computed together with the original computations.

The new operator has exactly the same behavior as before for the value part of

the new type, but uses the definition of the derivative of the operator to calculate

the derivative portion. This results in a very elegant implementation since very few

changes are required in the original code, but it is usually less efficient.
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3.4.3 Tools for automatic differentiation

There are a number of software tools available for automatic differentiation, sup-

porting different programming languages and implementing either the source code or

the operator overloading methods. These tools have been extensively developed and

provide the user with great functionality, including the calculation of higher-order

derivatives and reverse mode options.

The most well known tools that automatically differentiate Fortran 77 codes us-

ing the source transformation method are ADIFOR [17, 18, 21], TAMC [58, 52],

DAFOR [15, 14], GRESS [72, 71] and Odyssée [38]. More recently, some tools that

support Fortran 90 have been made available, namely, TAF [51, 53](the sucessor of

TAMC) and Tapenade [64, 65, 32](the sucessor of Odyssée). All these tools make the

necessary changes to the source code automatically.

Tools supporting the operator overloading method are AD01 [135], ADOL-F [147],

IMAS [141, 140] and OPTIMA90 [12]. All these require at least Fortran 90 so that

the operator overloading feature can be used. Although it is, in theory, possible to

have a script make the necessary changes in the source code automatically, none of

these tools have this facility and the changes must be done manually.

There are also a few established automatic differentiation tools for C/C++. These

include ADIC [16], an implementation mirroring ADIFOR also using the source trans-

formation method, and FADBAD++ [13, 150] and ADOL-C [59] (the C counterpart

of ADOL-F), that use the operator overloading method.

3.4.4 Example using Tapenade

Among the several tools for automatic differentiation mentioned above, Tapenade was

chosen in this dissertation because it is the only non-commercial tool that supports

Fortran 90, which was a requirement taking into account the programming language

used in the flow solver implementations.

Tapenade is the successor of Odyssée and it has been developed at the Institut Na-

tional de Recherche en Informatique et an Automatique (INRIA) in Sophia-Antipolis,
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France. It uses source transformation and can perform differentiation in either for-

ward or reverse mode. Furthermore, the Tapenade team is actively developing their

software and has been very responsive to a number of suggestions toward completing

their full support of the Fortran 90 standard. At the time this dissertation was writ-

ten, the major restriction when using Tapenade was that it did not support pointer

variables in the path of differentiation. However, this drawback can be easily circum-

vented by simply copying the relevant variables instead of pointing to them. Also,

variables that remain constant within the section of code that is differentiated do not

present this problem.

Similarly to what was done for the symbolic differentiation tool subsection, the

same example (3.8) is used here, running Tapenade in both the forward and reverse

modes to compute the derivatives. In this case, there are two independent variables

(n=2) – t1 and t2. The Fortran routine that computes the vector function f is shown

in figure 3.2.

subroutine myResidual(t1,t2,t5,t6)

real(8), intent(in) :: t1, t2
real(8), intent(out) :: t5, t6
real(8) :: t3, t4

t3 = 4 * t1 + 3 * cos(t2)
t4 = t1 + 5 * t2**2
t5 = 2 * t2 * t3
t6 = t4 / 2

end subroutine

Figure 3.2: Original Fortran routine.

Running the Tapenade parser in forward mode of differentiation automatically

generates the code included in figure 3.3. New variables are introduced, tjd, j=1,2,

which are the seed vector and tid, i=5,6, which are the gradient of all ti in the

direction specified by the seed vector. The seed tjd determines the independent

variable tj with respect to which the gradient of f is to be computed. Choosing

j=1,2 and setting the corresponding seed to unit value tjd=1 (tkd=0, k6=j), then
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C Generated by TAPENADE (INRIA, Tropics team)
C Tapenade - Version 2.2 (r1239) - Wed 28 Jun 2006 04:59:55 PM CEST
C
C Differentiation of myresidual in forward (tangent) mode:
C variations of output variables: t5 t6
C with respect to input variables: t1 t2

SUBROUTINE MYRESIDUAL_D(t1, t1d, t2, t2d, t5, t5d, t6, t6d)
IMPLICIT NONE

C
REAL*(IN)*(8) t1, t1d, t2, t2d
REAL*(OUT)*(8) t5, t5d, t6, t6d
REAL*8 t3, t3d, t4, t4d
INTRINSIC COS

C
t3d = 4*t1d - 3*t2d*SIN(t2)
t3 = 4*t1 + 3*COS(t2)

C
t4d = t1d + 5*2*t2*t2d
t4 = t1 + 5*t2**2

C
t5d = 2*(t2d*t3+t2*t3d)
t5 = 2*t2*t3

C
t6d = t4d/2
t6 = t4/2

C
END

Figure 3.3: Fortran routine automatically differentiated using the forward mode.

the differentiated routine outputs the gradients of all the outputs with respect to tj,

∂ti
∂tj

= tid, i = 5, 6 . (3.12)

For example, the derivative with respect to t1, we would set t1d = 1 and all other

tjds to zero. Notice that only one direction can be chosen at a time.

If Tapenade is run in reverse mode of differentiation, it produces the differentiated

code shown in figure 3.4. In this case, selecting the output variable i=5,6 and set-

ting the corresponding seed to unit value tib=1 (tkb=0, k6=i), the new code would
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C Generated by TAPENADE (INRIA, Tropics team)
C Tapenade - Version 2.2 (r1239) - Wed 28 Jun 2006 04:59:55 PM CEST
C
C Differentiation of myresidual in reverse (adjoint) mode:
C gradient, with respect to input variables: t1 t2 t5 t6
C of linear combination of output variables: t5 t6

SUBROUTINE MYRESIDUAL_B(t1, t1b, t2, t2b, t5, t5b, t6, t6b)
IMPLICIT NONE

C
REAL*(IN)*(8) t1
REAL*8 t1b, t2b
REAL*(IN)*(8) t2
REAL*8 t5, t5b, t6, t6b
REAL*8 t3, t3b, t4, t4b
INTRINSIC COS

C
t3 = 4*t1 + 3*COS(t2)

C
t4b = t6b/2
t3b = 2*t2*t5b
t2b = 5*2*t2*t4b - 3*SIN(t2)*t3b + 2*t3*t5b
t1b = 4*t3b - t4b
t5b = 0.0
t6b = 0.0

C
END

Figure 3.4: Fortran routine automatically differentiated using the reverse mode.

compute the gradient of the selected output with respect to all independent variables,

∂ti
∂tj

= tjb, j = 1, 2 . (3.13)

The cost of calculating the derivative of one output to many inputs is not proportional

to the number of inputs but, rather, to the number of outputs. Since, when using the

reverse mode, all the intermediate variables need to be stored, the amount of memory

that is necessary increases dramatically. In the case of three-dimensional iterative

CFD solver, the cost of using this mode can be prohibitive.

In summary, the application of AD tools directly to the flow solver generates dif-

ferentiated code that becomes too expensive to be evaluated. A good example of

the application of AD tools directly to flow solvers can be found within the German
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MEGADESIGN project [82], where TAF was used to differentiate FLOWer, a finite-

volume, block-structured, flow solver for the RANS equations. The resulting differen-

tiated solver took up to ten times longer to run than original flow solver. Therefore,

the AD method does not provide, by itself, the features necessary to achieve the goals

of this dissertation.

3.5 Semi-analytic methods

Among all the methods available for sensitivity analysis, the semi-analytic methods

are the most accurate and efficient. They are, however, more involved than the

other methods since they require the knowledge of the governing equations and the

algorithm that is used to solve those equations.

In this case, it is convenient to express the function of interest as I and recognize

that it depends, in general, not only on the design variables x themselves directly,

but also on the physical state w of the system,

I = I(x,w(x)) . (3.14)

For a given set of parameters, x, the solution of the governing equations yields a

solution w, thus establishing the dependence of the state of the system on the design

variables. The governing equations can be posed as

R(x,w(x)) = 0 , (3.15)

where the first instance of x indicates the fact that the residual of the governing

equations may depend explicitly on design variables. The discretization of the gov-

erning equations results in a system of ODEs, as detailed in chapter 4, which is here

represented by equation (3.15).

As a first step toward obtaining the derivatives (3.2), it is convenient to use the

chain-rule of differentiation to write the total sensitivity of the vector-valued function
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I as
dI

dx
=
∂I

∂x
+
∂I

∂w

dw

dx
. (3.16)

The sizes of the sensitivity matrices are

∂I

∂x
(NI ×Nx) ,

∂I

∂w
(NI ×Nw) ,

dw

dx
(Nw ×Nx) , (3.17)

where NI is the number of functions of interest, Nx the number of design variables and

Nw the size of the state vector, which for the solution of a large, three-dimensional

problem involving a system of conservation laws, can be very large. The size of the

state vector depends on the number of governing equations, Nv, and the size of the

computational mesh, Nc, in each they have been discretized, according to the relation

Nw = Nv ×Nc.

It is important to distinguish the total and partial derivatives in equation(3.16).

The partial derivatives can be directly evaluated by varying the denominator and

re-evaluating the function in the numerator with everything else held constant. The

total derivatives, however, require the solution of the governing equations. Thus, for

typical functions of interest, all the terms in the total sensitivity equation (3.16) can

be computed with relatively little effort except for dw
dx

.

Since the governing equations must always be satisfied, the total derivative of the

residuals (3.15) with respect to any design variable must also be zero. Expanding the

total derivative of the governing equations with respect to the design variables results

dR
dx

=
∂R
∂x

+
∂R
∂w

dw

dx
= 0 . (3.18)

This expression provides the means for computing the total sensitivity of the state

variables with respect to the design variables, dw
dx

. To this end, rewriting equa-

tion (3.18) as
∂R
∂w

dw

dx
= −∂R

∂x
, (3.19)

where the following sensitivity matrices have been defined,

∂R
∂w

(Nw ×Nw) ,
∂R
∂x

(Nw ×Nx) , (3.20)
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solving for dw
dx

, and substituting the result into the total derivative equation (3.16),

yields
dI

dx
=
∂I

∂x
− ∂I

∂w

[
∂R
∂w

]−1
∂R
∂x

. (3.21)

Depending on the problem size – number of functions of interest, NI , and number

of design variables, Nx –, the evaluation of the expression for the total derivative (3.21)

may be tackled in two different ways, leading to either the direct- or the adjoint-

sensitivity equations. These methods are covered in the sub-sections that follow.

3.5.1 Direct method

If the direct method is used, the equation (3.19) is solved first for dw
dx

and then the

result is substituted in the expression for the total sensitivity (3.16). The resulting

direct sensitivity equations are then given by

dI

dx
=
∂I

∂x
+
∂I

∂w

dw

dx
,

(3.22)

such that
∂R
∂w

dw

dx
= −∂R

∂x
.

This method implies that the matrix equation (3.19) has to be solved Nx times

for dw
dx

, one for each design variable xi. Since the design variables only affect the

right-hand side of the equation, solving for multiple right-hand-side vectors would be

relatively inexpensive if the matrix ∂R
∂w

could be explicitly factorized and stored.

However, for large problems – such as the ones encountered in CFD – the inverse

of the Jacobian matrix ∂R
∂w

is never factorized explicitly and the system of equations

requires an iterative solution which is usually as costly as solving the governing equa-

tions.

Consequently, the factorization cost, in conjunction with a large number of design

variables, makes the total cost for calculating the total sensitivity vector (3.16) unac-

ceptable. In other words, this method is not suitable for achieving the goal statement

of this dissertation.



3.5. SEMI-ANALYTIC METHODS 35

3.5.2 Adjoint method

An alternative method for computing the total sensitivity dI
dx

can be derived by re-

turning to the total sensitivity equation (3.21) and defining an auxiliary vector ψ

as

ψT =
∂I

∂w

[
∂R
∂w

]−1

(NI ×Nw) , (3.23)

which upon rearrangement yields the adjoint equations,[
∂R
∂w

]T

ψ =

[
∂I

∂w

]T

. (3.24)

The vector ψ is usually called the adjoint vector and it is substituted into equa-

tion (3.21) to find the total sensitivity. The resulting adjoint sensitivity equations,

also called the dual problem, are then given by

dI

dx
=
∂I

∂x
− ψT ∂R

∂x
,

(3.25)

such that

[
∂R
∂w

]T

ψ =

[
∂I

∂w

]T

.

In contrast with the direct method, the adjoint vector does not depend on the

design variables, x, but instead depends on the function of interest, I.

As mentioned before, the choice of the solution procedure (direct vs. adjoint) to

obtain the total sensitivity (3.21) has a substantial impact on the cost of sensitivity

analysis. Although all the partial derivative terms are the same for both the direct

and adjoint methods, the order of the operations is not.

The most computationally intensive step for both of these problems (3.22,3.25)

is the solution of the corresponding linear systems. In the case of the original prob-

lem (3.22) – the direct method – a linear system of Nw equations has to be solved

Nx times. Notice that once dw
dx

is computed, it is valid for any function I, but must

be recomputed for each design variable x. For the dual problem (3.25) – the adjoint

method – the linear system has the same size, however, it has to solved NI times

because ψ is valid for all design variables, but must be recomputed for each function.
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Thus the choice of which of these methods to use depends largely on how the number

of design variables, Nx, compares to the number of functions of interest, NI .

A comparison of the cost of computing sensitivities with the direct versus adjoint

methods is shown in table 3.1. Both methods require the factorization of the same

Step Direct Adjoint
Factorization same same
Back-solve Nx times NI times
Multiplication same same

Table 3.1: Approximate comparison of the relative cost of the semi-analytic methods.

matrix, ∂R
∂w

. The difference in the cost comes form the back-solve step for solving

equations (3.19) and (3.24), respectively. The direct method requires this step to be

performed for each design variable, xi, while the adjoint method requires this to be

done for each function of interest, I. The multiplication step is simply the calculation

of the final sensitivity expressed in equations (3.19) and (3.24), respectively, and its

cost is the same for both methods. Consequently, when the number of design variables

is greater than the number of functions of interest, Nx � NI , the adjoint approach

of equation (3.25) is the logical choice. If, instead, the number of functions to be

differentiated is greater than the number of design variables, NI � Nx, then the

direct method should be used.

The cost involved in calculating sensitivities using the adjoint method is therefore

practically independent of the number of design variables. After having solved the

governing equations, the adjoint equations are solved only once for each I. Moreover,

the cost of solution of the adjoint equations is similar to that of the solution of

the governing equations since they are of similar size and complexity. The major

drawback of using adjoint-based sensitivities has always been the necessity of an

additional solver – the adjoint system of equations solver. Therefore, the adjoint

approach enables large computational savings, at the expense of a more complex

implementation [105, 104], when compared to traditional sensitivity analysis methods

such as finite differences.
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This method is by far the best suited for this work and, as such, it will consti-

tute the foundation upon which the methodology to develop, in a timely fashion, an

efficient sensitivity analysis tool for an arbitrarily complex flow solver will be built.

The issue of rapidly developing the adjoint solver will be tackled in section 3.6 and

its implementation covered in detail in chapter 5.

Duality viewpoint

The derivation of the adjoint equations found in the previous subsection is often

referred as the dual problem, since the adjoint vector takes the role of the dual of

the state vector. In that sense, the set of governing equations is called the primal

problem, whereas the adjoint system of equations is referred as the dual problem.

Lagrangian viewpoint

An alternative way to derive the adjoint equations is the Lagrangian viewpoint. This

approach follows the method of Lagrange multipliers for the solution of a constrained

minimization problem, in which the augmented cost function is defined as

Ĩ(w,x) = I(w,x)− ψTR(w,x), (3.26)

where ψ is the vector of Lagrange multipliers that takes the role of the adjoint vari-

ables. From the definition of augmented cost function, the constraints are naturally

enforced by the optimal solution, thus the governing equations are automatically

satisfied.

The sensitivity of the augmented cost function is then

dĨ

dx
=
dI

dx
− ψT dR

dx
, (3.27)

which can be expanded as

dĨ

dx
=

(
∂I

∂w

dw

dx
+
∂I

∂x

)
− ψT

(
∂R
∂w

dw

dx
+
∂R
∂x

)
. (3.28)
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Rearranging equation (3.28) results

dĨ

dx
=

(
∂I

∂w
− ψT ∂R

∂w

)
dw

dx
+

(
∂I

∂x
− ψT ∂R

∂x

)
. (3.29)

In order to eliminate the dependence on the flow variables, the term involving dw/dx

must vanish, which is achieved by choosing ψ such that it satisfies the adjoint equation

∂I

∂w
− ψT ∂R

∂w
= 0 =⇒

[
∂R
∂w

]T

ψ =

[
∂I

∂w

]T

. (3.30)

Once ψ is obtained by solving the system of equations (3.30), the sensitivity of

the augmented cost function is simply given by

dĨ

dx
=
∂I

∂x
− ψT ∂R

∂x
. (3.31)

The final equations (3.30) and (3.31) are exactly the same as those derived by

considering duality (3.25); only the mathematical description differs.

The advantage of the adjoint approach can be seen from equation (3.31), which

is independent of δw, meaning that the gradient of I with respect to an arbitrarily

large vector of design variables x can be determined without the need for additional

solutions of the PDE. This capability to effectively handle design problems involving

a large number of design variables is what makes the adjoint methods well known for.

Continuous and discrete approaches

When it comes to implementation, there are two main ways of obtaining the adjoint

equations (3.25) for a given system of PDEs, as illustrated in figure 3.5. These

two adjoint formulations can be classified into continuous [138, 139] or discrete [123,

121]. The continuous adjoint approach forms a continuous adjoint problem from the

governing PDEs and then discretizes this problem to solve it numerically. The discrete

adjoint approach first discretizes the governing PDE and then derives an adjoint

system for these discrete equations. As such, there is freedom as how to discretize

the adjoint PDE using the continuous approach, whereas the adjoint implementation
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in the discrete approach is fixed by the primal discretization.

Discrete
Equations

PDEs

Nonlinear Linear Adjoint

- -

?

Continuous Approach

?

- -

Discrete Approach

Figure 3.5: Ways of deriving the discretized adjoint equations.

Each of these approaches results in different systems of linear equations that, in

theory, converge to the correct analytic value of the gradient of the objective function

in the limit of infinite grid resolution, if all the solutions are sufficiently smooth.

There have been some studies comparing these two approaches such those done by

Nadarajah and Jameson [117, 118].

The discrete approach formulation has the advantage that it can be applied to

any set of governing equations and, being derived from the discretized form of the

flow governing equations, produces gradients that are consistent with the flow solver.

If this is not guaranteed then a numerical optimizer cannot converge to a local min-

imum since the numerical gradient might not be zero at that location due to those

inconsistencies. In addition, it can treat arbitrary functions of interest, whereas the

continuous adjoint can only treat specific forms of integral functions [77, 84]. Another

advantage of this formulation is that the boundary conditions are handled seamlessly

since the adjoint solver is derived from the discretized flow residual equations that

already implement them. But the most interesting feature is that it allows to use

automatic differentiation (AD) tools in its derivation, expediting considerably the

process of obtaining the differentiated form of the discretized governing equations

necessary to assemble the adjoint system of equations.

Differentiating the continuous governing equations first is usually more involved

and a number of shortcuts must be included when the governing equations are compli-

cated, such as when using the RANS equations with turbulence models [118] or MHD
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models. The viscous effects might not be modeled in their entirety, as in the reference

just mentioned, and even when they are modeled (for purposes of the adjoint solver),

the flow is typically assumed laminar and no turbulence model is used [77]. In the lat-

ter case, the viscosity and heat transfer ratio are usually assumed to be independent

of the flow and kept constant when deriving the adjoint. This is true even if the flow

solver uses the RANS equations because the derivation of the adjoint typically as-

sumes a constant eddy viscosity thus ignoring the turbulence equations. In addition,

applying boundary conditions to the differentiated equations can be non-intuitive be-

cause some of these boundary conditions are non-physical. The biggest feature might

be the reduced memory requirements (at the same level as the flow solver), but all

the other drawbacks when compared to the discrete approach make it inappropriate

to meet the needs to achieve the previously stated goal of this dissertation.

When considering high-speed flows in the context of MHD, both turbulence and

electromagnetic effects play an important role, and the variation of µ and κ, as well

as the magnetic permeability µm and the electrical conductivity σ, must be taken into

account to accurately model the phenomena. Since these variations can be naturally

included in the discrete adjoint formulation, this approach seems to be the most

suitable for the problem at hand. This is particularly important as not deriving the

full adjoint can result in incorrect sensitivities, particularly for viscous flow, as shown

in the previous work of Dwight [35].

Additional details about the continuous and discrete adjoint approaches and their

implementations can be found in the work of Giles[55].

3.6 Hybrid approach: ADjoint

An interesting comparison of the computational accuracy and cost among the several

sensitivity analysis methods described previously can be found in the work of Mar-

tins [103], conveniently replicated here in table 3.2. This table shows the gradient of a

single function of interest with respect to a single input parameter evaluated using a

finite-element structural model solver. Both the run-time and memory requirements

of the complex-step solution were taken as references in the comparison to the other
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methods.

Method Sample Sensitivity Time Memory
FD 39.049724352820375 0.88 0.72
Complex 39.049760045804646 1.00 1.00
ADIFOR 39.049760045809059 2.33 8.09
Analytic 39.049760045805281 0.58 2.42

Table 3.2: Run-time and memory requirements for different sensitivity methods.

The data in table 3.2 shows that all methods except finite-differences achieve

the precision of the solver. The complex-step approximation might seem a good

compromise, but since its cost is proportional to the number of parameters (design

variables), it has to be ruled out. The automatic differentiation method, implemented

quite easily using ADIFOR, proved to be not only slower but mainly quite memory

intensive. On the other hand, the analytic method – a discrete adjoint – looks as the

best but its implementation is rather difficult.

Even though the ratios are problem-dependent, it is clear that the features of

accuracy and independence of the number of parameters that the adjoint methods

have, together with the ease of implementation that the automatic differentiation

methods exhibit, are quite desirable to retain. This was the reasoning behind the

purposed method of this dissertation – an hybrid method, called the ADjoint [108,

110].

3.6.1 Merging the adjoint and AD methods

The ADjoint relies on the discrete adjoint method to compute the sensitivities, mak-

ing use of the adjoint (3.30) and the total sensitivity (3.31) equations to compute the

gradients of the function of interest with respect to the design variables. However,

rather than using AD to differentiate the entire source code of the CFD solver, AD

is selectively applied to produce only the code that computes the individual entries

in the flux Jacobian matrix and the other partial derivatives – ∂R
∂w

, ∂I
∂w

, ∂I
∂x

and ∂R
∂x

–

that are necessary to compute sensitivities using an adjoint method.
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Constructing the Jacobian ∂R
∂w

The residual calculation of an iterative CFD flow solver is typically done in a subrou-

tine that loops through the three-dimensional domain and accumulates the several

fluxes and boundary conditions contributions in the residual R. However, the resid-

ual at each cell (or node) only depends on the flow variables at that cell and at

the cells adjacent to it, which define the stencil of dependence. As such, applying

a purely automatic approach to the nested-loop residual code would translate into

enormous computational inefficiencies. If the forward mode were used, then the cost

of computing ∂R
∂w

would be roughly (Nc ×Nw) times the cost of the original residual

computation. If the reverse mode were used, then there would be a large memory

penalty associated with the storage of all the intermediate variables generated by the

series of nested loops, which is exactly what needs to be avoided.

Therefore, to avoid the automatic differentiation of nested loops over the whole

computational domain, a re-engineered set of routines that mimic the original com-

putation of the residual, but only at a given a cell (or node) location in the domain,

must be created. That code can be easily constructed from the original residual eval-

uation routines in the flow solver by removing the loops over all the cells (or nodes) in

the domain and making necessary adjustments so that the boundary conditions are

handled properly. The new residual routine computes the Nv residuals at a specified

cell (or node), getting contributions from all (Nv ×Ns) flow variables in the stencil,

where Ns denote the number of cells (or nodes) of the stencil.

Thus, there are Nv×(Nv×Ns) sensitivities to be computed for each cell (or node),

corresponding to Nv rows in the Jacobian adjoint matrix, ∂R
∂w

, where each of these

rows contains no more than (Nv ×Ns) non-zero entries.

At this stage, the only point that remains to be considered is that of the choice

of the mode of automatic differentiation. In principle, because ∂R
∂w

is a square matrix,

neither mode should have an advantage over the other in terms of computational

time.

In the reverse mode, all of the Nv × (Nv × Ns) derivatives in the stencil can be

calculated from a single call to the differentiated residual routine at a given cell, since

all of the information for that calculation is contained in a single stencil. These would
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provide all of the non-zero entries of Nv rows in the Jacobian matrix.

On the other hand, in forward mode, all of the residuals affected by the states in a

single cell (or node) would have to be considered. Theoretically, the derivatives of the

(Nv ×Ns) residuals affected by a single state can be computed, thus for a single cell

(or node), a total of Nv × (Nv ×Ns) derivatives would again be obtained. However,

because of the one-way dependence of the residual on the states, this does not prove

to be the case. Therefore, it would be necessary to calculate all of the Nv × Ns

residuals in the inverse stencil as well so, rather than having a single calculation with

Nv ×Ns states involved to get Nv × (Nv ×Ns) derivative values, it would require Ns

differentiated residual calculations and many extra states to get the same number of

derivative components.

Therefore, due to the way residuals are computed, the reverse mode is much more

efficient in this case and, on this basis, it was used to produce adjoint code for the

set of residual evaluation routines.

Constructing the vector ∂I
∂w

The right-hand side (RHS) vector of the adjoint equations (3.30) (or matrix, in the

case of multiple functions of interest I) represents the direct effect of the flow variables

on the function of interest.

In general, it would be necessary to obtain modified versions of the original func-

tions to compute the derivatives, following the same procedure described above for

the residual equations.

However, because the functions of interest considered in this dissertation are the

inviscid aerodynamic coefficients, CL, CD, CMx, CMy and CMz, that are simple in-

tegrations of the pressure over the solid surfaces of the mesh for inviscid flow, these

terms were evaluated analytically. These simplified functions have been chosen due

to modeling limitations inherited from the MHD flow solvers used. In high-fidelity

MHD simulations, however, not only the viscous effects should be taken into account,

but also the reactions of the dipoles to the flow magnetic field must be considered

when evaluating the total forces exerted on a vehicle.
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Constructing the other partial derivative terms

As with the residual equations, modified versions of the original functions were used

to compute the derivatives ∂R
∂x

and ∂I
∂x

and procedures identical to the described for

the partial derivatives with respect to the flow variables w are employed.

3.6.2 Benefits of the hybrid approach

It follows from the exposition made previously that the use of ADjoint method in the

context of CFD brings several advantages compared to any other sensitivity analysis

method. In summary, the major benefits gained by using this hybrid method are that

it is:

• Largely automatic: Given the solver source code, it creates the necessary code

to compute all the necessary terms in the discrete adjoint formulation.

• Exactly consistent : Because the process of automatic differentiation allows ar-

bitrarily complex expressions for the computation of the residuals, boundary

conditions, and cost functions to be treated exactly, the sensitivities produced

are perfectly consistent with those that would be obtained with an exact numeri-

cal differentiation of the original solver. In other words, typical approximations

made in the development of adjoint solvers (such as neglecting contributions

from the variations resulting from turbulence models, spectral radii, artificial

dissipation and upwind formulations) are not made here.

• Generic: It can be quickly applied to new formulations of the governing equa-

tions or even new governing equations themselves.

All the above supports the choice of using the ADjoint method in the present

dissertation. Although this automated way of constructing discrete adjoint solvers

will usually require more memory than the continuous adjoint, in particular if the

full Jacobian matrix ∂R
∂w

is pre-assembled, the author believes that the advantages

mentioned earlier greatly outweigh this disadvantage. In addition, alternative free-

matrix adjoint computations are also possible that considerably mitigate this issue.
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In that case, the entries of the matrix are evaluated on a row basis, on every GMRES

iteration, which causes an overhead in run-time. Depending on the hardware resources

available, the trade-off between computational cost and memory requirements must

be considered when choosing the appropriate approach to handle the adjoint system

matrix. As discussed in more detail in chapter 7, it is possible to reduce the memory

requirements of the discrete adjoint approach to levels similar to those of continuous

adjoint approaches, at the expense of increased CPU cost, though.

Refer to chapter 5 for the detailed implementation of this method in different flow

solvers.



Chapter 4

Flow governing equations

The equations governing the three-dimensional flow of a compressible, conducting

fluid with an externally imposed magnetic field are obtained by coupling the Navier–

Stokes equations to the Maxwell equations. The resulting set of equations is desig-

nated as the magnetohydrodynamics (MHD) equations.

As detailed in chapter 2, there are plenty of references regarding MHD flow anal-

ysis, covering a large spectrum of model complexity, ranging from the low magnetic

Reynolds number assumption, the ideal MHD, the full MHD, the inclusion of turbu-

lence models, up to thermal and chemical non-equilibrium models.

Even though the MHD analysis can be extremely laborious and detailed, the

MHD models used in this work are somewhat simpler and do not intend to reproduce

the existing state-of-the-art solvers. This path was taken because there was not a

readily available MHD solver, and the focus of this research was not specifically on

the MHD field, but rather on the methodology for rapid development of discrete

adjoint solvers. Also, the author believes that the results shown here are clearly

demonstrative that the methodology developed can be seamlessly transfered to any

set of governing equations, regardless of their complexity and completeness.

Thermodynamic and chemical models

In this work, the gas is assumed to be in thermodynamic equilibrium and to be

calorically perfect, thus the equation of state for perfect gases p = ρRT holds, and

46
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the internal energy and the enthalpy relate to the gas temperature by e = CvT and

h = CpT , respectively. In addition, finite-rate chemistry models are not included,

meaning that the flow is assumed to be in frozen chemical equilibrium, with no

chemical reactions accounted for.

4.1 Ideal MHD model

The equations governing the three-dimensional flow of an inviscid, compressible, per-

fectly conducting fluid in a magnetic field are called the ideal MHD equations.

Their derivation follows that of the full MHD equations, obtained by coupling

the Navier–Stokes equations to the Maxwell equations (refer to appendix B), but

additional assumptions are made. In particular, denoting the characteristic density,

speed, length and time scales for the problem as ρ, U , L and τ , respectively, and the

dielectric constant and conductivity of the fluid as ε and σ, the ideal MHD model

assumes that
µ

ρUL
� 1 and

ε

τσ
� 1 . (4.1)

The implications are that the flow might be considered inviscid, thus the viscous terms

of the Navier–Stokes equations vanish, and that the fluid is perfectly conducting,

implying that the dispersive terms of the induction equations can be neglected.

In the literature, several versions of the ideal MHD equations can be found, all

resulting from the inclusion of additional magnetic terms in the Navier–Stokes equa-

tions – the momentum equation gets an additional force per unit volume of matter

(Lorentz force) given by expression (B.11), and the additional power delivered to

matter given by expression (B.12) is included in the energy equation – and the addi-

tional magnetic field transport equation, that is derived from the Faraday’s law (B.4).

Examples of these are seen in the work of Powell et al. [133] and Gaitonde [42].

In the present work, however, a different formulation, that could not be found

in any reference, is derived. It combines two features: the inclusion of additional

source terms that enforce the solenoidal condition of the magnetic field, and the

decomposition of the total magnetic field into the background imposed field and the
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induced field to achieve better numerical accuracy.

Among the various possible mathematical forms, the resulting MHD equations

are expressed in conservation-law form which is often preferred for numerical models.

4.1.1 Enforcement of the ∇ ·B = 0 condition

According to the Gauss’ law for magnetism (B.2), the magnetic field has to satisfy

the divergence-free condition,

∇ ·B = 0 . (4.2)

In addition, the transient evolution of the magnetic field is governed by Faraday’s

law,
∂B

∂t
= −c∇× E , (4.3)

where c is the speed of light and E is the electric field. Recalling the vector iden-

tity (A.4), the electric field satisfies the conditions ∇ · (∇× E) = 0. The application

of this identity to equation (4.3) implies that ∇ ·B is independent of time, as cited

by Ramshaw [137]. Therefore, the exact solution of the ideal MHD equations keeps

the condition (4.2) valid indefinitely, if it is satisfied initially.

However, in numerical MHD simulations, not only round-off errors but also the

use of artificial dissipation schemes lead to a finite divergence of the magnetic field,

thus violating that condition and not preserving the differential property of ∇ · B.

Among others, Brackbill and Barnes [19] have shown that even very small errors in

satisfying equation (4.2) cause large errors in the solution of the MHD equations.

There are different approaches to enforce the solenoidal condition (4.2) but in the

present work, the inclusion of additional source terms in the MHD equations has been

used. Usually, the derivation of the ideal MHD equations is done assuming that terms

proportional to ∇·B are zero analytically. Had this not been done, there would have

been extra source terms (4.4), on the right-hand side of the equations, as shown in



4.1. IDEAL MHD MODEL 49

the derivations of both Panofsky [126] and Vinokur [159]

S = −∇ ·B


0

RbB/µm

Rb (u ·B) /µm

U

 . (4.4)

Both Powell et al. [134], and Tóth and Odstrčil [155] have found that including these

corrective terms stabilizes and improves the solution. It should be noted that the

terms are non-conservative; thus conservation of momentum, energy, and magnetic

flux are not strictly enforced any longer.

4.1.2 Magnetic field decomposition

Besides the issue of satisfying the solenoidal condition (4.2), there is also the problem

of having large imposed magnetic fields. Under these circumstances, the ratio of

induced to imposed components of the magnetic field becomes extremely small and

the magnetic terms can dominate the system. Small errors in the magnetic field

solution can cause severe difficulties in the energy equation, because the magnetic

energy becomes much greater than the kinetic energy.

Following the work of Tanaka [153], this problem can be mitigated by decomposing

the magnetic field B into two components, the background imposed field, B0, and

the induced field, Bi, as indicated by expression (B.47).

4.1.3 Flux Vector Form

Consequently, the conservative system of ideal MHD equations used in this work was

custom derived in order to obtain a stable and accurate system, and its derivation is

detailed in appendix B. Neglecting the viscous and dispersive effects, as well as heat

transfer, under the assumptions (4.1), the full MHD equations (B.55) simplify to

the ideal MHD equations. This set of equations explicitly represent the conservation

of mass, momentum, total energy, and magnetic induction of a flow field under the
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presence of a magnetic field and it is given by

∂wi

∂t
+ (∇ · Fi) + (∇ · Fm) = Si , (4.5)

where

wi =


ρ

ρu

ρZi

Bi

 , Fi =


ρu

ρuu + pI

(ρE + p)u

0

 ,

Fm =


0

Rb(Bi ·Bi)I/(2µm)−Rb(BiBi)/µm + Rb(B0 ·Bi)I/µm −Rb(B0Bi + BiB0)/µm

Rb(Bi ·Bi)u/µm −Rb(u ·Bi)Bi/µm + Rb(B0 ·Bi)u/µm −Rb(u ·Bi)B0/µm

(uBi −Biu) + (uB0 −B0u)



and

Si = − (∇ ·Bi)


0

RbB/µm

Rb (u ·Bi) /µm

u

 .

The inviscid and magnetic flux vectors are obtained as Fi = Eiêx + Fiêy + Giêz

and Fm = Emêx + Fmêy + Gmêz, respectively, with the fluxes along the Cartesian

directions given in detail by expressions (B.57)-(B.59) and (B.60)-(B.62), that are

included in appendix B.

The conservative variables composing w are the density, ρ, the momentum density,

ρu, the total energy density, ρZi, and the induced magnetic field, Bi. It should be

noted that the MHD total energy per unit volume, ρZi, is composed of the usual total

energy, ρE, augmented by the induced magnetic energy contribution, as expressed in

equation (B.51). The pressure, Pi, is defined as sum of the static pressure, p, and the

magnetic pressure, as given by equation (B.52). Combining these equations under the

ideal gas assumption, the energy ρZi, density ρ, momentum ρu and magnetic field
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Bi are related to pressure p by

p = (γ − 1)

(
ρZi −

1

2
ρu2 −Rb

Bi ·Bi

2µm

)
, (4.6)

where γ is the ratio of the constant pressure and constant volume heat coefficients,

Rb is the magnetic force number (B.38) and µm is the magnetic permeability.

This ideal MHD model allows for environments characterized by a high magnetic

force number, where the magnetic field induced by the current is of comparable mag-

nitude to the one imposed on the flow, since the three induction equations are solved

in the governing equations, as opposed to the low magnetic Reynolds number model

(refer to section 4.2), as referred by Poggie and Gaitonde [130].

It is relevant to mention that the splitting (B.47) makes no assumption about the

relative size of B0 and Bi; the only requirement is that the imposed magnetic field

satisfies (B.48).

4.2 Low magnetic Reynolds number MHD model

In external aerodynamics, many of the encountered hypersonic flow fields are char-

acterized by relatively low levels of electrical conductivity, σ. The pertinent non-

dimensional parameter determining the relative magnitude of σ is the magnetic

Reynolds number, Reσ (B.37).

In the limit of Reσ → 0, the energy (B.43) and magnetic induction (B.46) equa-

tions of the full MHD model are well behaved analytically even though Reσ appears

in the denominator of some terms. In each of these, the numerator approaches zero

more rapidly. For example, the derivation of eqn.(B.43) shows that the last terms are

actually proportional to j2/σ which by virtue of the non-dimensionalization of the

Ohm’s law are proportional to Reσ.

From the numeric standpoint, however, terms involving Reσ are problematic since

their proper evaluation requires ratios of relatively small quantities, some of which

are obtained discretely. Terms involving Rb on the other hand are numerically well

behaved in the limit Reσ → 0 and decouple the magnetic field from the fluid flow by
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virtue of the fact that the divergence of the Maxwell’s stress tensor vanishes. However,

accuracy considerations continue to be important if Rb is large, since small errors in

the evaluation of the Maxwell’s stresses can translate into large body forces.

To alleviate these problems, considerable simplification can be achieved by recog-

nizing that the induced magnetic field is negligible when Reσ is small. In this case,

Ampère’s law (B.13) is suppressed and the current is obtained directly from the gen-

eralized Ohm’s law (B.10). The electric current j can be non-dimensionalized using

the reference values (B.33), resulting in the generalized Ohm’s law

j = Reσσ (E + u×B) . (4.7)

If the environment of interest is characterized by a low magnetic Reynolds number,

then the magnetic field induced by the current is much smaller than that imposed on

the flow and, therefore, it can be neglected [48, 44]. In this way, there is no need to

solve the three induction equations in the governing equations and the electromagnetic

forces and energy show up as source terms in the Navier–Stokes equations.

Besides neglecting the distortion of the magnetic field by the flow and only as-

suming that the imposed field has a significant influence on the flow, even simpler

models can be used. Namely, if the viscous effects and heat transfer are negligible,

the Navier–Stokes equations reduce to the Euler equations.

The derivation of the non-dimensional ideal MHD equations governing the flow

under these conditions is made in the sections that follow.

Continuity equation

The continuity equations remains unchanged from the Navier–Stokes equations, as

expressed in non-dimensional form in eqn. (B.40),

∂ρ

∂t
+∇ · (ρu) = 0 . (4.8)
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Momentum equation

The Navier–Stokes momentum equation (B.17) can be made non-dimensional using

the expressions (B.33), yielding

∂ρu

∂t
+∇ · (ρuu + pI)− 1

Re
∇ · ~~τ = f , (4.9)

with the non-dimensional magnetic source term defined as

f = j×B = Qσ (E + u×B)×B , (4.10)

where Q is the magnetic interaction parameter, given by expression (B.39).

Energy equation

The Navier–Stokes energy equation (B.26) can also be expressed in non-dimensional

form as

∂ρE

∂t
+∇ ·

[
(ρE + p)u− 1

Re
u · ~~τ − µ

RePr(γ − 1)M2
∇T
]

= P , (4.11)

where the non-dimensional additional magnetic energy source term can be written as

P = E · j = Qσ (E + u×B) · E . (4.12)

It can be seen from the expression (4.12) that if the magnetic induction field B

is steady and there is no imposed electrostatic field E, then the source term of the

energy equation vanishes.

4.2.1 Flux Vector Form

Adopting the low Reσ model approximation, the complete set of governing equations

is given by equations (4.8) to (4.12). This set of non-dimensional equations may be
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written in flux vector form as

∂w

∂t
+
∂Ei − Ev

∂x
+
∂Fi − Fv

∂y
+
∂Gi −Gv

∂z
= S , (4.13)

where the vector of conservative variables is w = (ρ, ρu, ρv, ρw, ρE), and the inviscid

– Ei, Fi, Gi – and viscous – Ev, Fv, Gv – flux vectors in the x,y and z-directions

contain only the first five rows of the full governing equations fluxes given by expres-

sions (B.57)– (B.59) and (B.66)– (B.68), and can be derived by setting Rb = 0.

The source term S includes the magnetic field effects and it is given by

S =



0

Qσ [Bz (Ey + wBx − uBz)−By (Ez + uBy − vBx)]

Qσ [Bx (Ez + uBy − vBx)−Bz (Ex + vBz − wBy)]

Qσ [By (Ex + vBz − wBy)−Bx (Ey + wBx − uBz)]

Qσ [Ex (Ex + vBz − wBy) + Ey (Ey + wBx − uBz) + Ez (Ez + uBy − vBx)]


.

(4.14)

In compact vector form, the low Reσ MHD model (4.13) is expressed as

∂w

∂t
+ (∇ · Fi)− (∇ · Fv) = S , (4.15)

where

w =


ρ

ρu

ρE

 , Fi =


ρu

ρuu + pI

(ρE + p)u

 ,

Fv = 1
Re


0

~~τ

u · ~~τ + µ
Pr(γ−1)M2∇T

 and S = Q


0

σ (E + u×B)×B

σ (E + u×B) · E

 .

As previously stated, the fluxes in this model are exactly the same as those of the

original Navier–Stokes equations, where the only difference is in the additional source

term, S.

Regarding the governing equations in the low Reσ approximation, since the influ-

ence of the magnetic field is restricted exclusively to the source term, the eigensystem
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of the resulting set is not afflicted by the degenerate eigenvalues found in the ideal or

full MHD models [143].

4.3 Imposed magnetic field

In all the MHD simulations made in this work, the magnetic field is externally imposed

by considering the existence of a set of electromagnetic circuits that create a dipole-

like magnetic field on the flow. This approach is commonly used in MHD simulations,

as seen in the work of Gaitonde and Poggie [46].

The field created by such a dipole is axisymmetric and, as such, it is conveniently

expressed in spherical coordinates, as shown in figure 4.1, where φ and θ designate

the azimuthal and polar angles, respectively.

Figure 4.1: Magnetic dipole.

The magnetic field generated by a single dipole is given by the vector function

B =
µmm

4πr3
(2 cos θêr + sin θêθ) , (4.16)

where B is the imposed magnetic field at a point located at a distance r from the

origin of the dipole, of strength m, at an angle θ with respect to the dipole direction.

The field B is given by expression (4.16) in terms of local dipole coordinates. When

a set of dipoles is used, it is required to change from each local reference frame to a

global frame using coordinate transformations, which include both translations and

rotations, so that the total imposed magnetic field can be evaluated at each point in

the simulation domain.
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It is important to guarantee that the imposed magnetic field satisfies the magnetic

field equations, in particular the Gauss’s law (4.2), especially if either the low magnetic

Reynolds number approximation model or the ideal MHD governing equations are

used. It can be easily shown that the dipole field (4.16) satisfies that divergence-

free condition. Consequently, because of the additive property of the divergence

operator, ∇·, the total imposed field given by the superimposition of the individual

contributions still satisfies that condition.

4.4 Spatial discretization

The most common spatial discretization formulations in CFD are the finite-volume

method (FVM) and the finite-difference method (FDM). Even though their mathe-

matical description may differ, the resulting algebraic equations might be equivalent,

if special care is taken to guarantee that both formulations are conservative.

In this dissertation, two different CFD solvers have been used – one uses a finite-

volume formulation, while the other uses finite-differences –, in order to demonstrate

the general applicability of the sensitivity analysis method pursued. Both formula-

tions and solvers are briefly described in the sections that follow.

4.4.1 Finite-volume formulation

To use a finite-volume formulation, the physical domain of interest is first divided into

a large number of small sub-domains, often called cells. After this spatial discretiza-

tion, the conservation laws, expressed by either (4.5) or (4.15), are applied in integral

form to each sub-domain. The use of the integral form allows for discontinuities in the

solution, which arise naturally in hypersonic flow with the presence of shock waves.

Let Ω be the volume of an arbitrary sub-domain. Then, integrating equation (4.5)

over Ω and making use of the Gauss’ theorem yields∫∫∫
Ω

∂w

∂t
dΩ +

∫∫
∂Ω

F · n̂ d∂Ω =

∫∫∫
Ω

Si dΩ , (4.17)

where F = F i + Fm.
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Let the cells in the computational domain be denoted by the subscripts (i, j, k).

A set of coupled ordinary differential equations (ODEs) is then obtained by applying

equation (4.17) separately to each computational cell and it can be written in the

form
d

dt
(Vijkwijk) +Qijk = VijkSi ijk , (4.18)

where Vijk is the cell volume, Qijk is the net flux out of the cell over its sides, including

boundary conditions, and Si ijk are the source terms contributions.

4.4.2 Finite-volume solver

For purposes of rapid prototyping of the implementation of a discrete adjoint, a

custom single-processor solver for the Euler, low Reσ and ideal MHD equations was

built.

The spatial discretization for this solver was done on a single computational block

basis, surrounded by halo cells to facilitate the implementation of the boundary con-

ditions. Even though the finite-volume formulation can be applied to arbitrary sub-

domains, a three-dimensional discretization composed of a body-fitted, structured

mesh of hexahedral cells was used.

A cell-centered scheme was selected, in which the dependent variables are assumed

to be known at the center of each cell. As such, each quantity is evaluated as the

average of the values in the cells on either side of a face. For instance, the momentum

in the x-direction at face (i+ 1
2
) is evaluated as

(ρu)i+1/2,j,k =
1

2
[(ρu)i,j,k + (ρu)i+1,j,k] . (4.19)

This scheme reduces to a central-difference scheme on a Cartesian grid, and it is

second-order accurate provided that the mesh is sufficiently smooth.

A two-dimensional illustration of the fluxes F is depicted in figure 4.2. Although

this solver implementation was fully three-dimensional, the exposition that follows of

the several terms that comprise the residual, Rijk, is restricted to a single computa-

tional coordinate for clarity.
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Figure 4.2: Finite-volume fluxes.

Inviscid and magnetic fluxes

Let the area of the right face of cell i be denoted by Si+ 1
2
. The inviscid and magnetic

residual contributions, Q(w), can be expressed in terms of the fluxes as

Q(w) = (F · S)i+ 1
2
− (F · S)i− 1

2
, (4.20)

where the flux at the cell face is evaluated as

(F · S)i+ 1
2

=
1

2
(F i+1 + F i) · Si+ 1

2
, (4.21)

and

F i · Si+ 1
2

=


Ei + Em

Fi + Fm

Gi + Gm


i

· Si+ 1
2

= (4.22)

= (Ei + Em)iSx i+ 1
2

+ (Fi + Fm)iSy i+ 1
2

+ (Gi + Gm)iSz i+ 1
2
.

The inviscid and magnetic flux vectors in each Cartesian direction – Ei, Fi, Gi

Em Fm Gm, respectively –, are given by expressions (B.57)-(B.59) and (B.60)-(B.62),

found in appendix B.
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Artificial dissipation

In order to increase the numerical stability of the scheme, namely to suppress the

odd and even point coupling, and the overshoots near shock waves, the scheme is

augmented by a dissipative term Dijk. The equation (4.18) then becomes

d

dt
(Vijkwijk) +Qijk −Dijk = VijkSi ijk . (4.23)

Along each computational direction, the artificial dissipation has the form

D(wi) = di+ 1
2
− di− 1

2
, (4.24)

where di+ 1
2

is the dissipative flux contributed by the face between cells i and i+ 1.

Several dissipation algorithms have been constructed for central-difference schemes,

and their comparison has been performed by Swanson et al. [152]. Among the most

common ones are the scalar and matrix dissipation (MATD) schemes. This solver

uses the Jameson–Schmidt–Turkel (JST) scalar dissipation scheme [76, 78].

The JST scheme uses a scalar artificial dissipation term, which is a blend of first-

and third-order-accurate terms to provide good numerical stability properties while

keeping its implementation relatively easy and computationally inexpensive. This

scheme defines a switching function based on a blending of the second and forth

differences, so that it is of third order in smooth regions of the flow but reverts to

first-order in regions of high pressure gradients. The JST artificial dissipation flux is

defined, along direction i, as

di+ 1
2
− di− 1

2
= (D2 −D4)wi (4.25)

where the difference operators are

D2wi = ∆B

[(
λi+ 1

2
ε
(2)

i+ 1
2

)
∆F

]
wi and (4.26)

D4wi = ∆B

[(
λi+ 1

2
ε
(4)

i+ 1
2

)
∆F ∆B∆F

]
wi , (4.27)
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with ∆B and ∆F being the backward and forward difference operators. The scaling

factor λi+ 1
2

is a function of the spectral radius of the governing equations and the

coefficients ε(2) and ε(4) use the pressure as a sensor for sharp gradients. Their detailed

definition can be found in reference [78]. The pressure sensor guarantees that the

flux (4.25) is of second-order except in regions containing a steep pressure gradient.

The fourth differences provide background dissipation throughout the domain. In the

neighborhood of a shock wave, however, the second differences become the dominant

dissipative terms.

Boundary conditions

Using a body conforming mesh, the boundary condition implementation becomes

greatly simplified.

At solid walls defining the body surface, because the physical models considered

are inviscid, the impermeability or tangent velocity condition (4.28) holds. Conse-

quently, the velocity vector at the halo cells is mirrored, such that the normal fluxes

at the boundary are zero.

u · n̂ = 0 . (4.28)

As a result, the inviscid flux through a cell face at the wall simplifies to

(F · S)wall =



0

pwSx

pwSy

pwSz

0


, (4.29)

where pw is the pressure at the wall. In turn, the pressure at the wall can be either

extrapolated from interior cells or estimated using the value of normal pressure gra-

dient ∂p
∂n

at the wall. This gradient can be estimated from the manipulation of the

body streamline equation (4.28) and the inner product of the momentum equation
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with the normal n̂, that leads to the relation given by Rizzi [142] as

ρu · (u · ∇)n̂ = n̂ · ∇p , (4.30)

which relates the density, velocity, and body geometry (through n̂) to the normal

pressure gradient, all located at the body.

6
i

v
v

i = 3

i = 2

�� �� �� �� �� �� ��

Wall

Figure 4.3: Wall boundary conditions.

For simplicity of implementation, and with reference to figure 4.3, the pressure at

the wall is estimated using first-order extrapolation as

pw = p(i=2) −
p(i=3) − p(i=2)

2
=

3

2
p(i=2) −

1

2
p(i=3) . (4.31)

The imposed magnetic field remains fixed at the halo cells, but the induced component

is mirrored to get to zero at the wall, assuming the body is dielectric.

The far-field boundary conditions are, in general, imposed using the Riemann in-

variants, as found in the book of Chung [25]. In conventional aerodynamic problems,

the local speed of sound, c, is the measure against which the flow speed is compared

to determine whether the characteristic waves travel downstream or upstream. How-

ever, the wave speeds in MHD are different, as seen in figure B.1 found in section B.6.

Under MHD conditions, the fast magneto-acoustic wave (B.73), cf , is the fastest wave

and determines the direction of propagation of information. In this case, the Riemann

invariants are pictured in figure 4.4. At inflow boundaries, Un = u · n̂ < 0, the flow is

considered supersonic if Un < −cf , and subsonic if Un > −cf . Conversely, at outflow
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-

Un−cf 0 cf

Inflow

Supersonic Subsonic

Outflow

Subsonic Supersonic

Figure 4.4: MHD Riemann invariants.

boundaries, Un = u · n̂ > 0, it is supersonic for Un > cf , and subsonic for Un < cf . In

the subsonic case, non-reflecting boundary conditions have to be carefully defined to

account for the waves traveling upstream, as mentioned by Hedstrom [66]. However,

since all the problems simulated in this work have hypersonic free-stream velocities

and relatively small magnetic field intensities, the flow remains supersonic (in MHD

terms) at the far-field boundaries. These boundary conditions then get considerably

simpler than in the subsonic case. As such, inflow and outflow conditions are trivially

imposed at hypersonic boundaries, as all the characteristics of the governing equa-

tions (4.5) or (4.15) travel downstream, greatly simplifying the Riemann problem. As

such, the complete vector of conservation variables, w, is fixed at the halo cells of

supersonic incoming boundaries, whereas the values at the supersonic outflow bound-

ary halos are extrapolated from the interior. It is important to notice that while the

imposed magnetic field is always fixed, the induced portion is set to zero at inflow

boundaries, assuming the boundary is located far enough from the magnetic sources.

Summary of the cell-centered residual computation

The computation of the residual, Rijk, at a given cell, can be summarized as follows:

• Compute inviscid fluxes: For the present inviscid flux discretization, the only

flow variables, w, that influence the residual at a cell are the flow variables at

that cell and at the six cells that are adjacent to the faces of the cell.

• Compute artificial dissipation fluxes: In this case, since the second-order JST

scheme was used, the residual at a cell gets contributions from the flow variables
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in that cell and from the first- and second-level adjacent cells in each of the three

coordinate directions.

• Compute magnetic fluxes: This operation has a similar stencil to the inviscid

flux computation.

• Apply boundary conditions: The boundaries are enforced by altering the states

in the halo cells, thus they only contribute to the residual on immediately

adjacent cells.

According to the residual computation just described, the inviscid and magnetic

flux terms only require one level of adjacent cells, while the artificial dissipation fluxes

require two levels of adjacent cells. Therefore, the stencil of influence contains thirteen

cells, as illustrated in figure 4.5.

Figure 4.5: Stencil of dependence for the cell-centered residual computation.

As usual for iterative solvers, the residuals over the domain are computed using

three nested loops (one in each of the three computational directions) sweeping the

faces in a computational block. The total residual for any given cell is only obtained at

the end of the loops, when all contributions have been accounted for. This approach

translates into significant computational savings since the flux residual at each cell

face is shared between the neighboring cells.
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4.4.3 Finite-difference formulation

The MHD governing equations (4.5) and (4.15) can also be solved using a finite-

difference discretization scheme. For this purpose, a coordinate transformation from

physical coordinates (x, y, z) to computational coordinates (ξ, η, ζ) is used, resulting

in
∂w

∂t
+
∂Ē

∂ξ
+
∂F̄

∂η
+
∂Ḡ

∂ζ
= S̄ , (4.32)

where the state, the fluxes vectors and the source terms in the computational coor-

dinates are given by 

w̄ = w
J

Ē = 1
J
(ξxE + ξyF + ξzG)

F̄ = 1
J
(ηxE + ηyF + ηzG)

Ḡ = 1
J
(ζxE + ζyF + ζzG)

S̄ = 1
J
S

, (4.33)

where J is the coordinate transformation Jacobian. More details about generalized

coordinate transformations can be found in appendix C.

After the spatial discretization of the governing equations (4.32) has been carried

out, a system of ordinary differential equations (ODE) is obtained,

d

dt
(
wijk

Jijk

) +Rijk = 0 , (4.34)

where the triad ijk represents each and every node in the mesh. This equation is of

the same form as the one obtained using a finite-volume discretization (4.23), and,

consequently, its time integration can be carried out using the some algorithm.

4.4.4 Finite-difference solver

The flow solver used in this case was the Navier–Stokes Stanford University Solver

(NSSUS) flow solver. This solver is a new finite-difference, higher-order solver that

has been developed at Stanford University under the Advanced Simulation and Com-

puting (ASC) program sponsored by the Department of Energy [8].

It is a generic node-centered, multi-block, multi-processor solver, currently only
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for the Euler equations, but soon to be extended to the Reynolds-Averaged Navier–

Stokes equations. The finite-difference operators and artificial dissipation terms follow

the work of Mattson and Nordström [113, 114] and the boundary conditions are

implemented by means of penalty terms, according to the work of Carpenter et al. [22,

23]. The additional magnetic induction equations (4.5) and source terms (4.14) had

to be included in this solver so that MHD computations could be performed.

Despite being capable of performing computations up to eight-order accuracy, the

implementation of the adjoint solver was restricted to second-order for simplicity. The

extension to higher-order accuracy should be straightforward to accomplish.

Inviscid, magnetic and artificial dissipation fluxes

The spatial part of equation (4.32) is discretized on a block-by-block basis.

The internal discretization is simple and only requires the first neighbors in each

coordinate direction for the inviscid and magnetic fluxes, and the first and second

neighbors for the artificial dissipation fluxes, as shown in figure 4.8. The boundary

treatment needs to be explained in more detail, though.

Boundary conditions

As the finite-difference scheme only operates on the nodes of a block, one-sided dif-

ference formulae are used near block boundaries (be it a physical or an internal

boundary).

Consequently, the nodes on the interface of internal boundaries are multiply de-

fined, as illustrated in figure 4.6. These multiple instances of the same physical node

Figure 4.6: Block-to-block boundary stencil.

are driven to the same value (at convergence) by means of a penalty term, i.e., an
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additional term is added to the residual, R, that is proportional to the difference

between the instances. This reads

Ri
blockA = Ri

blockA + τ(wi
blockB − wi

blockA) , (4.35)

and a similar expression can be derived for Ri
blockB. In equation (4.35), the parameter

τ controls the strength of the penalty and is a combination of a user-defined parameter

and the local flow conditions (see reference [113] for more details). Hence, the residual

of a node that lies on an internal block boundary is a function of its local neighbors

in the block and the corresponding instance in the neighboring block.

The treatment of physical boundaries is very similar to the approach described

above except that the penalty term used in equation (4.35) is now determined by the

boundary conditions.

Only when runtime block-splitting occurs, do halo nodes get used. This happens

when any original computational block is too large and has to be split into different

processors for load balancing. The stencils need not to be adjusted close to the these

newly created boundaries, as seen in figure 4.7.

Figure 4.7: Block-splitting boundary stencil.

All of these boundary contributions require special attention when taking care of

the assembly of the flux Jacobian matrix in the adjoint system of equations (3.30).

This is ensured with the proper treatment of the global node numbering, that handles

all the node connectivities.

Summary of the node-centered residual computation

In the present case, the residual Rijk in equation (4.34) includes the inviscid and

magnetic fluxes, the artificial dissipation fluxes, the penalty terms for the boundary
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conditions and the magnetic source terms, similarly to equation (4.23).

The routines in the NSSUS flow solver that, for each iteration, compute the

residuals based on the flow variables w use the following steps:

• Compute inviscid fluxes: For the given inviscid flux discretization the only flow

variables, w, that influence the residual at a node are the flow variables at

that node and at the six nodes that are first neighbors of the node along each

computational direction.

• Compute artificial dissipation fluxes: For each of the Nc nodes in the domain,

compute the contributions of the flow variables to the residual at that node.

For this portion of the residual, the flow variables in the current node and in

the first- and second-neighbor nodes in each of the three coordinate directions

need to be considered.

• Compute magnetic source terms: These only depend on the flow variables at

the current node.

• Apply boundary conditions: Additional penalty terms are added to enforce the

boundary conditions. Note that internal block boundaries are also considered

as boundaries.

The stencil that affects the residual at given node, when considering the fluxes

just mentioned, contains thirteen nodes, as shown in figure 4.8.

4.5 Time-integration

Since the cell volume, Vijk, is independent of time, then the set of coupled ODEs (4.23)

or (4.34) can be re-written in semi-discrete form as

dwijk

dt
+Rijk(w) = 0 , (4.36)

where w is the vector of the flow variables at the cell center or vertex (corresponding

to the FVM or FDM formulations, respectively). The vector of residuals, R(w),
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Figure 4.8: Stencil of dependence for the node-centered residual computation.

consists of all the physical and artificial fluxes, boundary conditions and residual

terms and can be written as

Rijk =
1

Vijk

(Qijk −Dijk)− Siijk . (4.37)

Since the primary objective was to obtain a steady-state solution, the time-

marching scheme was selected for its simplicity, stability and damping properties.

Therefore, an explicit multi-stage, Runge–Kutta scheme was used to integrate equa-

tion (4.36) in time.

A general m-stage Runge–Kutta scheme is of the form

w(n+1,0) = wn

w(n+1,1) = w(0) − α1∆tR(0)

. . .

w(n+1,m) = w(0) − αm∆tR(m−1)

wn+1 = w(n+1,m),

(4.38)

where wn is the solution vector value at time step n, and the indexes ijk have been

dropped out.
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In a conventional scheme, the residual at the (l − 1)th stage is evaluated as

R(l) =
1

V

(
Q(w(l))−D(w(l))

)
. (4.39)

However, better convergence is obtained if the dissipative part is a blend of new and

old stage values

D(l) = βlD(w(n+1,l)) + (1− βl)D(w(n+1,l−1)) . (4.40)

Moreover, computational savings can be obtained by setting some of the βl to zero.

In the present case, a five-stage, modified Runge–Kutta scheme was selected,

using the standard coefficient values found in the literature [75, 100, 158] – α =

(1/4, 1/6, 3/8, 1/2, 1), β = (1, 0, 14/25, 0, 11/25).

Local Time Step

In order to increase the convergence rate of the algorithm, an adaptive local time step

was used [5]. The time step is computed for each cell according to

∆t =
CFL

λξ + λη + λζ

, (4.41)

where CFL is the Courant–Friedrichs–Lewy number and λξ , λη , λζ are the maximum

speed of propagation of information in each of the three computational directions,

that corresponds to the maximum eigenvalue of the hyperbolic system of governing

equations, also designated by local spectral radii.

The eigenvalues of the system of equations (4.5) can by found in appendix B. The

spectral radius corresponds to the fast magneto-acoustic wave,

λmax = |Un|+ cf , (4.42)

where Un is the normal fluid velocity and cf is the speed of the fast-mode MHD wave,
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relative to the fluid which, according to equation (B.73), is given by

cf =

√√√√√1

2

c2 +
B2

ρµm

+

√(
c2 +

B2

ρµm

)2

− 4
c2B2

n

ρµm

 . (4.43)

The speed of sound, assuming a perfect gas, is defined as c =
√

γp
ρ

.

Convergence criterion

The system of ODEs (4.36) is integrated in time until the solution evolves to a steady-

state. As a criterion of convergence, the density residual was used,

δρn =

√√√√∑
ijk

(
(ρn

ijk − ρn−1
ijk )

∆t Vijk

)2

, (4.44)

and convergence was assumed when the residual dropped 8 to 10 orders of magnitude.

4.6 Boundary and initial conditions

Physical boundary conditions are applied after each update of the interior solution

vector for the cell-centered flow solver, or they are introduced as penalty terms in

the residual computation for the node-centered flow solver. Depending on the type

of boundary, these conditions might be of the Dirichlet (e.g., no induced magnetic

field) or Neumann (e.g., ∂p/∂n = 0, extrapolation or symmetry) type. The types of

boundaries handled have already been described in previous sections of this chapter.

For the multi-block solver NSSUS, the data exchange between computational

blocks (halos and penalty terms) must also be done after each iteration.

As for the initial conditions, the density, pressure and velocity field are initial-

ized with the free-stream values, while the induced magnetic field (if computed) is

initialized to zero. The imposed magnetic field is chosen such that it satisfies Gauss’s

law, ∇ ·B = 0 (4.2). This is easily guaranteed since it is obtained by superimposing

dipoles, that individually satisfy the divergence-free condition.



Chapter 5

Discrete adjoint equations

The sensitivities required to solve the design problem schematically illustrated in

figure 5.3 are computed by first assembling the discrete adjoint equations (3.30),

solving them, and then using the total sensitivity equation (3.31).

Automatic differentiation tools are used, whenever deemed necessary and possible,

to generate code that computes the several matrices of partial sensitivities present in

these equations, according to the hybrid ADjoint approach described in section 3.6.

The next sections describe each of the steps required to implement the discrete ad-

joint solver for the two different MHD flow solvers described in sections 4.4.2 and 4.4.4.

First, the discrete adjoint solver was developed for the FVM solver using a conven-

tional approach, meaning that all the partial derivative terms required in the adjoint

and total sensitivity equations were derived by manually differentiating the original

flow code. On the other hand, after that first acquired experience with discrete adjoint

solvers, the proposed hybrid approach for fast discrete adjoint solver implementation

was tested on the sophisticated FDM solver: NSSUS.

5.1 Assembly of the adjoint matrix

The discrete adjoint system of equations (or flux Jacobian) matrix, ∂R
∂w

, is indepen-

dent of the choice of the function of interest or the design variables – it is simply a

function of the governing equations, their discretization and the problem boundary

71
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conditions. To compute it, only the routines in the flow solver that evaluate the

residuals, Rijk (4.37), for each iteration, based on the values of the flow variables, w,

within the discretization need to be considered.

The residual at a computational cell (or node) depends only on a restricted set

of cells (or nodes), usually designated by stencil. According to the three-dimensional

spatial discretization used in the CFD solvers tested, described in section 4.4, the

stencils of dependence for either the cell-centered solver (refer to figure 4.5) or the

node-centered solver (refer to figure 4.8) have thirteen cells (or nodes). As such, the

residual at a given cell (or node) of the discretized governing equations can, in general,

be expressed as

Rijk = R(wi−2,wj−2,wk−2,wi−1,wj−1,wk−1,wijk,

wi+1,wj+1,wk+1,wi+2,wj+2,wk+2) .
(5.1)

Because the residual applies to every computational cell (or node), it follows that

the matrix ∂R
∂w

of the adjoint system of equations has dimensions N2
w = (Nc × Nv)

2,

where Nc is the number of cells/nodes and Nv the number of flow variables.

The adjoint matrix can then be assembled by taking the derivative of the residual

R (5.1), that comprises all the numerical fluxes, with respect to the flow variables w.

Since a structured computational mesh is used, the result is a multi-diagonal matrix

whose entries are block matrices of dimension N2
v , making the global matrix very

sparse, of known structured, and thus easily stored.

The number of non-zero block diagonals matches the dimension of the stencil used

in the flow solver, Ns. These block matrices that are entries of the global adjoint

matrix ∂R
∂w

for cell (or node) (i, j, k) are computed as

BB[m,n] =
∂Rijk(m)

∂wi−2(n)
B[m,n] =

∂Rijk(m)

∂wi−1(n)

C[m,n] =
∂Rijk(m)

∂wi+1(n)
CC[m,n] =

∂Rijk(m)

∂wi+2(n)

, (5.2)
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DD[m,n] =
∂Rijk(m)

∂wj−2(n)
D[m,n] =

∂Rijk(m)

∂wj−1(n)

E[m,n] =
∂Rijk(m)

∂wj+1(n)
EE[m,n] =

∂Rijk(m)

∂wj+2(n)

, (5.3)

FF[m,n] =
∂Rijk(m)

∂wk−2(n)
F[m,n] =

∂Rijk(m)

∂wk−1(n)

G[m,n] =
∂Rijk(m)

∂wk+1(n)
GG[m,n] =

∂Rijk(m)

∂wk+2(n)

, (5.4)

and A[m,n] =
∂Rijk(m)

∂wi(n)
, (5.5)

where equation (5.5) is the contribution from the cell at where the residual is being

evaluated, and equations (5.2), (5.3) and (5.4) result from the contributions from the

neighboring cells in the ξ,η, and ζ computational directions, respectively. In these

expression, m spans the number of governing equations (Nv), and n spans the number

of conservative variables (Nv).

In this work, the block Jacobians, (5.2) – (5.5), were obtained by both manual

and automatic differentiation of the residual routines of the flow solver, as described

in sections 5.1.1 and 5.1.2, respectively.

5.1.1 Manually differentiated Jacobian

As mentioned at the beginning of this chapter, manual differentiation was used to

derive the discrete adjoint solver corresponding to the cell-centered flow solver 4.4.2.

The adjoint matrix can be constructed by adding up the contributions of each

term, obtained by applying expressions (5.2) – (5.5) to the different residual contri-

butions as expressed in equation (4.37).

Even though an adjoint for the second-order, three-dimensional flow solver was

developed, the first-order case is shown here for illustration purposes. This means

that a seven-cell stencil is assumed, with only a single level of neighboring cells, in

the exposition that follows.
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Inviscid fluxes

The contributions of the inviscid fluxes Q to the Jacobian are computed from ex-

pressions (4.20), (4.21) and (4.22), resulting in the seven non-zero block terms that

follow.

The cell at which the residual is being evaluated, contributes to the adjoint Jaco-

bian as

Aijk =
∂Qijk

∂wijk

=
1

2

[
∂Eijk

∂wijk

(Sxi+ 1
2
− Sxi− 1

2
)

+
∂Fijk

∂wijk

(Syi+ 1
2
− Syi− 1

2
) +

∂Gijk

∂wijk

(Szi+ 1
2
− Szi− 1

2
)

]
+

1

2

[
∂Eijk

∂wijk

(Sxj+ 1
2
− Sxj− 1

2
)

+
∂Fijk

∂wijk

(Syj+ 1
2
− Syj− 1

2
) +

∂Gijk

∂wijk

(Szj+ 1
2
− Szj− 1

2
)

]
+

1

2

[
∂Eijk

∂wijk

(Sxk+ 1
2
− Sxk− 1

2
)

+
∂Fijk

∂wijk

(Syk+ 1
2
− Syk− 1

2
) +

∂Gijk

∂wijk

(Szk+ 1
2
− Szk− 1

2
)

]
. (5.6)

The neighbor cells along the ξ-direction computational direction (index i) con-

tribute with

Bijk =
∂Qijk

∂wi−1,j,k

= −1

2

[
∂Ei−1,j,k

∂wi−1,j,k

Sxi− 1
2

+
∂Fi−1,j,k

∂wi−1,j,k

Syi− 1
2

+
∂Gi−1,j,k

∂wi−1,j,k

Szi− 1
2

]
(5.7)

and

Cijk =
∂Qijk

∂wi+1,j,k

=
1

2

[
∂Ei+1,j,k

∂wi+1,j,k

Sxi+ 1
2

+
∂Fi+1,j,k

∂wi+1,j,k

Syi+ 1
2

+
∂Gi+1,j,k

∂wi+1,j,k

Szi+ 1
2

]
. (5.8)
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Considering the neighbor cells in the η-direction results in

Dijk =
∂Qijk

∂wi,j−1,k

= −1

2

[
∂Ei,j−1,k

∂wi,j−1,k

Sxj− 1
2

+
∂Fi,j−1,k

∂wi,j−1,k

Syj− 1
2

+
∂Gi,j−1,k

∂wi,j−1,k

Szj− 1
2

]
(5.9)

and

Eijk =
∂Qijk

∂wi,j+1,k

=
1

2

[
∂Ei,j+1,k

∂wi,j+1,k

Sxj+ 1
2

+
∂Fi,j+1,k

∂wi,j+1,k

Syj+ 1
2

+
∂Gi,j+1,k

∂wi,j+1,k

Szj+ 1
2

]
. (5.10)

Similarly in the ζ-direction, the contribution of the neighbor cells yields

Fijk =
∂Qijk

∂wi,j,k−1

= −1

2

[
∂Ei,j,k−1

∂wi,j,k−1

Sxk− 1
2

+
∂Fi,j,k−1

∂wi,j,k−1

Syk− 1
2

+
∂Gi,j,k−1

∂wi,j,k−1

Szk− 1
2

]
(5.11)

and

Gijk =
∂Qijk

∂wi,j,k+1

=
1

2

[
∂Ei,j,k+1

∂wi,j,k+1

Sxk+ 1
2

+
∂Fi,j,k+1

∂wi,j,k+1

Syk+ 1
2

+
∂Gi,j,k+1

∂wi,j,k+1

Szk+ 1
2

]
. (5.12)

Notice that there is not any inviscid contribution to BBijk, CCijk, DDijk, EEijk,

FFijk or GGijk because a central-difference scheme is used, as detailed in expres-

sion (4.20).

As seen in expression (4.22), the fluxes Eijk, Fijk and Gijk are decomposed in

the inviscid and ideal magnetic contributions as E = Ei + Em, F = Fi + Fm and

G = Gi+Gm, respectively, where the cell indexes have been dropped for convenience.

Therefore, the block Jacobians are computed by parts as

∂E

∂w
=
∂Ei

∂w
+
∂Em

∂w
, (5.13)
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where the inviscid Jacobian matrix, ∂Ei

∂w
, and the ideal magnetic Jacobian matrix ∂Em

∂w
,

are given by expressions (B.85) and (B.86), respectively, that are found in section B.7

in appendix. Similar results apply to the fluxes in the y− and z−directions, with the

Jacobian matrices given by expressions (B.89), (B.90), (B.93) and (B.94).

Artificial dissipation

Similarly to what was done for the convective residual Q of the governing equations,

the Jacobian of the artificial dissipation residual D with respect to the conservative

variables w has also to be evaluated. Plugging in the JST scheme (4.25), (4.26)

and (4.27) into the artificial dissipation residual defined by (4.24) results in

Dijk(w) = di+ 1
2
,j,k − di− 1

2
,j,k + di,j+ 1

2
,k − di,j− 1

2
,k + di,j,k+ 1

2
− di,j,k− 1

2

= λi+ 1
2
,j,k

[
ε
(2)

i+ 1
2
,j,k

(wi+1,j,k −wi,j,k)

+ε
(4)

i+ 1
2
,j,k

(wi+2,j,k − 3wi+1,j,k + 3wi,j,k −wi−1,j,k)
]

− λi− 1
2
,j,k

[
ε
(2)

i− 1
2
,j,k

(wi,j,k −wi−1,j,k)

+ε
(4)

i− 1
2
,j,k

(wi+1,j,k − 3wi,j,k + 3wi−1,j,k −wi−2,j,k)
]

+ λi,j+ 1
2
,k

[
ε
(2)

i,j+ 1
2
,k
(wi,j+1,k −wi,j,k)

+ε
(4)

i,j+ 1
2
,k
(wi,j+2,k − 3wi,j+1,k + 3wi,j,k −wi,j−1,k)

]
− λi,j− 1

2
,k

[
ε
(2)

i,j− 1
2
,k
(wi,j,k −wi,j−1,k)

+ε
(4)

i,j− 1
2
,k
(wi,j+1,k − 3wi,j,k + 3wi,j−1,k −wi,j−2,k)

]
+ λi,j,k+ 1

2

[
ε
(2)

i,j,k+ 1
2

(wi,j,k+1 −wi,j,k)

+ε
(4)

i,j,k+ 1
2

(wi,j,k+2 − 3wi,j,k+1 + 3wi,j,k −wi,j,k−1)
]

− λi,j,k− 1
2

[
ε
(2)

i,j,k− 1
2

(wi,j,k −wi,j,k−1)

+ε
(4)

i,j,k− 1
2

(wi,j,k+1 − 3wi,j,k + 3wi,j,k−1 −wi,j,k−2)
]
.

(5.14)

From the expression above, the Jacobian of the artificial dissipation residual for each

cell of the stencil centered at (i, j, k) can be computed. The spectral radius λ is

assumed to be constant, since its contribution is considered negligible, making the

hand-differentiation of expression (5.14) considerably simplified. This is, however, an



5.1. ASSEMBLY OF THE ADJOINT MATRIX 77

approximation that is made in hand-differentiating the terms of a discrete adjoint

solver. This and other kinds of approximations are not necessary when the ADjoint

methodology is followed.

Since the artificial dissipation stencil extends five cells in each computational direc-

tion, and recognizing from the JST algorithm [78] that ε
(2)

i+ 1
2

= f(wi+2,wi+1,wi,wi−1)

and ε
(4)

i+ 1
2

= g(ε
(2)

i+ 1
2

), there are 13 non-zero contributions to the Jacobian. The contri-

bution from the cells along the ξ-direction are shown next¿ The remaining ones along

the η- and ζ-directions are easily derived from the former.

The center cell contributes to the artificial residual with

Aijk =
∂Dijk

∂wi,j,k

= λi+ 1
2

(−ε(2)

i+ 1
2

+ 3ε
(4)

i+ 1
2

)
I +

∂ε
(2)

i+ 1
2

∂wi

∆F wi +
∂ε

(4)

i+ 1
2

∂wi

∆F ∆B∆F wi

 (5.15)

− λi− 1
2

(ε(2)

i− 1
2

− 3ε
(4)

i− 1
2

)
I +

∂ε
(2)

i− 1
2

∂wi

∆F wi−1 +
∂ε

(4)

i− 1
2

∂wi

∆F ∆B∆F wi−1

 .

The contributions to the residual at (i, j, k) coming from the cells to the left are

BBijk =
∂Dijk

∂wi−2,j,k

= −λi− 1
2

(−ε(4)

i− 1
2

)
I +

∂ε
(2)

i− 1
2

∂wi−2

∆F wi−1 +
∂ε

(4)

i− 1
2

∂wi−2

∆F ∆B∆F wi−1

(5.16)
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and

Bijk =
∂Dijk

∂wi−1,j,k

= λi+ 1
2

(−ε(4)

i+ 1
2

)
I +

∂ε
(2)

i+ 1
2

∂wi−1

∆F wi +
∂ε

(4)

i+ 1
2

∂wi−1

∆F ∆B∆F wi

 (5.17)

− λi− 1
2

(−ε(2)

i− 1
2

+ 3ε
(4)

i− 1
2

)
I +

∂ε
(2)

i− 1
2

∂wi−1

∆F wi−1 +
∂ε

(4)

i− 1
2

∂wi−1

∆F ∆B∆F wi−1

 ,

whereas the contributions from the right neighbor cells leads to

Cijk =
∂Dijk

∂wi+1,j,k

= λi+ 1
2

(ε(2)

i+ 1
2

− 3ε
(4)

i+ 1
2

)
I +

∂ε
(2)

i+ 1
2

∂wi+1

∆F wi +
∂ε

(4)

i+ 1
2

∂wi+1

∆F ∆B∆F wi

 (5.18)

− λi− 1
2

(ε(4)

i− 1
2

)
I +

∂ε
(2)

i− 1
2

∂wi+1

∆F wi−1 +
∂ε

(4)

i− 1
2

∂wi+1

∆F ∆B∆F wi−1


and

CCijk =
∂Dijk

∂wi+2,j,k

= λi+ 1
2

(ε(4)

i+ 1
2

)
I +

∂ε
(2)

i+ 1
2

∂wi+2

∆F wi +
∂ε

(4)

i+ 1
2

∂wi+2

∆F ∆B∆F wi

 . (5.19)

Source terms

The magnetic field source term contribution S to the adjoint system, because it is a

volume and not a flux term, as given by equation (4.14), it only contributes to the

adjoint matrix with

Aijk =
∂Sijk

∂wijk

. (5.20)
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Boundary conditions

Special care is taken at the boundaries, where the cells have stencils that extend

outside the internal computational domain. There, the chain rule is used to take into

account the dependence of the halo cells on the interior cells, according to the type

of boundary condition used in the flow solver. This happens because, similarly to

the flow solver, the adjoint system is only solved for the interior cells and so all the

exterior boundary cell values have to be written as functions of the interior domain.

As an illustration, consider a cell at boundary imin(i = 2). In this case, the value

of the conservative vector, w, at the halo cell (corresponding to i = 1) is a function

of the interior cells,

wi=1 = f (wi=2,wi=3) . (5.21)

Therefore, there is an additional contribution to the block matrices corresponding to

the Jacobian of the residual at cell imin, given by

Bi=2[m,n] =
∂Ri=2(m)

∂wi=1(n)
= 0

(5.22)

Ai=2[m,n] =
∂Ri=2(m)

∂wi=2(n)
=

∂Ri=2(m)

∂wi=1(l)

∂wi=1(l)

∂wi=2(n)
(5.23)

(5.24)

Ci=2[m,n] =
∂Ri=2(m)

∂wi=3(n)
=

∂Ri=2(m)

∂wi=1(l)

∂wi=1(l)

∂wi=3(n)
,

where the auxiliary partial derivatives ∂wi=1

∂wi=2
and ∂wi=1

∂wi=3
are obtained from the flow

solver boundary condition routines.

Taking the case of an Euler (inviscid) solid wall boundary (refer to figure 4.3), the

residual at a cell i = 2 can be expressed as

R(i=2) = R0 −RBC
i=2 , (5.25)

where R0 is the residual as if it were an internal cell, provided that permeability is

used to cancel it out at these cells close to the walls. The additional term RBC
i=2 reflects
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the effect of the wall on the numerical flux, as given by expression (4.29),

RBC
i=2 = (F · S)wall =



0

pwSx

pwSy

pwSz

0


. (5.26)

The effect of the wall boundary on the adjoint matrix is then obtained by differen-

tiating the residual (5.26) with respect to the conservative variable vector, resulting

in

∂RBC
i=2

∂w
=



0 0 0 0 0
∂pw

∂w1
Sx

∂pw

∂w2
Sx

∂pw

∂w3
Sx

∂pw

∂w4
Sx

∂pw

∂w5
Sx

∂pw

∂w1
Sy

∂pw

∂w2
Sy

∂pw

∂w3
Sy

∂pw

∂w4
Sy

∂pw

∂w5
Sy

∂pw

∂w1
Sz

∂pw

∂w2
Sz

∂pw

∂w3
Sz

∂pw

∂w4
Sz

∂pw

∂w5
Sz

0 0 0 0 0


. (5.27)

Since pw = pw(pi=2, pi=3), the only non-zero contributions to the Jacobian are given

by
∂RBC

i=2

∂wi=2
and

∂RBC
i=2

∂wi=3
.

Recalling the approximation of the pressure at the wall (4.31), results

∂pw

∂w
=

∂

∂w
pw =

3

2

∂p(i=2)

∂w
− 1

2

∂p(i=3)

∂w
. (5.28)

Therefore, the Jacobian (5.27) leads to two contributions to the adjoint matrix,

ABC
i=2 =

∂RBC
i=2

∂wi=2

=
3

2



0 0 0 0 0
∂pi=2

∂w1
Sx

∂pi=2

∂w2
Sx

∂pi=2

∂w3
Sx

∂pi=2

∂w4
Sx

∂pi=2

∂w5
Sx

∂pi=2

∂w1
Sy

∂pi=2

∂w2
Sy

∂pi=2

∂w3
Sy

∂pi=2

∂w4
Sy

∂pi=2

∂w5
Sy

∂pi=2

∂w1
Sz

∂pi=2

∂w2
Sz

∂pi=2

∂w3
Sz

∂pi=2

∂w4
Sz

∂pi=2

∂w5
Sz

0 0 0 0 0


(5.29)
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and

EBC
i=2 =

∂RBC
i=2

∂wi=2

= −1

2



0 0 0 0 0
∂pi=3

∂w1
Sx

∂pi=3

∂w2
Sx

∂pi=3

∂w3
Sx

∂pi=3

∂w4
Sx

∂pi=3

∂w5
Sx

∂pi=3

∂w1
Sy

∂pi=3

∂w2
Sy

∂pi=3

∂w3
Sy

∂pi=3

∂w4
Sy

∂pi=3

∂w5
Sy

∂pi=3

∂w1
Sz

∂pi=3

∂w2
Sz

∂pi=3

∂w3
Sz

∂pi=3

∂w4
Sz

∂pi=3

∂w5
Sz

0 0 0 0 0


, (5.30)

where the pressure gradients are given by expression (B.79) evaluated at cells i = 2

and i = 3, respectively.

Assembled matrix ∂R/∂w

Gathering all the Jacobian contributions stated previously, the adjoint matrix ∂R
∂w

gets finally assembled, as indicated in figure (5.1).

5.1.2 Automatically differentiated Jacobian

While the derivation of the non-zero block matrix entries of ∂R
∂w

of the discrete adjoint

system of equations (3.30) were previously accomplished by manual differentiation of

the CFD solver routines that evaluated the residual R of the discretized governing

equations (4.23) or (4.34), this task is here performed by using Automatic Differen-

tiation (AD) tools, taking advantage of using a discrete adjoint approach.

In this case, the adjoint solver implementation was done on the sophisticated,

node-centered, flow solver NSSUS, described in section 4.4.4. Obviously, all the

lessons learned from the previous manual implementation were re-used, namely the

infrastructure necessary to assemble and solver the adjoint equations.

This move from a tedious, time-consuming, and error-prone hand differentiation

technique to the use of an AD tool brings additional advantages, such as: 1) it speeds

up the derivation of the adjoint system of equations considerably; 2) it generates

the numerically exact Jacobians (with no need for approximations that may impact

the accuracy of the sensitivities); and 3) it takes care of the boundary conditions

automatically.
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This procedure might be effortlessly used with arbitrarily complex governing equa-

tions, provided that a flow solver has already been coded.

As mentioned in chapter 3, Tapenade was chosen as the automatic differentiation

tool because it is currently the only non-commercial tool that supports Fortran 90,

which is the programming language used in both flow solvers tested.

The baseline implementation of the NSSUS flow solver computes the residual using

nested loops over the coordinate directions of each computational block on each of

the processors in the calculation. To make the implementation of the discrete adjoint

solver more efficient, it was necessary to re-write the flow residual routine such that

it computed the residual for a single specified node, based on the stencil shown in

figure 4.8. These routines were developed by cutting and pasting from the original

flow solver routines, a process which turned out to be straightforward and that could

be completed in less than a week of work, including the proper boundary condition

handling. The re-engineered residual routine is a function with the residuals at a

given node, rAdj, returned as an output argument, and the stencil of flow variables,

wAdj, that affect the residuals at that node is provided as an input argument,

subroutine residualAdj(wAdj, rAdj, i, j, k) , (5.31)

for each node in each block on each processor. Any required Fortran pointers were set

before calling the routine due to the current pointer handling limitations in Tapenade.

The stencil of flow variables wAdj that affects the residual rAdj in a given node

(i,j,k) extends two nodes in each direction to allow for a second-order discretization

as shown in figure 4.8. In this case, the number of nodes in the stencil whose variables

affect the residual of a given node is Ns = 13. This re-engineered residual routine

residualAdj computes Nv residuals in a given node that depend on all (Nv × Ns)

flow variables in the stencil.

The boundary condition penalty terms were moved to a separate routine that also

had the boundary sub-face mm and the corresponding flow variable that was the donor



84 CHAPTER 5. DISCRETE ADJOINT EQUATIONS

to the penalty state wDonorAdj as input parameters,

subroutine residualPenaltyAdj(wAdj, rAdj, mm, wDonorAdj, i, j, k) . (5.32)

This penalty residual routine was only called when the given node (i,j,k) was

located at a boundary face.

In order to properly treat the multi-block grid, it was necessary to setup a global

node numbering scheme and preserve the node connectivity. This allowed for the

proper block boundary treatment when assembling the flux Jacobian matrix.

Having verified the re-written residual routines by comparing the residual values to

the ones computed with the original code, these routines were then fed into Tapenade

for differentiation. For the reasons explained in section 3.6, since for this stencil

the number of input variables, w, is significantly larger than the number of output

variables, R, automatic differentiation was performed using the reverse mode on the

set of routines residualAdj and residualPenaltyAdj. The automatic differentiation

process produced the differentiated routines

subroutine residualAdj_B(wAdj,wAdjB,rAdj,rAdjB,i,j,k)

and

subroutine residualPenaltyAdj_B(wAdj,wAdjB,rAdj,rAdjB,mm,wDonorAdj,wDonorAdjB,i,j,k) ,

which are able to compute, using the reverse mode of automatic differentiation,

all the necessary derivatives for the flux Jacobian matrix.

The Nv × (Nv ×Ns) sensitivities that need to be computed for each node, corre-

sponding to Nv rows in the ∂R
∂w

matrix, are readily computed by these automatically

differentiated routines in reverse mode. This is accomplished because all the deriva-

tives in the stencil can be calculated from one residual evaluation residualAdj B

since

wAdjB(ii, jj, kk, n) =
∂R(i, j, k,m)

∂w(i+ ii, j + jj, k + kk, n)
, (5.33)

where the triad (ii,jj,kk) spans the stencil and n spans the Nv flow variables.

Similarly, the penalty term contributions are given by the outputs wAdjB and

wDonorAdjB of residualPenaltyAdj B. Referring to figure 4.6, the evaluation of the

Jacobian of the residual at a boundary node, when running residualPenaltyAdj B
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in block A, gets some contributions from block B, corresponding to penalty data

donated, wDonorAdj. These additional contributions are returned by wDonorAdjB

and must be taken into account in the adjoint matrix assembly, so that they are

included in the rows corresponding to boundary nodes and columns corresponding to

the donor nodes.

Since these AD routines evaluate an entire row of the flux Jacobian at one time,

setting rAdjB(m)=1, they allow for an easy assembly of the matrix ∂R
∂w

, as shown in

the routine pseudo-code in figure 5.2.

subroutine setupADjointMatrix
(...)
! Loop over the local computational blocks.
do nn=1,nDom
! Loop over location of output (R) cell of residual
do k=1,kl
do j=1,jl
do i=1,il
! Global node number
idxmgb = globalNode(i,j,k)
! Transfer state w to auxiliar stencil array wAdj(:,:,:,:)
call copyADjointStencil(wAdj,i,j,k)
! Loop over the outputs (R)
do m=1,nwFlow
! Initialize the seed for the reverse mode to return dR(m)/dw
rAdjB(:)=zero; rAdjB(m)=one; rAdj(:)=zero; wAdjB(:,:,:,:)=zero
! Call reverse mode of residual computation
call residualAdj_B(wAdj,wAdjB,rAdj,rAdjB,i,j,k)
! Store block Jacobians (by rows).
Aad(m,:) = wAdjB(0,0,0,:); Bad(m,:) = wAdjB(-1,0,0,:)
(...)

enddo
! Transfer block Jacobians to PETSc matrix.
! >>> center block A = dR(i,j,k)/w(i,j,k)
idxngb = idxmgb
call MatSetValuesBlocked(dRdW,1,idxmgb,1,idxngb,Aad,INSERT_VALUES,ierr)
! >>> west block B < w(i-1,j,k)
idxngb = globalNode(i-1,j,k)
call MatSetValuesBlocked(dRdW,1,idxmgb,1,idxngb,Bad,INSERT_VALUES,ierr)
(...)

Figure 5.2: Flux Jacobian matrix assembly routine.
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5.2 Assembly of the adjoint RHS vector

So far, only the left-hand side of the adjoint system of equations (3.30) has been

considered.

The RHS vector of the discrete adjoint system of equations, ∂I
∂w

, is constructed by

differentiating the discretized version of the function of interest (3.14) with respect

to the flow variables w. This vector has length Nw = (Nc × Nv) and, depending on

the chosen function I, it might be very sparse. Since the most common functions of

interest – such as the aerodynamic coefficients of drag, CD, lift, CL and moment, CM ,

used in this work – result from surface integral evaluations, that is in fact the case.

The choice of function I is problem-dependent but, regardless of the actual func-

tion being use, it can always be expressed in the form I = I(w). It is important

to understand how the flow solution w influences it to compute the contributions
∂I
∂w

. As an illustration, the derivation of the RHS adjoint vector for the inviscid drag

coefficient CD is shown next.

By definition, the drag coefficient is the drag force that acts on a body, made

dimensionless by a reference force that is derived from the dynamic pressure and a

reference area. The pressure drag force D (inviscid) is computed by integrating the

pressure over the body surface in the direction of the flow, resulting in

CD =
D

q∞Sref

=
1

q∞Sref

∫∫
S

pwn̂D · dS , (5.34)

where the drag direction is defined as n̂D = − u∞
‖u∞‖ = (nDx, nDy, nDz) (the minus sign

takes into account that positive drag opposes the movement), pw is the wall pressure,

Sref is the reference area and the dynamic pressure is given by q∞ = 1
2
ρ∞U

2
∞ =

γ
2
p∞M

2
∞.

The discretization of CD (5.34) in the computational domain, assuming that the

body surface occurs at i = 1, can be expressed as

CD =
1

q∞Sref

∑
j

∑
k

pwjk
n̂D · Swjk

, (5.35)
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where Swjk
is the normal-oriented surface area of the (1, j, k) cell.

Using the inviscid drag coefficient CD (5.35) as the cost function, its sensitivity

with respect to the conservative variables can then be easily computed as

∂I

∂w
=
∂CD

∂w
=

1

q∞Sref

∑
j

∑
k

∂pwj,k

∂w
n̂D · Swjk

, (5.36)

where the pressure at the wall pw is computed using the same boundary condition

method as in the flow solver to ensure consistency.

For the cell-centered, custom MHD solver 4.4.2, pw is computed using the linear

extrapolation approximation of the solid wall boundary condition (4.31),then pw =

pw(p2, p3). Consequently, the only non-zero terms are given at cells i = 2 and i = 3,

which are given by
∂I

∂w2,j,k

=
1

q∞Sref

3

2

∂p2,j,k

∂w2,j,k

n̂D · Swjk
(5.37)

and
∂I

∂w3,j,k

= − 1

q∞Sref

1

2

∂p3,j,k

∂w3,j,k

n̂D · Swjk
(5.38)

with the gradients ∂p
∂w

, given by the expressions (B.79), evaluated at cells i = 2, 3.

For the NSSUS solver, because this specific flow solver works with primitive vari-

ables, w = (ρ, u, v, w, p), then the derivative ∂CD/∂w is always zero except for

w5(= p). Therefore, it became trivial to derive analytically the expression for this

partial derivative from the flow solver routine that calculated that function of interest.

The RHS of the adjoint for the ideal MHD model is simply expressed as

∂CD

∂w
=

{
0, 0, 0, 0,

∂CD

∂p
, 0, 0, 0

}
. (5.39)

It is always worth mentioning that the discrete adjoint formulation allows any cost

function to be treated in a similar same fashion, independently of its form, in contrast

to the continuous adjoint formulation. In general, when using AD differentiated

functions of interest, the assembly of the adjoint vector is blind in terms of sparsity.

This just follows naturally from the automatically generated differentiated routine

evaluation.
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5.3 Solution of the adjoint system

The adjoint solver requires the solution of a system ofNw = (Nc×Nv) equations (3.30)

but, as mentioned before, both the flux Jacobian and the right hand side in this system

of equations are very sparse.

PETSc

In order to solve this large sparse discrete adjoint problem (3.30), the Portable, Ex-

tensible Toolkit for Scientific Computation (PETSc) [11, 10] was used. PETSc has

been developed at the Argonne National Laboratory, US Department of Energy, and

it is a suite of data structures and routines for the scalable, parallel solution of scien-

tific applications modeled by PDEs. It employs the message passing interface (MPI)

standard [115] for all interprocessor communication, it has several linear iterative

solvers and preconditioners available and performs very well, provided that a careful

object creation and assembly procedure is followed.

The integration of PETSc, natively implemented with MPI, with the multi-processor

flow solver was achieved quite smoothly, providing an efficient, parallel (multi-processor),

adjoint solver implementation.

All the adjoint and partial sensitivity matrices and vectors – ∂R
∂w

, ∂I
∂w

, ∂R
∂x

and ∂I
∂x

–

were created as PETSc’s data structures and, due to their structure, stored as sparse

entities.

Once the sparse data structures are filled, the adjoint system of equations (3.30)

was solved using a PETSc built-in Krylov subspace (KSP) method. More specifically,

a Generalized Minimum Residual (GMRES) method was used, preconditioned with

the block Jacobi method, with one block per processor, each solved with ILU(0)

preconditioning. This large-scale iterative solver proved to be very efficient, exhibiting

extreme robustness and fast convergence rates, even with test cases up to O(106)

equations, as found in the results included in chapter 6.
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5.4 Total sensitivity

Once the adjoint solution, ψ, is found, the gradient of the function of interest is easily

obtained from the sensitivity equation (3.31). This expression for the adjoint-based

sensitivity requires the differentiation of the flow solver residual R (4.37) and cost

function I evaluation routines with respect to the design variables x. The resulting

matrix ∂R
∂x

has dimensions (Nc×Nv)×Nx, where Nx is the number of design variables,

whereas the right hand side vector ∂I
∂x

has length Nx.

Depending on the type of design variable being tested, the terms ∂I
∂x

and ∂R
∂x

are

either computed using automatically differentiated routines or approximated using

finite-differences, but being partial derivatives, they are very cheap to compute since

no flow re-evaluation is necessary.

When using AD tools, the re-engineered routines used for ∂R
∂w

and ∂I
∂w

earlier were

again differentiated automatically, this time with respect to x, thus providing ∂R
∂x

and
∂I
∂x

, respectively. However, this required that the routines (5.31) and (5.32), and the

routine that computes the functions of interest, had to be modified so that the design

variables x became input parameters,xAdj. For example, the residual routine should

write

subroutine residualAdj(xaDj, wAdj, rAdj, i, j, k) . (5.40)

Once the partial derivative terms in the total sensitivity equation (3.31) had been

evaluated, and the adjoint solution ψ found, the total sensitivity was then computed

using the matrix-vector multiplication and the vector addition built-in operation rou-

tines provided in PETSc.

5.5 Adjoint-based optimization

The optimization problem (1.3) is solved by feeding the cost and constraint function

values, obtained by the flow solver, and their gradients, obtained by the adjoint solver,

into a gradient-based optimizer, following the algorithm depicted in the block diagram

shown in figure 5.3. This algorithm constitutes an extension to the general design

algorithm previously presented in figure 1.1.
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By constructing the adjoint system of equations (3.30) and solving for the vector

of adjoint variables, ψ, the sensitivity of the cost function is simply given by equa-

tion (3.31). The sensitivity obtained from (3.31) can then be used by the gradient-

based optimizer to find the search direction and to determine the step size during the

line search.

?
x

Flow Solver: R(w,x) = 0 -

I

?
w

Adjoint Solver:
[

∂R
∂w

]T
ψ =

[
∂I
∂w

]T
?
ψ

Sensitivity: dI
dx

= ∂I
∂x
− ψT ∂R

∂w
-

dI
dx

Gradient
Based

Optimizer

Figure 5.3: Schematic of the adjoint-based optimization algorithm.

As mentioned in chapter 1, if the design problem (1.3) includes m additional

constraints to the governing equations, then it is also required to compute their sen-

sitivities. Thus, an additional adjoint system has to be solved for each additional

constraint function, Ci, which includes the computation of a new right-hand side vec-

tor for the adjoint system (3.30). Notice, however, that the adjoint matrix assembly

and its factorization (if ever computed) can be preserved, expediting this process

considerably, at the expense of increased memory requirements.

The gradient-based optimizer used in this work is SNOPT [56, 57], which is a

software package for solving large-scale optimization problems (linear and nonlinear

programs), developed in the Systems Optimization Laboratory at Stanford University.

Among the several methods available, the Sequential Quadratic Programing (SQP)

method was selected.
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All the material presented in this work focuses on the adjoint solver and sensi-

tivity modules within the optimization algorithm shown schematically in figure 5.3.

The ADjoint approach is thought to be an answer to the rapid development of such

modules.



Chapter 6

Results and discussion

The results that follow correspond to the implementation of the discrete adjoint

approach in two distinct MHD flow solvers: the cell-centered, single-block, single-

processor, custom-developed solver described in section 4.4.2, and the vertex-centered,

multi-block, multi-processor, NSSUS solver described in section 4.4.4.

Four test cases have been used to demonstrate the hybrid ADjoint sensitivity

analysis method: a blunt body, a transonic airfoil, a simplified hypersonic vehicle

and a generic complete hypersonic vehicle. The first test case was used to assess

and validate the discrete adjoint-based sensitivity method, whose formulation was

derived by hand-differentiation of the the custom built, cell-centered, flow solver.

The remaining ones were run on the sophisticated multi-block, vertex-centered, flow

and adjoint solvers, that resulted from the implementation of the ADjoint approach.

6.1 Symmetric blunt body

In this section, a verification study of the sensitivities provided by the discrete adjoint

formulation derived by hand-differentiation of a cell-centered, single block, MHD

solver is presented. Both the low Reσ and the ideal MHD equations have been studied.

For this purpose, finite-difference sensitivities obtained from the flow solver are used.

Additionally, a sample design case using the sensitivity information obtained with

the adjoint approach is also shown.

92
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6.1.1 Problem set-up

The configuration used as a preliminary test case follows that of Gaitonde and Pog-

gie [46]. The body is a blunt cylinder immersed in a hypersonic incoming flow, at an

arbitrary angle of attack and side-slip angle. These two angles are considered design

(control) variables in the gradient and optimization computations.

A collection of hypothetical electric circuits is placed inside the body which im-

poses a magnetic field on the flow, calculated by using the dipole expression (4.16),

automatically satisfying the condition ∇ ·B = 0, as explained in section 4.3. In this

way, three additional control variables are inserted in the design problem (strength

m and two orientation angles), for each dipole placed inside the body. The location

of the dipoles is set and kept fixed.

In addition, a collection of shape-modifying bumps is located on the body nose so

that aerodynamic shape control can be performed. These bumps are given by Hicks–

Henne functions [68], whose amplitudes can be changed during the design process,

and are superimposed to the baseline nose radius. The bumps are equally distributed

between the nose tip and the 45◦ angular location (with respect to the body axis)

and their location is fixed. This leads to ring-type shape perturbations on the nose

surface.

Using the governing equations written in non-dimensional form, only a limited set

of values need to be specified to initialize the flow, namely the Mach number, M , the

velocity vector direction, û = (û, v̂, ŵ), the magnetic pressure number, Rb and the

magnetic Reynolds number, Reσ.

This test case models the nose of a atmospheric re-entry vehicle, flying at a cruise

altitude of h = 30, 000m (≈ 100, 000 ft, well within the stratosphere layer), at speed

U = 1509.05m/s. Assuming a reference length of L = 1m, the thermodynamic prop-

erties of air were given using the Java script provided in the Aircraft Aerodynamics

and Design Group webpage [1], that is based on the 1976 standard atmosphere data.

These were found to be: temperature T = 226.65K, density ρ = 0.0180kg/m3,

pressure p = 1171.95N/m2 and speed of sound (using the ideal gas assumption

c =
√
γRT ) c = 301.8m/s2. The corresponding free-stream Mach number was

M = U/c = 5.
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The imposed magnetic field magnitude B, which is controlled by the dipole

strength m, determines Rb, whereas the medium electrical conductivity σ sets Reσ.

Whereas the electrical conductivity was fixed at σ = 300S/m, the dipoles strength

varied, leading to a tested range of Q.

6.1.2 Flow solver validation

Figure 6.1 shows the Mach number distribution around the body. In this case, there

are neither magnetic nor viscous effects, thus corresponding to the solution of the

Euler equations, but the Mach number was raised to M = 16. The results obtained

Figure 6.1: Blunt body: Euler solution at M=16.

follow remarkably well others found in the literature [129, 29].

The low magnetic Reynolds number MHD solver was validated by running a sim-

ulation of a hypersonic flow over the same blunt cylinder. In this case, an incoming

flow at Mach M = 5 aligned with the body axis was used, and a single dipole was

located inside the body at the nose center point, also aligned with the body axis.

Different magnetic field strengths were tested, leading to a range of the magnetic

interaction parameter of Q = 0 to Q = 6. The effect of Q on the shock stand-off

distance can be seen in figure 6.2. Being a simple MHD model, and being impossible

to compare the values of the non-dimensional parameter directly, one can only argue

that the values follow the expected qualitative trend, that is to say, as the magnetic
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field gets stronger, the stand-off distance increases, which had been observed in the

cited references as well.

Figure 6.2: Blunt body: shock stand-off distance as function of Q.

6.1.3 Sensitivity verification of the low Reσ MHD solver

A validation study of the sensitivities obtained from the discrete adjoint formulation

was performed with finite-difference approximations computed using the MHD flow

solver.

The mesh size used was a modest (18 × 16 × 24), with a single dipole located

at the body nose center and oriented against a Mach M = 5 incoming flow at an

angle of attack of 26.6◦ . The imposed magnetic field was such that the value of the

magnetic interaction parameter was Q = 6. The electrical conductivity was assumed

to be a design variable in each computational cell, leading to a total of 6, 912 design

variables. The results in figure 6.3 show the inviscid drag coefficient sensitivity with

respect to the electrical conductivity σ on the body surface and mid plane locations.

The results obtained using the discrete adjoint approach were compared with

values obtained using a finite-difference solution at three control cells located on the

body surface (and shown on figure 6.3 with the dots) and the results are summarized

in table 6.1. The agreement is remarkably good and highlights the potential of the
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Figure 6.3: Blunt body: drag coef. sensitivity w.r.t. electrical conductivity.

Cell index (i,j,k) Adjoint Finite-Differences ∆
(8,2,19) −6.6314× 10−4 −6.5840× 10−4 0.72%
(14,2,19) 2.9937× 10−4 2.9319× 10−4 2.11%
(17,2,19) 5.8642× 10−4 5.8650× 10−4 −0.01%

Table 6.1: Blunt body: verification of sensitivity ∂CD/∂σ.

adjoint procedure to be used in problems with a large number of design variables.

Figure 6.4 shows the inviscid drag and the inviscid lift coefficient sensitivities with

respect to some other design variables. In these cases, the mesh size was (32×48×64),

two dipoles were located inside the body, oriented against a Mach M = 5 incoming

flow at an angle of attack of 10◦ and side-slip angle of 5◦ . A total of 18 design variables

were considered: angle of attack, side-slip angle, bump amplitudes (10 in total) and

dipole strengths (2) and orientations (4). The sensitivity computed from the adjoint

solution was also compared against a finite-difference approach. Once again, there is

good agreement, with values matching within 1.5% for the inviscid drag coefficient

sensitivity, and 3% for the inviscid lift coefficient sensitivity.

These results proved that the discrete adjoint method is a viable, accurate and

efficient method to compute sensitivities in problems modeled by the MHD equations,

and that the ADjoint approach, if implemented, would be feasible.
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(a) drag coefficient (b) lift coefficient

Figure 6.4: Blunt body: aerodynamic coefficients sensitivity for low Reσ MHD.

6.1.4 Sample design problem using the low Reσ MHD solver

To demonstrate the design capabilities achieved by using the sensitivity information

efficiently obtained by the discrete adjoint approach, a simple design problem of the

form (1.3) was solved.

The same blunt body was used, modeling the nose of a re-entry vehicle in the

atmosphere. The design problem intends to maximize the inviscid drag coefficient,

while keeping the inviscid lift coefficient in a specified range (0.04 < CL < 0.05).

A total of 21 design variables were used, representing three types of design vari-

ables: free-stream direction (angle of attack and side slip angle), shape design vari-

ables (4 Hicks–Henne bumps distributed on the body surface) and magnetic field

characteristics (strength and orientation of 5 dipoles distributed inside the body, as

shown in figure 6.5). The initial imposed magnetic field was such that Rb = 1.747

and Reσ = 0.114, which translated to Q = 0.2. In addition, a design was also made

without the dipoles to investigate the importance and impact of the latter in the

optimal problem solution.

Figure 6.6 shows the convergence history of the design iterations, for both the case

with and without dipoles, using SNOPT. The initial optimization iterations employ
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Figure 6.5: Blunt body: dipole locations.

primarily the free-stream and shape design variables, but subsequent iterations per-

form a fine tuning of the dipole characteristics, which result in a 2.5% improvement

over the non-magnetic optimum solution. The optimal dipole strengths were limited

by their upper bound of m corresponding to Bref = 0.06T = 600Gauss, or Q = 0.04.

Figure 6.6: Blunt body: convergence history of the design iterations for low Reσ.
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Although the magnetic field imposed by the dipoles is weak, the pressure distribu-

tion on the surface body changes significantly compared to the non-magnetic solution.

Figure 6.7 shows this distribution along the body centerline, in which the increase of

pressure on both the upper and lower surfaces is the cause of the optimal solution

shown in figure 6.6.

Figure 6.7: Blunt body: pressure distribution along centerline.

It is interesting also to point out that, even though the shock stand-off distance

change is barely noticeable, the overall pressure distribution on the body surface

changes considerably, with the pressure recovery from the stagnation point taking

longer to occur, as seen in figure 6.8.

The optimal magnetic field found is shown in figure 6.9, where a contour of its

strength and its vector field are illustrated on the body surface and the center plane.

These results stress the fact that in order to fine tune any MHD control device,

a high-fidelity optimization method is necessary. A designer would never have got to

such a precise solution if he/she had done it by trial-and-error experiments or manual

tuning.
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(a) without dipoles (b) with 5 dipoles

Figure 6.8: Blunt body: pressure distribution on body surface.

Figure 6.9: Blunt body: optimal magnetic field.

6.1.5 Sensitivity verification of the ideal MHD solver

In this section, the baseline configuration consisting of the blunt body described in

the previous section is tested with a single dipole located at the body nose center,

oriented against a Mach M = 5 incoming flow at an angle of attack of 20◦ and side-slip

angle of 5◦ . The size of the mesh used was (32 × 32 × 64) and the baseline design

variable values are included in table 6.5. The flow free-stream conditions were kept

identical to the previous case, including the electrical conductivity of the medium

(which meant Reσ = 0.569), but the imposed magnetic field was such that Rb = 1.75,
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translating to a magnetic interaction parameter of Q = 1.

The plots in figure 6.10 show both the imposed magnetic field, due to the em-

bedded dipole, and the induced magnetic field, as computed by the ideal MHD flow

solver, on a vertical plane, where the contour map represents the magnetic field mag-

nitude and the streamlines show the magnetic field vector. The expected strong bow

shock is captured in figure 6.11, in which the Mach number is plotted, together with

the static pressure distribution.

(a) Imposed field (b) Induced field

Figure 6.10: Blunt body: magnetic field of baseline configuration for ideal MHD.

Figure 6.12 shows the inviscid drag and lift coefficient sensitivities with respect to

7 design variables - angle of attack, side-slip angle, bump amplitudes (2) and dipole

strength (1) and orientation (2). The sensitivities obtained using the discrete adjoint

approach are matched against values obtained using a finite-difference solution, with

a perturbation step of 10−5 for the design variables, and the results are summarized

in tables 6.2 and 6.3.

In general, there is an excellent agreement between the two approaches. The

differences that sometimes occur are thought to be due to either the inaccuracy of

the finite-difference solution itself or to some approximations computing the vector
dI
dx

and the matrix ∂R
∂x

in equation (3.31).

The computational times necessary to obtain these verification results are shown

in table 6.4, where the CPU time required to obtain and solve the adjoint system
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(a) Mach number (b) Static pressure

Figure 6.11: Blunt body: baseline solution for ideal MHD.

(a) drag coefficient (b) lift coefficient

Figure 6.12: Blunt body: aerodynamic coefficient sensitivities for ideal MHD.

of equations is used as reference. The flow solution was obtained from a cold start

(free-stream conditions in the whole computational domain), while the subsequent

finite-difference solutions used the previously computed flow solution as an initial

guess, having to converge only due to the design variable perturbation. The CPU

time of the adjoint solution is nearly independent of the number of design variables,

but linearly dependent on the number of functions of interest, whereas the CPU

time of the finite-difference approach is approximately linearly dependent on the

number of design variables and independent of the number of functions. These timings
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Design variable Adjoint Finite-Diff. ∆
Angle of attack 7.461× 10−2 7.432× 10−2 0.4%
Side-slip angle 4.871× 10−2 4.863× 10−2 0.2%
Bump #1 amplitude −4.432× 10−1 −4.146× 10−1 6.9%
Bump #2 amplitude 7.447× 10−1 7.504× 10−1 −0.8%
Dipole strength −1.070× 10+0 −1.071× 10+0 −0.1%
Dipole angle α −1.526× 10−2 −1.527× 10−2 0.0%
Dipole angle β −1.003× 10−2 −1.064× 10−2 −5.7%

Table 6.2: Blunt body: drag sensitivity verification for ideal MHD.

Design variable Adjoint Finite-Diff. ∆
Angle of attack 2.044× 10−1 2.044× 10−1 0.0%
Side-slip angle 5.846× 10−2 5.839× 10−2 0.1%
Bump #1 amplitude 3.021× 10−1 3.005× 10−1 0.5%
Bump #2 amplitude −5.572× 10−1 −6.164× 10−1 −9.6%
Dipole strength 1.186× 10−1 1.186× 10−1 0.1%
Dipole angle α 1.869× 10−1 1.869× 10−1 0.0%
Dipole angle β 7.790× 10−3 7.790× 10−3 0.0%

Table 6.3: Blunt body: lift sensitivity verification for ideal MHD.

clearly demonstrate the excellent efficiency of the adjoint-based sensitivity approach

when compared to the traditional finite-difference approach, here with a 43:1 ratio.

Obviously, the finite-difference approach handicap would have been even larger if

more design variables had been used.

Solver Time
Flow 21
Adjoint sensitivity 1
Finite-diff. sensitivities 43

Table 6.4: Blunt body: computational time with 2 functions and 7 variables.
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6.1.6 Sample design problem using the ideal MHD solver

Similarly to what was done using the low Reσ model, a design problem using the

same body set-up was solved to assess the design capabilities using discrete adjoint-

based MHD sensitivities. The design problem consists of controlling the inviscid drag

coefficient, either minimize or maximize it, while keeping the inviscid lift coefficient

within a specified range. The range and baseline values of the design variables and

constraints are shown in table 6.5.

Figure 6.13 shows the convergence history of the design iterations for both the

drag minimization and maximization cases. The optimizer quickly drives the design

Figure 6.13: Blunt body: merit function convergence history using ideal MHD model.

solution toward the optimum and then further iterates to achieve the desired accuracy.

As expected, the minimum drag optimal solution corresponds to a slender body

with a weak imposed magnetic field, while the maximum drag optimal solution cor-

responds to a more blunt body with a strong imposed magnetic field, as sketched in

figure 6.14. The optimal results obtained for both cases are summarized in table 6.5.

The 10 and 34 optimizer iterations shown in figure 6.13 corresponded to 40 and

94 function calls, respectively. Each function call represent one cost and constraint

function value and sensitivity evaluations, that is, one flow and two adjoint solutions.

In both design problems, the optimal solutions satisfy all the constraints and

significant improvement is achieved over the baseline configuration. In the case of
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(a) CD minimization (b) CD maximization

Figure 6.14: Blunt body: optimal solutions for ideal MHD.

Design variable xmin x0 xmax CDmin CDmax

Angle of attack -0.3491 0.1745 0.3491 0.0761 0.2349
Side-slip angle -0.1745 0.0858 0.1745 0.0000 0.0272
Bump #1 amplitude 0.1000 0.2000 0.3000 0.3000 0.1000
Bump #2 amplitude 0.0500 0.1000 0.1500 0.0500 0.1500
Dipole strength -0.1200 -0.0100 -0.0100 -0.0100 -0.1200
Dipole angle α -0.6981 0.0853 0.6981 0.6981 0.2412
Dipole angle β -0.3491 0.1745 0.3491 0.0029 0.0372
Drag Coefficient - 0.6080 - 0.4710 1.1304
Lift Coefficient 0.0350 0.0385 0.0400 0.0350 0.0350

Table 6.5: Blunt body: design variable bounds, initial value and optimal values.

drag maximization, the optimum occurs with the dipole oriented against the incoming

flow, and set at its maximum allowable strength. Also, as one would expect, the body

shape got blunter compared with the baseline. In contrast, the minimum drag is

achieved with a slender body shape and the weakest possible dipole strength. Notice

that, due to the way the optimization problem was placed, the optimal solutions are

located at the bounds of the design variables.

Once again, the adjoint-based sensitivities computed using a discrete adjoint ap-

proach proved to be accurate for design applications.
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6.2 Transonic airfoil

The adjoint solver developed for the multi-block vertex-centered CFD solver was

initially tested with a simple geometry, namely, using the NACA 0012 airfoil. This

test case was meant to verify the ADjoint implementation, including the boundary

conditions handling in the automatically differentiated routines.

6.2.1 Problem set-up

A quasi-3D wing was modeled using the computational mesh pictured in figure 6.15,

consisting of a single-block C-mesh of size (41× 33× 7). The fluid flow was assumed

Figure 6.15: Airfoil: computational C-mesh.

to be inviscid, without any magnetic interaction, thus the Euler equations were used

as the physical model.

The wing surface was set as an inviscid wall boundary, symmetry boundary con-

ditions were applied at the wing tips in the spanwise direction (side faces of compu-

tational block), the wrapping block faces due to the C-mesh topology had internal

node-to-node matching conditions applied and far-field boundary was used at the

remaining block face.

The free-stream conditions were defined by a Mach number of 0.9 and an angle of

attack of 5◦ .
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6.2.2 Verification of the re-engineered residual routine

As mentioned in the automatically derived Jacobian section 5.1.2, in order to reduce

the cost of the automatic differentiation procedure, a new set of subroutines that

compute the residual at a specified node had to be built. This set of subroutines

closely resembles the original code used to compute the residuals over the whole do-

main, except that it no longer loops over the domain but is based on the specification

of a single-node instead.

Although this new code was essentially built by cut-and-pasting from the original,

it was necessary to verify that the residual evaluation matched. To this end, the

differences between the new and original residuals were computed in each node and

the evaluated differences were all O(10−14) (i.e. same order as machine zero using

double-precision arithmetic), which validated the new residual routine. For illustra-

tion purposes, the result for the continuity equation residual difference is shown in

figure 6.16 at a slice of the domain corresponding to the mid-plane (computational

index:k = 4).

Figure 6.16: Airfoil: residual routine verification for the continuity equation.
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6.2.3 Verification of the automatically differentiated residual

routine

The re-engineered set of residual routines were then differentiated with Tapenade

in reverse mode, for the reasons previously discussed, according to the procedure

laid down in section 5.1.2. As mentioned in that section, the resulting differentiated

residual code evaluates the sensitivity of one residual of the chosen node with respect

to all the flow variables in the stencil of that node, i.e., all the nonzero terms in

the corresponding row of ∂R
∂w

. To assemble the complete flux Jacobian matrix, it

was necessary to loop over each residual and node indexes, in each computational

directions, in every computational domain.

Similarly to what was done to the residual evaluation routines, the flux Jacobian

computed with the automatically differentiated code was also verified against values

estimated by finite-differencing the re-engineered residual routine and the relative

error between the two was used to assess its validity. Figure 6.17 shows the relative

difference of the row sum of the block Jacobian A[m,n] (5.5) corresponding to the

energy equations, ∑
n

A[irhoe,n] =
∑

n

∂Rijk(irhoe)

∂wi(n)
, (6.1)

which, recalling the Tapenade differentiated Jacobian routine output (6.2), corre-

sponds to ∑
n

wAdjB(0, 0, 0, n) =
∑

n

∂R(i, j, k, irhoe)

∂w(i, j, k, n)
, (6.2)

where irhoe is the index of the energy equation residual. There is a rather good

agreement since all of the errors are within an acceptable range, varying between

O(10−10) and O(10−11). Of course, the finite differences are most likely less precise

than the automatic differentiation results, but there is no way of verifying this claim

without analytic results.

Similar results were obtained for the residuals corresponding to every other gov-

erning equation (continuity and momentum equations). These results showed that

the AD routine was computing the desired Jacobian entries of the adjoint matrix ∂R
∂w

,

and that it could be safely and efficiently used to assemble it.
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Figure 6.17: Airfoil: verification of the differentiated residual routine.

The non-zero pattern of the assembled adjoint matrix ∂R
∂w

and vector ∂I
∂w

was

visualized by calling the PETSc routines

call MatView(dRdW,PETSC_VIEWER_DRAW_WORLD,ierr)

call VecView(dJdW,PETSC_VIEWER_DRAW_WORLD,ierr)

This allowed for the inspection of their sparsity pattern, which is shown in figure 6.18,

where the RHS vector was evaluated considering lift coefficient as the function of

interest, I = CL. As expected for this single-block test case, the Jacobian is a multi-

diagonal matrix because of the stencil of influence (4.8), whereas the RHS vector

is only non-zero at the nodes that are on the body surface since the inviscid lift

coefficient is computed from a surface integral (5.36).

The comparison between the run-time for the computation of the residuals in

the whole domain using the original set of routines, the re-engineered set of routines

and the time for running the corresponding version automatically differentiated in

reverse mode is summarized in table 6.6, running on a single node of a 3.2GHz multi-

processor workstation. These results show that the re-engineered residual routine,

now node-based, takes roughly ten more times to evaluate the residuals compared

to the original version, which is a result of not taking advantage of residual flux

sharing between nodes that are optimized in the latter residual evaluation with the
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(a) Adjoint matrix: ∂R
∂w (b) Adjoint vector: ∂I

∂w

Figure 6.18: Airfoil: adjoint matrix and vector sparsity patterns.

Original residual eval. 0.008 sec
Re-engineered residual eval. 0.088 sec
AD Jacobian residual 1.744 sec
Ratio 19.82×

Table 6.6: Airfoil: comparison between the original and differentiated residual evalu-
ations.

nested loops in the three computational directions. This supports the claim that two

different residual evaluation routines must be coded, in order to optimize both the

flow solver and the adjoint matrix derivation using the ADjoint approach.

In addition, it can also be seen that the evaluation of the differentiated version of

the re-engineered residual routine was equivalent to approximately 20 residual compu-

tations, which is a ratio of the order typically found codes automatically differentiated

in reverse mode.

The verification performed previously (fig. 6.16) allowed for the comparison of the

time needed to compute the full Jacobian matrix using the automatically differen-

tiated residual routine and a central finite-difference approximation (3.5) approach

with the original residual routine. The results are summarized in table 6.7 using dif-

ferent number of processors. Even though the evaluation of the differentiated residual

routine takes longer than the original one, the automatic differentiation approach is

much more efficient than finite differencing in computing the flux Jacobian due to

the fact that the reverse mode calculation does not need to be called as many times
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# proc. 1 2 3 4
Automatic differentiation [s] 1.74 0.84 0.58 0.42
Finite-differences [s] 21.29 10.29 7.18 5.01
Ratio 12.21× 12.19× 12.39× 11.92×

Table 6.7: Airfoil: run-time comparison between the AD and FD Jacobian evaluation.

as the finite-difference residual evaluations, as detailed in chapter 5. A speed-up of

more than 12 times was registered regardless of the number of processors used, which

also highlighted the good scalability of the approach.

6.2.4 Flow and adjoint solutions

The Mach number contours obtained by running the flow solver for the conditions

described in the set-up section is shown in figure 6.19. As expected, a transonic

regime is established as a result of the significantly high free-stream Mach number,

with a pocket of significant size of supersonic flow on the upper airfoil surface.

Figure 6.19: Airfoil: Mach number contour.

Once the flow solution was computed, the adjoint solver was run for different aero-

dynamic coefficients, taking the role of several functions of interest in the sensitivity
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analysis, which corresponded to solving the adjoint system (3.30) for different right-

hand side vectors ∂I
∂w

. The corresponding adjoint solutions are shown in figure 6.20

for the inviscid lift, drag and pitching moment coefficients, where the flow solution

has been also included for reference. These plots show the contours of the flow and

(a) Flow pressure (b) Adjoint pressure I = CL

(c) Adjoint pressure I = CD (d) Adjoint pressure I = CMy

Figure 6.20: Airfoil: flow and adjoint solutions.

adjoint pressure, and the streamlines corresponding to the flow and adjoint velocity

fields.
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6.2.5 Verification of the adjoint-based sensitivities

After the adjoint system of equations was solved, the gradients of the functions of

interest were computed using the total adjoint-based sensitivity expression (3.31) with

respect to the angle of attack, α, here taking the role of a design variable.

The sparsity pattern of the auxiliary partial derivatives, obtained using the PETSc

built-in visualization functions, are shown in figure 6.21, for I = CL.

(a) Gradient matrix: ∂R
∂α (b) Gradient vector: ∂I

∂α

Figure 6.21: Airfoil: partial gradient matrix and vector patterns.

Figure 6.21 actually shown the results for both the angle-of-attack and side-slip,

so only the first column of the matrix and the first entry of the vector should be con-

sidered. It can be seen that the direct influence of the angle-of-attack on the residual

occurs only at the nodes located at the far-field boundary, through the boundary

conditions.

The benchmark sensitivity results were obtained using the forward first-order

finite-difference derivative approximation (3.4). In this case, the derivative of the

lift coefficient is given by

∂CL

∂α
≈ CL(α+ ∆α)− CL(α)

∆α
, (6.3)

where the relative magnitude of the perturbation step was taken to be 10−3. This

required the flow solver to be run one additional time for the perturbed value of

angle-of-attack.

The resulting function values and gradients are summarized in table 6.8. The
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reference area and moment arms were taken as 23.1m2 and 1m, respectively, and the

moments were taken about the airfoil leading edge. The excellent agreement between

Value Sensitivity
Baseline Perturbed Adjoint Finite-diff. ∆

CL 0.47567771 0.47619350 5.1985 5.1974 0.021%
CD 0.14730740 0.14739654 0.8978 0.8982 −0.049%
CMy -0.79783454 -0.79870840 −8.8072 −8.8056 0.018%

Table 6.8: Airfoil: function values and gradients w.r.t. angle-of-attack.

the adjoint-based and finite-difference based sensitivities shown in table 6.8 prove

that the adjoint solver has been correctly implemented using the proposed hybrid

ADjoint approach.

6.3 Simplified hypersonic aircraft

After the successful verification of the ADjoint implementation presented in the previ-

ous test case, the flow and adjoint solvers were now using the low Reσ MHD equations.

The results shown in this section include both the flow and adjoint solutions of a

very simplified aircraft flying at hypersonic speeds, as well as gradients of aerodynamic

coefficients with respect to different types of variables. A verification study of the

sensitivities provided by the discrete adjoint formulation is also presented, where

finite-difference approximations obtained from the flow solver were once again used.

The goal of this test case was to verify the multi-block implementation of the

adjoint solver and the adjoint-based sensitivity analysis, based on the MHD equations.

6.3.1 Problem set-up

For this test case, a simplified hypersonic vehicle geometry was selected, as shown in

figure 6.23, in which neither the scramjet propulsion system nor the vertical fins have

been included. Since all the simulations were run without any side-slip angle, only

half the body had to be modeled, as shown in figure 6.22, where the plane y = 0 was

set to be the symmetry plane.
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Figure 6.22: Simplified vehicle: half-
body configuration modeled.

Figure 6.23: Simplified vehicle: im-
posed magnetic field.

A collection of five hypothetical dipoles is placed inside the body, at the locations

indicated in table 6.9, which imposes a magnetic field on the flow. The resulting

field given by the superposition of dipoles is shown in figure 6.23. Even though only

half domain was simulated, all five dipoles were taken into account to compute the

imposed magnetic field.

Dipole # Location Orientation
1 (0.5, 0, 0) (−1, 0, 0)

2/3 (1.5,±0.96, 0) (0,±1, 0)
4/5 (3.5,±1.24, 0) (0,±1, 0)

Table 6.9: Simplified vehicle: dipole locations.

The runs were made on a parallel processor workstation, with four 3.2Ghz nodes

and 8GB of RAM. The multi-block computational domain is shown in figure 6.24 and

had a total of 183, 342 nodes. The inflow and outflow boundary conditions were set

as supersonic and the vehicle surface as an Euler (inviscid) wall.

In this test, the inviscid aerodynamic coefficients (lift, drag, moment in x-,y-,z-

directions) were used as functions of interest, I, and the electrical conductivity, σ, in

each computational node was taken as the design variables. This led to a total of five

cost functions and 183, 342 design variables.

The free-stream flow conditions used in this test case replicated those in case 6.1

in terms of cruise conditions, that is, a cruise altitude of h = 30, 000m and speed
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Figure 6.24: Simplified vehicle: multi-block domain.

U = 1509.7m/s was used, corresponding to a free-stream Mach number of M = 5,

and an angle of attack of 5◦ was modeled.

The flow solver was first run without any imposed magnetic field, corresponding

to the Euler equations, and then the dipoles were turned on to obtain the MHD

solution.

All the dipoles were set to the same strength m, and the baseline electrical con-

ductivity was taken to be σ = 300S/m, such that a magnetic Reynolds number of

Reσ = 0.57 and a magnetic interaction parameter Q = 0.3 were used.

The maximum magnetic flux occurred on the body bottom surface, below dipole

#1, and read Bmax = 8.28T = 8.24 × 104Gauss. It is interesting to compare this

value with some relevant values summarized in table 6.10, that were obtained from a

comprehensive list of magnetic field strengths gathered by the East Tennessee State

University Astronomical Observatory [125]. The magnetic intensity modeled is rela-

Description Strength
Earth magnetic field 0.6 Gauss
Common iron magnet 100 Gauss
Strongest field achieved in laboratory (sustained) 4× 105 Gauss

Table 6.10: Simplified vehicle: magnetic field strengths.
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tively high, but yet possible to produce, probably at the expense of heavy electromag-

nets. These high values simulated were necessary because of the low ionization level

considered (which translated into low electrical conductivity). However, there are

studies that have shown that seeded air leads to stronger local ionization at relatively

low hypersonic speeds, amplifying the magnetic effects, thus decreasing the required

applied magnetic field intensity [61].

6.3.2 Flow and adjoint solutions

The computed pressure at the body surface and on the plane of symmetry can be seen

in figure 6.25. As expected, there is large pressure increase close to the dipoles due

(a) Euler: top view (b) Euler: bottom view

(c) MHD: top view (d) MHD: bottom view

Figure 6.25: Simplified vehicle: flow solutions.
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to the imposed magnetic field. This effect is caused by the additional source terms

in the MHD equations and makes the numerical solution much less stable, being

necessary to run at significantly lower CFL numbers. Because of this, while the Euler

solution took only 768 seconds for the residual to converge ten orders of magnitude,

the equivalent MHD solution took 6, 245 seconds. This clearly rules out the use of

finite-differences to compute cost function gradients and highlights the importance of

an alternative approach such as the discrete adjoint-based gradients. Moreover, the

slower convergence highlights the need for an implicit treatment of the source terms

in the MHD solution that should be pursued in the future.

The resulting values of the functions of interest are summarized in table 6.11. The

reference area and moment arms were taken as 18.8m and 1m, respectively.

CL 0.0520750437522571
CD 0.0179831679282085
CMx 0.0496412105981379
CMy 0.0247952565444227
CMz 0.0504365242914952

Table 6.11: Simplified vehicle: baseline aerodynamic coefficients.

The entries of the adjoint matrix ∂R
∂w

and vector ∂I
∂w

were computed by calling the

automatically differentiated routines, and then globally assembled using PETSc. The

non-zero patterns were visualized using the PETSc routine calls and they are shown

in figure 6.26. The vector ∂I
∂w

is shown for I = CL but similar results are obtained for

the other functions.

Comparing figure 6.26 to figure 6.18, it is interesting to observe the effect of having

a multi-block domain, causing the matrix bandwidth to increase due to block-to-block

node connectivities. This bandwidth increase, however, does not negatively impact

the GMRES solver since PETSc automatically takes care of the optimization of the

node ordering. For that reason, no special care was given to the way the global node

numbering was done in the adjoint solver pre-processing.

The assembly time of the Jacobian matrix was 10.17 seconds, including all the calls

to the automatically differentiated routines and PETSc matrix functions, whereas the
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(a) Adjoint matrix: ∂R
∂w (b) Adjoint vector: ∂I

∂w

Figure 6.26: Simplified vehicle: adjoint matrix and vector sparsity patterns.

adjoint vector assembly time was negligible.

Once the adjoint system of equations (3.30) was set up, the GMRES solver pro-

vided by PETSc was used. To be consistent with the flow solver, the adjoint solution

residual convergence criterion was also set to 10−10. The iterative solver consistently

shows very good robustness and convergence properties. For all the different functions

of interest tested, the convergence was typically achieved after about 65 iterations,

which took 55 seconds to run. The residual history of the adjoint solution using

PETSc for I = CL is illustrated in figure 6.27.

Figure 6.27: Simplified vehicle: adjoint residual convergence history.

Even though both residuals of the flow and adjoint solvers were converged ten or-

ders of magnitude, this was only done to ensure that the solution had fully converged,

and that the verification of the adjoint-based sensitivities using FD-based values was
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as precise as possible. However, some tests have shown that the gradients computed

using the adjoint are not significantly affected if the criteria are relaxed. Converging

both solvers only five orders of magnitude still produces function values and gradi-

ents accurate enough to be used by a gradient-based optimizer. This is extremely

important because a designer ultimately wants the fastest possible turnaround time,

using the least computational cost and memory required.

The adjoint solution associated with the flow shown in figure 6.25 is shown in

figure 6.28. It is interesting to point out that the adjoint solution, for the functions of

interest used in this work, is similar to the flow solution, except that the flow direction

is reversed. This occurrence has already been observed in other works involving the

adjoint method [83].

In addition, using a coarser grid with only 57, 214 nodes, the Jacobian matrix

entries ∂R
∂w

were computed with both central finite-differences and the automatically

differentiated routines. This was primarily done to debug the code but also showed

the dramatic performance gain obtained using the AD routines, as shown in table

6.12. It is important to notice that these timings corresponded to a single processor

Automatic differentiation 102 sec
Finite-differences (central) 1,856 sec
Performance gain ratio 18.2×

Table 6.12: Simplified vehicle: run-time comparison between the AD and FD Jacobian
evaluation.

computation using a non-optimized executable, but the ratio is expected to remain

similar for other conditions.

6.3.3 Adjoint-based sensitivities

Choosing the electrical conductivity, σ, to be the independent variable in each com-

putational node, it is necessary to evaluate two additional terms to form the total

sensitivity equation, ∂I/∂σ and ∂R/∂σ, since the total sensitivity (3.31) is written
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(a) Adjoint pressure I = CL : top view (b) Adjoint pressure I = CL : bottom view

(c) Adjoint pressure I = CD : top view (d) Adjoint pressure I = CD : bottom view

(e) Adjoint pressure I = CMy : top view (f) Adjoint pressure I = CMy: bottom view

Figure 6.28: Simplified vehicle: adjoint solutions.
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in this case as
dI

dσ
=
∂I

∂σ
+ ψT ∂R

∂σ
. (6.4)

The first term is easy to evaluate since there is no direct dependence of aerody-

namic coefficients with respect to the electrical conductivity σ. As such, that term is

identically zero.

The second term is also easy to obtain by looking at the low Reσ MHD governing

equations, in particular to the magnetic source term: the residual R shows a linear

dependence of σ through the source term S (4.14). Thus, this term was computed

analytically, the result being a very sparse matrix, with non-zero entries only along

the diagonal since the residual at a given node depends only on the conductivity of

that same node.

These terms were assembled as PETSc obejcts and their non-zero patterns are

shown in figure 6.29.

(a) Gradient matrix: ∂R
∂σ (b) Gradient vector: ∂I

∂σ

Figure 6.29: Simplified vehicle: partial gradient matrix and vector pattern.

The total sensitivity (6.4) was then computed using the matrix-vector multiplica-

tion and the vector addition routines provided in PETSc.

The total sensitivity was computed for the different functions of interest and

existed everywhere in the volume since the design variable σ spanned the entire

problem domain. For visualization purposes, the values at the body surface and

symmetry plane are presented in figures 6.30, 6.31 and 6.32, corresponding to the

inviscid lift, drag and pitching moment coefficient sensitivities with respect to the

electrical conductivity on these surfaces, respectively.
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(a) Top view (b) Bottom view

Figure 6.30: Simplified vehicle: dCL/dσ on body surface.

(a) Top view (b) Bottom view

Figure 6.31: Simplified vehicle: dCD/dσ on body surface.

Naturally, the sensitivities are higher at regions of stronger magnetic field intensity,

that is, closer to the dipole locations. Also, since the magnetic field produces a local

pressure rise, the sensitivity of the inviscid lift coefficient is negative on the top surface,

and positive on the bottom one. Similar reasoning applies to the sensitivity of drag

and pitching moment coefficients.
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(a) Top view (b) Bottom view

Figure 6.32: Simplified vehicle: dCMy/dσ on body surface.

6.3.4 Verification of the sensitivities

The sensitivities obtained using the discrete adjoint approach were matched against

values obtained using the forward finite-difference solution (3.4). The comparison was

made using three control nodes located on the body surface, as indicated in table 6.13,

and the results are summarized in table 6.14 using two different finite-difference per-

turbation step sizes. The values in table 6.14 demonstrate two things. Firstly, the

Node # Description Zone Location (i,j,k)
1 body bottom, under dipole 2 B iMax @ (25,11,10)
2 body top, above dipole 1 C kMax @ (28,6,25)
3 slightly below body nose F iMin @ (1,3,29)

Table 6.13: Simplified vehicle: location of control nodes for spot-checking.

agreement between the two different approaches is excellent, with an accuracy yield-

ing between four and five digits agreement when compared to the finite-difference

results, successfully verifying the adjoint-based gradient values. Secondly, it shows

how the finite-difference approach can break down when choosing a perturbation step

that leads to subtractive cancellation issues, as seen with control node #3. If the

complex-step method [109] had been used, these issues would have been overcome.

This verification also revealed that it would have been computationally prohibitive
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Control Cost Adjoint Finite-diff. ∆ Finite-diff. ∆
node # function I (step 10−3) (step 10−4)

CL 2.28079E-5 2.28042E-5 -0.016 % 2.28075E-5 -0.002 %
CD 4.90557E-6 4.90473E-6 -0.017 % 4.90548E-6 -0.002 %

1 CMx 1.03367E-5 1.03348E-5 -0.018 % 1.03365E-5 -0.002 %
CMy 6.25820E-5 6.25715E-5 -0.017 % 6.25809E-5 -0.002 %
CMz 6.61905E-6 6.61751E-6 -0.023 % 6.61889E-6 -0.002 %
CL -1.49820E-5 -1.49798E-5 -0.015 % -1.49820E-5 0.000 %
CD 1.22216E-6 1.22198E-6 -0.015 % 1.22215E-6 -0.001 %

2 CMx -4.70550E-6 -4.70480E-6 -0.015 % -4.70551E-6 0.000 %
CMy -5.37240E-5 -5.37161E-5 -0.015 % -5.37234E-5 -0.001 %
CMz 4.11529E-6 4.11471E-6 -0.014 % 4.11532E-6 0.001 %
CL 2.26830E-7 2.26822E-7 -0.003 % 2.24640E-7 -0.966 %
CD 5.73601E-8 5.73601E-8 0.000 % 5.71386E-8 -0.386 %

3 CMx 3.61174E-8 3.61146E-8 -0.008 % 3.41968E-8 -5.318 %
CMy 1.28740E-6 1.28739E-6 -0.001 % 1.28649E-6 -0.071 %
CMz 6.13412E-8 6.13439E-8 0.004 % 6.10878E-8 -0.413 %

Table 6.14: Simplified vehicle: verification of dI/dσ.

to compute the sensitivities with respect to such large number of design variables

using anything but the adjoint method: using finite-difference approximations, it

took roughly 5 minutes to get the flow solver to converge (starting from the baseline

solution) every time the electrical conductivity was perturbed in a single node in the

domain. Extrapolating to all nodes, corresponding to the 183, 342 design variables,

it would have taken almost two years to obtain the same results that took less than

a minute for the adjoint method described. The detailed computational costs are

summarized in table 6.15. It is important to notice that the flow solver has not been

optimized for MHD computations yet.

However, in realistic design problems with optimized flow and adjoint solvers, 5–10

cost functions and about 100 design variables, the automatic discrete adjoint-based

gradients are expected to be at least 20–50 times faster compared with finite-difference

approximations.
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Solver Wall clock time
Flow Solution - Euler (explicit RK5) 13 minutes
Flow Solution - Euler (implicit DDD-ADI) 2.5 minutes
Flow Solution - MHD (explicit RK5) 1 hour
Sensitivities via ADjoint 1 minute / function of interest
Sensitivities via finite-diff. 5 minutes / design variable

Table 6.15: Simplified vehicle: cost comparison of ADjoint and FD gradients.

6.4 Generic hypersonic aircraft

After assessing the multi-processor, discrete ADjoint solver of NSSUS using the pre-

vious test cases, this last test intented to show off the capabilities acquired to perform

realistically sized MHD flows.

With that in mind, not only the simpler low Reσ approximation MHD model was

demonstrated, but also the more involved ideal MHD equations were tried out. In

addition, the problem geometry got more detailed and complex, requiring a larger

number of computational blocks and number of nodes.

6.4.1 Problem set-up

The hypersonic vehicle geometry used for this test case is a generic vehicle inspired by

the NASA X-43A experimental aircraft [119], which was a scramjet-powered research

aircraft capable of flying at Mach 10, and it is shown in figure 6.33. In contrast with

the previous test (section 6.3), this aircraft geometry includes most of the principal

airframe components, namely the vertical fins and the scramjet duct.

Since the simulation was run without any side-slip angle, only half of the body had

to be modeled, with a symmetry boundary condition imposed on the center plane.

The body wall was set to be an impermeable Euler wall, while the outer boundaries

have non-reflecting boundary conditions imposed on them. The free-stream flow

conditions chosen were Mach 5 and an angle of attack of 5◦ .

To simulate the magnetohydrodynamics interaction, a collection of seven hypo-

thetical dipoles was placed inside the body, at the locations indicated in table 6.16,



6.4. GENERIC HYPERSONIC AIRCRAFT 127

(a) Top view (b) Bottom view

Figure 6.33: Generic vehicle configuration.

which imposed a magnetic field on the flow given by expression (4.16). The resulting

Dipole # Location Orientation
1 (0.7, 0, 0) (−1, 0, 0)

2/3 (2,±1, 0) (−0.34731,±0.93775, 0)
4/5 (4,±1.5, 0) (−0.34731,±0.93775, 0)
6/7 (6,±2, 0) (−0.34731,±0.93775, 0)

Table 6.16: Generic vehicle: dipole locations.

field given by the superposition of dipoles is shown in figure 6.34. Despite the fact

that only half of the domain was modeled, all dipoles were taken into account when

calculating the imposed magnetic field. All dipoles were set to the same strength,

and the baseline electrical conductivity was such that a magnetic Reynolds number

of Reσ = 0.19 and a magnetic pressure number of Rb = 0.11 were used, yielding a

magnetic interaction parameter of Q = 0.02.

The computational domain consisted of 15 blocks, as illustrated in figure 6.35.

The multi-block mesh for this test case is shown in figure 6.36. Two versions,

a coarser mesh with a total of 290, 107 nodes, and a finer one with 550, 109 nodes,

have been used for the ideal MHD governing equations and the low Reσ, respectively.

For visualization purposes, the smaller mesh is shown with three levels of coarsening

applied.

In this example, the aerodynamic coefficients were used as functions of interest and
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Figure 6.34: Generic vehicle: imposed magnetic field.

Figure 6.35: Generic vehicle: multi-block domain.

the electrical conductivity, σ, in every computational node was taken as the design

variables when running the low Reσ MHD model. As seen in the results that follow,

this led to a total of 550, 109 design variables for the computational mesh used.

Additional design variables were tested as well, specifically, the vehicle attitude,

defined by angle of attack, α, and side-slip angle, β, and the properties of each dipole:

strength m and orientation angles α and β. These totaled 23 extra variables.

The results showed in the subsequent sections were made on a parallel processor

workstation, with four 3.2GHz nodes, 2MB L2 cache and 8GB of RAM.
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Figure 6.36: Generic vehicle: mesh, bottom view (coarsened 3 levels).

6.4.2 Flow and adjoint solutions

Figure 6.37 shows the pressure contours of the flow solution on the body surfaces,

as well as at the plane of symmetry, for the Euler (no imposed magnetic field), the

low Reσ and the ideal MHD models. As expected, there is a large pressure increase

close to the dipoles due to the imposed magnetic field. This effect is caused by the

additional magnetic terms in the MHD equations.

The baseline cost function values are summarized in table 6.17, where the reference

area was taken as 95.2 m2.

Model CL CD CMy

Euler 0.08309374 0.02109627 -0.10428562
Low Reσ 0.08265143 0.02118411 -0.10308334
Ideal MHD 0.07809434 0.02112645 -0.10086555

Table 6.17: Generic vehicle: baseline aerodynamic coefficients.

The assembly time of the Jacobian matrix was 32.53 seconds for the low Reσ

solver running on the finer mesh, and 70.76 seconds for the more expensive eight-

equation ideal MHD solver on the coarser mesh. These included all the calls to the

automatically differentiated routines and PETSc matrix functions according to the

ADjoint approach. The assembly times of the adjoint vectors were negligible for both

models. The detailed timings can be examined in table 6.22.
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(a) Euler: bottom view (b) Low Reσ: bottom view

(c) Ideal MHD: bottom view (d) Ideal MHD: top view

Figure 6.37: Generic vehicle: pressure contours.

The non-zero patterns of the components of the assembled adjoint system of equa-

tions
[

∂R
∂w

]T
ψ =

{
∂I
∂w

}T
corresponding to the ideal MHD flow equations are shown in

figure 6.38.

As already experienced with the simpler 6-block test case in section 6.3, the in-

crease in the number of computational blocks causes the adjoint matrix to have a

more complex structure with larger bandwidth, due to the off-diagonal blocks that

result from all the block-to-block connectivities.

Once the adjoint system of equations (3.30) was set up, the GMRES solver pro-

vided by PETSc was used. To be consistent with the flow solver, the adjoint solution

residual convergence criterion was also set to 10−10. The iterative solver consistently

showed very good robustness and convergence properties and, as in the previous test
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(a) Adjoint matrix: ∂R
∂w (b) Adjoint vector: ∂I

∂w

Figure 6.38: Generic vehicle: adjoint matrix and vector sparsity pattern.

cases, the larger matrix bandwidth did not have any measurable repercussion on the

efficiency of the solution of the adjoint system of equations.

For the different function of interest tested, convergence was typically achieved

after about 120 iterations, which took 263.12 and 383.55 seconds to run the low

magnetic Reynolds number and ideal MHD models, respectively. It is relevant to

note that no restart was used in the GMRES solver, meaning all 120 Krylov subspaces

were stored during the iterative procedure. The residual convergence history of the

adjoint solution using PETSc for the different aerodynamic coefficients is plotted in

figure 6.39 for the ideal MHD solver. This figure corroborates the claimed efficiency

Figure 6.39: Generic vehicle: adjoint residual history (ideal MHD model).

of the preconditioned GMRES iterative solver that is provided by PETSc, displaying
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convergence rates that are faster than even to best flow solvers.

The adjoint solutions corresponding to the flow pressure for different functions

of interest, I, are shown in figure 6.40 for the ideal MHD solver. Similarly to other

(a) Flow pressure (b) Adjoint of pressure, I = CL

(c) Adjoint of pressure, I = CD (d) Adjoint of pressure, I = CMy

Figure 6.40: Generic vehicle: adjoint solutions (ideal MHD model).

results previously presented, the adjoint solution, for the cost functions used in this

work, resembles the flow solution, except that the flow direction looks as if it had

been reversed. This is indeed the physical meaning of the primal and dual problem

formulations outlined in section 3.5.

6.4.3 Adjoint-based sensitivities

Once the adjoint solution is obtained, the total sensitivity can then quickly be com-

puted using equation (3.31), thus requiring the calculation of the partial derivatives
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∂R
∂x

and ∂I
∂x

.

The sensitivity of the inviscid drag and pitching moment coefficients with respect

to vehicle attitude are shown in figures 6.41 and 6.42, respectively, for different phys-

ical models. The adjoint-based values are compared with forward-FD values using

a perturbation step of 10−3 The agreement is always within 2.2% for the CD and

(a) Euler model (b) Low Reσ MHD (c) Ideal MHD

Figure 6.41: Generic vehicle: sensitivity dCD/dx.

(a) Euler model (b) Low Reσ MHD (c) Ideal MHD

Figure 6.42: Generic vehicle: sensitivity dCMy/dx.

CMy sensitivities, which is deemed acceptable for the accuracy expected from the

finite-difference approximations.

Additional sensitivities of the inviscid lift coefficient with respect to the dipole

properties are summarized in table 6.18, for the low Reσ MHD model. A brief per-
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Dipole DV Adjoint Finite-diff. ∆ Finite-diff. ∆
# x (step 10−3) (step 5× 10−3)

str. -3.498E-2 -3.556E-2 -1.6 % -3.564E-02 -1.9 %
1 α -2.337E-4 -2.343E-4 -0.2 % -2.345E-04 -0.3 %

β 1.354E-4 1.364E-4 -0.7 % 1.358E-04 -0.3 %
str. -1.065E-2 -1.121E-2 -5.2 % -1.123E-02 -5.4 %

2 α -2.233E-5 -2.193E-5 1.8 % -2.195E-05 1.7 %
β 5.589E-5 5.646E-5 -1.0 % 5.661E-05 -1.3 %

str. 4.882E-4 4.609E-4 5.6 % 4.610E-04 5.6 %
3 α 2.427E-5 2.451E-5 -1.0 % 2.427E-05 0.0 %

β 4.370E-6 4.437E-6 -1.5 % 4.444E-06 -1.7 %
str. -5.439E-3 -5.632E-3 -3.5 % -5.643E-03 -3.7 %

4 α -1.732E-5 -1.715E-5 1.0 % -1.716E-05 0.9 %
β 5.851E-6 6.178E-6 -5.6 % 6.318E-06 -8.0 %

str. 3.444E-4 3.354E-4 2.6 % 3.364E-04 2.3 %
5 α 1.008E-5 1.058E-5 -4.9 % 1.015E-05 -0.7 %

β 2.511E-6 2.435E-6 3.1 % 2.457E-06 2.2 %
str. -1.912E-2 -1.928E-2 -0.8 % -1.931E-02 -1.0 %

6 α -6.968E-5 -6.981E-5 -0.2 % -6.985E-05 -0.2 %
β 2.070E-5 2.105E-5 -1.7 % 2.129E-05 -2.8 %

str. 7.433E-5 7.160E-5 3.7 % 7.250E-05 2.5 %
7 α 3.515E-6 4.001E-6 -13.8 % 3.610E-06 -2.7 %

β 1.611E-6 1.556E-6 3.5 % 1.574E-06 2.3 %

Table 6.18: Generic vehicle: sensitivity of CL w.r.t. magnetic field (low Reσ MHD).

turbation size study was conducted for the finite-difference approximations, which

showed how dependent the gradient estimates can be on their proper choice. The

overall comparison lead to very satisfactory results; the small discrepancies are mainly

attributed to the lack accuracy of the finite-difference approximations.

Similar results were also obtained using the ideal MHD model, and have been

included in table 6.19. Once again, the matching is very good, validating the adjoint-

based sensitivities computed using the ADjoint applied to the ideal MHD flow solver.

When running the low Reσ solver, the electrical conductivity, σ, was also taken as

a design variable in each computational node. In this case, the partial derivatives ∂R
∂σ

and ∂I
∂σ

required to evaluate the total sensitivity dI
dσ

could be computed analytically:

R depends linearly on σ due to its MHD source term and the inviscid aerodynamic

coefficients used as cost function I do not depend explicitly on σ. The total sensitivity

was then computed for the different functions of interest and existed everywhere in
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Dipole DV Adjoint Finite-diff. ∆ Finite-diff. ∆
# x (step 10−3) (step 5× 10−3)

str. -2.576E-1 -2.608E-1 -1.6 % -2.609E-01 -1.3 %
1 α -3.322E-4 -3.246E-4 2.3 % -3.254E-04 2.0 %

β 1.091E-3 1.091E-3 0.0 % 1.100E-03 -0.9 %
str. -1.344E-1 -1.367E-1 -1.8 % -1.369E-01 -1.9 %

2 α -1.439E-4 -1.412E-4 1.9 % -1.417E-04 1.5 %
β -9.153E-4 -9.098E-4 0.6 % -9.051E-04 1.1 %

str. -3.734E-3 -3.853E-3 -3.2 % -3.850E-03 -3.1 %
3 α 1.763E-5 1.838E-5 -4.3 % 1.794E-05 -1.8 %

β 8.434E-6 7.048E-6 16.4 % 6.843E-06 18.9 %
str. -6.715E-2 -6.790E-2 -1.1 % -6.803E-02 -1.3 %

4 α -3.764E-4 -3.757E-4 0.2 % -3.753E-04 0.3 %
β -5.535E-5 -5.578E-5 -0.8 % -5.250E-05 5.2 %

str. -4.637E-3 -4.612E-3 0.5 % -4.615E-03 0.5 %
5 α -3.293E-5 -3.312E-5 -0.6 % -3.277E-05 0.5 %

β -8.589E-6 -8.780E-6 -2.2 % -9.028E-06 -5.1 %
str. -1.043E-1 -1.053E-1 -0.9 % -1.054E-01 -1.0 %

6 α -6.896E-4 -6.909E-4 -0.2 % -6.906E-04 -0.1 %
β -2.577E-4 -2.617E-4 -1.6 % -2.606E-04 -1.1 %

str. -2.349E-3 -2.334E-3 0.6 % -2.337E-03 0.5 %
7 α -2.277E-5 -2.314E-5 -1.6 % -2.271E-05 0.2 %

β -1.660E-5 -1.652E-5 0.5 % -1.666E-05 -0.3 %

Table 6.19: Generic vehicle: sensitivity of CL w.r.t. magnetic field (ideal MHD).

the volume since the design variable σ spanned the entire problem domain. For

visualization purposes, the values are only shown at the body surface and symmetry

plane. Figures 6.43, 6.44 and 6.45 show the sensitivity of lift, drag and pitching

moment coefficients with respect to the electrical conductivity, respectively. As

expected, these sensitivities are greatest close to the location of the dipoles, where the

imposed magnetic field intensity is stronger, and their sign depends on the function

of interest I. Since locally increasing the electrical conductivity σ generates stronger

magnetic effects, for a given imposed magnetic field B, then it also causes the local

pressure to increase. Consequently, the lift sensitivity with respect to σ is positive

on the bottom surface and negative on the top, the drag sensitivity is positive on

the surface regions facing the incoming flow and negative on the other ones, and the

pitching moment sensitivity is positive on the bottom surface behind the reference

moment point and negative otherwise.
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(a) top view (b) bottom view

Figure 6.43: Generic vehicle: dCL/dσ (low Reσ model).

(a) top view (b) bottom view

Figure 6.44: Generic vehicle: dCD/dσ (low Reσ model).

These insights can be extremely useful if local flow seeding is considered in con-

junction with the imposed magnetic field. Flow seeding consists in the addition of

substances to the flow that have a considerably lower ionization temperature than air.

As such, stronger ionization levels (translating into higher local electrical conductiv-

ity) can be made possible, maximizing the magnetic effects for the same imposed

magnetic field intensity. These sensitivities give the designers the tools to find where,

when and how much seeding should be injected to accomplish the desired flow control.
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(a) top view (b) bottom view

Figure 6.45: Generic vehicle: dCMy/dσ (low Reσ model).

6.4.4 Verification of the sensitivities

Besides the comparisons performed for the gradients of the functions of interest with

respect to the vehicle attitude and dipole properties included in tables 6.18 and 6.19,

the sensitivities relative to the electrical conductivity were also verified.

Because the adjoint-based sensitivities of the aerodynamic coefficients with respect

to the electrical conductivity showed in figures 6.43, 6.44, and 6.45 covered the whole

computational domain, the results were just spot-checked against finite-differences,

which also included a FD step size study.

The comparison was made using five control nodes located on the body surface over

the magnetic dipoles location, as graphically shown in figure 6.44, whose coordinates

are stated in table 6.20.

Control
Node x y z

1 0.5457 0.0484 0.2726
2 0.5481 0.0486 -0.2535
3 1.9845 1.1352 -0.3072
4 3.9908 1.7485 -0.4047
5 5.7942 2.3447 -0.4059

Table 6.20: Generic vehicle: location of control nodes for spot-checking.
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(a) top view (b) bottom view

Figure 6.46: Generic vehicle: spot-check of dCD/dσ (low Reσ model)

The comparison results are summarized in table 6.21 using two different finite-

difference perturbation step sizes: 0.1% and 0.5% of the baseline electrical conduc-

tivity, σ. The values in table 6.21 demonstrate two things: firstly, the agreement

Control Cost Adjoint Finite-diff. ∆ Finite-diff. ∆
node # function I (step 1× 10−3) (step 5× 10−3)

CL -2.0799E-5 -2.0744E-5 0.3 % -2.0835E-05 -0.2 %
1 CD 3.0044E-6 3.0118E-6 -0.2 % 3.0007E-06 0.1 %

CMy -1.0495E-4 -1.0526E-4 -0.3 % -1.0462E-04 0.3 %
CL 1.4367E-5 1.3365E-5 7.0 % 1.3960E-05 2.8 %

2 CD 7.5052E-6 7.4545E-6 0.7 % 7.4295E-06 1.0 %
CMy 2.5843E-4 2.6616E-4 -3.0 % 2.6109E-04 -1.0 %
CL 1.3471E-5 1.2759E-5 5.3 % 1.3223E-05 1.8 %

3 CD 1.3559E-6 1.3117E-6 3.3 % 1.2954E-06 4.5 %
CMy 1.5455E-4 1.6023E-4 -3.7 % 1.5620E-04 -1.1 %
CL 4.1276E-6 3.6142E-6 12.4 % 4.0171E-06 2.7 %

4 CD 6.6961E-7 6.7518E-7 -0.8 % 6.5858E-07 1.6 %
CMy 3.5045E-5 3.9367E-5 -12.3 % 3.5971E-05 -2.6 %
CL 4.0768E-6 3.8087E-6 6.6 % 4.0112E-06 1.6 %

5 CD 8.9999E-7 9.0168E-7 -0.2 % 8.9586E-07 0.5 %
CMy 2.5903E-5 2.8220E-5 -8.9 % 2.6500E-05 -2.3 %

Table 6.21: Generic vehicle: verification of dI/dσ.

between the two different approaches is excellent, successfully verifying the adjoint-

based gradient values; secondly, it shows how the finite-difference approach is sensitive

to the chosen a perturbation step. This verification also revealed that it would have
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been computationally prohibitive to compute the sensitivities with respect to such

large numbers of design variables using anything but the adjoint method: to get the

flow solver to converge (starting from the baseline solution) every time the electrical

conductivity was perturbed in a single node in the domain, took roughly one and

half hours. Extrapolating to all nodes, corresponding to 550, 109 design variables, it

would have taken almost 95 years to obtain the same results that took less than six

minutes (per function of interest) for the ADjoint method.

6.4.5 Run-time and memory requirements

A performance analysis was conducted for this multi-block ADjoint implementation

and the detailed computational costs for the different MHD models are summarized

in table 6.22. It is important to notice that the flow solver has not been optimized

for MHD computations yet and all solutions started from a free-stream condition

throughout the domain.

Wall clock time1 [s]
Euler Low MHD Ideal MHD

(550k) (550k) (290k)
Flow solver2 14,677 15,353 20,614
ADjoint solver 293.72 322.90 476.15

Breakdown:
Setup PETSc variables 1.14 1.48 0.38
Assemble matrix dR

dw 32.25 32.53 70.76
Assemble vector dI

dw 0.01 0.01 0.01
Solve ADjoint system 258.89 263.12 383.55
Compute sensitivity 1.43 25.76 21.45

ADjoint system
#GridNodes×#FlowVars2

0.0188 0.0191 0.0207

Table 6.22: Generic vehicle: ADjoint computational cost breakdown.

The additional magnetic terms in the MHD equations make the numerical solution

much less stable, and because an explicit, 5-stage, Runge–Kutta time integration

scheme was used, the runs had to be made at significantly lower CFL numbers (0.1).

Consequently, it took almost six hours for the ideal MHD flow solver residual to



140 CHAPTER 6. RESULTS AND DISCUSSION

converge ten orders of magnitude. This clearly rules out the use of finite-differences

to compute cost function gradients and highlights the importance of an alternative

approach such as discrete adjoint-based gradients. Moreover, the slow convergence

highlights the need for an implicit treatment of the source terms in the MHD solution

that should be pursued in the future.

The solution of the adjoint equations was the component that took most of the

time in the adjoint solver, whereas the automatic differentiation sections represented

less than 15% of the time, proving its efficiency. The total cost of the adjoint solver,

including the computation of all the partial derivatives and the solution of the adjoint

system, is less than 3% of the cost of the flow solution for this case. Again, this is

not truly representative of reality as the flow solver can still be optimized for MHD,

but it clearly shows once again that the ADjoint approach is very efficient.

Looking at the bottom line of table 6.22, it can be inferred that the ADjoint

equation solver runtime is proportional to the number of grid nodes Nc and the

number of flow variablesNv squared, as expected from the full adjoint matrix Jacobian

structure (refer to figure 5.1 and expressions 5.2–5.5).

The memory usage of the flow and adjoint solvers while running this multi-

processor test case using both MHD models (low Reσ and ideal MHD) was assessed

by monitoring the memory used by each processor, and the information is summa-

rized in table 6.23. These measurements show that the memory required for the

Virtual memory [MB]
Euler Low MHD Ideal MHD

(550k) (550k) (290k)
Flow solver 682 697 602
ADjoint solver 6,568 7,349 9,782
Ratio 9.6× 10.5× 16.3×

Flow memory (B)
#GridNodes×#FlowVars 248 253 259

ADjoint memory (B)

#GridNodes×#FlowVars2
478 534 527

Table 6.23: Generic vehicle: memory usage comparison (in MB).
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ADjoint code is approximately ten times that required for the original flow solver,

when solving only for five governing equations (low Reσ model), and increases to a

sixteen fold for the eight equation model (ideal MHD). The ratios at the bottom lines

of table 6.23 show that the memory usage of flow solver is proportional to the number

of grid nodes Nc and flow variables Nv, whereas the adjoint solver depends on the

number of grid nodes and the number of flow variables squared. This is in line with

the explicit flow solver treatment, and the full discrete adjoint matrix handling used

in the adjoint solver.

The main point to highlight is that current flow computations run by designers use

no more than 1/10 of the memory available because of the desired faster turnaround

time.

However, if larger problems ought to be run, there are other possible options to

accommodate them, namely, the adjoint system of equations might be handled as a

matrix-free system in PETSc. In this case, the entries of the Jacobian are evaluated

on a row-by-row basis for every iteration of the GMRES solver, leading to smaller

memory requirements at the expense of a larger CPU cost. The ADjoint approach

still retains all of its advantages and can trade the higher memory requirements for

increased CPU time in the solution of the discrete adjoint problem. Even if the

matrix-free version of PETSc were to be used, the cost of a single ADjoint solution

is estimated to be lower than that of the flow solution: typical continuous adjoint

solvers require computational times for solutions that are very close to the cost of a

single flow solution.

Another comparison was made for the computational cost of the ADjoint- and

FD-based sensitivities. The values summarized in table 6.24 were gathered while per-

forming the comparison of the adjoint-based sensitivities with FD approximations,

that have been shown previously. Following the previously shown test cases, the

efficiency of the adjoint solver is again evident, outperforming tremendously the tra-

ditional finite-difference sensitivity method. In this case, using a non-optimized MHD

flow solver, the adjoint-based sensitivity is roughly 30 times faster, per function of in-

terest and design variable, than the FD sensitivity. Obviously the final ratio depends

on the number of functions of interest (the larger this is, the less advantageous the
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Wall clock time
Euler Low MHD Ideal MHD

(550k) (550k) (290k)
Flow solution 244.6 255.9 343.6 [minutes]
Sensitivities via ADjoint 4.9 5.4 7.9 [minutes/cost function]
Sensitivities via finite-diff. 160.9 146.3 210.2 [minutes/design var]

Table 6.24: Generic vehicle: cost comparison of ADjoint and FD gradients.

adjoint becomes), and the number of design variables (the larger it gets, the more

efficient the adjoint method becomes).

In realistic design problems with optimized flow and adjoint solvers, having 5–10

functions of interest and on the order of 200 design variables, the automatic discrete

adjoint-based gradients are expected to be obtained 50–100 times faster compared to

finite-difference approximations.

6.4.6 Sample design problem using the low Reσ MHD solver

The ADjoint-based sensitivity analysis module developed for the low Reσ MHD solver

was put into practice on a gradient-based optimization application. The ideal MHD

model was not tested in this environment because of limitations in the available

computer time.

The design problem was a re-entry hypersonic vehicle in the atmosphere, in which

both the vehicle attitude and dipole properties were taken as control variables, x,

with the objective of maximizing the inviscid drag coefficient, CD,

Maximize CD

w.r.t. x (6.5)

s.t. CLmin ≤ CL ≤ CLmax

(6.6)

In order to make the flow turnaround time faster, a coarser mesh with 98, 288

nodes was used, and the relative L2-norm for convergence was lowered to 1× 10−6.
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A total of 23 design variables, x, were considered: angle of attack, side-slip angle,

dipole strengths (7) and dipole orientations (14). Their upper and lower bounds,

and the initial and optimum values are compiled in table 6.25. The problem had a

constraint on the inviscid lift coefficient, as indicated in the bound values found in

the previously mentioned table.

Lower Upper
Variable bound bound Baseline Optimized

Vehicle Angle-of-attack -0.1745 0.1745 0.0349 0.0971
attitude Side-slip angle 0.0000 0.0000 0.0000 0.0000

m1 -0.0150 -0.0001 -0.0050 -0.0150
Dipole #1 α1 -0.6981 0.6981 0.0000 -0.5357

β1 -0.3491 0.3491 0.0000 -0.3491
m2 0.0001 0.0150 0.0050 0.0150

Dipole #2 α2 -0.6981 0.6981 0.0000 0.6981
β2 1.5708 2.2689 1.9251 1.5708
m3 0.0001 0.0150 0.0050 0.0150

Dipole #3 α3 -0.6981 0.6981 0.0000 -0.4893
β3 -2.2689 -1.5708 -1.9251 -1.9112
m4 0.0001 0.0150 0.0050 0.0150

Dipole #4 α4 -0.6981 0.6981 0.0000 0.4662
β4 1.5708 2.2689 1.9251 1.5708
m5 0.0001 0.0150 0.0050 0.0001

Dipole #5 α5 -0.6981 0.6981 0.0000 0.0000
β5 -2.2689 -1.5708 -1.9251 -1.9251
m6 0.0001 0.0150 0.0050 0.0150

Dipole #6 α6 -0.6981 0.6981 0.0000 0.6981
β6 1.5708 2.2689 1.9251 1.5794
m7 0.0001 0.0150 0.0050 0.0001

Dipole #7 α7 -0.6981 0.6981 0.0000 0.0000
β7 -2.2689 -1.5708 -1.9251 -1.9251

Lift coef. CL 0.0750 0.0900 0.0420 0.0900
Drag coef. CD -/- -/- 0.0133 0.0224

Table 6.25: Generic vehicle: baseline and optimized design variables.

The baseline flow conditions corresponded to a Mach number ofM = 5, a magnetic

force number of Rb = 0.11, and a magnetic Reynolds number of Reσ = 0.19. Thus,

the magnetic interaction parameter was Q = 0.02.
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The design was performed using the SNOPT optimizer and its convergence history

is shown in figure 6.47.

Figure 6.47: Generic vehicle: optimization problem history.

The optimal design found after the optimizer converged to the specified tolerances

is described in the last column of table 6.25. It can be seen that the dipole strengths

had their bounds active, and that the lift constraint was satisfied at its upper bound.

The number of SNOPT major iterations and functions calls done by the optimizer

are included in table 6.26, where the values obtained while running the problem

without any magnetic effects (degenerating to the Euler equations model) were also

included as reference. Notice that a function call corresponds to one flow and two

adjoint (cost function CD and constraint on CL) solutions.

Case Iter. F.Call CD CL Time[sec]
(Baseline) 0.0133 0.0420 -/-

Euler 1 3 0.0218 0.0894 3,278
Low 5 9 0.0224 0.0900 8,649

Table 6.26: Generic vehicle: functions of interest of design problem.

Table 6.26 also shows the influence of the magnetic control, where an improve-

ment of 6 drag counts was obtained using MHD. It also demonstrates the additional
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computational cost incurred by solving the less stable MHD flow equations, compared

to the simpler Euler model, more than doubling the required wall clock time.

The flow field pressure and the velocity streamlines for the optimized configuration

are shown in figure 6.48 for the low Reσ model. Had the Euler model been presented,

the differenced would have been almost imperceptible, with the exception of localized

pressure increase close to the dipoles in the magnetic case shown.

(a) top view (b) bottom view

Figure 6.48: Generic vehicle: pressure contours on optimized vehicle.

The results shown for this test case clearly attest to the validity and efficiency of

the ADjoint approach to estimate gradient information in large, complex problems

modeled by the MHD equations. This provides a solid ground to even more complex

MHD flow control problems that have not been possible to grasp by the scientific

community yet.



Chapter 7

Conclusions and future

developments

This dissertation outlines an effective method to develop a scalable tool to compute

sensitivities of functions of interest that arise in large-scale CFD design problems,

regardless of the complexity of the governing equations or boundary conditions.

The method paves the way to implement a discrete adjoint solvers for arbitrary

governing equations making use of available software tools, namely Automatic Differ-

entiation tools. The approach described in this dissertation is particularly well suited

to compute the gradients of any function of interest in an optimization problem in-

volving any set of governing equations that can be cast in the form R (x,w (x)) = 0,

when the number of design variables considerably outnumbers the number of cost

functions or when the solution of the governing equations is computationally too

expensive to allow the use of finite-differences.

The implementation of the adjoint solver has been largely automated, thus the

use of the name ADjoint (Automatic Differentiation adjoint), eliminating the need for

hand-differentiation of the governing equations . In addition, this approach does not

require any simplifications in the derivation of the adjoint equations nor any special

treatment of the boundary conditions.

But the major advantage of the ADjoint approach when compared to traditional

approaches is the fact that it drastically reduces the implementation time: while the

146



147

typical development of a continuous adjoint solver could take up to a year of work for

a well trained researcher, the ADjoint can take as little as a week, provided that a

flow solver is already available. Besides expediting the development time, this method

also produces gradients that are exactly consistent with the flow solver discretization

and permits the use of arbitrary cost and constraint functions, and design variables.

This work has pioneered the extension of the discrete adjoint approach to the con-

trol of a hypersonic flow in the presence of magnetic fields, and successfully demon-

strated its feasibility in simple design problems governed by MHD governing equations

and using up to a half million design variables. The ADjoint approach was success-

fully applied to two distinct MHD flow solvers (a cell-centered, single-block solver,

and a vertex-centered, multi-block solver), and the total sensitivities obtained from

the corresponding discrete adjoint solvers showed excellent agreement with the results

produced by finite-difference methods. It must be noted that the ADjoint derivation

was presented here for the MHD equations, but since this approach is only based

on the existence of a computer program that evaluates the residual of the governing

equations (3.15), the procedure can be extended to any arbitrary set of arbitrary

governing PDEs without modification.

This approach has the advantage that it uses the reverse mode of differentiation

on the code that computes the residuals on a cell-per-cell (or node-per-node) basis

for the governing equations and, therefore, it is highly time-efficient.

Compared pure automatic differentiation, the timings presented show that this

hybrid approach is significantly faster and, by far, less memory intensive. However,

the memory usage is still considerably higher than that of the corresponding flow

solver. This drawback is not even significant given the fact that not only the hardware

resources keep growing and getting more accessible, but also because the designers

often use relatively smaller flow problems (through domain decomposition in a parallel

computer) in order to get reasonable turn-around times in the flow solution.

Although it can be argued that the penalty in storage that this method incurs is

largely outweighed by the substantial benefits over current methodologies used to de-

velop adjoint solvers, this handicap can by addressed with the way the adjoint matrix

is handled in the solution of the adjoint system of equations. In this dissertation, the
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matrix is fully assembled prior to calling the iterative solver, however, this approach

maximizes the memory requirements. Another option, instead of pre-assembling the

matrix, would be running the iterative solver in matrix-free mode, that is, the entries

of the matrix would be evaluated as needed (on-the-fly), with an added overhead

in run-time. Understandably, the latter mode incurs in maximum computational

cost because the matrix would have to be evaluated as many times as the number

of iterations needed to converge the solution. This trade-off between CPU cost and

memory requirements in the adjoint system assembly is quantitatively depicted in

figure 7.1. The extreme cases are highlighted: compute once and store all; always

Figure 7.1: Adjoint matrix handling: trade-off between CPU cost and memory usage.

recompute and never store. A compromise is also possible, that is, some elements of

the matrix would be pre-computed, and the rest computed in each GMRES iteration.

In addition, further memory savings could be achieved if not all Krylov subspaces

were stored during the iterative GMRES procedure. All these options can bring the

memory requirements of this approach down to a level similar to the conventional

continuous adjoint approach.

Currently, few research groups have been able to develop adjoint codes, largely

due to the sheer effort required. The ADjoint approach is meant to facilitate the

implementation of adjoint methods and it can, potentially, become a popular choice

among researchers wishing to perform efficient sensitivity analysis and optimization.

The adjoint technique might finally become accessible to engineering design at an

industrial level, and not only restricted to highly specialized academic research groups,

as it has been so far.
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7.1 ADjoint approach

The hybrid sensitivity analysis method, ADjoint, has been the focal point of this

dissertation. It is based on several key theories and components that, when put

together, produce this easy to implement, generic and efficient method. The next

sub-sections synthesize the features of each component in a systematic way, starting

from the general adjoint-based sensitivity analysis, and ending at the automatically

derived discrete adjoint solver.

Adjoint method

In the context of gradient-based optimization, the use of adjoint methods is an efficient

and accurate way to estimate sensitivity information in problems where the number of

variables largely exceeds the number of functions of interest or the governing equations

are computationally too expensive to allow finite-difference approximations.

The adjoint method is characterized by:

• Additional solver required, with development and run-time costs that are similar

to those of the flow solver;

• Allows for the computation of the sensitivity of one function with respect to a

set of design variables by solving both the flow and the adjoint solvers one time

only, independently of the number of design variables.

Discrete adjoint approach

The adjoint formulation can be classified in continuous or discrete. The discrete

adjoint is thought to be the most suitable approach to follow because of the following

properties:

• Well defined procedure to derive adjoint equations independently of the com-

plexity of the governing equations;

• Ability to treat arbitrary cost functions and constraints (unlike continuous for-

mulation that can only deal with certain classes of integral functions);
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• Gradients computed are consistent with the flow solver;

• Allows for the use of automatic differentiation tools (but at the expense of

increased memory requirements).

Automatic differentiation tools

The use of automatic differentiation (AD) tools in the derivation of the discrete adjoint

equations brings tremendous advantages, namely:

• Effortlessly computes the adjoint system of equations of arbitrary complex gov-

erning equations, provided that the flow solver has already been coded, dramat-

ically reducing the development time;

• Allows faster execution times and reduced memory requirements, with the se-

lective application of AD tools;

• Allows the derivation of the adjoint equations with no simplifications of the

actual flow residual terms.

7.2 Future developments

This work represents the first step toward an automatic design framework for problems

involving hypersonic flow control using electromagnetic effects.

Future work might include the incorporation of non-ideal MHD effects in the gov-

erning equations, corresponding to the full MHD formulation, specifically the viscous

Navier–Stokes terms and the magnetic dispersive terms.

In addition, the flow solver efficiency can be improved, in particular, by substi-

tuting the explicit time-integration scheme by an implicit method, since the former

performs poorly when large magnetic fields produce extremely fast magneto-acoustic

waves. With the current scheme, the permissible time step becomes extremely small

due to the CFL condition, limiting the usefulness of the numerical model. By doing

so, the disadvantage of the finite-difference approach over the discrete adjoint would
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not be so large, but still orders of magnitude worse, and the overall design framework

efficiency would improve significantly.

As far as the adjoint solver implementation is concerned, the option of running

the adjoint solver in matrix-free mode should be implemented to reduce memory

requirements so that they do not exceed those of the flow solver.

The last step in the development of an automatic design framework is to integrate

the ADjoint solver as a module to compute sensitivities, together with an array of

other components, such as other multi-disciplinary analysis modules (of which the

MHD flow solver is part), and grid generators with perturbation capabilities, just to

name a few. The final product is aimed to be a high-fidelity MDO environment, offer-

ing to a designer very high-level functionalities through the use of scripting languages,

such as Python [136].

Another topic of future research might also be the handling of design problems

involving not only a large number of design variables but also a large number of

constraints. Posing the design problem in the conventional form (1.3), this would

require to compute as many adjoint solutions as the number of constraints, every

time the gradient-based optimizer had to evaluate the derivatives. However, some

ideas can be brought from the structural optimization field, such the use of penalty

functions [157] or lumped constraints [4].

Once the flow solver is extended and optimized, and the ADjoint-based sensitivity

module is integrated in a design framework, the investigation of meaningful MHD

design problems and the definition of significant cost functions can finally be tackled.



Appendix A

Vector calculus

Some definitions and vector identities useful in the derivation of the magnetohydro-

dynamic equations are listed in the sections below.

A.1 Dyadic product

P = uv = u⊗ v =


u1

u2

u3

⊗ {v1v2v3} =


u1v1 u1v2 u1v3

u2v1 u2v2 u2v3

u3v1 u3v2 u3v3

 , (A.1)

or in Einstein’s (index) notation,

Pij = uivj . (A.2)

A.2 Vector identities

∇× (∇φ) = 0 (A.3)

∇ · (∇× u) = 0 (A.4)

u× (v ×w) = (u ·w)v − (u · v)w (A.5)

152
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u · (v ×w) = v · (w × bfu) = w · (u× v) (A.6)

(u× v) · (w × x) = (u ·w) (v · x)− (u · x) (v ·w) (A.7)

∇ · (u× v) = v · (∇× u)− u · (∇× v) (A.8)

∇× (u× v) = (∇ · v)u− (∇ · u)v + (v · ∇)u− (u · ∇)v

= ∇ · (vu− uv) (A.9)

(∇× u)× u = (u · ∇)u− 1

2
∇ (u · u)

or equivalently,
(u · ∇)u = ∇

(
1

2
u2

)
− u× (∇× u) (A.10)

∇ · (uv) = (u · ∇)v + v (∇ · u) (A.11)

∇ (u · v) = (u · ∇)v + (v · ∇)u + u× (∇× v) + v × (∇× u) (A.12)

∇ · (φu) = ∇φ · u + φ∇ · u (A.13)

∇× (φu) = ∇φ× u + φ∇× u (A.14)

∇× (∇× u) = ∇ (∇ · u)−∇2u (A.15)



Appendix B

Full MHD equations with magnetic

field decomposition

B.1 Maxwell’s equations

The Maxwell’s equations represent one of the most elegant and concise ways to state

the fundamentals of electricity and magnetism. From them one can develop most of

the working relationships in the field.

According to Panofksy [126], the complete Maxwell’s equations can be expressed

as

∇ ·D = ρe (Gauss’ Law for Electricity) (B.1)

∇ ·B = 0 (Gauss’ Law for Magnetism) (B.2)

∇× E = −∂B
∂t

(Faraday’s Law of Induction) (B.3)

∇×H = J +
∂D

∂t
(Ampère-Maxwell Law) , (B.4)

where D is the electric displacement, B is the magnetic induction field, E and H are

the electric and magnetic field strength vectors, respectively, J is the total electric

current density vector, and ρe is the charge density.

The relations between D and E, and between B and H, are called constitutive
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equations. In general, these constitutive relations are

D = ε0E + P (B.5)

B = µm (H + M) , (B.6)

where P is the polarization and M is the magnetization. The electric permittivity ε0

and magnetic permeability µm are related by the speed of light as c = 1/
√
µmε0.

In the absence of magnetic or polarizable media, the total electric current density

is given by

J = ρeu + j , (B.7)

where ρeu is the convection current density, with u denoting the velocity field of the

medium, and j is the conduction current density. By definition, these assumptions

imply that both M and P are zero since the medium is not magnetic nor polarizable,

respectively¿ The constitutive relations (B.5) and (B.6) for a linear isotropic medium

simplify, and allow an easy substitution into equations (B.1) and (B.4).

The force per unit volume of matter (Lorentz force) exerted on a particle with

charge q is expressed as

FLorentz = qE + J×B , (B.8)

and the power delivered to matter by the field is

P = E · J . (B.9)

The generalized Ohm’s Law is given by

j = σ(E + u×B) (Ohm’s Law) , (B.10)

where σ is the electrical conductivity and the convection, polarization and Hall current

components have been neglected.

According to Gaitonde and Poggie [46], significant simplifications can be made

under the assumptions that 1) the flow time scales are larger than the reciprocal

of the plasma frequency (i.e., the system under consideration is a good conductor),
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εω
σ
� 1, where ω is a representative frequency of interest; and 2) the flow velocities are

much less than the speed of light, (U
c
)2 � 1, where U is the velocity of the conducting

medium. The first of these assumptions implies that the displacement current, ∂D
∂t

,

in the Ampère-Maxwell law (B.4) can be neglected. The resulting set of equations is

sometimes termed ”pre-Maxwell”. The second assumption permits relativistic effects

to be ignored. These assumptions also allow to neglect the convection current density

when compared to the conduction current density in equation (B.7), resulting in

J ≈ j.

In addition, since the charge separation is small, the force due to the electric field

might also be neglected. As such, the Lorentz force (B.8) can be reduced to

FLorentz ≈ j×B , (B.11)

and the power delivered to matter by the field (B.9) simplifies to

P ≈ E · j . (B.12)

The current density may then be expressed from the Ampère’s law (B.4) as

j = ∇×H = ∇× B

µm

. (B.13)

More details about the material presented in this section can be found in refer-

ences [164] and [120].

B.2 Coupling of the Maxwell’s and Navier–Stokes

equations

The governing equations of magnetohydrodynamics are obtained by coupling the

”pre-Maxwell” equations to the Navier–Stokes equations through the momentum and

energy equations. An additional equation — the magnetic induction field transport

— is derived from the Faraday’s law of induction.
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B.2.1 Continuity equation

The conservation of mass expressed by the continuity equation retains the same form

as given by the Navier–Stokes equations, namely,

∂ρ

∂t
+∇ · (ρu) = 0 . (B.14)

B.2.2 Momentum equations

The momentum equation contains an extra electromagnetic body force that results

from the Lorentz force created by the presence of a magnetic field. Combining equa-

tions (B.11) and (B.13) leads to

Fem =

(
∇× B

µm

)
×B . (B.15)

Making use of the vector identities (A.10) and (A.11), the electromagnetic force may

be expressed in the form of Maxwell’s stresses as

Fem = (B×∇)
B

µm

−∇
(

B ·B
2µm

)
= ∇·

(
BB

µm

)
− B

µm

(∇ ·B)−∇
(

B ·B
2µm

)
. (B.16)

The second term, even though is physically zero — because of the divergence-free

condition of the magnetic field — it is retained for numerical stability and implicit

enforcement of that condition.

This additional force acting on the flow is included in the Navier–Stokes momen-

tum equation,
∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · ~~τ + Fem , (B.17)

which upon substitution of (B.16) for Fem, and rearranging terms, yields

∂ρu

∂t
+∇ ·

(
ρuu− BB

µm

+ P I− ~~τ
)

= − B

µm

(∇ ·B) , (B.18)

where I is the identity tensor, ~~τ is the shear stress tensor and P is static MHD pressure
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given as the sum of the static and magnetic pressures,

P = p+
B ·B
2µm

. (B.19)

B.2.3 Energy equation

The energy equation is modified with the addition of the electromagnetic energy term

Eem given by expression (B.12).

Solving Ohm’s law (B.10) for E yields

E =
j

σ
− u×B , (B.20)

where the term j
σ

is zero for ideal MHD. Substituting (B.13) into (B.20) results

E =
1

σ

(
∇× B

µm

)
− u×B . (B.21)

On the other hand, substituting (B.13) into (B.12), and recalling the identity (A.8),

the electromagnetic energy can be written as

Eem =
B

µm

· (∇× E) +∇ ·
(

B

µm

× E

)
, (B.22)

Expressing Faraday’s law (B.3) for a moving medium as given by Vinokur’s [159],

∂B

∂t
+∇× E + u (∇ ·B) = 0 , (B.23)

and rearranging it, yields

∇× E = −∂B
∂t
− u (∇ ·B) = 0 . (B.24)

Substituting (B.21) and (B.24) into (B.22), manipulating the terms and making
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use of equality (A.5), the electromagnetic energy can then be expressed as

Eem = − ∂

∂t

(
B ·B
2µm

)
−
(
u · B

µm

)
∇ ·B +

+ ∇ ·
[
∇ B

µm

· B

µmσ
− B

µmσ
· ∇ B

µm

]
− (B.25)

− ∇ ·
[(

B ·B
2µm

)
u +

(
B ·B
2µm

)
u−B

(
u · B

µm

)]
.

Recalling the Navier–Stokes energy equation, and including the additional elec-

tromagnetic energy contribution, it writes

∂ρE

∂t
+∇ ·

[
(ρE + p)u− u · ~~τ + Q

]
= Eem , (B.26)

where the total energy E can be expressed, if the ideal gas assumption is made, as

ρE =
p

γ − 1
+ ρ

u · u
2

, (B.27)

and the heat transfer rate, using the Fourier’s hypothesis, is Q = −κ∇T , where κ is

the thermal conductivity coefficient and T is the temperature.

Substituting (B.25) into (B.26) and rearranging terms leads to

∂

∂t

(
ρE +

B ·B
2µm

)
+ ∇ ·

[(
ρE +

B ·B
2µm

+ p+
B ·B
2µm

)
u−B

(
u · B

µm

)
− u · ~~τ + Q+

+

(
B

µmσ
· ∇ B

µm

−∇ B

µm

· B

µmσ

)]
= −

(
u · B

µm

)
∇ ·B . (B.28)

Defining the MHD total energy per unit volume, ρZ, as being composed of the

usual total energy, ρE, increased by the magnetic energy contribution,

ρZ = ρE +
B ·B
2µm

, (B.29)

and recalling the MHD static pressure (B.19) definition, the energy equation (B.28)
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can be written in a more compact form as

∂ρZ

∂t
+ ∇ ·

[
(ρZ + P )u−B

(
u · B

µm

)
− u · ~~τ + Q+

+

(
B

µmσ
· ∇ B

µm

−∇ B

µm

· B

µmσ

)]
= −

(
u · B

µm

)
∇ ·B . (B.30)

B.2.4 Magnetic induction equations

The magnetic induction field transport equation is based on Faraday’s law using

Vinokur’s expression (B.23). Upon substitution of the electric field E using Ohm’s

law combined with Ampère-Maxwell law (B.21), it leads to the equation describing

the evolution of the magnetic induction field, B,

∂B

∂t
+∇×

[
1

σ
∇×

(
B

µm

)
− u×B

]
= −u (∇ ·B) . (B.31)

Expanding terms and using vector equality (A.9), results

∂B

∂t
+∇ · (uB−Bu) +∇×

[
1

σ
∇×

(
B

µm

)]
= −u (∇ ·B) . (B.32)

Equation (B.32) exhibits a great deal of similarity with the vorticity equation,

and includes phenomena associated with convection, stretching and diffusion of the

magnetic induction field.

A detailed description of the units and dimensions of each variable found in the

magnetohydrodynamic equations can be found in Cramer’s book [27].

A complete characterization of the full MHD equation terms can be found in

Gaitonde’s work [42].

B.3 Non-dimensionalization of the equations

The governing equations – (B.14), (B.18), (B.30) and (B.32) – may be non-dimensionalized.

By doing so, it is possible to provide conditions upon which flow similarity may be

obtained for geometrically similar cases. In addition, the solution of the equations
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would be of unitary order of magnitude.

Using dimensional analysis (see see Anderson [6]), it is possible to identify the

number of independent variables, which ought to span the dimensions present in the

equations, and all the other dependent variables, whose dimensions can be obtained

by combination of the previous variables. A set of parameters can be identified and

several reference conditions may be selected to accomplish this task.

Several reference conditions may be selected to accomplish this task but, for the

present case, a characteristic length, Lref , density, ρref , velocity, Uref , molecular

viscosity, µref , temperature, Tref , thermal conductivity, κref , magnetic field, Bref ,

magnetic permeability, µmref and electrical conductivity, σref , are used.

The non-dimensional variables are then

t∗ =
tUref

Lref
x∗ = x

Lref
y∗ = y

Lref
z∗ = z

Lref
µ∗ = µ

µref

ρ∗ = ρ
ρref

u∗ = u
Uref

v∗ = v
Uref

w∗ = w
Uref

T ∗ = T
Tref

T ∗ = T
Tref

p∗ = p
ρref U2

ref
E∗ = E

Uref Bref
κ∗ = κ

κref
µ∗m = µm

µmref

B∗
x = Bx

Bref
B∗

x = Bx

Bref
B∗

x = Bx

Bref
σ∗ = σ

σref
∇∗ = Lref∇

(B.33)

The non-dimensional parameters found in this process are the Mach number,

M =
Uref

cref

, (B.34)

where cref =
√

γpref

ρref
for perfect gas, the Reynolds number,

Re =
ρrefUrefLref

µref

, (B.35)

the Prandtl number,

Pr =
µCp

κ
, (B.36)

the magnetic Reynolds number,

Reσ = LrefUrefµmrefσref , (B.37)
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the magnetic force (or pressure) number,

Rb =
B2

ref

ρrefU2
refµmref

(B.38)

and the magnetic interaction parameter,

Q = RbReσ =
σrefB

2
refLref

ρrefUref

. (B.39)

For notational convenience, the superscript (∗) in the non-dimensional variables

in the equations presented next is dropped. The presence of any non-dimensional

parameter implies that the equations are already in non-dimensional form.

Continuity equation

Using the reference values (B.33), the conservation of mass equation (B.14) can be

made nondimensional. It can be easily shown that it remains unchanged as

∂ρ

∂t
+∇ · (ρu) = 0 . (B.40)

Momentum equation

Upon substitution of the reference values (B.33), and after some algebraic manipu-

lation, the conservation of momentum equation (B.18) is written in non-dimensional

form as

∂ρu

∂t
+∇ ·

(
ρuu−Rb

BB

µm

+ P I− 1

Re
~~τ

)
= −Rb

B

µm

(∇ ·B) , (B.41)

where the non-dimensional static MHD pressure is

P = p+Rb
B ·B
2µm

. (B.42)
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Energy equation

Similarly, the energy equation (B.30) is transformed into

∂ρZ

∂t
+ ∇ ·

[
(ρZ + P )u−RbB

(
u · B

µm

)
− 1

Re
u · ~~τ +

µ

RePr(γ − 1)M2
Q+

+
Rb

Reσ

(
B

µmσ
· ∇ B

µm

−∇ B

µm

· B

µmσ

)]
= −Rb

(
u · B

µm

)
∇ ·B , (B.43)

where

ρZ = ρE +Rb
B ·B
2µm

(B.44)

and

Q = −∇T . (B.45)

Induction equation

Lastly, the magnetic induction equation (B.32) may be expressed as

∂B

∂t
+∇ · (uB−Bu) +

1

Reσ

∇×
[

1

σ
∇×

(
B

µm

)]
= −u (∇ ·B) . (B.46)

B.4 Magnetic field decomposition

The magnetic field B may be decomposed into two components, the background

imposed (or intrinsic) field B0 and the induced (or deviation) field Bi,

B = B0 + Bi . (B.47)

This decomposition allows for the derivation of MHD governing equations that
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avoid the direct inclusion of the imposed components of the magnetic field as depen-

dent variables, when the imposed magnetic field satisfies the conditions

∂B0

∂t
= 0 ,

∇ ·B0 = 0 , and (B.48)

∇×B0 = 0 .

These conditions mean that the imposed magnetic field B0 is time-invariant (steady),

it satisfies Gauss’ law for magnetism (meaning it is a solenoid field, without monopoles),

and it is produced outside of the flow domain (no current sources in the domain),

respectively.

Momentum equation

Introducing the decomposition (B.47) in the nondimensional momentum equation (B.41),

expanding the terms, and using equalities (B.48), (A.10) and (A.11), it can be shown

that the momentum equation can be alternatively expressed as

∂ρu

∂t
+ ∇ ·

[
ρuu + PiI−Rb

BiBi

µm

]
+

+ ∇ ·
[
Rb

B0 ·Bi

µm

I−Rb

(
B0Bi

µm

+
BiB0

µm

)]
− 1

Re
∇ · ~~τ = (B.49)

= −Rb
B0 + Bi

µm

(∇ ·Bi) ,

where Pi = p+Rb
B2

i

2µm
.

Energy equation

The additional terms relative to the ideal MHD decomposed form presented by Powell

et al. [133] are the Navier–Stokes viscous terms, f = f(µ), and the magnetic dispersion

terms, f = f(σ). Only the latter are affected by the decomposition of B (B.47).

Again, making the decomposition, and simplifying the equation by the use of
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equalities (B.48), results

∂ρZi

∂t
+ ∇ ·

[
(ρZi + Pi)u−RbBi

(
u · Bi

µm

)
− 1

Re
u · ~~τ +

µ

RePr(γ − 1)M2
Q+

+
Rb

Reσ

(
Bi

µmσ
× 1

σ

(
∇× Bi

µm

))
+Rb

B0 ·Bi

µm

u−RbB0

(
u · Bi

µm

)
+(B.50)

+
Rb

Reσ

(
B0

µmσ
× 1

σ

(
∇× Bi

µm

))]
= −Rb

(
u · Bi

µm

)
∇ ·Bi ,

where

ρZi = ρE +Rb
Bi ·Bi

2µm

, (B.51)

and similarly for the static pressure,

Pi = p+Rb
Bi ·Bi

2µm

. (B.52)

Induction equation

Applying the decomposition (B.47) to the magnetic induction equation (B.46), and

subsequently simplifying the equation using equalities (B.48), leads to

∂Bi

∂t
+∇· (uBi −Biu)+

1

Reσ

∇×
[

1

σ
∇×

(
Bi

µm

)]
+∇· (uB0 −B0u) = −u (∇ ·Bi) .

(B.53)

B.5 Decomposed flux vector form

Introducing the set of dependent variables wi = (ρ, ρu, ρZi,Bi) = (ρ, ρu, ρZ − (Bi ·
B0)/(µm)−B02/(2µm),B−B0), the set of equations (B.40), (B.50), (B.51) and (B.53)

can be expressed in flux vector form in Cartesian coordinates as

∂w

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= S . (B.54)
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The fluxes can be separated according to the different physical contributions into
E = Ei + Em + Ed − Ev

F = Fi + Fm + Fd − Fv

G = Gi + Gm + Gd −Gv

, (B.55)

where Ei,Fi, and Gi are the inviscid fluxes, Em,Fm, and Gm contain terms relevant to

perfectly conducting media (ideal MHD), while Ed,Fd, and Gd contain the effects due

to finite electrical conductivity (full MHD), and Ev,Fv, and Gv include the viscous

effects.

The solution vector w is then

w =



ρ

ρu

ρv

ρw

ρZi

Bix

Biy

Biz


, (B.56)

and the various flux vectors of eq.(B.54) are given in the following sections.

Inviscid flux (Euler or NS equations)

Ei =



ρu

ρu2 + p

ρuv

ρuw

(ρE + p)u

0

0

0


(B.57)
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Fi =



ρv

ρvu

ρv2 + p

ρvw

(ρE + p)v

0

0

0


(B.58)

Gi =



ρw

ρwu

ρwv

ρw2 + p

(ρE + p)w

0

0

0


(B.59)

Magnetic flux (ideal or full MHD equations)

Em =



0

Rb
Bi·Bi

2µm
−Rb

B2
ix

µm
+Rb

B0·Bi

µm
−Rb

B0xBix

µm
−Rb

BixB0x

µm

−Rb
BixBiy

µm
−Rb

B0xBiy

µm
−Rb

BixB0y

µm

−Rb
BixBiz

µm
−Rb

B0xBiz

µm
−Rb

BixB0z

µm

Rb
Bi·Bi

µm
u−RbBix

u·Bi

µm
+Rb

B0·Bi

µm
u−RbB0x

u·Bi

µm

0

(uBiy − vBix) + (uB0y − vB0x)

(uBiz − wBix) + (uB0z − wB0x)


(B.60)
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Fm =



0

−Rb
BiyBix

µm
−Rb

B0yBix

µm
−Rb

BiyB0x

µm

Rb
Bi·Bi

2µm
−Rb

B2
iy

µm
+Rb

B0·Bi

µm
−Rb

B0yBiy

µm
−Rb

BiyB0y

µm

−Rb
BiyBiz

µm
−Rb

B0yBiz

µm
−Rb

BiyB0z

µm

Rb
Bi·Bi

µm
v −RbBiy

u·Bi

µm
+Rb

B0·Bi

µm
v −RbB0y

u·Bi

µm

(vBix − uBiy) + (vB0x − uB0y)

0

(vBiz − wBiy) + (vB0z − wB0y)


(B.61)

Gm =



0

−Rb
BizBix

µm
−Rb

B0zBix

µm
−Rb

BizB0x

µm

−Rb
BizBiy

µm
−Rb

B0zBiy

µm
−Rb

BizB0y

µm

Rb
Bi·Bi

2µm
−Rb

B2
iz

µm
+Rb

B0·Bi

µm
−Rb

B0zBiz

µm
−Rb

BizB0z

µm

Rb
Bi·Bi

µm
w −RbBiz

u·Bi

µm
+Rb

B0·Bi

µm
w −RbB0z

u·Bi

µm

(wBix − uBiz) + (wB0x − uB0z)
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Dispersive magnetic flux (full MHD)
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(B.63)
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Fd =
1

Reσ
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Gd =
1
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Viscous flux (NS equations)

Ev =
1

Re
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(B.66)
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(B.68)

Magnetic source terms (ideal or full MHD equations)

S = − (∇ ·Bi)
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)
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(B.69)
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B.6 MHD Eigenvalues

The eigenvalues of a set of flow governing equations define the speed at which the

information waves travel. For the case of the Euler equations, these are given by

Chung [25] as

λ = (Un, Un, Un, Un + c, Un − c) . (B.70)

The maximum eigenvalue can then be found to be λmax = |Un|+ c.

However, the MHD equations are considerably more complex than the Euler equa-

tions because of the additional magnetic terms and induction equations. According

to Powell et al. [133], the ideal MHD system of equations (B.54) has eight distinct

eigenvalues – the entropy, magnetic-flux, Alfvèn (incompressible magnetic wave), fast

and slow magneto-acoustic waves (compressible, magnetic field and pressure coupled):

λ = (Un, Un, Un ± ca, Un ± cf , Un ± cs) , (B.71)

where Un is the normal fluid velocity, ca is the Alfvèn wave speed given by

ca =
Bn√
µmρ

, (B.72)

and cf and cs are the fast and slow magneto-acoustic wave speeds, respectively, ex-

pressed as

cf,s =

√√√√√1

2

c2 +
B2

ρµm

±

√(
c2 +

B2

ρµm

)2

− 4
c2B2

n

ρµm

 . (B.73)

The speed of sound is defined as c =
√

γp
ρ

, under perfect gas assumption.

The ideal MHD eigenvalues are illustrated in terms of characteristic waves in

figure B.1. Therefore, if Un < cf , then some of the information propagates upstream

of the flow direction. Otherwise, everything travels downstream.

The maximum eigenvalue corresponds to the fast magneto-acoustic wave,

λmax = |Un|+ cf . (B.74)
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Figure B.1: Ideal MHD waves.

B.7 Flux Jacobians

Let wi be the vector of conservation variables defined as

wi =



w1

w2

w3

w4

w5

w6

w7

w8


=



ρ

ρu

ρv

ρw

ρZi

Bix

Biy

Biz


. (B.75)

To simplify the computations of the Jacobians that follow, it is convenient to pre-

compute the derivative of energy, E, and pressure, p, with respect to the conservation

vector w. Expressing the energy E in terms of the conservation variables wi, recalling

definition (B.29),

ρE = ρZi −
1

2µm

(
B2

ix +B2
iy +B2

iz

)
= w5 −

1

2µm

(
w2

6 + w2
7 + w2

8

)
, (B.76)
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it then follows that

∂ρE
∂w1

= 0

∂ρE
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= 0
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= 0
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∂ρE
∂w5

= 1

∂ρE
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= − w6

µm
= −Bix

µm

∂ρE
∂w7

= − w7

µm
= −Biy

µm

∂ρE
∂w8

= − w8

µm
= −Biz

µm
.

(B.77)

The pressure p can be expressed in terms of the conservation variables wi, assum-

ing perfect gas, as

p = ρ (γ − 1)CvT = ρ (γ − 1) e = ρ (γ − 1)
[
E − 1

2
(u2 + v2 + w2)

]
= (γ − 1)

[
w5 − 1

2w1
(w2

2 + w2
3 + w2

4)− 1
2µm

(w2
6 + w2

7 + w2
8)
] , (B.78)

leading to 
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= − (γ−1)w8

µm
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.

(B.79)
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Also, defining the magnetic pressure as

pmag =
1

2µm

(
B2

ix +B2
iy +B2

iz

)
=

1

2µm

(
w2

6 + w2
7 + w2

8

)
, (B.80)

results in 
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. (B.81)

Based on the definitions of the flux vectors in terms of the conservation variables,

(B.57), (B.58) and (B.59), the flux Jacobians can be readily computed using the

definition

Aij =
∂Fi

∂wj

. (B.82)

Since in the present dissertation the full MHD equations were used in a simpler

form, corresponding to the ideal MHD equations, only the inviscid and perfectly

conducting magnetic flux Jacobians are evaluated in the following sections.
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B.7.1 Flux Jacobian in the x-direction

The flux Jacobian in the x-direction is given by

Am
n =

∂Fm(x)

∂wn

=
∂Em

∂wn

(B.83)

Using the decomposition (B.55), the total Jacobian can be given as

Am
n =

∂

∂wn

(Em
i + Em

m + Em
d − Em

v ) (B.84)

Inviscid flux Jacobian (Euler or NS equations)
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Magnetic flux Jacobian (ideal or full MHD)
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B.7.2 Flux Jacobian in the y-direction

The flux Jacobian in the y-direction is given by

Bm
n =

∂Fm(y)

∂wn

=
∂Fm

∂wn

(B.87)

Using the decomposition (B.55), the total Jacobian can be given as

Bm
n =

∂

∂wn

(Fm
i + Fm

m + Fm
d − Fm

v ) (B.88)

Inviscid flux Jacobian (Euler or NS equations)
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Magnetic flux Jacobian (ideal or full MHD)
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B.7.3 Flux Jacobian in the z-direction

The flux Jacobian in the z-direction is given by

Cm
n =

∂Fm(z)

∂wn

=
∂Gm

∂wn

(B.91)

Using the decomposition (B.55), the total Jacobian can be given as
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n =

∂

∂wn
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m +Gm
d −Gm

v ) (B.92)

Inviscid flux Jacobian (Euler or NS equations)
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Magnetic flux Jacobian (ideal or full MHD)
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Appendix C

Generalized coordinate

transformation

The equations that govern fluid flow are typically derived in physical space, which

result from the application of fundamental laws, such as conservation of mass, mo-

mentum and energy. However, if one wishes to solve them numerically, it is often

desired to express those equations in computational space, in particular when using

finite-difference formulations, to enhance the efficiency and accuracy of the numerical

schemes, and to simplify the implementation of the boundary conditions.

A brief description of the mathematics necessary to accomplish that transforma-

tion is described in this chapter, where further details and application to specific

equations were described by Hoffmann [70].

C.1 Governing equations in physical space

The three-dimensional equations of motion can be written in flux vector form, ex-

pressed in Cartesian coordinates, as

∂w

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= S , (C.1)
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where w is the vector of conservative variables, and E, F and G are the fluxes

(inviscid, viscous, magnetic, artificial dissipation,...) in the x−, y− and z−directions,

respectively, and S represents the source terms.

C.2 Coordinate transformation

A coordinate transformation of the governing equations expressed in a Cartesian

coordinate system xi = (x, y, z) from physical space to computational space ξj =

(ξ, η, ζ) can be generically expressed in the form
ξ = ξ (x, y, z)

η = η (x, y, z)

ζ = ζ (x, y, z)

. (C.2)

This transformation defines the metrics

Kij =

[
∂xi

∂ξj

]
, K−1

ij =

[
∂ξi
∂xj

]
, (C.3)

J = det(K−1) and Sij =
1

J
K−1

ij , (C.4)

where Sij represents the area of the face of a cell in the ξi direction, projected onto

each physical coordinate direction xj. The Jacobian of the transformation J C.4 can

be expanded to

J =
1

xξ (yηzζ − yζzη)− xη (yξzζ − yζzξ) + xζ (yξzη − yηzξ)
, (C.5)

where the metrics xξ, xη, xζ , yξ, yη, yζ , zξ, zη, and zζ are easily computed numerically

by some finite-difference approximations since the step sizes are equally spaced in the

computational domain.
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C.3 Governing equations in computational space

The gradients in physical space can be expressed in terms of gradients in computa-

tional space by applying the chain rule of differentiation to the inverse of the trans-

formation C.2. These can then be written as
∂
∂x

= ∂
∂ξ

∂ξ
∂x

+ ∂
∂η

∂η
∂x

+ ∂
∂ζ

∂ζ
∂x

= ξx
∂
∂ξ

+ ηx
∂
∂η

+ ζx
∂
∂ζ

∂
∂y

= ∂
∂ξ

∂ξ
∂y

+ ∂
∂η

∂η
∂y

+ ∂
∂ζ

∂ζ
∂y

= ξy
∂
∂ξ

+ ηy
∂
∂η

+ ζy
∂
∂ζ

∂
∂z

= ∂
∂ξ

∂ξ
∂z

+ ∂
∂η

∂η
∂z

+ ∂
∂ζ

∂ζ
∂z

= ξz
∂
∂ξ

+ ηz
∂
∂η

+ ζz
∂
∂ζ

. (C.6)

Applying the relationships C.6 to the governing equations C.1 yields

∂w

∂t
+ ξx

∂E

∂ξ
+ ηx

∂E

∂η
+ ζx

∂E

∂ζ
(C.7)

+ ξy
∂F

∂ξ
+ ηy

∂F

∂η
+ ζy

∂F

∂ζ
(C.8)

+ ξz
∂G

∂ξ
+ ηz

∂G

∂η
+ ζz

∂G

∂ζ
= S , (C.9)

which, upon division by the transformation Jacobian J (assumed here invariant with

t), and some algebraic rearrangements, can be written as

∂

∂t

(w

J

)
+

∂

∂ξ

[
1

J
(ξxE + ξyF + ξzG)

]
(C.10)

+
∂

∂η

[
1

J
(ηxE + ηyF + ηzG)

]
(C.11)

+
∂

∂ζ

[
1

J
(ζxE + ζyF + ζzG)

]
=

1

J
S . (C.12)

The governing equations can then be expressed in computational coordinates as

∂w̄

∂t
+
∂Ē

∂ξ
+
∂F̄

∂η
+
∂Ḡ

∂ζ
= S̄ , (C.13)

where the state, the fluxes vectors, and the source terms are given in computational
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coordinates by 

w̄ = 1
J
w

Ē = 1
J

(ξxE + ξyF + ξzG)

F̄ = 1
J

(ηxE + ηyF + ηzG)

Ḡ = 1
J

(ζxE + ζyF + ζzG)

S̄ = 1
J
S

. (C.14)
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