
Vasculature optimization of actively-cooled materials
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Abstract

Associated with an eagerness to explore every possibility from humankind imagination came
the field of engineering. In engineering applications where heat transfer processes are present arise
vascular actively-cooled materials, which provide motivation for this thesis. The goal of this work
is to implement the tools required to model and optimize conjugated heat transfer problems (heat
disperses through the domain not only via. heat conduction but also convection). In order to obtain
an implementation that is independent of the configuration of the cooling channels (important for the
optimization process), an innovative solution for the discretization method is in order, which can be
found in the Interface-enriched Finite Element Method. The equations that define heat transfer in
the two phases of vascular materials are different. In the convection dominated regions, the standard
finite element formulations are ineffective and it is necessary to find a different solution, being the
Streamline Upwind/Petrov-Galerkin techique the chosen one. Being developed in a work group at
TU Delft, all implementation aspects are integrated in hybrida, a computational tool developed by
said group. Following this procedure made it possible to match results with verification tests for the
discussed methods and also to optimize vascular geometries by minimizing their maximum domain
temperature. Using the approach and results described above, it has been possible conclude that the
developed work resulted in the correct implementation of each method and also that their combination
is effective and efficient modeling and optimizing conjugated heat transfer problems defined by vascular
actively-cooled domains.
Keywords: Interface-enriched Finite Element Method, Streamline Upwind/Petrov-Galerkin, Heat
Convection, Optimization.

1. Introduction

As the the years are going by, the engineering inven-
tions are getting more advanced and complex, with
an outburst of new applications. With the appear-
ance of advanced applications (some unimaginable
a few years ago), a need for new materials that have
certain characteristics has been created.
One of the ways used within the field of Materials

Science and Engineering to design or improve ma-
terials is to employ natures solutions to deal with a
certain problem. The materials that arise from this
process can be called bio-mimetic and the chosen so-
lutions being discussed here have already been time
tested by nature through evolution and improved if
successful. One of the concepts most easily associ-
ated with bio-mimetic materials for someone with
an engineering background is the man-made hon-
eycomb structures (inspired by natural structures
such as beehives and bone, they have the goal of
minimizing the amount of used material to reach
minimal weight and minimal material cost).
As is indicated by the document’s title, the

topic of interest here is the design and modeling

of actively-cooled vascular materials (which mimic
the circulatory system found in plants and animals,
using a coolant as the circulating fluid). The term
active-cooling simply clarifies that the structures
being considered use of an external force to drive the
coolant in the channels, unlike natural forces such as
gravity (refer to [1] for further detail). This vascular
approach to cooling (with a fluid circulating in the
channels) redistributes heat in the medium which,
according to [2], reduces its maximum temperature,
making it suitable high temperature applications
(one example where the use of actively-cooled ma-
terials is being studied is the internal walls of air-
planes’ engines combustors).
The interest in this topic comes down to not only

study the influence of the cooling channels’ config-
uration in the maximum temperature of a certain
domain but also to optimize said configuration to
minimize that temperature.
The work has at its core the development of nu-

merical and discretizaton tools that can, effectively
and efficiently, help with the design and optimiza-
tion of 2D bio-mimetic vascular materials with the
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objective of active-cooling by solving the conjugate
heat transfer problem (heat conduction and convec-
tion). The implementation of these computational
tools may not be very straight-forward due to the
large number of design variables and ”special” nu-
merical and discretization techniques (in addition
to different material properties, the convection in
the coolant must be considered, which means that
there is a change not only in the material proper-
ties but also in the governing equations) but the po-
tential applications of the materials being discussed
provide motivation to explore it.
The development of the computational tools men-

tioned in the last paragraph that provide the mo-
tivation and results for this work is integrated in
hybrida, a new in-house finite element package be-
ing developed by the SOM workgroup at TU Delft ’s
3mE department.

2. Theoretical Background

The objective of this section is to conceptually de-
scribe the theoretical concepts relevant to the study
of actively-cooled materials. The fundamental con-
cepts of Heat Transfer are presented in Subsection
2.1 and Subsection 2.2 briefly sums some mathe-
matical concepts of Solid Mechanics needed for the
implementation verification in Section 3.

2.1. Background in Heat Transfer
The theoretical concepts of Heat Transfer to de-
scribe here can all be introduced by Figure 1.

Figure 1: Concept of heat convection.

Heat is always transferred via heat convection
which, when dealing with a solid phase, is limited to
the phenomenon of conduction (process of transfer-
ring energy from particles at a greater temperature
to particles at a lower temperature due to the inter-
action between them). When dealing with a fluid
phase, the phenomenon of heat advection (process
of transferring energy that relies on the macroscopic
fluid motion) is no longer negligible.
Considering the vascular actively-cooled materi-

als, the flow within the channels can be categorized
as both internal and forced (external driving force).
The heat transfer process is described by the heat

equation, which is simpler if advection is negligible.
In this heat equation, the possible spatial boundary

conditions (BCs) can be Dirichlet BCs (tempera-
ture of edge fixed), Neumann BCs (fixed edge heat
flux) or Robin BCs (related to the existence of heat
convection in the edge, not used in this work).

2.2. Solid Mechanics Fundamentals
Everything that needs to be described as far as Solid
Mechanics goes in this work can be deduced from
the equilibrium equation for a 3D body made of a
linear elastic material (from [3])

∇ · σ + b = 0 , (1)

where σ is the stress along the domain and b is
the body force. This equation states that the sum
of the point loads (left term) with the body force
(right term) is null, which means that the body is
in equilibrium.
The only equation that is going to be needed in

Section 3 is the 1D solution to the equilibrium in
Equation (1). The generic model problem for this
1D scenario is presented in Figure 2.

F

b(x)

Figure 2: 1D linear elastic model problem.

Taking the x direction component of Equation (1)
and considering the constitutive equation for linear
isotropic materials, also known as Hooke’s law (σ =
εE), and a material with constant Young’s modulus
(E), it is possible to obtain the 1D solution (comes
down to integration and enforcing BCs)

Eu(x) +

∫ ∫

b(x) dx = C1x+ C2 . (2)

3. Discretization Method - IGFEM

The Finite Element Method (FEM) is the main tool
behind obtaining the solution to the partial dif-
ferential equations that describe a given problem
via computer simulation and has at its foundation
a discretization method that divides the problems
domain into smaller elements. Because the main
goal of this work is to model domains where there
are discontinuities in the form of different materi-
als and phases and also due to the fact that it is
very expensive to discretize the whole problem for
each modification in the geometry resultant from
the optimization process, the choice of discretiza-
tion technique has to be made “outside the box”.

3.1. Finite Element Method Fundamentals
Using just a few lines of text to describe the two
main aspects of FEM (see [3]): it divides the prob-
lem’s domain into smaller elements (discretization)
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that together form the finite element mesh and uses
approximated functions of the governing equations,
that depend on the type of problem being analyzed,
to create the elemental matrices called stiffness ma-
trices (that contain the coefficients for one element’s
equations). Then, those elemental matrices are as-
sembled into one global stiffness matrix, resulting
in a system of equations that can be solved by en-
forcing the boundary conditions and that yields the
distribution of a main variable. If more results are
needed, they can be obtained in an optional phase
of post processing.

3.2. Requirements
To get accurate solutions using standard FEMs is
only possible using a conforming mesh. In the case
of domains where there are at least two materi-
als, this requirement can only be addressed using
a mesh whose elements boundaries are perfectly
aligned with the interface.
This conforming mesh would be relatively cheap

and straight-forward to implement for simple cases
like the one in Figure 3, where the domain is com-
posed of a square plate made out of two solid ma-
terials with a straight vertical interface. However,
generating a conforming mesh could prove itself to
be a complex and computationally heavy or even an
impossible task when dealing with complex struc-
tures like vascular materials where a phase change
may result in different material properties and gov-
erning equations.

Figure 3: Example of simple conforming mesh.

3.3. Interface-enriched FEM
The answer chosen to deal with the requirements
in the previous subsection is the Interface-enriched
Generalized Finite Element Method (IGFEM),
which was first in 2010 by [2] and is a state-of-the
art improvement on the standard Generalized Fi-
nite Element Method (GFEM). GFEMs are direct
extensions of the standard FEM and combine the
desirable features of it with meshless methods. This
leads to the possibility of obtaining an accurate so-
lution of engineering problems using nonconforming

meshes by applying a priori knowledge of the solu-
tion field in the numerical approximation.

Using GFEMs, the approximated solutions are
obtained using

uh =

n∑

i=1

Np
i ui

︸ ︷︷ ︸

std. FEM

+

nen∑

j=1

sjψjαj

︸ ︷︷ ︸

enriched

, (3)

where uh is the approximated solution for the main
variable, Np

i is a set of n Lagrangian shape func-
tions evaluated in the original element (of the non-
conforming mesh), ui represents the main variable
of interest (in the case of this document, displace-
ment or temperature) at the node labeled i in the
mesh being used and sj is an additional scaling fac-
tor that imposes that a well-conditioned stiffness
matrix is constructed. Finally, ψj and αj are a set
of enrichment functions and the generalized degree
of freedom associated with the jth interface node
created from the intersection point of the material
interface with element edges, respectively.

To obtain the the enrichment functions, the im-
plementation of IGFEM must first subdivide the
elements that are cut by the phase interface (par-
ent elements) into smaller triangular elements (chil-
dren or integration elements). The phase interface
should be included in the new elements’ edges. The
reason for the children or integration elements to be
triangular is simply to simplify the computation of
the enrichment functions and the only requirement
for these elements is that their boundaries must con-
form to the discontinuity edges or surfaces of the
domain (the aspect ratio of the children elements
does not affect the accuracy of the solution).

The enrichment functions for a certain degree of
freedom in the IGFEM formulation are obtained
by evaluating the standard shape functions in the
child element. This means that, after discretizing
the parent element into smaller children elements
it is only necessary to combine the standard shape
functions for triangular elements evaluated at the
parent and children elements functions in order to
obtain the the complete approximation.

3.4. Implementation

The implementation of the IGFEM solver can be
subdivided into two “aspects”. The role of the com-
putational functions that form the first “aspect” is
to perform geometric operations. The mentioned
geometric operations are related to modifying a
non-conforming finite element by creating children
elements that result from the intersection of the
original mesh elements with the material interfaces
and are performed by a module introduced to the
code called geometric engine.

The second “aspect” of this implementation of

3



IGFEM is the elemental assembly. The new func-
tionality needed to deal with the added complexity
of computing enrichment functions is integrated in
the standard routines and is used only in the pres-
ence of integration elements.

3.5. Verification and Applications

To have confidence in any computational results re-
quires some sort of validation or verification and
this implementation of IGFEM is no exception. In
order to perform this verification, a couple of test
cases have been inspired by [4] and its results re-
produced using the developed implementation.

The first test case consists of the 2D bi-material
square shaped domain represented in Figure 4(a).
It has a side length of L = 2 m and is split by a
material interface at x = 0m. As for the physical
properties, material 1 has (E1 = 10 Pa, ν1 = 0)
and material 2 (E2 = 1Pa, ν1 = 0). The boundary
conditions applied are a clamped left extremity and
a constant traction per unit length applied at the
right extremity. A constant body force is also being
applied to the domain of the problem b1 = 2N/m2.
The effect of using the developed implementation of
IGFEM is showed with the sample mesh in Figure
4(b), which didn’t have the vertical interface and
smaller integration elements before it.

L

(a) Domain (b) Sample mesh (coarse)

Figure 4: Patch test verification problem.

Using a null Poisson’s ration for both materi-
als means that, under uniaxial traction and these
boundary conditions, the deformation only happens
in the x direction. Thus, the analytic solutions for
the displacement and its derivative can be approxi-
mated by the 1D solutions and obtained from Equa-
tion (2) by applying the correct BCs and shifting
the referential. Using these analytic solutions and
computing the problem’s solution for a range of dif-
ferent mesh refinements, it is possible to obtain the
convergence plot in Figure 5.

Figure 5: Convergence plot for patch test.

The obtained convergence rates are not only
equal to the ones found in [4] but also the same
as the optimal convergence rates for the standard
FEM with a conforming mesh, which would not be
possible for the nonconforming meshes that have
been used with IGFEM.

The next example is based on the classical Es-
helby inclusion problem and consists of the circu-
lar 2D domain with a concentric circular inclusion
made out of a different material presented in Fig-
ure 6(a). For this convergence analysis, the outer
radius chosen is ru = 2 m and the radius of the
inclusion is ri = 0.4 m. On the other hand, the
inclusion is made out of material 1, with (E1 =
1 Pa, ν1 = 0.25), and the matrix out of material 2,
with (E2 = 10 Pa, ν2 = 0.3). The effect of using
the developed implementation of IGFEM is showed
with the sample mesh in Figure 6(b), which didn’t
have the circular inclusion in the middle and smaller
integration elements before it.

(a) Domain (b) Sample mesh (fine)

Figure 6: Eshelby inclusion verification problem.

This time, obtaining the exact solution and its
derivative is not so simple, but it can be obtained
in cylindrical coordinates from [4] and then con-
verted to Cartesian coordinates and derived using a
symbolic calculus tool such as Mathematica. Using
these analytic solutions and computing the prob-
lem’s solution for a range of different mesh refine-
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ments, it is possible to obtain the convergence plot
in Figure 7.

Figure 7: Convergence plot for inclusion problem.

There is not much to comment in this conver-
gence plot, since the result is identical to what has
been obtained previous one, optimal convergence
rates. This result for both examples proves a cor-
rect implementation of the method, which means
that the burden of creating a mesh that conforms
to a possibly intricate geometry or of creating a new
mesh for each optimization step can be avoided.

Finally, and to show some preliminary steps in
the way of modeling vascular materials, the geo-

metric engine has been used on the mesh in a non-
conforming structured FE mesh to create a 2D rect-
angular plate with a vascular sinusoidal channel in-
tersecting it, which is presented in Figure 8.

Figure 8: Sample mesh for vascular material.

3.6. Enrichment Functions Scaling

Despite the feature of not needing good quality fi-
nite elements as children elements, initial formula-
tions of IGFEM had a problem in stiffness matrix
conditioning. The answer to this problem is scaling
the method’s enrichment functions, which is shown
in Figure 9. This operation does not affect the so-
lution in any way, as it is accounted for in both
creating the enrichment functions and in a post-
processing step.

Figure 9: Enrichment function scaling from [2].

The relevant results to present are obtained for
three of different scaling factors

sj = 1 , (4)

sj =
min(d1, d2)

d1 + d2
, (5)

sj =
min(d1, d2)

max(d1, d2)
, (6)

where d1 and d2 are the distances from the interface
to the previous and following original mesh nodes
in the element connectivity data structure, respec-
tively. The three scaling functions in Equations (4)
through (6) correspond to a unitary scaling factor
(standard) and the scaling functions from [2] and
[5], which correspond to the initial IGFEM formu-
lation (original scaling) and an hierarchic adaptive
formulation (modified scaling). The impact of each
scaling in the stiffness matrix conditioning is pre-
sented in Figure 10.

Figure 10: Condition number.

As can be easily concluded from Figure 10, the
IGFEM clearly presents an ill-conditioning problem
that is only slightly alleviated with the original en-
richment function scaling in Equation (5) but com-
pletly fixed with the one in Equation (6).

4. Weighted Residual Formulation - SUPG

Having selected and discussed the choice of dis-
cretization method, it is now necessary to look into
the choice of weighted residual formulation.

4.1. Requirements
The ”best approximation” property from the stan-
dard Galerkin method is lost for convection dom-
inated heat transfer processes, as the matrix as-
sociated to the convective term is non-symmetric,
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which means the solution field can be rendered use-
less due to the appearance of spurious oscillations,
also called “wiggles” in the world of computational
fluid dynamics (CFD), as is exemplified in Figure
12 for 1D convection.

Figure 11: Analytic and Galerkin temperature dis-
tribution solution in a bar.

Taking this into account, it is necessary to find
a formulation that alleviates or eliminates the ap-
pearance of “wiggles”.

4.2. Streamline Upwind/Petrov-Galerkin Method
The chosen alternative has first been presented in
[6] and is the Streamline Upwind/Petrov-Galerkin
(SUPG) method, which stabilizes the solution for
problems that have highly convective effects present
by modifying the weight function, which is done
adding diffusion only in the flow direction.
In order to explain SUPG, it is necessary to

present a generic conjugate heat transfer problem
statement. Figure 12 represents a vascular actively-
cooled material on a 2D domain Ω ⊂ R

2 that has
two non-intersecting regions, the solid phase (Ωs)
and the fluid phase (Ωf ), which is where the the
coolant flows. It is also possible to find the desig-
nations ΓT , Γq and Γh (not used in this work), that
are the boundaries to which each type of BC is ap-
plied, the first being Dirichlet, the second Neumann
and third Robin boundaries.

Figure 12: Domain heat transfer problem.

The strong form of the heat equation to obtain the
temperature distribution field in this domain is
find the temperature field T : Ω ⇒ R such that

−∇ · (k∇T ) = f in Ωs

−∇ · (k∇T ) + ρcpv · ∇T = f in Ωf

T = T on ΓT

k∇ · n = q on Γq .

(7)

The presentation of the method’s formulation
starts with defining all the relevant variables. The
amplitude of the “wiggles” and the stabilization pa-
rameter for SUPG depend on the grid Péclet num-
ber. This dimensionless number is defined as

Pek =
rate of advection

rate of conduction
=

|vk|hk
2kk

, (8)

where |vk| is the norm of the vector quantity flow
velocity, hk is the element length in the flow di-
rection and kk is the thermal conductivity of the
material in the flow direction.

The thermal conductivity of a material is actually
a tensor. Consequently, the thermal conductivity in
the direction of the flow can be computed as

kk =
||k · vk||

||vk||
. (9)

The formula for the stabilization factor is not el-
ement type independent and can be computed, for
2D elements ([7]), using

τ =
hk

2|vk|

(

coth(Pek)−
1

Pek

)

. (10)

It is important to note that the stabilization is
dependent on the flow velocity, it may not be the
same for all elements composed of a fluid material or
even constant inside the same element if the velocity
profile is not constant. In reality, the flow velocity
in the channels radially varies.

The SUPG method employs a modification of the
weight functions used to obtain the FEM approx-
imated solution, which means that it can be ex-
pressed as an additional stabilization term in the
weak form of the problem as in

∫

Ω

∇wh · k∇uhdΩ+

∫

Ωf

whρcpv · ∇uhdΩ

︸ ︷︷ ︸

Standard convection

+

+

∫

Ωf

τ(v · ∇wh)(v · ∇uh)dΩ

︸ ︷︷ ︸

Stabilization term

=

∫

Γq

whqdΓ .

(11)

Concluding this section, the original hybrida code
lacked the implementation of the second and third
terms in Equation (11) in order to be able to effec-
tively model the vascular cooled materials that are
subject for this thesis.

6



4.3. Verification
Once again to ensure a good implementation, it is
necessary to do verification. For this process, two
examples inspired by [6] are used.
The first test case consists of a simple 1D bar

of length L = 1 m made out of a material with a
thermal conductivity of k = 10−6 W/m · K with
the Dirichlet BCs of T = 0K @ x = 0 m and
T = 1K @ x = 1 m. The Galerkin solution for
this problem has already been presented in Figure
11 (along with the analytic solution that derives

from the heat equation and is T (x) = 1−ePe x/L

1−ePe ),
while the result obtained using the implementation
of SUPG is provided by Figure 13.

Figure 13: Analytic and Galerkin temperature dis-
tribution solution in a bar.

With a result that is identical to the analytic so-
lution, the implementation of SUPG is proved to
eliminate “wiggles” for this 1D convection problem.

The next test case is a classical convection skew
to the mesh problem whose details can be found
in [6]. The results for both the Galerkin formula-
tion and SUPG formulation from the implementa-
tion and the literature source can be found in Fig-
ures 14 and 15. Other skew angles have also been
tested and similar results have been obtained

(a) Domain (b) Sample mesh (coarse)

Figure 14: Patch test verification problem.

Combining the somewhat qualitative conclusions
that can found here (using the mesh outline as ref-
erence, the solutions appear to be similar) with the
indisputable results obtained for the 1D bar, it is
possible to claim with confidence that, from what is
observed with these examples, the implementation
of the method is correct.

(a) Domain (b) Sample mesh (coarse)

Figure 15: Patch test verification problem.

5. Test Case Modeling Results

It is in this part of the work that the two numeri-
cal methods discussed thus far are combined, show-
casing the power of this union by modeling two
test cases involving actively-cooled vascular mate-
rial blocks.

5.1. CPU Cooler Test Case
Inspired by real life data, the first test case mod-
eled using the developed stable thermal solver is
pictured in Figure 16 and the remaining data ex-
pressed in Equation (12)

Figure 16: CPU cooler test case domain.

L = 45mm

D = 0.8mm

ṁ = 10 g/min (12)

Tinlet = T = 20 C

q = 150W (uniform heat flux) ,

where ṁ is the mass flow rate that enters the cooling
channel.
Despite being represented as a straight line, the

cooling channel is modeled considering a sinusoidal
centerline (the amplitude of the sine and wave
length that are in this case null are going to be
optimized in Section 7) with a parabolic Hagen-
Poiseuille velocity profile given by

v = 1.5
ṁ

ρ A

(

1−
2 r

D

)2

, (13)
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where r is the distance to the channel’s centerline.

To ensure good numerical accuracy, a set of dif-
ferently refined meshes have been used to obtain
the maximum domain temperature. A convergence
study graph is presented in Figure 17.

Figure 17: Mesh convergence study.

Given the time limitations, the mesh chosen to
obtain the results and later optimization is a mesh
with 128134 FEs, which presents a relative error of
1% to 55% of the computing time of the converged
result mesh.

It is also interesting to look into the efficiency of
the developed implementation, which can be done
analyzing Table 1.

NELEM Ttotal [s] Tsolid [s] ∆t
Ttotal

[%]

8290 13 7 43

38540 43 28 34

72591 96 63 35

128134 163 114 30

197127 255 176 31

231177 294 220 25

Table 1: Computation times vs. number of FEs.

Finally, the temperature field for the actively-
cooled CPU cooler is presented in Figure 18.

Figure 18: Mesh convergence study.

The baseline geometry characterized by the
straight interface channel results in a maximum do-
main temperature of 102.3◦C which is convenient,

as it is clearly above the physical integrity thresh-
old of a CPU (leaving room for improvement with
optimization).

5.2. Engine Cylinder Test Case
In order to provide further numerical applications
of the developed stable thermal solver, yet another
test case has been devised. It mimics a car engine
cylinder and it also proves that this implementation
is capable of handling multiple channels. Because
the analysis and results are similar to what has been
presented for the CPU cooler and due to the space
restrictions of this document, it is not presented
here.

6. Optimization Fundamentals

Being one of the goals of this work to combine the
stable IGFEM thermal solver with an optimization
tool, this section briefly describes the fundamentals
needed for this specific case.

6.1. Problem Formulation
The general form of a constrained optimization
problem, which is the process of minimizing a func-
tion with respect to some variables in the presence
of constraints on those variables, is

Minimize: f(x,b)

Subject to: xL < x < xU (14)

A x ≤ b (Linear)

h(x) ≤ 0 (Non-Linear) ,

where f(x,b) is the objective function, the func-
tion that undergoes the optimization process and
the equations under the category “Subject to:” are
the constraints. The first equation under this cate-
gory represents the bounds for the variables x. It is
also important to mention that constraints are not
limited to linear relations, they can also be non-
linear, as exemplified by the last two inequalities.

6.2. Optimization Tool
The process of optimization implemented for this
work relies on an optimization package already im-
plemented in a module of the programming lan-
guage Python, which can be found under the SciPy

library, and is called optimize.minimize, which does
minimization of a scalar function of one or more
variables.

6.3. Optimization Method
The optimize.minimize optimization module from
the SciPy contains a large array of optimization
methods that can be chosen by the user. Given
it is the most well rounded in terms of the advan-
tages and disadvantages, the chosen optimization
method is the Sequential Least SQuares Program-
ming (SLSQP) iterative method.
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7. Test Case Optimization Results

The goal of this section is to demonstrate the pos-
sibilities that result from combining the efficient
thermal solver that has been implemented with the
standard SciPy optimization method choice dis-
cussed in Section 6 by analyzing a sample vascular
actively-cooled example.

7.1. Optimization Problem Definition
As stated in Section 6, it is necessary to formulate
the optimization problem before presenting its re-
sults. Using the CPU cooler test case modeled in
Section 5, the objective function is the maximum
domain temperature, the bounds are the second and
third expressions in Equation (15) and one addi-
tional constraint is defined in the last expression

Minimize: max[T (a,nsw)]

Subject to: 2 < a < 4 [mm]

2 < nsw < 4 (15)

∆p ≤ 1.5×∆pstraight interface ,

where ∆p and ∆pstraight interface are the pressure
drop in the channel due to viscous effects for the se-
lected interface and straight interface, respectively.
While the choice of bounds for the design vari-

ables is related to geometrical restrictions intro-
duced by the modeling strategy (sinusoidal center-
line), the introduction of the pressure drop con-
straint is what makes this problem relevant, as
the solution would otherwise be the upper limits
of the design variables for an increased cooling ca-
pacity. Taking into account that in the parabolic
Hagen-Poisseuile velocity profile pressure drop due
to viscous effects equation (from [8]) all remaining
variables are constant, the pressure drop ratio con-
straint in Equation (15) is equivalent to

∆p ∝ s⇒ ∆p ≤ 1.5×∆ps.i. ⇔ s ≤ 1.5× L (16)

7.2. Enhanced Solution
For a sinusoidal channel, the meshes that result
from the IGFEM discretization are as presented in
Figure 8. Table 2 presents the results of the relevant
channel configurations, S.C. for straight channel, xL
for the the lower bounds of the design variables,
where there is still room for improvement, U. for
unconstrained, where the pressure ratio constraint
is not active and O.D. for the optimized design.

a[mm] nsw max[T ][◦C] ∆p/∆ps.i. Rmks.

0 0 102.3 1 S.C.

2 2 84.9 1.1 xL

4 4 59.4 1.8 U.

3.15 3.7 66.9 1.5 O.D.

Table 2: Test case optimization results.

The combination of the chosen and implemented
numerical techniques with the SLSQP optimization
method from the SciPy library allowed this geom-
etry to be optimized in just 1h40 using a personal
system running an Intel Core i7 processor clocked
at 2.2GHz with 16GB of memory and on OS X

Yosemite despite the forty two iterations that the
optimizer needed to obtain the result. A special em-
phasis must be given to IGFEM in problems such as
the one being analyzed here, as it is a very interest-
ing method that efficiently deals with the disconti-
nuities and without which an optimization process
to this problem would be much more user time con-
suming and cumbersome, with a constant need for
remeshing.

The evolution of some relevant parameters with
the iteration number can be analyzed in Figure 19.
It is noticeable that there are maximum tempera-
tures below the optimized result, but those corre-
spond to geometries that violate the pressure ratio
constraint.

(a) Maximum temperature

(b) Pressure drop ratio

(c) Design variables

Figure 19: Evolution of relevant optimization data
with iteration number.
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Finally, the temperature field solution for the op-
timized geometry, characterized by a channel am-
plitude of 3.15mm and 3.7 sinusoidal waves in the
horizontal direction of the domain, is represented in
Figure 20.

Figure 20: Optimized design.

With this optimization process, it has been possi-
ble to reduce the maximum temperature of a CPU
cooler from a temperature of over 100◦C, which is
above integrity threshold to 66.9◦C, an adequate
CPU temperature under load.

8. Conclusions

If using the already implemented functionality of
the computational tool simplified implementation,
the conformity requirement that comes from us-
ing a preexisting tool means that the achievements
required not only the understanding of the code’s
structure but also a lot of design thinking.

The basic formulation of a state-of-the-art dis-
cretization technique described by the Interface-
enriched Generalized Finite Element Method
(IGFEM) has successfully been implemented and
verified for efficient mesh-independent modeling of
2D problems with discontinuous gradient fields.
Some improvements on the original method were
also implemented, namely via the modification of
the enrichment function scaling.

Presenting oscillatory solution fields for con-
vection dominated problems (characteristic of the
methods that use a Galerkin formulation of convec-
tion), the weighted residual formulation previously
implemented was inadequate. As a solution for this
problem, the Streamline Upwind Petrov-Galerkin
(SUPG) method has been implemented and verified
for heat transfer processes where heat convection is
not negligible, stabilizing the solution and reducing
the amplitude of fictitious oscillations.

Combining both the IGFEM and SUPG in an effi-
cient and stable thermal solver allowed to solve con-
jugate heat transfer problems of vascular actively-
cooled materials. Combining this solver with a
standard SciPy optimizer facilitated a straightfor-
ward and efficient optimization of a sample conju-
gate heat transfer problem of a vascular actively-
cooled material.

With the goal of a continuous evolution of hy-

brida in the subject of this thesis, it could be in-
teresting to study the implementation of specially
developed optimization routines, to generalize the
implemented methods to 3D and to use the devel-
oped tools in real optimization problems with well
defined bounds, goals and constraints.

References

[1] T. L. Bergman, A. S. Lavine, F. P. Incropera,
and D. P. Dewitt. Fundamentals of Heat and

Mass Transfer. John Wiley and Sons, 7th edi-
tion, 2011. ISBN:978-0470-50197-9.

[2] S. Soghrati, A. M. Aragón, C. A. Duarte, and
P. H. Geubelle. An interface-enriched general-
ized FEM for problems with discontinuous gra-
dient fields. International Journal of Numerical

Methods in Engineering, 89:991–1008, August
2011. doi:10.1002/nme.3273.

[3] J.N. Reddy. An Introduction to the Finite Ele-

ment Method. McGraw-Hill, 3rd edition, 2006.
ISBN: 0071244735.

[4] A.C. Ramos, A. M. Aragón, S. Soghrati, P. H.
Geubelle, and J.F. Molinari. A new formulation
for imposing Dirichlet boundary conditions on
non-matching meshes. International Journal of
Numerical Methods in Engineering, 2015. doi:
10.1002/nme.4898.

[5] S. Soghrati, C.A. Duarte, and P:H. Geubelle.
An adaptive interface-enriched generalized FEM
for the treatment of problems with curved in-
terfaces. International Journal for Numerical

Methods in Engineering, 102:13521370, January
2015. doi: 10.1002/nme.4860.

[6] A.N. Brooks and T.J.R Hughes. Stramline
Upwind/Petrov-Galerkin formulations for con-
vection dominated flows with particular enpha-
sis on the incompressible Navier-Stokes equa-
tions. Computer Methods in Applied Mechanics

and Engineering, 32:199–259, 1982. doi: 0045-
7825/82/0000-0000/02.75.

[7] S. Soghrati. An Interface-enriched Gener-

alized Finite Element Method for the de-

sign of actively-cooled microvascular composites.
PhD thesis, University of Illinois at Urbana-
Champaign, 2013.

[8] F.M. White. Fluid Mechanics. McGraw-Hill,
4th edition, December 1998. ISBN: 007069673.

10


