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Resumo

A integração disciplinar é um dos fatores-chave mais importantes para design eficiente. Multidisci-

plinary Design and Optimization é uma técnica promissora para o efeito, uma vez que combina análises

multidisciplinares com otimização baseada em métodos de gradiente. Assim, esta técnica requer a

avaliação das derivadas das funções de interesse em relação às variáveis de projeto, tarefa essa a mais

pesada computacionalmente durante o processo de otimização. Tradicionalmente, o cálculo destas é

impreciso e pouco eficiente, uma vez que se recorrem a métodos aproximados. Desta forma, o obje-

tivo deste trabalho é o desenvolvimento de uma ferramenta de otimização eficiente com o propósito de

resolver problemas de design aerodinâmico com recurso a informação do gradiente exata. Primeiro, é

feito um levantamento dos vários métodos de análise de sensibilidade e assim entender as suas car-

acterı́sticas. De seguida, um modelo aerodinâmico baseado no método do painel é adaptado em cinco

módulos, na qual os respetivos módulos de análise de sensibilidade são construı́dos recorrendo a:

diferenciação automática, diferenciação simbólica e método adjunto. Tanto o modelo como a respetiva

análise de sensibilidade são verificados com uma ferramenta de design de asas e com o método das

diferenças finitas, respetivamente. Um estudo paramétrico é também conduzido para uma asa de re-

ferência, analisando assim o impacto das variáveis de projeto nos coeficientes aerodinâmicos. Por

último, problemas de design aerodinâmico são resolvidos com sucesso recorrendo à nova ferramenta

pois, quando comparado ao uso do método das diferenças finitas, o tempo de otimização poderá ser

reduzido em 90%.

Palavras-chave: métodos de gradiente, design aerodinâmico, análise de sensibilidade, método

do painel, diferenciação automática, método adjunto.
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Abstract

One of the most important keys to the successful design of complex systems is disciplinary integra-

tion. Multidisciplinary Design and Optimization is now a promising methodology for the efficient design of

such systems, since it combines multidisciplinary analysis with gradient-based optimization techniques.

Therefore, this methodology requires the derivatives evaluation of the functions of interest with respect

to the design variables, which is the most demanding computational task in the optimization process.

Traditionally, those derivatives are calculated inefficiently and inaccurately using approximate methods.

Therefore, the objective of this work is to develop an efficient optimization framework to solve aerody-

namic design problems using exact gradient information. Firstly, a survey on sensitivity analysis methods

is conducted to identify which tools are available and understand their respective merits. Secondly, an

aerodynamic model based on the panel method is reformulated into five smaller modules, in which the

respective sensitivity analysis blocks are constructed using exact gradient estimation methods: auto-

matic differentiation, symbolic differentiation and the adjoint method. Both the aerodynamic tool and

respective sensitivity analysis are validated using a wing design tool and the finite-differences method,

respectively. Subsequently, a parametric study is also presented for a baseline wing configuration to sur-

vey the impacts of changing the wing’s design variables on the aerodynamic coefficients and therefore,

to understand the wing’s aerodynamic behavior. Finally, aerodynamic optimization problems are solved

using the new tool with remarkable success since, when compared to the finite-differences method, the

optimization time can be reduced by 90%.

Keywords: gradient-based optimization, aerodynamic design, sensitivity analysis, panel method,

automatic differentiation, adjoint method.
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ξ Vorticity vector.

ρ Density.

σ Stress tensor; Source intensity.

φ Velocity potential.

ψ Adjoint matrix.

Ω Feasible region.

Roman symbols

B Hessian approximation in SQP; Generic extensive property.

b Wing span.

CD Coefficient of drag.

CL Coefficient of lift.

CM Coefficient of moment.

CP Concatenation vector of collocation points.

Cp Coefficient of pressure.

cr Root chord.
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ct Tip chord.

DS Concatenation vector of panel areas.

d Search direction vector.

f Objective function; Interest function.

g Inequality constraint.

H Hessian matrix.

h Equality constraint.

LPP Concatenation vector of panel’s corner points written in the panel’s frame of reference.

LV Concatenation vector of panel’s basis vectors.

l Concatenation vector of panel’s 1st basis vectors.

M Chordwise number of panels.

MAC Mean Aerodynamic Chord.

m Concatenation vector of panel’s 2nd basis vectors.

N Semi spanwise number of panels.

n Concatenation vector of panel’s 3rd basis vectors; Normal vector.

PP Concatenation vector of panel’s corner points.

p Static pressure.

R Residual equations vector.

S Wing area.

V Velocity vector.

WP Concatenation vector of input points to panel’s corner points.

WP1 Concatenation vector of input points to X1.

WP2 Concatenation vector of input points to X2.

WP3 Concatenation vector of input points to X3.

WP4 Concatenation vector of input points to X4.

X1 Concatenation vector of panel’s 1st corner points.

X2 Concatenation vector of panel’s 2nd corner points.

X3 Concatenation vector of panel’s 3rd corner points.
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X4 Concatenation vector of panel’s 4th corner points.

x Design vector; Bound vector.

y State vector.

Subscripts

0 Baseline value.

∞ Free-stream condition.

airfoil Variable related with the airfoil shape.

DV Indicates design variables.

eq Equality.

geo Variable related with the exterior wing shape.

i, j,m, n, k, h Computational indexes.

k Iteration number.

L Stands for lower, in Kutta-condition.

l Component in the 1st panel’s basis vector direction.

m Component in the 2nd panel’s basis vector direction.

n Normal component.

opt Variable at optimum value.

U Stands for upper, in Kutta-condition.

W Stands for the wake.

x, y, z Cartesian components.

Superscripts

1 Stands for the panel indicated by the assigned indexes.

2 Stands for the panel’s image, referenced by the indexes of the original panel.

L Stands for lower (bounds).

T Transpose.

U Stands for upper (bounds).

’ Means that variable is written in the panel’s frame of reference.

* Variables at their optimum value.
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Glossary

ADiMat Hybrid Automatic Differentiation tool for

MATLAB R© programs.

AD Automatic Differentiation is a tool to compute

derivatives in computer programs automati-

cally, according to the chain-rule of differential

calculus.

BFGS Broyden-Fletcher-Goldfarb-Shanno formula is

an update suited for approximate line search

procedures to the Hessian matrix using only

gradient information. The later is always pos-

itive definite.

BFP Davidon–Fletcher–Powell formula is an update

to the Hessian matrix using only gradient infor-

mation, keeping the later positive definite.

CAD Computer Assisted Design uses computer soft-

ware to aid in the creation or modification of de-

signs.

CFD Computational Fluid Dynamics is a branch of

fluid mechanics that uses numerical methods

and algorithms to solve problems that involve

fluid flows.

CSD Complex-Step Derivative is a formula to calcu-

late the derivative of a function accurately.

CSM Computational Structural Mechanics is a

branch of structure mechanics that uses nu-

merical methods and algorithms to perform the

analysis of structures and its components.

FD Finite-Differences schemes are numerical tech-

niques to estimate the derivative of a function.

FFD Forward Finite-Differences is a first order nu-

merical scheme to estimate the derivative of a

function.

GDP Gross Domestic Product is a monetary mea-

sure of the market value of all final goods and

services produced in a period of time.
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KKT Karusch-Kuhn-Tucker conditions are the nec-

essary conditions for optimality in a constrained

optimization problem.

LP Linear programming is a type of optimization

problems where all functions (objective and

constraints) are linear.

MDO Multi-Disciplinary Optimization is an engineer-

ing technique that uses optimization methods

to solve design problems incorporating two or

more disciplines.

MILP Mixed-Integer Linear Programming is a type of

optimization problems with linear objective and

constraints, where some components of the in-

dependent variables are discrete.

NACA National Advisory Committee for Aeronautics

under which airfoils were developed.

NLP Nonlinear Programming is a type of optimiza-

tion problems where the objective and con-

straints are nonlinear functions.

QP Quadratic Programming is a type of optimiza-

tion problems where the objective function is

quadratic and the constraints are linear func-

tions.

RANS Reynold Averaged Navier-Stokes equations

are time-averaged equations of motion for fluid

flows.

RPK Revenue Passenger Kilometer is a transporta-

tion industry metric that shows the number of

kilometers traveled by paying passengers.

SD Symbolic Differentiation is a tool to differentiate

functions analytically using computer software.

SQP Sequential Quadratic Programming is a power-

ful algorithm to solve nonlinear constrained op-

timization problems.
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Chapter 1

Introduction

1.1 Motivation

Men always desired to fly. Leonardo Da Vinci, a great artist and inventor of the 15th century, had

produced sketches of rudimentary fixed-wing gliders, man powered ornithopters, among other inven-

tions. Despite several attempts to fly were tried through the centuries, the first controlled, powered,

heavier than air, manned flight was carried by the Wright brothers, in 1903. Since then, new aircrafts

were quickly developed, in part motivated by two incoming world wars and increased civilian demand. In

that sense, an example of two remarkable aircrafts are the Douglas DC-3, represented in Figure 1.1 (a),

and the Supermarine Spitfire, in Figure 1.1 (b). The first was a fixed-wing propeller driven airliner that

revolutionized civil aviation in the 1930s and 1940s. Its design was inspired in the older DC-2 version.

At the time, it was able of good range, being capable of transatlantic flights. It was also reliable, comfort-

able, easy to maintain, fast and completely made of metal, providing competition to the airliner Boeing

247. The second was a single-seat fighter interceptor mainly used by the Royal Air Force during the

Second World War. It was, by far, the most produced British aircraft. The elliptical wings were designed

to be aerodynamic efficient and to carry an expandable number of weapons. Moreover, the fuselage

was prepared to allocate different engine versions allowing to extend the aircraft’s power. The aircraft

was all built in metal, able to achieve higher speeds than its competitors and it played an important role

on the allies victory [1].

(a) Douglas DC-3 [2] (b) Supermarine Spitfire [3]

Figure 1.1: Remarkable aircrafts during Second World War

Nowadays, new concepts and technology are still being created and explored. Great advances

have been achieved specially on propulsion and lighter materials. For example, NASA’s researchers
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are developing alternatives to the traditional carbon-based fueled engines, substituting those by electric

propulsion systems. The ongoing project NASA X-57, Figure 1.2 (a), is an electric propeller aircraft, with

14 motors distributed along the wing span and it is expected to achieve a greener, more efficient and

silent propulsion system when compared to the traditional propeller systems available [4]. Conversely,

aircraft manufacturers are also investing in incorporating new materials, specially composites. An exam-

ple of this is the new Boeing 787, Figure 1.2 (b), which is a wide-body passenger aircraft, characterized

by about 50% of its main structure made of composites. With a more efficient aircraft, Boeing claims to

use 20% less fuel than similar aircrafts with the same mission profile, adding value to the company and

to its costumers [5].

(a) NASA X-57 [6] (b) Boeing 787 [7]

Figure 1.2: New aircraft concepts

Through an economical point of view, the aircraft industry have been experiencing a stable and

resilient growth in the past two decades. According to Boeing’s market outlook of 2014 [8], the global

economy is expected to grow, since the gross domestic product (GDP) index is expected to grow at

a 3% rate annually, for approximately the next twenty years. Associated with this forecast, passenger

traffic is expected to grow by 4.9 percent annually, during the same period. Thus, Boeing’s company

is expecting to sell 38,850 airplanes, evaluated in more than 5.6 trillion US dollars, in the next twenty

years. Figure 1.3 shows that the market is becoming more diverse since it is expected a significant

increase in demand from Asia and middle-east countries, being those markets comparable with the US

and European markets, here measured by the revenue passenger kilometers (RPK) parameter. In 2014,

this increase in demand, associated with the low oil price, represented profits of 20 billion US dollars to

the airlines.

Considering the previous arguments, aircraft industry is no different from others, being highly driven

by demand and competitive advantage. These may include the fulfillment of new mission requirements

or simply newer and more efficient technology became available. Associated with highly expensive de-

veloping programs, new radical aircraft configurations capable to fulfill those requirements are not likely

to be tried. Instead, new designs may be based on existing concepts with slight modifications. Due to the

strong market competitiveness, companies are enforced to have accurate answers in the early stages of

design. The massive development of Computer Sciences in the late past century allowed engineers to

design and predict accurately the system’s behavior, using tools such as Computer-Aided Design (CAD),

Computational Fluid Dynamics (CFD) and Computational Structural Mechanics (CSM). As the system’s
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Figure 1.3: Aircraft market share for different regions [8]

complexity increases, a key factor to efficient design is disciplinary integration. Multidisciplinary Design

Optimization (MDO) attempts to solve this problem as it will be shown next.

1.2 Multidisciplinary Design and Optimization

Sobieski and Haftka [9] define Multidisciplinary Design and Optimization (MDO) as a methodology

to design complex systems in which a strong interaction between disciplines must be considered. In

other words, Multidisciplinary Design and Optimization is an Engineering field that applies optimization

techniques to design systems where, at least, two disciplines are present and interconnected, both at the

analysis and optimization level. In that sense, a structural optimization where the designer, for example,

is trying to optimize the wing’s structure to avoid flutter is not MDO since the structure/aerodynamics

interaction is present only at the analysis level.

Breaking down the name on its basic concepts, Multidisciplinary Design is present when the design

team tries to create the system considering all or part of the governing disciplines. An example when

that does not happen is well patented in Figure 1.4. As it can be observed, incompatible designs would

be generated if no communication is made. Certainly, the most aerodynamic design is not the most

resistant, or the cheapest design is not the fastest. Therefore, a design is always based on a trade-off,

in some sense.

On the other hand, Optimization is present when designers are concerned with improving a certain

design. The optimization process is carried by the information supply from the different disciplines to

an optimizer. The latter changes some design characteristics, according to some objective function and

constraints. Figure 1.5 shows multidisciplinary optimization in the MDO perspective against sequential

disciplinary optimization. Figure 1.5 (a) represents the latter case, where each disciplinary optimiza-

tion is performed sequentially. This situation corresponds, as suggested by Figure 1.5 (b), to travel in

perpendicular directions, changing the design variables associated with the ”active” discipline in each

optimization’s iteration. Although it may be tempting and easier, this would lead to an improved design
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Figure 1.4: Best design according to each discipline, (adapted from [10])

but not the best one, even in the local sense. MDO operates differently and accordingly to Figure 1.5 (c).

The travel direction in Figure 1.5 (b) is such that it produces changes in all the design variables at the

same time. The result is a optimal design, where a trade-off between disciplines is assured, according

to some objective function, while satisfying the design constraints.

(a) Sequential aero-
structural optimization

(b) Objective function curves for aero-
structural optimization

(c) Simultaneous aero-structural opti-
mization

Figure 1.5: Sequential vs simultaneous multidisciplinary optimization, (adapted from [10])

Due to its strongly tightly coupled multidisciplinary nature, MDO was pioneered by aircraft design.

One of the first published works found in literature was presented by Haftka [11]. He developed a

procedure to optimize wing’s structures subject to drag, stress and strain constraints using Newton’s

Method.

Nowadays, aircraft designs are parametrized using hundreds or thousands design variables. When

dealing with such a large number of parameters, gradient-based optimization strategies are the most

efficient algorithms to be used, due to faster convergence rates comparing with heuristic and gradient-

free methods. A common feature between gradient-based algorithms is precisely the requirement to

evaluate the gradient of the objective function. The adjoint method proved to be accurate and the most

efficient for calculating those gradients, or usually called sensitivities, being those calculated exactly and

independently of the number of design variables. Several researchers took advantage of this method,
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both for single discipline optimization and MDO. For example:

• Jameson [12] applied the control theory to optimize the surface of airfoils in transonic regime.

His goal was to achieve an optimal configuration for a desired velocity distribution, which is called

inverse design. A conformal mapping to a circle was used to parametrize the geometry. The frame-

work consists in a potential flow equation solver, an adjoint solver and an optimization procedure.

Several numerical examples were tested with success proving the feasibility of his framework;

• Kennedy [13] developed a new parametrization to be used in composites and he proposed a new

beam theory. Due to anisotropic properties of such materials, millions degrees of freedom were re-

quired. To deal with those numbers, a parallel direct Schur factorization method was implemented.

The structural tool was incorporated in a MDO framework in order to obtain a trade-off between

wing weight and induced drag, using gradient-based optimization. A significant reduction in the

induced drag was obtained with minimal penalization on the wing’s weight;

• Martins [14] developed an aero-structural framework for the optimization of a complete supersonic

aircraft. The aerodynamic framework has two modes: an Euler and a RANS equations solver. The

structural framework consists on a linear finite-element model with two types of elements. Also, an

adjoint solver was presented for the coupled sensitivity analysis, benchmarked with the complex-

step derivative and finite-differences. Figure 1.6 shows the normalized runtime (aero-structural

optimization runtime divided by the aero-structural analysis runtime) plotted against the number

of design variables using the adjoint method, finite-differences and the complex-step derivative.

The adjoint method presents a clear advantage comparing with the other methods, being the nor-

malized computational runtime almost independent on the number of design variables, as stated

previously.

Figure 1.6: Sensitivity analysis methods - Computational cost as a function of the number of design
variables, Martins [14]

Nevertheless, MDO still faces many challenges. The two major obstacles are the high computa-

tional cost and high organizational complexity. Typically, the individual analysis and optimization times
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increase at superlinear rates, thus the MDO cost is much higher than the sum of costs of each con-

stituent discipline. Nowadays, a lot of research is being conducted in order to solve these problems.

One of these research topics is on MDO architectures, look e.g. Martins and Lambe [15]. An MDO

architecture defines not only how the different analysis communicates with each other but also specifies

how the overall optimization problem is carried. According to the authors, much research is still needed

to be done, not only new and innovative architectures are required but also the existing ones should be

benchmarked using a relevant predefined set of problems.

1.3 Framework and Objectives

Almeida [16] developed a dynamic structural model which was integrated in a framework with both

dynamic aeroelastic and static aero-structural capabilities to study the behavior of aircraft wings. The

wing’s structure was modeled using a 3D finite-element model, applied to the wing’s neutral axis. To

calculate the nodal forces, the aerodynamic loads were calculated using an existing panel method

code, developed by Cardeira [17]. In order to couple both the fluid and structural frameworks, stag-

gered (or loosely-coupled) algorithms were implemented, including both volume-continuous and volume-

discontinuous methods.

Almeida took advantage of the framework’s static aero-structural capabilities to perform gradient-

based optimization, using forward finite-differences to estimate the gradient of the interest functions with

respect to the design variables. His objective was to minimize the wing’s mass, being the root chord,

maximum stress at the wing’s root and tip deflection constraints to the optimization problem. The lift

coefficient was also imposed to be constant. The structural design variables were chosen to be the

relative spars location and the spar and skin thicknesses. In the aerodynamic side, the chosen design

variables were the angle of attack, taper ratio, sweep, dihedral and twist angles at the wing tip and

root. Although an improved design was obtained, the optimization process proved to be quite inefficient

due to inaccurate gradient estimation and extensive computational effort, inherent to the finite-difference

approach.

In order to obtain an efficient structural optimization, Freire [18] developed a sensitivity analysis

framework using tools such as automatic differentiation and the adjoint method. Freire compared his

framework performance to the finite-differences approach to estimate the gradient and it was observed

that the computational runtime was roughly reduced in half, proving the benefits of efficient gradient

estimation.

The objective of this work is to improve the already developed aero-structural tool. By providing

a sensitivity analysis framework to accurate and efficient gradient estimation of the interest functions

with respect to the design variables of the aerodynamic discipline, it is expected to solve aerodynamic

optimization problems more efficiently. The already developed tools and the proposed solution are

presented in Figure 1.7. The solid boxes correspond to the work previously done and the dashed boxes

to the new implemented features. The optimization procedure will rely on a gradient-based algorithm

since it provides the best solution known at the time for efficient aerodynamic optimization.
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Figure 1.7: Flowchart illustrating the implementation structure of the aeroelastic framework
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1.4 Thesis Outline

This dissertation is structured as follows:

Chapter 2 starts by addressing basic definitions found in Optimization literature. Secondly, a survey on

optimization methods is conducted. The concepts of gradient-free and gradient-based optimization

methods are explored, highlighting their respective merits and providing some examples.

Chapter 3 addresses the subject of sensitivity analysis, providing several available methods for gra-

dient evaluation, including the discrete-adjoint method, highlighting their main advantages and

disadvantages. An example is provided for clarification.

Chapter 4 provides both the necessary theoretical background to support the choice of the aerody-

namic model and its implementation. Firstly, the equations of fluid flows are presented but, a

special attention is given to incompressible potential flows. Secondly, a numerical technique to

calculate the aerodynamic loads on bodies with arbitrary shape is presented, namely the panel

method. Subsequently, the implementation of the model is presented in detail since some mod-

ifications were made to improve the aerodynamic framework. Finally, the modified program is

benchmarked with a similar tool to verify the results.

Chapter 5 presents the new developed sensitivity analysis framework. First, an overview is provided

showing how the new tool is organized. Then, each framework’s component is presented in detail

and the justifications for accuracy and computational efficiency are given as well. At the end of the

chapter, the tool is benchmarked with finite-differences, highlighting its main advantages.

Chapter 6 presents a parametric study in order to understand the wing’s aerodynamic response to

changes in the design variables. First, a baseline wing configuration is chosen. Next, a mesh

refinement study is conducted to find a suitable mesh to present the results. After, a series of

studies are performed, namely, the impact on the aerodynamic coefficients by changing the taper

ratio, wing twist, sweep and dihedral angles, airfoil thickness and camber.

Chapter 7 illustrates the benefits of gradient-based optimization with efficient gradient estimation when

compared to the traditional approach of finite-differences. In that sense, three representative opti-

mization problems are solved using both approaches.

Chapter 8 overviews the contents presented in this work highlighting the achievements and provides

some ideas for future work.
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Chapter 2

Optimization Methods

2.1 Definitions

In this chapter, a survey on optimization methods will be presented to provide enough information to

make a conscious choice between the algorithms available when facing aerodynamic optimization prob-

lems. Special attention is given to unconstrained and constrained gradient-based methods since they

are the most used to this effect. Before proceeding further, some basic definitions found in optimization

literature, specially in the MDO context are now addressed:

Design variables, represented here by x, are a given set of parameters that characterizes the system,

which are always under the explicit control of the optimizer. They should be as independent as

possible. During the optimization process, design variables will change their value until an optimal

solution is obtained. They may be continuous or discrete.

State variables, represented here by y, are the result of disciplinary analysis. They may or may not be

under control of the optimizer. Usually, they depend implicitly on the design variables through the

solution of disciplinary governing equations of the type R(x,y) = 0.

Objective function, represented here by f , is a quantitative measure that allows the comparison

between two designs. It may be a linear or nonlinear function given implicitly or explicitly with

respect to design variables. For example, could be the drag coefficient of an aircraft, its structural

weight or even a combination of both.

Constraints are a set of equality or inequality mathematical statements that restricts the values x

might take. Constraints on design variables are called bounds. The subset of design variables that

satisfies the constraints are called the design space or feasible region.

2.2 Classification

Several different categories are possible when dealing with optimization methods. A common division

found in the literature is into deterministic or heuristic (stochastic) methods [19]. Deterministic methods

provides theoretical guarantee that, at least, a local optimum will be found. Nevertheless, these type of

methods rely on a strong set of assumptions about the problem. Many times, those assumptions cannot

be made and the only way the optimization is possible is through heuristics. Deterministic methods are

of zeroth order or gradient-free if only objective function evaluations are performed. Conversely, they are

first order or gradient-based if the derivatives of the objective function with respect to design variables
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are also computed [20].

Most of the times, heuristic methods are used when deterministic fails. Typically, these are used

when the objective function is noisy, or design variables are discrete. Unlike deterministic methods,

these methods do not require as many assumptions about the optimization problem, in fact, for most

algorithms, only objective function evaluations are required [21]. But, on the other hand, running an

heuristic does not guarantee that an optimal solution will be reached. Moreover, higher computational

power is necessary to continually evaluate the objective function since heuristics performance depends

highly on the problem’s dimension. Figure 2.1 shows a schematic overview of the different methods

found in the literature.

Choosing the best optimization method is highly problem dependent, nevertheless, a good method

is such that provides a reliable solution with the least computational effort possible [10]. Gradient-based

methods are usually preferred when the objective and constraints functions are smooth and gradients

can be computed cheaply. Gradient-free methods are used whether the objective functions are non-

differentiable or design variables are discrete [20]. The latter main advantage is the ability to find the

global optimum, if it exists, regardless solution’s first guess. However, gradient-based algorithms provide

a clear stopping criteria and they converge much faster than the gradient-free methods since those

usually require less function evaluations to converge and less computational power.

Figure 2.1: Classification of optimization methods [10]

Following a deterministic approach, Belegundu and Chandrupatla [20] define optimization as the

process of minimizing a given objective function while satisfying a given set of constraints. A typical

engineering optimization problem may be generally expressed as nonlinear programming (NLP) stated
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as
minimize f(x)

with respect to x ∈ Rn

subject to gi(x) ≤ 0 for i = 1, ...,m

hj(x) = 0 for j = 1, ..., `

xL ≤ x ≤ xU

(2.1)

where x is the design vector, or the independent variables, xL and xU are the lower and upper bounds.

The objective function is f , hj and gi are the equality and inequality constraints, respectively. A deter-

ministic optimization problem may additionally be classified about:

Linearity: An optimization problem is said to be linear programming if both the constraints and objective

function are linear, quadratic programming if the objective and constraint functions are quadratic

and linear, respectively. The problem is said to be nonlinear programming if both objective and

constraint functions are nonlinear.

Constraints: A problem is said to be constrained if the feasible region Ω, is given by:

Ω =
{
x : g(x) ≤ 0, h(x) = 0, xL ≤ x ≤ xU

}
and unconstrained if Ω = Rn

Convexity: An optimization problem is said to be convex if a convex objective function is minimized

under a convex set of design variables, and non-convex otherwise.

Design Variables: The problem is said unidimensional if only one independent variable is present and

multidimensional otherwise. Also, those may be continuous or discrete.

2.3 Gradient Based Methods

2.3.1 Unconstrained Gradient Based Methods
Unconstrained optimization problems arise when no restriction on the design variables are imposed,

or those are accounted by using penalty functions [20]. The unconstrained optimization problem may be

expressed as

minimize f(x)

w.r.t. x ∈ Rn
(2.2)

where x is the design vector and f is the objective function.

Belegundu and Chandrupatla [20] state that the solution of a given unconstrained optimization prob-

lem is divided in two main parts:

1. Finding a search direction based on the gradient information;

2. minimize f along that direction (line search).

Unconstrained optimization methods differ mainly on step 1, and they will be addressed in the next

sections. Line search corresponds to find the step size α, at iteration k, such that a substantial reduction
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is obtained without spending to much computational effort,

f(xk + αkdk) ≤ f(xk) (2.3)

where dk is the search direction. An accepted step is obtained if the strong Wolfe conditions are satisfied:

f(xk + αkdk) ≤ c1f(xk)

|∇kf(xk + αkdk).dk| ≤ c2|∇kf.dk|
(2.4)

where c1 and c2 are constants. If c2 = 0, then the line search is exact.

Also, a stopping criterion is required which corresponds to the necessary and sufficient conditions to

optimality. The necessary condition is

∇f(x∗) = 0 (2.5)

where x∗ is the optimal solution. Equation (2.5) states that x∗ is a stationary point and it can be a

minimum, maximum or a saddle point. Another condition must then be imposed to guarantee that x∗ is

a minimum:

H(x∗) =


∂2f
∂2x1

. . . ∂2f
∂x1∂xn

...
. . .

...
∂2f

∂xn∂x1
. . . ∂2f

∂2xn


x=x∗

is positive definite (2.6)

where H is the Hessian matrix. Therefore, Equations (2.5) and (2.6) are the sufficient conditions to

optimality.

Steepest Descent Method

The steepest descent method is one of the oldest methods available for unconstrained optimization

problems, firstly introduced by Cauchy [22]. This method uses the symmetrical of the gradient vector at

each iteration k for the search direction,

dk = −∇f(xk) (2.7)

This method has a linear convergence rate and exhibits a unique feature if exact line search is performed.

In that particular case, the gradient at iteration point xk is perpendicular to the gradient at the next

iteration point xk+1. The algorithm is presented in Algorithm 1.

Newton’s Method

Despite of Newton’s method by itself is not very robust to be used as an optimization method, the

concepts behind it are very powerful and they are used on other algorithms [20]. Its main idea consists

on approximate the objective function quadratically as

f(xk+1) ≈ f(xk) +∇f(xk)
T
dk +

1

2
dTk∇2f(xk)dk (2.8)
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Input: function f , starting point x0 and convergence parameters εr, εa and εg
Output: x∗,minimum of f

1 begin
2 repeat
3 compute g(xk) = ∇f(xk)
4 if |gk|≤ εg then
5 converged
6 else

7 compute normalized search direction dk = − g(xk)

||g(xk)||
8 end
9 perform line search to find the step size αk in the direction of dk

10 update the current point: xk+1 = xk + αkdk
11 evaluate f(xk+1)
12 if |f(xk+1)− f(xk)|≤ εa + εr|f(xk)| satisfied for 2 consecutive iterations
13 then
14 converged
15 else
16 set k = k + 1
17 set xk+1 = xk
18 end
19 until converged ;
20 end

Algorithm 1: Steepest Descent Method

where ∇2f(xk) is the Hessian matrix, xk+1 = xk + dk, where dk is the step. Next, minimization is

performed at each iteration k by setting the condition df
ddk

= 0, which is equivalent to

∇2f(xk)dk = −∇f(xk) (2.9)

When successful, the minimization process is carried by solving Equation (2.9) which gives a series

of points that converge to the optimal solution. Despite the quadratical convergence rate for general

nonlinear functions, the method may not converge when the initial guess is to far away from the optimum.

Another disadvantage is related with the requirement to calculate second-order derivatives in addition to

the gradient.

Other methods

Other unconstrained gradient-based methods are available such as the Conjugate Gradient Method,

Quasi-Newton’s Method and Trust Region methods. The Conjugate Gradient Method [23] is an improve-

ment of the Steepest Descent Method. It introduces the notion of conjugate directions set, which allied

with gradient information, the search direction at each step is chosen. It can find a solution of a quadratic

function of n variables in n iterations since it converges quadratically. The Quasi-Newton’s method [20]

is an improvement of the Newton’s method. The method’s concept is the same as in Newton’s method

but, an upgrade is made by including a step parameter, estimated by line search. Compared to New-

ton’s method, performing line search avoids the optimizer to reach an higher function value during the

iterative process, which can happen for highly nonlinear functions. Another upgrade is that the Hessian

matrix does not need to be calculated explicitly but can be estimated by some updating formula such
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as the BFP and BFGS formulas. Those keep the Hessian approximation positive definite, guaranteeing

that the search direction is a descent direction in every iteration. The Trust Region method [24] is an

alternative to the pure Newton’s method since it solves its lack of robustness. The objective function

is approximated by a suited model, typically, a quadratic approximation. This model is then minimized

inside a trusted region, a confined space where the model is a good approximation of the function. In

each iteration, the calculated minimum is benchmarked with the actual function value to make a deci-

sion about moving to the next point and enlarge the trust region or stay in the same point diminishing

the latter. The process repeats until the trust region is small enough, according to user specifications.

2.3.2 Constrained Gradient Based Methods

Constrained optimization problems are the most commons in engineering applications. It may be, for

example, a structural design problem, subject to displacement and stress constraints. Consider a gen-

eral nonlinear programming subjected to equality and inequality constraints, expressed as in Equation

(2.1).

Assuming well-behaved smooth functions, it can be proven that for x∗ to be a minimum, the first order

Karusch-Kuhn-Tucker (KKT) conditions [20] must be necessarily satisfied:

Optimality:
∂L(x∗)

∂xk
=
∂f(x∗)

∂xk
+

m∑
i=1

µi
∂gi(x

∗)

∂xk
+
∑̀
j=1

λj
∂hj(x

∗)

∂xk
= 0 for k = 1, ..., n

non-negativity: µi ≥ 0 for i = 1, ...,m

Complementarity: µigi(x
∗) = 0 for i = 1, ...,m

Feasibility: gi(x
∗) ≤ 0 for i = 1, ...,m

∂L(x∗)

∂λj
= hj = 0 for j = 1, ..., `

(2.10)

where, L = f +
∑m
i=1 µigi +

∑`
j=1 λjhj is the Lagrangian function, µi and λj are Lagrange multipliers.

Although Equation (2.10) must be verified, it does not guarantee that x∗ is a minimum. It may be a

minimum, a maximum or a saddle point. Thus, another condition must be imposed in order to guarantee

that x∗ is a minimum:

∇2L(x∗) = ∇2f(x∗) +

m∑
i=1

µi∇2gi(x
∗) +

∑̀
j=1

λj∇2hj(x
∗) is positive definite (2.11)

where ∇2L is the Hessian matrix of the Lagrangian function. Equation (2.10) and (2.11) are sufficient

conditions for optimality of the constrained optimization problem, stated in Equation (2.1).

Method of Feasible Directions

This method was first presented by Zoutendijk [25] and it is considered one of the most robust avail-

able for constrained optimization problems. The method of feasible directions is able to solve nonlinear
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problems with inequality constraints casted as

minimize f(x)

w.r.t. x

subject to gi(x) ≤ 0 for i = 1, ...,m

(2.12)

The algorithm is divided in three main sub-problems. At each iteration:

1. find a feasible point xk and define the active set of constraints, I;

2. introduce α = max
{
∇fTd,∇gTi d, for each i ∈ I

}
and minimize α with respect to d to find a

descent-feasible direction;

3. perform constrained line search along d to find the step size, using the lower and upper bounds,

xL and xU .

Input: initial feasible point x0, constraints tolerance ε

Output: x∗,minimum of f

1 begin

2 repeat

3 Determine active set I = {i : gi(xk) + ε ≥ 0, i = 1, ...,m}

4 Solve sub-problem 2 to find d

5 if α = 0 then

6 xk satisfies the KKT conditions (Equation (2.10))

7 else

8 Solve sub-problem 3

9 end

10 until xk satisfies the optimality conditions;

11 end

Algorithm 2: Method of Feasible Directions
The main disadvantage is related with the inability to handle equality constraints. Those may be

eventually treated using suitable penalty functions. The detailed methodology is presented in Algorithm

2.

Reduced Gradient Method

The Reduced Gradient method was firstly introduced by Wolfe [26]. This method deals with nonlinear

equality constraints although inequalities can be handled introducing a slack variable to the problem. The

mathematical statement is

minimize f(x)

w.r.t. x ∈ Rn

subject to hj(x) = 0 for j = 1, ..., `

and xL ≤ x ≤ xU

(2.13)
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First, a partition of the design variables are performed using pivoted Gauss elimination,

x =

y
z

 (2.14)

being y the dependent variables with dimension `, and z are the independent variables with dimension

n− `. The gradient of the constraints with respect to y and z are then calculated as

[∇h]T = [B,C] =

[
∂hj
∂yi

,
∂hj
∂zk

]
(2.15)

The dependent variable y is chosen such that B in a non-singular matrix. Consequently, the implicit

function theorem guarantees that y = y(z) is differentiable with h(y(z), z) = 0 and thus, f can be

treated as an implicit function of z, f(y(z), z). Differentiating the constraints and the objective function

with respect to the independent variables, the reduced gradient, dfdz , can be expressed in terms of B and

C. The latter is used to compute the search direction, d. Subsequently, line search is performed along d

to determine how far to go on the design space using a bisection strategy. When dealing with nonlinear

constraints, it is possible that the new point is not feasible. To guarantee feasibility, the Newton’s method

is used to find a new feasible point solving h(y, zk+1) = 0, where z is held fixed. The algorithm finishes

when d = 0. The detailed algorithm may be found in Belegundu and Chandrupatla [20].

Sequential Quadratic Programming

Nowadays, the Sequential Quadratic Programing method (SQP) is one of the most powerful algo-

rithms available to solve nonlinear constraint optimization problems. This method is now a standard tool

to solve complex optimization problems in both academia and industry, which has already proven the

ability to solve practical problems efficiently [27, 28]. This method became particular advantageous in

several aspects [20, 28]: Neither initial or subsequent points have to be feasible, higher rate of conver-

gence comparing to similar methods, it can handle both inequality and equality constraints and only the

active set of constraints are required at each iteration step. This method is characterized by solving a

suitable quadratic programming problem that catches the nonlinearities from the initial problem:

minimize
1

2
dTkBkdk +∇f(xk)Tdk

w.r.t. dk : dk ∈ Rn

subject to ∇h(xk)Tdk + h(xk) = 0

and ∇g(xk)Tdk + g(xk) ≥ 0

(2.16)

whose solution is equivalent to solve the KKT optimality conditions using the Newton’s method, if Bk

is the Hessian matrix and dk the search direction vector. One of the method’s features is related with

the approximation of the Hessian matrix. Normally, the latter is approximated by the damped BFGS

updating formula. After the subproblem is solved, a line search stabilization is performed along dk [27],

where merit functions are employed to control the step size. A detailed review may be found in Boggs

and Tolle [28].
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2.4 Heuristic and Gradient Free Methods

Recalling the discussion in the beginning of the present chapter, there are situations where gradient-

based optimization processes fail. Such cases are found to be noisy or flat objective functions, the

design space is discrete or semi-discrete, objective or constraint functions are discontinuous and thus,

derivatives may not exist. Therefore, a solution may only be obtained using deterministic gradient-free

or heuristics methods. Common gradient-free methods are the deterministic sampling methods, such

as the Hooke-Jeeves pattern search method [29], the simplex method of Nelder-Mead [30] and the

DIRECT algorithm [31]. Hooke-Jeeves algorithm is a simple example of a sampling method. It requires

two main steps: local minimum search and pattern establishment. First, the current base point xB is

symmetrically perturbed in each of the coordinate axis directions, according to some step length, and

the objective function is evaluated. The best point xP in the neighborhood is then calculated, such that

f(xP ) < f(xB). Then, a new base point xB is obtained such that: xB′ = xB , xB = xP and a pattern is

constructed with the aid of xE , given by xE = 2xB − xB′ . If no improved point was found, the step size

is reduced and new probing is performed about xB . Otherwise, probing in the vicinity of the auxiliary

variable xE is performed to find another improved point xP , as previously. Suppose that a new improved

point xP was found from the last operation. If f(xP ) < f(xB), then the new base point is again updated:

xB′ = xB and xB = xP . Otherwise, the exploration is performed around point xB and the step size is

reduced. The process is repeated until the step size is reduced according to some stopping criteria.

Another approach is the heuristic optimization. It is common to relate this approach with processes

that simulates some behavior found in nature. Although in an econometric perspective, a comprehen-

sive overview on heuristic optimization may be found on the work of Gilli and Winker [21]. Heuristics

may be population-based methods such as the Ant Colonies [32], Genetic Algorithms [33], Differen-

tial Optimization [34] and Particle Swarm Optimization [35]. Conversely, they may be trajectory-based

such as the Simulated Annealing [36] and the Threshold Accepting method [37, 38]. An example of a

population-based optimization method is the Ant Colonies, firstly introduced in 1992, by Marco Doringo

[39], to solve discrete optimization problems. The goal of this method is to find the optimal path in a

graph until the best solution is reached. First, the ant search randomly in the surrounding environment

for food. If food is found, pheromones are left in the way back to the colony with an intensity proportional

to the abundance, quality and shortness to the nest. The stronger the pheromones, the more ants will

follow that path towards their objective. At the same time, other ants are exploring other paths. When

the food runs out at that location, the pheromones trails evaporates and other paths are explored. In

computational terms, the food is identified as the objective function, the surrounding environment is the

search space and the pheromones are modeled through adaptive memory.

An example of a trajectory-based algorithm is the Simulated Annealing method. The former results

on the application of statistical mechanic principles since it applies a parallelism between the annealing

process of metals to combinatorial optimization. The physical state of the system is taken to be the

possible solutions. The objective function is the system’s energy and the optimal solution is the minimum

energy state. The system’s temperature is a control parameter that will be diminished at each outer
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iteration. For each outer loop, a determined number of inner loops are specified by the user. The

algorithm runs until a stopping criteria is verified such as a target temperature. In the inner loop, an

initial feasible state xi is admitted. Then, a random search in the neighborhood of xi is performed

to obtain xj . If f(xj) < f(xi), xj replaces xi, otherwise xj is accepted with a probability given by

the Metropolis distribution criterion [40], which depends on the current temperature. This acceptance

criterion enforces that for lower temperatures and positive values of f(xj) − f(xi), the probability of

accepting a worse state is diminished.

2.5 Method Selection

According to the information provided previously, it seems a good decision to chose a gradient-based

deterministic method over any other to solve aerodynamic optimization problems since the aerodynamic

model is built by a composition of regular functions where derivatives exist. These methods provide

the advantage of converging much faster since they do not require as many function evaluations and

computational power. On the other hand, algorithms that accept constraints will be chosen since the

optimization problems addressed in this work have project restrictions that must be accounted. The

SQP method is perhaps the most attractive to solve aerodynamic design problems: it is a state-of-

the-art solver which can handle both equality, inequality and bound constraints; it presents a quadratic

convergence rate; and it is implemented in MATLAB R©. Nevertheless, the performance of gradient-based

algorithms such as the SQP is highly dependent on how efficiently the required gradients are calculated,

thus it is necessary to survey efficient ways of sensitivity analysis which is addressed in the next chapter.
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Chapter 3

Sensitivity Analysis Methods

In the previous chapter, it was shown the advantages of using gradient-based optimization techniques

when comparing to other available methods to solve nonlinear optimization problems. A common feature

between those methods is related with the requirement of providing the derivatives of both the objective

function and constraints to the optimization algorithm.

Martins and Hwang [41] define sensitivity analysis as the study of how changes in the input variables

will affect the outputs of a given physical system. It has great importance not only in gradient-based

optimization but also on uncertainly qualification, error analysis, model development and computational

model-assisted decision making. According to Adelman and Haftka [42], the development of automated

structural optimization processes led to the use of gradient-based optimization techniques where the

sensitivities were used to find a search direction in the design space, in the early 1960s.

When implementing a sensitivity analysis framework, one is concerned with two main aspects: accu-

racy and computational cost [43]. Since there is not an optimal method for every case, several sensitivity

analysis methods will be provided next, and their main characteristics highlighted.

3.1 Symbolic Differentiation

Symbolic differentiation means to apply the well known rules of differentiation, such as the ones

applied to the sum, difference, product and quotient of functions, using computational software. This

methodology is restricted to explicit functions and may be difficult to implement in large problems. Some

libraries are available such as the Symbolic Math Toolbox to MATLAB R© and SymPy written for PythonTM.

An example using the toolbox from MATLAB R© is provided in Figure 3.1. First, a symbolic variable type

is declared and then, a symbolic function is constructed. In the present case f(x) = 2x + sin(x2). The

differentiated function is readily obtained with the aid of the MATLAB R© function diff(), as depicted.

Figure 3.1: Symbolic differentiation example in MATLAB R©
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3.2 Finite-Differences Method

Finite-differences (FD) is one of the oldest and simpler methods to estimate sensitivities. Consider

the vector valued output function F = [F1, ..., Fm]T dependent on the input vector x = [x1, ..., xn]T . The

partial derivative of Fj with respect to xi may be obtained using Taylor-series expansions as

Fj(x0 + eih) = Fj(x0) + h
∂Fj(x0)

∂xi
+
h2

2!

∂2Fj(x0)

∂x2i
+
h3

3!

∂3Fj(x0)

∂x3i
+ (...) (3.1a)

Fj(x0 − eih) = Fj(x0)− h∂Fj(x0)

∂xi
+
h2

2!

∂2Fj(x0)

∂x2i
− h3

3!

∂3Fj(x0)

∂x3i
+ (...) (3.1b)

where ei is the ith basis vector of Rn and h is the step size. Solving Equation (3.1a) to ∂Fj

∂xi
one may get

∂Fj(x0)

∂xi
=
Fj(x0 + eih)− Fj(x0)

h
+O(h) (3.2)

and solving now Equation (3.1b) to ∂Fj

∂xi
yields

∂Fj(x0)

∂xi
=
Fj(x0)− Fj(x0 − eih)

h
+O(h) (3.3)

The formulas in Equation (3.2) and Equation (3.3) are the forward finite-difference (FFD) and backward

finite-difference, respectively. These formulas are first order accurate because the truncation error is

proportional to the step size h. If higher convergence rate is desired, a central finite-differences formula

may be obtained, which is second order accurate. Subtracting Equation (3.1b) from Equation (3.1a),

dividing by h and solving for ∂Fj

∂xi
yields

∂Fj(x0)

∂xi
=
Fj(x0 + eih)− Fj(x0 − eih)

2h
+O(h2) (3.4)

Since the truncation error depends on the step size, one may be tempted to set h smaller as possible.

Nevertheless, if the step size is too small, subtractive cancellation will happen, leading the derivative

value to zero. According to Martins et al. [44], there exists an optimum h that minimizes the overall error,

although it may be impracticable to find it, if the cost of evaluating F is high.

Several gradient-based optimization codes use this method to calculate the sensitivities. Their main

advantage is related with the easiness of implementation since very little is required to know about F .

From a practitioner perspective, finite-differences may be a solution for gradient estimation if the model

is unknown. Nevertheless, the cost of estimating the function’s gradient using these formulas is directly

proportional to the size of x. More precisely, the number of function evaluations are n+ 1 using forward

or backward finite-differences, and 2n using central FD, for each component of F. If x represents the

design variables in some typical engineering optimization problem, both the cost of evaluating F and the

number of design variables may turn the usage of this method impracticable.
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3.3 Complex-Step Derivative

The complex-step derivative (CSD) allows to estimate sensitivities using notions of complex-variable

calculus. The method was first presented in Lyness [45], and in Lyness and Moler [46]. Later, this theory

was rediscovered by Squire and Trapp [47] who developed a formula to estimate the first derivative.

Consider Taylor-series expansion of the real vector valued function F = [F1, ..., Fm]T , dependent on the

input vector x = [x1, ..., xn]T , in the imaginary axis direction,

Fj(x0 + ihek) = Fj(x0) + ih
∂Fj(x0)

∂xk
− h2

2!

∂2Fj(x0)

∂x2k
− ih3

3!

∂3Fj(x0)

∂x3k
+ (...) (3.5)

where ih is a pure imaginary step. Taking the imaginary part of both sides of Equation (3.5) and dividing

by h yields
∂Fj(x0)

∂xk
=

Im[Fj(x0 + ihek)]

h
+O(h2) (3.6)

The formula presented in Equation (3.6) is second order accurate, since the truncation error depends

quadratically on the step size. A major advantage comparing to finite-differences is the non existence of

subtractive cancellation since there is no subtraction operations. Thus, one can obtain sensitivities with

as much precision as the machine allows. Although great advantages are encountered, this method

is harder to implement than finite-differences. Unlike the latter, the complex-step derivative operates

with complex algebra which is not supported by all programming languages [41]. Therefore, it may

be required extra implementation effort in certain programming languages since both data types and

intrinsic functions may have to be redefined. Moreover, the cost of estimating the partial derivatives of

Fj with respect to all the components of x require n function evaluations. Nevertheless, the complex-step

derivative is a powerful method, specially for benchmarking derivatives obtained with other methods.

In order to compare this method to the FD approach, a simple example is presented. Consider the

analytical function given by

f(x) =
sin(x) + sin(3x)

(x− π − 1)2
(3.7)

whose the first derivative is

f ′(x) =
cos(x) + 3cos(3x)

(x− π − 1)2
+

2(sin(x) + sin(3x))

(x− π − 1)3
(3.8)

This study consists in benchmarking derivative approximations given by finite-differences formulas

and the complex-step derivative with the exact value, given by Equation (3.8). Furthermore, the exact

derivative value will be benchmarked with those formulas for several step sizes, at point x = 1. Figure

3.2 presents the result of this study, where the normalized relative error is plotted against the step size,

for the different formulas. This error was calculated as

ε =

∣∣∣∣f ′num − f ′exactf ′exact

∣∣∣∣ (3.9)

where f ′num is the derivative estimated by FD or the complex-step derivative, and f ′exact is the exact
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value. Observing Figure 3.2, one can realize that the forward finite-difference approximation converges

linearly to the exact value until an optimum step size of approximately 10−9. The normalized error is

observed to be approximately 10−10, for that step size. As the step size is reduced further, subtractive

cancellation effects become important, increasing the normalized relative error until it becomes equal to

1. Similar trends are found for the central finite-difference approximation. As the step size is reduced,

the formula converges quadratically until the step reaches about 10−6. Reducing the step size even

further, the same trend of subtractive-cancellation is verified, as previously. The normalized error is

approximately 10−12 for the optimum step size. Considering the accuracy of the previous formulas,

central finite-differences would be preferable since a better approximation is achieved. Nevertheless,

using this formula is roughly twice computationally more expensive than the forward finite-difference

formula.

Considering the complex-step derivative approximation, the formula converges quadratically to the

exact value as the step size is reduced until a step size of 10−8. Reducing the step size even further

has no impact on improving the accuracy since the normalized error is approximately equal to 10−16.

One can conclude that for a sufficient small step size, the accuracy of the formula is the same as the

evaluation of the derivative function, being the round-off the only source of error. On the other hand, this

formula proves to be several times more accurate than forward and central finite-differences. Table 3.1

summarizes the results, showing the value, whose digits in agreement with the exact value are colored

in red, the optimal step size and the error relative to the exact value, for each formula.
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Figure 3.2: Error in the derivative estimation by finite-differences and the complex-step derivative as a
function of the step size

3.4 Semi-Analytical Methods

According to Peter and Dwight [48], the adjoint method is the best option for efficient aerodynamic

shape optimization. The first application of the adjoint method in aerodynamics goes back to Bristow

and Hawk [49, 50], using the panel method. In this subsection, two methods with a common derivation
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Value h opt Normalized Relative Error

Exact -0.182797431022074 - -
FFD -0.182797431005627 4.836E-09 8.997E-11
CFD -0.182797431022028 4.344E-06 2.513E-13
CSD -0.182797431022074 > 1.954E-08 3.037E-016

Table 3.1: Accuracy of the finite-difference and the complex-step derivative formulas to estimate f ′ at
x = 1

are presented: the direct and the adjoint method. They are called semi-analytical methods because

they are derived using concepts of differential calculus but, nothing is said about how the intermediate

partial derivatives should be calculated, thus they may be computed using approximation methods such

as finite-differences.

Consider again a vector valued output function F = [F1, ..., Fm]T , the independent variables vector

x = [x1, ..., xn]T and the state vector y = [y1, ..., yk]T . The dependence of the outputs on the inputs

through F is

f = F(x,Y(x)) (3.10)

where the state variables depend implicitly on the independents through the solution of residual equa-

tions,

r = R(x,Y(x)) = 0 (3.11)

where R = [R1, ..., Rk]T are the residual equations. According to the chain-rule, the total derivative of f

with respect to x in Equation (3.10) yields

df

dx
=
∂F

∂x
+
∂F

∂y

dy

dx
(3.12)

being df
dx the m× n jacobian matrix. Since the residual equations must be always verified, it is true that

dr

dx
=
∂R

∂x
+
∂R

∂y

dy

dx
= 0 (3.13)

which is equivalent to
∂R

∂y

dy

dx
= −∂R

∂x
(3.14)

Solving Equation (3.14) to dy
dx and introducing into Equation (3.12) yields

df

dx
=
∂F

∂x
−∂F
∂y

[
∂R

∂y

]−1
︸ ︷︷ ︸

[ψ]T

[
∂R

∂x

]
(3.15)

Since the matrix product is associative, there are two ways of solving Equation (3.15): the adjoint and

the direct method.
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3.4.1 Direct Method

One way of solving Equation (3.15) is to solve directly the set of linear equations in Equation (3.14)

to dy
dx and then substitute the result in Equation (3.12). This method is more advantageous when m > n,

in other words, the number of output variables are bigger than the number of inputs. It should be noticed

that solving Equation (3.14) corresponds to solve n linear systems of equations, one for each column of

−∂R∂x .

3.4.2 Adjoint Method

Another option to solve Equation (3.15) is through adjoint equations. Considering the product of the

first two matrix after the minus sign in Equation (3.15) and assigning it an adjoint matrix, as suggested

by the under bracket, results

[ψ]T = −∂F
∂y

[
∂R

∂y

]−1
(3.16)

which is equivalent to [
∂R

∂y

]T [
ψ
]

=

[
−∂F
∂y

]T
(3.17)

where [ψ] is the adjoint matrix with dimensions of k ×m. Equation (3.15) can then be solved replacing

[ψ]T after solving the linear system in Equation (3.17). This method is best suited when n > m, since

now the adjoint equations are independent of the number of inputs x. One can realize that Equation

(3.17) represents m systems of equations, one for each column of [ψ].

It is now easy to understand why is this method so attractive to estimate aerodynamic sensitivities.

Typically, one is interested to calculate derivatives of very few output functions, such the lift and drag

coefficients, which may be identified here by the output function F, with respect to hundred or thousand

design variables (wing shape), identified here by x, using most likely millions of state variables (pressure,

density...), identified here by y.

3.5 Automatic Differentiation

Consider a computer program with n input, l intermediate and m output variables. Typically, the

program is constructed based on elementary building blocks such unary and binary operations. Those

can be combined to obtain more elaborated functions and so on until the desired final result is obtained.

Thus, a computer program may be decomposed in elementary functions, such that: ti = Ti(t1, ...ti−1),

where ti represents a computer variable and Ti an elementary function [41].

Automatic differentiation (AD) is an analytical method that allows the exact jacobian calculation in

computer programs based on the idea of an elementary decomposable program. The procedure con-

sists in a combination of differentiation of intrinsic functions and accumulation according to the chain-

rule of differential calculus [51]. In automatic differentiation, the chain-rule for computing a generic dti
dtj

is

given by either
dti
dtj

= δij +

i−1∑
k=j

∂Ti
∂tk

dtk
dtj

(3.18a)
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or
dti
dtj

= δij +

i∑
k=j+1

dti
dtk

∂Tk
∂tj

(3.18b)

The first, given by Equation (3.18a), represents the forward mode, and the second, given by Equation

(3.18b), represents the reverse mode. In the former mode, index j is kept fixed and i is incremented

from i = 1 until ultimately to i = n + l + m. In the latter mode, index i is fixed and j varies from

j = n + l + m until ultimately to j = 1. Therefore, a sweep in forward mode corresponds to obtain a

column of the matrix whose elements are dti
dtj

, meaning to choose a variable in which all the variables will

be differentiated about. On the other hand, in the reverse mode, a sweep corresponds to obtain a row of

the matrix whose elements are given by dti
dtj

. This means to choose a variable to differentiate with respect

to all others. Thus, the reverse mode seems more efficient when n > m, which is a typical situation in

many aerodynamic optimization problems. The opposite is true for the forward mode. Nevertheless,

the reverse mode presents a clear disadvantage. It is expected that the memory requirements are

higher when comparing to the forward mode since the program needs to be run once forward to store

all intermediate variables and once backwards to calculate the derivatives and apply the chain-rule [51].

Implementation and Available Tools

Automatic Differentiation may be implemented by two different approach. One of them is the source-

code transformation, a source-to-source, compiler based approach which intersperses the original source

code and augments it with additional lines of code to perform the differentiation. As a consequence, the

resulting program computes not just the function’s jacobian but also the function’s values. This ap-

proach presents some advantages such as the possibility of implementation in every computer-program

language and code optimization, since the code parsing is done before compiling [51]. But since the

original code is appended, large codes may become easily unreadable and difficult to debug. Sev-

eral packages were developed using source-code transformation. Examples include ADIFOR [52] to

FORTRAN and Tapenade [53] for both C/C++ and FORTRAN.

Another popular method is called operator-overloading. In this approach, variable data types are

redefined to support both its own value and an associated derivative. Berland [54] calls them dual num-

bers. Operators are overloaded to return both the result and the derivative of such operation. In this

latter approach, the code is unchanged, making easier to detect bugs during code development. Nev-

ertheless, it presents the disadvantage of working only on object oriented languages, such as C/C++,

FORTRAN or MATLAB R©, and additionally, it runs slowly comparing to the previous approach. Devel-

oped tools using exclusively operator-overloading include ADOL-C [55] to C/C++ and ADOL-F [56] to

FORTRAN.

ADiMat

ADiMat is the newest AD tool for MATLAB R©. It is an hybrid framework that combines the best

features of source-code transformation and operator-overloading [57]. In simplistic terms, when a new

code have to be differentiated, a code parser analyses the all code and categorizes each of the present

entities in variables, functions or unknowns. The latter category is necessary since MATLAB R© syntax is

powerful, allowing entities with the same name to be used with a different meaning in the same code.
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An algorithm tries to discover the nature of each identifier by analyzing the search path and the builtin

database, where these identifiers might be defined. Next, a dependence analysis is done to determine

the active path, in other words, the set of variables involved in the intermediate computations from the

independent to dependent variables. The latter step is also required since the user may be interested

in computing the jacobian using only a portion of the inputs and outputs. Finally, the differentiation is

performed and those statements are added to code.

3.6 Usage of Methods

In this work, every technique presented will be used, except the direct method, since they present

unique features that make them well suited for a particular application. Symbolic differentiation will be

used to calculate derivatives of simple explicit functions since it allows some algebraic simplifications.

When applied to routines called many times in the code, this methodology is, by far, the most computa-

tionally efficient since it is possible to reduce the number of calculations as it will be clear in Chapter 5.

The finite-differences method will be used exclusively to verify the sensitivity analysis framework since

it is very easy to be implemented and it works for a broader set of built-in functions. The complex-

step derivative will also be used for benchmarking purposes every time complex variable calculations

are possible. It presents the advantage of accurate verification since for a step size small enough, the

derivatives calculated using the CSD match the ones calculated using an analytical method. The adjoint

method will be used to calculate the sensitivities of the disciplinary residual equations and output func-

tions since the number of inputs is much higher than the number of outputs. Automatic differentiation

will also be used since it is easy to apply, it calculates the derivatives exactly and both forward and

reverse modes are implemented in ADiMat which allows to chose the best implementation according to

the number of inputs and outputs of the function under consideration.
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Chapter 4

Aerodynamic Model and Framework

This chapter presents both the theoretical support to justify the chosen aerodynamic model and its im-

plementation. Firstly, the fundamental equations of fluid dynamics and related models will be presented.

Incompressible flows will be primary considered since the speeds of operation are expected to be low.

Incompressible flows are a good approximation typically when the cruise Mach number is less than 0.3.

A major advantage when dealing with such flows is the large amount of knowledge and techniques al-

ready developed. Secondly, it will be shown that the potential flow model is accurate enough, much

easier to implement and generate results faster, comparing with other models. Subsequently, a numeri-

cal technique to solve incompressible potential flows about complex geometries will also be presented,

namely the panel method. Finally, the aerodynamic framework will be explained in detail since some

modifications were made to improve the tool.

4.1 Fundamental Equations in Incompressible Flows

The governing equations of fluid flows are a mathematical description of such flows behavior. They

are conservation laws since they state that quantities such as mass, momentum and energy are con-

served [58].

Figure 4.1: Fixed control volume in space (CV), bounded by the control surface (CS), (adapted from
[58]).

Consider the control volume (CV), bounded by a closed surface (CS) and fixed in space, as depicted

in Figure 4.1. The Reynolds transport theorem accounts for the extensive property rate of change as

dB

dt
=

∫
CV

∂(βρ)

∂t
dV +

∫
CS

βρ(V.n)dS (4.1)

where B is an extensive property of interest, such as mass (m) and linear momentum (mV), β is an
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intensive property, given by B per unit mass (e.g. velocity: linear momentum per unit mass), V is the

velocity vector, ρ is the density and n is the outwards control surface’s normal vector.

Conservation of Mass

The conservation of mass principle states that mass cannot be created neither destroyed,

dm

dt
= 0 (4.2)

According to Ferziger and Peric [59], it follows from the definition of B and β that β = 1, when

B = m. Substituting the results in Equation (4.1), applying the Gauss’ theorem to the second term of

the right hand side, and recognizing that it must hold for an arbitrary control volume, the differential form

is obtained as
∂ρ

∂t
+∇.(ρV) = 0 (4.3)

where ∇. is the divergence operator. If the incompressible flow assumption is made, density is constant

and Equation (4.3) simplifies to

∇.V = 0 (4.4)

Conservation of Momentum

Momentum equations states the second Newton’s law of motion for a given control volume. For the

present case B = mV and consequently, β = V. Second Newton’s law of motion may be written for a

fixed control volume, through Equation (4.1) as

∫
CV

∂(ρV)

∂t
dV +

∫
CS

ρV.(V.n)dS =

∫
CS

(σ.n)dS +

∫
CV

fbdV (4.5)

Following the same procedure as for obtaining the mass conservation equation, results

∂(ρV)

∂t
+∇.(ρV.V) = ∇.σ + ρfb (4.6)

Considering the right hand side of Equation (4.6), fb represent the body forces (eg. gravity, Coriolis or

electromagnetic). If the fluid is assumed to be Newtonian, the stress tensor σ depends only on the fluid

velocity. Assuming also that the fluid is incompressible, the momentum equation simplifies to

∂V

∂t
+ V(∇.V) = −1

ρ
∇p+ ν∇2V + fb (4.7)

where ∇ (without the dot) is the gradient operator, p is the static pressure, ∇2 is the Laplacian operator

and ν is the cinematic viscosity. Equation (4.3) and Equation (4.7) are a coupled system of nonlinear

equations referred as the Navier-Stokes equations for incompressible flows. The unknowns are the

static pressure p and the three components of the velocity vector. Only a few solutions are known for

very simple cases, e.g. the Couette flow, therefore, sophisticated numerical techniques are required to

solve those equations for most of the practical engineering situations.
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4.2 Potential Flow Model

4.2.1 Laplace Equation

Since aircraft wings operating at a low angle of attack may be considered slender bodies, viscous

effects are confined to thin boundary layers next to the surface, opposed to the essentially inviscid

exterior flow. Thus, the analysis may be greatly simplified ignoring the boundary layers and assuming

that the entire flow field is inviscid. This model is based on the assumption of inviscid and irrotational

flow. The latter corresponds to a situation where the average angular velocity ω is zero. This is true in

many inviscid flows. In aerodynamics is usual to define the vorticity vector ξ, defined as ξ = 2ω. Based

on the latter definition, the irrotational condition is

ξ = ∇×V = 0 (4.8)

where ∇× is the rotational operator. Due to the vector identity ∇ × ∇(φ) = 0, it follows from Equation

(4.8) that the velocity field can be written through a potential function φ as

V = ∇φ (4.9)

Substituting Equation (4.9) in Equation (4.4), the Laplace equation is readily obtained,

∇2φ = 0 (4.10)

In order to solve the Laplace equation, two boundary conditions are needed,

∇φ.n = 0 (4.11a)

lim
r→∞

(∇φ−V∞) = 0 (4.11b)

Equation (4.11a) states that the body is impermeable. That is, the velocity must be tangent to the body’s

surface. Equation (4.11b) says that the velocity field must tend to the unperturbed free-stream field,

far away from the body. The Laplace equation presents a clear advantage comparing with the Navier-

Stokes equations. The former is just one equation, as opposed to the couple system of equations, and

it is linear. This means that if a collection of elementary solutions φi are known, any linear combination

of those is also a solution,

φ =
∑
i

ciφi (4.12)

4.2.2 Elementary Solutions

As stated in Equation (4.12), it is possible to obtain more complex solutions by the superposition

of elementary ones. Typical elementary solutions includes the free-stream, source/sink and doublet

potentials [60].
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Free Stream

Since the Laplace equation is a second-order partial differential equation, any first-order polynomial

is a solution. Considering, for example,

φ(x, y, z) = u∞x+ v∞y + w∞z (4.13)

substituting the velocity potential in Equation (4.9) one obtains V = [u∞ v∞ w∞]T , an uniform flow of

components u∞, v∞ and w∞.

Sources/Sinks

Another elementary solution is the source/sink. The velocity potential is given in Cartesian coordi-

nates by

φ(x, y, z) = − σ

4π
√

(x− x0)2 + (y − y0)2 + (z − z0)2
(4.14)

where r0 = (x0, y0, z0) is the position vector of the source/sink location, and r = (x, y, z) is the position

vector. If σ > 0, fluid comes out from the source and the opposite is true for a sink, if σ < 0. For

both cases, |σ| is equal to the volumetric rate. Introducing the velocity potential into Equation (4.9), the

velocity field is readily obtained as

V(x, y, z) =
σ

4π[(x− x0)2 + (y − y0)2 + (z − z0)2]
3
2


x− x0
y − y0
z − z0

 (4.15)

The velocity field is characterized by radial streamlines. It should be noticed that a singularity exists at

r0 since limr→r0 =∞.

Doublet

(a) Source and sink creating a doublet [58] (b) Doublet oriented in the x direction
[60]

Figure 4.2: The doublet element

The doublet may be obtained when a source and a sink are brought together and its intensity σ tends

to infinity such that the product µ = lσ is constant. The distance between the source and the sink is l.
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Based on that, it may be shown that the velocity potential is, in spherical coordinates

φ(r, θ, ψ) =
µ

4π

∂

∂n

(
1

|r− r0|

)
(4.16)

where ∂
∂n is the derivative in the doublet direction, (direction of

−→
OA, in Figure 4.2(a)), r0 = (x0, y0, z0) is

the position vector of the doublet location, and r = (x, y, z) is the position vector. If
−→
OA is chosen to be

along the x axis, the streamlines in plane y = 0 may be represented as in Figure 4.2(b), and Equation

(4.16) simplifies to, now in Cartesian coordinates,

φ(x, y, z) = − µ

4π
(x− x0)

[
(x− x0)2 + (y − y0)2 + (z − z0)2

]− 3
2 (4.17)

and consequently, the velocity field is

V = − µ

4π

[
(x− x0)2 + (y − y0)2 + (z − z0)2

]− 5
2


(y − y0)2 + (z − z0)2 − 2(x− x0)2

(x− x0)(y − y0)

(x− x0)(z − z0)

 (4.18)

4.3 Panel Method

The panel method is a numerical technique to solve geometric complex aerodynamic problems.

According to Hess [61], the method is based on finding the intensity of elementary solutions placed

along the body’s surface which satisfies the boundary conditions. From a computational point-of-view,

this method is much less expensive than other CFD techniques since only discrete control points on the

body’s surface are required, unlike finite-differences or finite-volume methods that requires the entire flow

field to be discretized [60]. For this reason, panel method codes are still used today in the preliminary

stages of design.

Mathematical Background

Figure 4.3: Potential flow over a closed body [60]

Consider the body depicted in Figure 4.3, surrounded by a fluid region of interest V , enclosed by a

surface SB and the normal vector n, pointing inside of SB . Based on the third Green’s identity, a solution
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for the velocity potential for a generic point P , belonging to the interest region, is given by

φ(P ) = − 1

4π

∫
SB

[
σ

(
1

r

)
− µn.∇

(
1

r

)]
dS + φ∞ (4.19)

where σ and µ are source/sink and doublet intensities, respectively, distributed along the surface SB .

They are the problem’s unknowns. The free-stream potential is φ∞ and the distance between the point

P and a point on the surface SB is r. Equation (4.19) gives a relation between the velocity potential

φ at point P and the values of the unknowns at the boundaries, but gives no information about how to

distribute those singularities. Since the source and doublets elements are used to simulate thickness

and to simulate lifting bodies, respectively, Equation (4.19) may be expressed as

φ(P ) =
1

4π

∫
Body+Wake

µn.∇
(

1

r

)
dS − 1

4π

∫
Body

σ

(
1

r

)
dS + φ∞ (4.20)

where the distribution of singularities was rearranged.

Boundary Conditions

Towards the goal of obtaining a unique solution, the next logical step is the specification of boundary

conditions. The impermeability condition may be set directly, through Equation (4.11a). Combining the

impermeability condition with Equation (4.20) results in

[
1

4π

∫
Body+Wake

µ∇
[
∂

∂n

(
1

r

)]
dS − 1

4π

∫
Body

σ∇
(

1

r

)
dS +∇φ∞

]
.n = 0 (4.21)

which is called the Neumann Problem.

Consider now the point P inside the enclosed region by SB . Since the interest region is now bounded,

it is possible to prove that the impermeability condition forces the interior velocity potential to be constant

within the region. Since the value of φ, given by Equation (4.20), is arbitrary, an equivalent and simpler

expression for the impermeability condition may be obtained as

1

4π

∫
Body+Wake

µn.∇
(

1

r

)
dS − 1

4π

∫
Body

σ

(
1

r

)
dS = 0 (4.22)

if φ = φ∞. The latter approach is called the Dirichlet Problem, since the impermeability boundary

condition is satisfied indirectly, and it was chosen to be implemented by Cardeira [17]. The boundary

condition given by Equation (4.11b) is automatically satisfied since the doublet and source influences

vanish far away from the body.

Wake Model and Kutta Condition

Until now, neither Equation (4.21) or Equation (4.22) produce a unique solution since the amount of

circulation is still undefined. To fix the problem, both the doublet strength and the shape of the wake

must be defined. The two dimensional Kutta condition applied to the trailing edge allows to express the

wake’s doublet strength µW as a function of the trailing edge doublet strengths. Thus, this condition is

written as

µW = µU − µL (4.23)
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where µU and µL are the doublet strengths on the upper and lower surface, at the trailing edge (TE), re-

spectively. The wake shape is such that no lift is produced by it. According to Kutta-Joukowski theorem,

the condition for the wake geometry is

V × ξ = 0 (4.24)

where V and ξ are the local velocity and vorticity vectors on the wake, respectively.

Discretization

Since Equation (4.22) must hold for every point P on the body’s surface, it is necessary to discretize

the geometry into small regions, called panels to obtain an approximate solution. The discretization pro-

cess corresponds to specify the boundary condition in a finite number of control points, called collocation

points. For a given control point P , Equation (4.22) is approximated by

N∑
k=1

1

4π

∫
BPk

µn.∇
(

1

r

)
dS +

Nw∑
l=1

1

4π

∫
WPl

µn.∇
(

1

r

)
dS −

N∑
k=1

1

4π

∫
BPk

σ

(
1

r

)
dS = 0 (4.25)

where the integration regions BP and WP stand for Body Panel and Wake Panel, respectively. Physi-

cally, Equation (4.25) represents the influence of all the collocation points in point P . Assuming µ and σ

constant in each panel, Equation (4.25) simplifies to the linear equation

N∑
k=1

Ckµk +

Nw∑
l=1

Clµl = −
N∑
k=1

Bkσk (4.26)

where N is the number of body panels, Nw is the number of wake panels and, Ck and Bk are the

influence coefficients, defined as

Ck =
1

4π

∫
BPk

n.∇
(

1

r

)
dS

Bk =− 1

4π

∫
BPk

(
1

r

)
dS

(4.27)

which depend only on geometrical quantities, as it will be shown later. The coefficient Cl, in Equation

(4.26), is trivially obtained replacing the index in Equation (4.27). Since σ = n.∇φ∞, the right hand side

of Equation (4.26) can be easily known. Through the Kutta condition, Equation (4.23), the wake doublets

can be related with the unknown surface doublets. Introducing a new coefficient such that

Ak =Ck if panel is not at TE

Ak =Ck ± Cl if panel is at TE
(4.28)

Equation (4.26) can then be written as

N∑
k=1

Akµk = −
N∑
k=1

Bkσk (4.29)

Again, Equation (4.29) holds for a collocation point P. To obtain the solution µk, it must be written for

every collocation point on the body. The result is a linear system of equations that may be represented
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as

Aµµ = b (4.30)

where Aµ is the matrix of aerodynamic influence coefficients and b is the vector of source influences.

4.4 Aerodynamic Framework Description

This section presents the aerodynamic framework since some modifications were performed to im-

prove and revise the already developed tool. First, a general description will be performed to present

how the already existing aerodynamic tool was divided into small modules, each of them with specific

tasks. Then, each module will be explained in detail.

Figure 4.4 shows the mainstream data flow in the aerodynamic framework. The trapeziums, in red

and green, are the design variables and the functions of interest, respectively. The first are represented

by xDV and the latter by f . The rectangles with rounded corners, in light blue, are routines (functions).

The first component is called Wing Parametrization. This module translates the design variables into a

discrete set of points which represent the wing’s geometry. Next, the generated set of points are pro-

cessed in a new module called Panels Definition. This routine is responsible for defining the panels’

geometry as a function of those points. The panels are defined by the location of their corners. Knowing

their locations, other relevant quantities can be obtained such as the panels’ area, the location of the

collocation points and local frames of reference where the local velocities will be evaluated. Next, a

routine called Change of Basis is used to express the panels’ corner points in their own frame of ref-

erence. After the panels have been defined, the module called Aero Solver runs an influence routine

to construct the linear system in Equation (4.30) and then solves it to the unknown doublets intensities

µ. Finally, a module called Post-Process calculates the aerodynamic coefficients. In the next sections,

detailed information will be provided about the framework’s constituting modules.

xDV Wing
Parametrization

Panels
Definition

Change
of Basis Aero Solver

Post-Process f

µ

Figure 4.4: Flowchart illustrating the aerodynamic framework

4.4.1 Wing Parametrization

The first step towards obtaining a numerical solution is to translate the design variables to a dis-

crete set of points representing the wing’s geometry. To accomplish that, a MATLAB R© function called

wing geometry.m was developed. A detailed list of the inputs and outputs are presented in Table 4.1.

The wing is parameterized according to the exterior shape and the wing section airfoil. An improve-

ment related with the previous developed framework is the implementation of an airfoil parametrization

providing a set of design parameters to control the airfoil shape in each wing’s cross section.
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Outputs Inputs

Planform Area (S) Sweep Angle (Λ) Tip Twist Angle (δt) Taper Ratio (λ)
Mean Aerodynamic Chord (MAC) Dihedral Angle (Γ) Wing Span (b) Airfoil Control Points ([A, ..., L]j)

Wing Points (WP) Root Twist Angle (δr) Root Chord (cr) Angle of Attack (α)

Table 4.1: List of inputs and outputs of function wing geometry.m

Figure 4.5: Geometrical description of the aircraft half wing

Exterior Wing Shape

The first design step is to define the leading edge. Observing Figure 4.5 one can conclude that the

leading edge (LE) is fully defined by half of the wing span length, b2 = b
2 , and by the sweep and dihedral

angles, Λ and Γ, respectively. The next step corresponds to define the root and the tip of the wing.

These extremities are characterized by an airfoil shape, a root and tip chord lengths, cr and ct, and

their respective twist angles, δr and δt. Alternatively to specify ct, the function wing geometry.m accepts

the taper ratio λ, since λ = ct
cr

. According to the figure, the root’s twist angle is the angle measured

between the root’s chord line, represented by a dark dashed segment, and the x axis. Similarly, the

tip’s twist angle is the angle measured between the segment AB which is parallel to the x axis, and the

the tip’s chord line, also depicted by a dark dashed segment. The local chord lengths and twist angles

in the spanwise direction are automatically defined since they are assumed to vary linearly between

their respective root and tip values. The wing is then discretized in the spanwise direction according to

the user specifications. Each discretized cross-section receives a set of points representing the airfoil

shape, which may change from section to section, if desired. Finally, a rigid rectangular wake is added

to the model, oriented according to the angle of attack α.

After the wing has been fully defined, both the wing’s planform area, S, and mean aerodynamic

chord, MAC, are required to the non-dimensionalisation of the aerodynamic loads. For a trapezoidal
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wing, these quantities are calculated as

S =

(
1 + λ

2

)
b cr (4.31a)

MAC =
2

3

(
λ2 + λ+ 1

λ+ 1

)
cr (4.31b)

Airfoil Definition

As addressed in the previous section, it is necessary to generate the airfoil shape to be used in a

wing section. The implementation procedure follows the work of Venkataraman [62], which corresponds

to solve a constrained least-squares problem. The main advantages of using this parametrization is the

easiness of setting construction constraints such as continuity, tangency and, optimization constraints

such as maximum thickness. The airfoil is parametrized using four cubic bezier curves such that two of

them represents the upper surface and the other two represent the bottom one.

A cubic bezier curve is a parametric curve which is generated by a set of four vertexes forming a

polygon distributed in space. The curve is parametrized as

P(t) =

p(t)
q(t)

 =

3∑
i=0

x
y


i

J3
i (t) (4.32)

where [xi yi]
T are the two dimensional coordinates of the vertex i and will be used as airfoil design

variables. The parameter t is defined as t ∈ [0, 1] and J3
i is the third order ith Bernstein’s basis function,

defined as

J3
i (t) =

(
3

i

)
ti (1− t)3−i (4.33)

Consider now a subset of the airfoil data set as an ordinated set of points U = {(uk, vk)}nk=1. The

ultimate goal is to solve a least-squares problem casted as

minimize
n∑
k=1


(
uk −

3∑
i=0

J3
i (tk)xi

)2

+

(
vk −

3∑
i=0

J3
i (tk)yi

)2


w.r.t. {xi, yi}

, (4.34)

where t = {t0, t1, ..., tn} was chosen to be a prescribed vector to simplify the problem. For illustration

purposes, a symmetrical NACA 0010 airfoil was chosen to be parametrized. A MATLAB R© function

called fit baseline.m was developed to read the airfoil coordinates from a text file and return the set

of bezier control points. The airfoil data was first divided in four groups: the first corresponds to the data

from the trailing edge until the point of maximum thickness, starting from the lower surface; the second

corresponds to the set formed from the previous point until the leading edge; the third allocates all the

points from the leading edge to the point of maximum thickness, in the upper surface; and the fourth

allocates the remaining points. For each set, the least-squares problem is solved to find the control

points with the aid of fmincon, a MATLAB R© constrained nonlinear programming solver. The result is

presented in Figure 4.6.
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Figure 4.6: Airfoil NACA 0010 fitted by bezier curves

Figure 4.7 illustrates the imposed constraints during the airfoil NACA 0010 parametrization. The

control points in red, A and G were not allowed to move, corresponding to the trailing and leading edge,

respectively. Similarly, the points D and J were also fixed, corresponding to the points of maximum

thickness. The points in yellow B and L, were allowed to move in any direction. The points in green, C,

E, I and K are constrained to move relatively to D and J in the horizontal direction, as suggested by

the horizontal red lines. Similarly, the points in blue, F and H were constrained to move in the vertical

direction relatively to the point G, as suggested by the vertical red lines.

The applied constraints are also necessary to parametrize acceptable airfoil shapes during the opti-

mization process. However, to obtain shapes with camber and different thicknesses, the points D and

J must be free to move in any direction. Moreover, control about these features may be achieved by

bounding the control points appropriately.

Figure 4.7: Airfoil NACA 0010 defined by bezier polygons and respective control points constraints

4.4.2 Panels Definition

A panel is fully characterized by a set of four points which represents its vertexes. In addition, it is

necessary to determine a collocation point where the boundary conditions will be enforced, its area and

a local frame of reference where the velocity field will be measured. Since three points define a plane,
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there is no guarantee that four nearest points belonging to the wing’s geometry are coplanar. Therefore,

it is necessary to define an average plane where the element lies on, bounded by the edges formed by

its vertexes. To achieve this task, a MATLAB R© function called panels.m was developed. A detailed list

of the inputs and outputs are presented in Table 4.2.

Outputs Inputs

Panels Corner Points (X1,X2,X3,X4) Panels Areas (DS) Input Points (WP1,WP2,WP3,WP4)
Collocation Points (CP) Panels Basis Vectors (l,m,n)

Table 4.2: List of inputs and outputs of function panels.m

Typically, when the wing has no twist, the taper ratio is small and the airfoil shape is the same for

the all wing, it is possible to assume that four wing points closest to each other are almost coplanar.

Therefore, there is no need to define an average plane to the panel. In the tool developed by Cardeira

[17], the latter approach was assumed and thus, modified in this work. The followed methodology is

based on the work of Hess [61].

Before proceeding further some nomenclature needs to be introduced. The generated set of wing

points are represented by the vector WP, as already suggested in Table 4.1. It is defined as

WP =
[
WP1

T WP2
T WP3

T WP4
T
]T

(4.35)

with e.g. WP1 given by

WP1 =
[
∪ijWP1ij1 | ∪ijWP1ij2 | ∪ijWP1ij3

]T
,∀i ∈ {1, ...,M} ,∀j ∈ {1, ..., N} (4.36)

where ∪ij means concatenation, a compact way to indicate that the indexes are unrolled, and M and

N are the chordwise and semi spanwise number of panels. The same variable WP1, with indexes, is

defined as

WP1ij =
[
WP1ij1 WP1ij2 WP1ij3

]T
(4.37)

where WP1ij1 , WP1ij2 and WP1ij3 are the three dimensional coordinates of the point WP1ij , belonging

to the mesh location (i, j), as stated by Equation (4.37). Points WP1ij to WP4ij are the inputs to

form the panel (i, j) as depicted in Figure 4.8. The expressions for WP2ij until WP4ij are obtained by

changing the variable name in Equation (4.37). When no indexes are present in a panel related variable,

one is assuming that the quantity in question is represented for all the computational mesh, with all the

indexes (i, j) unrolled, as stated by Equation (4.36). This nomenclature holds for both scalar quantities

such as the panel area, or vectors (represented in bolt) such as position vectors, and it will be used from

here forward.

Consider the input points from the wing’s discretization WP1ij , WP2ij , WP3ij , WP4ij , and the

panel (i, j), depicted in Figure 4.8. Two parallel edges are formed by connecting the points WP1ij with
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Figure 4.8: Panel construction through a set of four non-coplanar nearest points.

WP2ij and WP3ij with WP4ij . Thus, four auxiliary vectors may be defined as

Pf ij = WP2ij −WP1ij (4.38a)

Psij = WP3ij −WP4ij (4.38b)

Xf ij =
1

2

(
WP1ij + WP2ij

)
(4.39a)

Xsij =
1

2

(
WP3ij + WP4ij

)
(4.39b)

Using the definitions from Equation (4.38a) and Equation (4.38b), the first basis vector, which lies on the

panel’s plane, can be defined as

lij =

(
Pf ij + Psij

)
‖Pf ij + Psij‖

(4.40)

In this manner, the panel’s corner points X1ij , X2ij , X3ij and X4ij are automatically defined as a

function the vectors Xf ij , Xsij , Pf ij , Psij and lij as

X1,2ij = Xf ij ∓
1

2

(
‖Pf ij‖.lij

)
(4.41a)

X3,4ij = Xsij ±
1

2

(
‖Psij‖.lij

)
(4.41b)

where the minus sign corresponds to the assignment of X1ij and X4ij , and the plus sign to X2ij and

X3ij , in Equations (4.41a) and (4.41b).

Next, the unit normal of the panel is defined as

nij =
Nij

‖Nij‖
(4.42)
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where Nij is a normal vector which is a function of the corner points

Nij =
(
X3ij −X1ij

)
×
(
X4ij −X2ij

)
(4.43)

As already said, a local frame of reference is required to measure the velocity field in each panel.

Two perpendicular unit vectors are already defined, thus, the last one may be determined based on the

last two as

mij = nij × lij (4.44)

Finally, it is necessary to calculate the panel’s area and place the collocation point in the center of the

panel. Both can easily be calculated as a function of the corner points as

CPij =
1

4

(
X1ij + X2ij + X3ij + X4ij

)
(4.45)

and

DSij =
1

2

[
‖XBij ×XAij‖+‖XCij ×XBij‖

]
(4.46)

where XAij = X2ij − X1ij , XBij = X3ij − X1ij , XCij = X4ij − X1ij . Additionally, CPij is the

collocation point location and DSij is the panel’s area.

4.4.3 Change of Basis

Lately it will be required to write some points in the panel’s frame of reference. Consider a point

P written in the global frame of reference with coordinates P = [P1, P2, P3]T . The same point may be

written on the (i, j) panel’s frame of reference whose origin is CPij and the basis vectors are the set

{l,m,n}ij as 
P
′

1

P
′

2

P
′

3

 =


lij1 lij2 lij3

mij1 mij2 mij3

nij1 nij2 nij3



P1 − CPij1
P2 − CPij2
P3 − CPij3

 (4.47)

Each row of the matrix is composed by the components of each basis vectors. To implement Equation

(4.47), a generic function called convert.m was developed. This function accepts any basis vectors,

origin and point P . As it will be clear next, its also useful to express the panel’s corner points in its own

frame of reference. The implementation routine is called write local corners.m and a list of outputs

and inputs of that function is presented in Table 4.3.

Outputs Inputs

Local Panels Points (X
′

1,X
′

2,X
′

3,X
′

4) Collocation Points (CP) Panels Basis Vectors (l,m,n) Panels Corner Points (X1,X2,X3,X4)

Table 4.3: List of inputs and outputs of function write local corners.m

4.4.4 Aerodynamic Solver

At this point, all the necessary requirements to obtain a solution to Equation (4.30) are met. The

aerodynamic solver consists on a routine to calculate the coefficients of influence, assemble and solve
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the resulting system. The implementation was carried in a MATLAB R© function called aero solver.m. A

detailed list of the inputs and outputs are presented in Table 4.4.

Outputs Inputs

Doublet Intensities (µ) Local Panels Points (X
′

1,X
′

2,X
′

3,X
′

4) Collocation Points (CP) Angle of Attack (α)
Residuals (R) Panel Basis Vectors (l,m,n) Free-stream Velocity (V∞)

Table 4.4: List of inputs and outputs of function aero solver.m

Consider the dual M × N mesh as displayed in Figure 4.9. The latter is characterized by three

main features. The vertical red line divides the effectively modeled grid from their image, thus it may be

thought as a mirror. The reason behind it is because the wing was assumed symmetric with respect to

the Oxz plane of Figure 4.5 and therefore only half was actually modeled. The grid’s image plays a role

in the implementation of the method of images. The horizontal red line divides the wake from the wing

body panels where the boundary conditions will be enforced.

(i, j)

(m,n)

Wake panels

j,n

i,m

Figure 4.9: M × N computational mesh. Influence panel (m,n), influenced panel (i, j) and respective
images

The influence routine consists of setting Equation (4.29) for every wing body collocation point. Rewrit-

ing the equation in residual form and suited for the computational mesh, yields

Rij =

N∑
n=1

[
M−1∑
m=1

(Cijmnµmn + Bijmnσmn) + CijMn

(
µ(M−1)n − µ1n

)]
= 0 (4.48)

where Rij is the residual associated with the body panel (i, j), depicted in red, in Figure 4.9. The

quantities Cijmn and Bijmn are the total dipole and source influences from panel (m,n) on panel (i, j),

respectively. These quantities also take in account the influence of the image’s panel (m,n) on the

panel (i, j). It should also be noticed that there is no need to go through the process of defining a new

image’s panel, as described earlier. The influence of the latter on panel (i, j) is exactly equivalent to

the influence of panel (m,n) on the image of panel (i, j). The great advantage is because panel (m,n)

is already defined and only the collocation point’s position of image panel (i, j) is additionally required

to calculate the contribution to Cijmn and Bijmn. In this manner, the total influence coefficient Bijmn is
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composed by the sum of B1ijmn with B2ijmn, where the first term is actually the influence of panel (m,n)

on panel (i, j) and the second, the influence of panel (m,n) on panel (i, j) image. The same principle

and nomenclature applies to the coefficient Cijmn, thus Cijmn = C1ijmn + C2ijmn. In this manner, it is clear

that the only unknown in Equation (4.48) is the doublet vector, since the source intensity is known and

equal to

σmn = nmn.V∞ (4.49)

The influence coefficients present in Equation (4.48) are integral terms which can be proven to be a

function of the influence panel’s corner points expressed in their own local frame of reference, and the

influenced panel collocation point’s location expressed in that frame of reference. According to Katz and

Plotkin [60], those influence coefficients are generically defined as

B = − 1

4π
{[s12 + s23 + s34 + s41] + |z| [q12 + q23 + q34 + q41]} (4.50a)

C =
1

4π
[q12 + q23 + q34 + q41] (4.50b)

where the contributions sij and qij are expressed as

sij =
(x− xi)(yj − yi)− (y − yi)(xj − xi)

dij
ln

(
ri + rj + dij
ri + rj − dij

)
(4.51a)

qij = arctan

(
mijei − hi

zri

)
− arctan

(
mijej − hj

zrj

)
(4.51b)

and additionally

mij =
yj − yi
xj − xi

(4.52a)

dij =
√

(xj − xi)2 + (yj − yi)2 (4.52b)

rk =
√

(x− xk)2 + (y − yk)2 + z2 (4.52c)

ek = (x− xk)2 + z2 (4.52d)

hk = (x− xk)(y − yk) (4.52e)

where (x, y, z) is the influenced panel collocation point’s location and (xk, yk) the influence panel corner

point’s location, both expressed on the influence panel’s frame of reference.

Writing Equation (4.48) for every collocation point (i, j) is equivalent to set an influence matrix and a

right hand side, as expressed in Equation (4.30). The next step to obtain a solution is to solve the system.

This is accomplished using a MATLAB R© function called linsolve. The solver uses LU factorization with

partial pivoting, according to the documentation available on the company’s website [63].

4.4.5 Post-Processing

Another advantage of using the panel method is concerned with the easiness of computing the

pressure coefficients directly from the previous obtained solution [60]. In this manner, the calculation of
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the aerodynamic coefficients is quite straightforward as explained next.

The total velocity vector on the panel (ij) is the algebraic sum of the free-stream plus the perturbation

velocity vectors, V∞ and v, respectively. In the panel’s frame of reference, the previous statement is

written as

Vij = (V∞l, V∞m, V∞n)ij + (vl, vm, vn)ij (4.53)

where the perturbation velocities are calculated for each panel as

vlij = − ∂µ

∂l

∣∣∣∣
ij

(4.54a)

vmij
= − ∂µ

∂m

∣∣∣∣
ij

(4.54b)

These partial derivatives are estimated using second-order central finite-differences if the panel is not at

the mesh’s boundary and backward or forward first-order finite differences otherwise, depending which

boundary is being considered. Since the velocity vector is tangent to the panel’s surface, there is no

need to compute the perturbation velocity in the normal direction because the normal components of

the free-stream and perturbation velocity vectors cancels out.

Since the flow is potential and irrotational, the pressure coefficient at the panel (ij) is expressed as

a function of the velocity vector as

Cpij = 1− |Vij |2

|V∞|2
(4.55)

Knowing the pressure coefficient along the wing’s surface, it is possible to obtain the aerodynamic co-

efficients through numerical integration. Therefore, the lift, drag and moment coefficients are calculated

as

CL = − 2

S

M−1∑
i

N∑
j

CpijDSij (nij .eL) (4.56a)

CD = − 2

S

M−1∑
i

N∑
j

CpijDSij (nij .eD) (4.56b)

CM = − 2

S. l0

M−1∑
i

N∑
j

CpijDSij (CPij × nij) (4.56c)

where S is the wing planform area, DSij and nij are the panel’s (ij) area and normal vector and l0

is an appropriated reference length. From the moment coefficient vector CM, one is interested in the

first and second components, corresponding to the rolling and pitching moment coefficients, CMx
and

CMy
, respectively. For those cases, the reference dimension l0 is equal to the wing span b and the

mean aerodynamic chord, MAC, respectively. The vectors eL and eD are the unit vectors with the same

direction as the lift and drag forces. They are a function of the angle of attack as

eL = [cosα, 0, sinα]
T (4.57a)

eD = [− sinα, 0, cosα]
T (4.57b)
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Computationally, the post process of the solution was carried in a MATLAB R© function called post process.m.

A detailed list of inputs and outputs is presented in Table 4.5.

Outputs Inputs

Lift Coefficient (CL) Doublet Intensities (µ) Panel Basis Vectors (l,m,n)
Drag Coefficient (CD) Panels Corner Points (X1,X2,X3,X4) Angle of Attack (α)

Rolling Moment Coefficient (CMx
) Collocation Points (CP) Mean Aerodynamic Chord (MAC)

Pitching Moment Coefficient (CMy ) Panels Areas (DS) Planform Area (S)
Aerodynamic Efficiency (CL

CD
) Free-stream Velocity (V∞)

Table 4.5: List of inputs and outputs of function post process.m

4.5 Code Verification

A benchmark between the reformulated tool, the results obtained by Cardeira [17] and an airfoil/wing

design tool, the XFLR5 [64], was also performed. The test case corresponds to an unswept and un-

twisted rectangular wing with an aspect ratio of 4 and a NACA 0010 airfoil. Since the three dimensional

panel method code used in XFLR5 is not available, an additional verification is made using the lifting-line

theory. According to Corke [65], the lift and drag coefficients for an unswept wing with an uncambered

airfoil in inviscid potential flow are

CL =
2πAα

2 +
√

4 +A2

CD =
C2
L

πA e

(4.58)

where A is the aspect ratio, α is the angle of attack and e is the efficiency factor which accounts

with the taper ratio effect. For rough calculations, Corke [65] recommends e equal to 0.8. For a flight

configuration of: α = 6
◦

and V∞ = 75m/s, the resulting aerodynamic coefficients are presented in

Table 4.6. The results presented were obtained using a mesh of 64 × 34 panels in the chordwise and

CL CD CMy

Lifting-line theory [65] 0.40665 0.0165 -
XFLR5 [64] 0.39502 0.0122 -0.08975

Cardeira [17] 0.09572 0.0074 -
Rodrigues 0.39161 0.0128 -0.08910

Table 4.6: Aerodynamic coefficients benchmark for the test case with α = 6
◦

and V∞ = 75m/s

spanwise directions, respectively. The largest deviation is observed for Cardeira’s results because errors

were found in the post-processing code part, where the aerodynamic coefficients were being calculated

wrongly. Taking the values from the XFLR5 inviscid analysis as reference, the relative errors in lift, drag

and pitching moment coefficients of the modified framework are 0.86%, 4.92% and 0.72%, respectively.
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Chapter 5

Sensitivity Analysis Framework

This chapter presents the sensitivity analysis framework. Figure 5.1 presents a schematic representation

of the new and already existent modules. Each module presented in Chapter 4 has its own sensitivity

analysis block, represented by the gray dashed rectangles with rounded corners, labeled with the method

used for sensitivity analysis, where the jacobian of the outputs relative to the inputs are evaluated. After

those derivatives are determined, the chain-rule will be used to ultimately calculate the derivatives of the

interest functions with respect to the design variables.

xDV Wing
Parametrization

Panels
Definition

Change
of Basis Aero Solver

Post-
Process

f
Automatic

Differentiation
Symbolic

Differentiation
Symbolic

Differentiation
Adjoint
Method

CHAIN-RULE

Figure 5.1: Flowchart illustrating the sensitivity analysis framework

When calculating the jacobians, one is concerned about two major requirements:

1. Accuracy: The derivatives have to be estimated with as much precision possible since exact

gradient calculation allows to reduce the number of iterations during the optimization process,

clearly affecting the convergence behavior of the algorithm;

2. Computational cost: The number of intermediate variables are about O(103), even for relatively

course meshes, when the aerodynamic coefficients are still not converged. Thus, the intermediate

jacobians have aboutO(106) elements, for those cases. Thus, an effort has to be made concerning

with efficient algorithms and good programming practices.

The chapter will begin with a mathematical formulation including a series of variable definitions and

the application of the chain-rule to the aerodynamic framework. Next, a detailed presentation will be

made for the sensitivity analysis of each framework’s module, justifying the method used, exhibiting the

implementation procedures and the verification of the results with other sensitivity analysis methods

available. At the end of the chapter, a comparison in accuracy and computational cost will be made
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between the new sensitivity analysis framework and the one obtained using finite-differences, assuming

the aerodynamic framework as a unique function of the design variables.

5.1 Mathematical Formulation

5.1.1 Design Variables

The first point one must consider is to define the vector of design variables. Those are the inputs of

the function wing geometry.m, as described in Table 4.1. The corresponding design vector is character-

ized by a segment containing only the wing’s planform representation, another segment containing the

control points for each wing section and the angle of attack. Thus, the design vector is defined as

xDV =
[
α xgeo

T xairfoil
T
]T

(5.1)

where each of the right hand side vectors are

xgeo =
[
Λ Γ δr δt b cr λ

]T
(5.2a)

xairfoil
T =∪j

[
Ax ... Lx Ay ... Ly

]
j
,∀j ∈ {1, ..., N + 1} (5.2b)

The points A through L are the airfoil control points’ coordinates, as defined in section 4.4.1, j is the

wing’s section index and N is the number of the semi spanwise number of panels. Thus, the resulting

design vector xDV , has the size of 8 + 24(N + 1).

5.1.2 Intermediate Variables

After defining the design variables, several intermediate others need to be presented since they will

provide the necessary information to calculate the jacobians to be used in the chain-rule. The first

auxiliary vector is called PP, short for ”Panels Points”, which results from the concatenation of the four

corners of each panel, as stated by

PP =
[
X1

T X2
T X3

T X4
T
]T

(5.3)

One should remember the reader to the notation presented in the beginning of section 4.4.2 for the

meaning of using variables with and without index notation when those are directly related with the

panels. Those concepts apply vastly on this chapter. The second auxiliary vector results from the

concatenation of the three panel’s basis vectors. It is named LV, short for ”Local Vectors”, and is

defined as

LV =
[
lT mT nT

]T
(5.4)

According to Table 4.2, the vectors PP, CP, DS and LV depend explicitly on WP exclusively. The

third auxiliary vector is obtained from the concatenation of the panel points expressed in its own frame

of reference. Similarly to Equations (5.3) and (5.4), the variable LPP, short for ”Local Panel Points” is
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defined as

LPP =
[
X
′

1

T
X
′

2

T
X
′

3

T
X
′

4

T
]T

(5.5)

and according to Table 4.3, it depends explicitly on the variables PP, CP and LV.

5.1.3 Adjoint Method
Paying now close attention to the input variables in Table 4.4 and Table 4.5, one may define an

intermediate information vector x2, as the concatenation of several auxiliary variables presented before

x2 =
[
x1

T DST LPPT S MAC α V∞

]T
(5.6)

where x1 is defined as

x1 =
[
PPT CPT LVT

]T
(5.7)

such that R = R(x2,µ) and f = f(x2,µ), where f is a constraint or objective function. It should be

clear that no explicit dependence exists between f and LPP or between R and PP, DS, MAC and S.

This only means that the respective jacobians are null. Since the length of x2 is 37(M × N) + 4, thus

much larger then the number of outputs, the adjoint method is the most appropriated to calculate df
dx2

as

df

dx2
=

∂f

∂x2
+
[
ψ
]T ∂R

∂x2
(5.8a)

[
∂R

∂µ

]T [
ψ
]

= −
[
∂f

∂µ

]T
(5.8b)

5.1.4 Chain-Rule
The last step in the sensitivity analysis framework corresponds to the assembly of the intermediate

jacobians and to the application of the chain-rule. Since an intermediate information vector x2 is already

defined, the final jacobian is given by
df

dxDV
=

df

dx2

dx2

dxDV
(5.9)

where dx2

dxDV
corresponds to

dx2

dxDV
=

[[
dx1

dxDV

]T [
dDS

dxDV

]T [
dLPP

dxDV

]T [
∂S

∂xDV

]T [
∂MAC

∂xDV

]T [
∂α

∂xDV

]T
[0]

]T
(5.10)

Note that some entries of the matrix dx2

dxDV
were already replaced by their respective partial derivatives

since explicit dependence is observed for those cases. The reason is because S and MAC are outputs

from the first module, Wing Geometry, and α is a design variable. The zero matrix, in the last entry,

corresponds to ∂V∞
dxDV

, since V∞ does not depend on the design variables. Moreover, ∂α
dxDV

is given by

∂α

∂xDV
=
[
1 0 . . . 0 0

]
(5.11)

The remaining matrix entries are still required to be expressed in terms of the partial derivatives, ob-

tained directly from the modules of sensitivity analysis. That task can be easily accomplished attending
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the fact that
dx1

dxDV
=

∂x1

∂WP

∂WP

∂xDV
(5.12)

dDS

dxDV
=

∂DS

∂WP

∂WP

∂xDV
(5.13)

dLPP

dxDV
=
∂LPP

∂x1

∂x1

∂WP

∂WP

∂xDV
(5.14)

5.2 Sensitivities of Wing Parametrization Module

The sensitivity analysis for the module Wing Parametrization will now be presented. Its goal corre-

sponds to the calculation of three jacobian matrices, ∂S
∂xDV

, ∂MAC
∂xDV

and ∂WP
∂xDV

. The first two matrices are

calculated by hand since the respective analytical expressions are simple. The last one is calculated

with the aid of automatic differentiation since the dependence of WP on the design variables is much

more complex than the dependence of S and MAC on the same variables.

5.2.1 Partial Derivatives by Symbolic Differentiation

Observing Equation (4.31a) one may conclude that the planform area depends only on the taper

ratio, wing span and the root chord. Thus, the partial derivatives different from zero are given by

∂S

∂cr
=

(
1 + λ

2

)
b (5.15a)

∂S

∂b
=

(
1 + λ

2

)
cr (5.15b)

∂S

∂λ
=
b cr
2

(5.15c)

Observing now Equation (4.31b), only explicit dependence on the root chord and taper ratio are ob-

served. Therefore, the partial derivatives different from zero are given by

∂MAC

∂cr
=

2

3

(
λ2 + λ+ 1

λ+ 1

)
(5.16a)

∂MAC

∂λ
=

2

3
cr
λ(λ+ 2)

(λ+ 1)
2 (5.16b)

5.2.2 Partial Derivatives by Automatic Differentiation

The calculation of ∂WP
∂xDV

was carried using automatic differentiation (AD), more precisely with ADiMat.

A decision had to be made regarding the method of propagating the intermediate derivatives since both

forward and reverse modes are implemented in the AD tool. The choice was based on the number of

outputs and inputs ratio. The number of inputs in wing discretization.m are 8 + 24(N + 1) and the

number of outputs are 3(N ×M), where M and N are the chordwise and semi-spanwise number of

panels. It is worth to use the forward mode of AD if the number of outputs is bigger than the number

of inputs. In other words, forward mode is justified for the present case if the condition M
N > 10.67

N2 + 8
N

holds. Since the required number of panels in the chord direction is expected to be higher than the
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number of panels in the span direction and N > 10, most likely, it seems plausible to use forward mode.

ADiMat provides a high-level function which implements the forward mode of AD, called admDiffFor.

The routine takes as arguments an handle to the function to be differentiated, the function’s input values

and a seed matrix S. The output is a matrix equal to JS, where J is the jacobian of all the outputs

with respect to all the inputs. One may choose the right seed matrix to calculate the partial derivatives

of interest. Alternatively to the seed matrix, admDiffFor accepts options where one may choose which

variables are independent and dependent, where the remaining function’s variables are assumed as

constants. The latter approach was chosen in the implementation.

When calling admDiffFor with an handle to wing geometry.m, an additional function is created with

the differentiated code named with the same name of the original function added by the prefix g . A

great advantage of using AD is the easiness of implementation from the users perspective, being the

main reason why it was used in this module, as it will be seen next.

5.2.3 Benchmark - Complex-Step Derivative

Since the complex-step derivative may also produce results with the same precision as automatic

differentiation, both methods were implemented and compared to chose the best. First, a baseline wing

configuration was chosen. The choice was quite arbitrary since one is only interested in comparing the

execution time and the derivatives accuracy, for both methods. Nevertheless, the configuration chosen

was a plane rectangular wing withA = 6, without twist, sweep and dihedral. The airfoil is a NACA 0010

and it is the same along the wing span. Also, the flight condition is characterized by V∞ = 75m/s and

α = 1.5◦ . This wing’s configuration will be adopted along this chapter for all the benchmark purposes.

First, one must guarantee that the derivatives are being calculated correctly. Table 5.1, provides a

representative benchmark of the derivatives calculated in this module. The table presents the absolute

error of the partial derivatives of a wing point P components with respect to the components of α∪xgeo.

The point P is an element of WP, located on the lower surface of the wing. According to the table, the

absolute error is really small, being the greatest error about O(10−16). This analysis was carried for all

wing points, with respect to all the inputs, although the results are not presented here. In that situation,

the worst error is O(10−14).

Additionally, the execution time of each implementation was also benchmarked and presented in

Table 5.2. The elapsed time was measured using the tic and toc commands, using an Intel R© CoreTM

i5-2410M CPU @ 2.30GHz processor, which was used to obtain all the results presented in this work.

According to the same table, the execution times are quite similar differing in a few seconds, for all the

mesh sizes. Nevertheless, automatic differentiation is slightly faster with savings up to 60%, thus, it was

chosen to be implemented.

5.3 Sensitivities of Panels Definition Module

The jacobian matrices generated in the second sensitivity analysis module are presented next. They

correspond to a set of four jacobians: ∂PP
∂WP , ∂CP

∂WP , ∂LV
∂WP and ∂DS

∂WP . These matrices were constructed

with the aid of smaller ones, as demonstrated next. All of the latter matrices are obtained using symbolic
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E

(
∂Pi
∂Λ

)
E

(
∂Pi
∂Γ

)
E

(
∂Pi
∂δr

)
E

(
∂Pi
∂δt

)
E

(
∂Pi
∂b

)
E

(
∂Pi
∂cr

)
E

(
∂Pi
∂λ

)
E

(
∂Pi
∂α

)
i = x 5.55E-17 0 6.94E-18 4.34E-19 0 0 6.94E-18 0
i = y 0 0 0 0 6.94E-18 0 0 0
i = z 0 5.55E-17 0 6.94E-18 0 0 4.34E-19 0

Table 5.1: Absolute error of point P derivatives with respect to α ∪ xgeo components

No. panels 50 200 450 800 1250 1800

CS time [s] 0.639 3.011 9.332 19.815 38.970 64.553
AD time [s] 0.380 1.151 4.191 10.400 27.219 55.999
Savings [%] 40.5 61.8 55.1 47.5 30.2 13.3

Table 5.2: Computational cost of the Wing Parametrization sensitivity analysis module for M = N .

differentiation, with the aid of the Symbolic Math ToolboxTM from MATLAB R© and coded by hand. The

process was quite lengthy since a large number of intermediate calculations were necessary to build the

jacobians but, the price to pay was fair since large savings in the computational runtime were obtained.

5.3.1 Partial Derivatives by Symbolic Differentiation

The process of obtaining the jacobians was performed through differentiating Panels Definition mod-

ule. Taking the partial derivatives of Equations (4.38a) and (4.38b) with respect to the wing points WPkh

and considering the derivatives different from zero only, one can write

∂Pf ij

∂WP2ij

=
∂Psij

∂WP3ij

= [I] = −
∂Pf ij

∂WP1ij

= −
∂Psij

∂WP4ij

(5.17)

and doing the same to Equations (4.39a) and (4.39b)

∂Xf ij

∂WP1ij

=
∂Xf ij

∂WP2ij

=
1

2
[I] =

∂Xsij

∂WP3ij

=
∂Xsij

∂WP4ij

(5.18)

where [I] is the 3 × 3 identity matrix. Observing now the dependency of lij on Pf and Ps in Equation

(4.40) it is possible to state that

dlij
dWPkh

=

[
∂lij

∂Pfmn

∂lij
∂Psmn

]
∂Pfmn

∂WP1kh

∂Pfmn

∂WP2kh

[0] [0]

[0] [0]
∂Psmn

∂WP3kh

∂Psmn

∂WP4kh

 (5.19)

where the non-zero entries for the matrices ∂lij
∂Pfmn

and ∂lij
∂Psmn

in Equation (5.19) are obtained for m = i

and n = j, given by

∂lijk
∂Pfijh

=
∂lijk
∂Psijh

= −
(
Pfijk + Psijk

) (
Pfijh + Psijh

)
‖Pf ij + Psij‖3

, k 6= h (5.20a)

∂lijk
∂Pfijh

=
∂lijk
∂Psijh

=
P 2
fijp

+ P 2
fijq

+ P 2
sijp + P 2

sijq + 2
(
PfijpPsijp + PfijqPsijq

)
‖Pf ij + Psij‖3

, k = h, p 6= q 6= k (5.20b)
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Observing now Equations (4.41a) and (4.41b) one may realize they are quite similar, in fact, the equa-

tions have the same form if one consider that X1ij corresponds to X4ij , X2ij to X3ij , Xf ij to Xsij and

Pf ij to Psij . Taking this advantage one may realize that the different from zero partial derivatives of

X1ij and X2ij with respect to Xf ij , Pf ij and lij are given by

∂X1ij

∂Xf ij

=
∂X2ij

∂Xf ij

= [I] (5.21a)

∂X1ijm

∂Pf ijn
= −

∂X2ijm

∂Pf ijn
= −

Pfijn .lijm

2‖Pf ij‖
(5.21b)

∂X1ij

∂lij
= −

∂X2ij

∂lij
= −
‖Pf ij‖

2
[I] (5.21c)

The different from zero partial derivatives of X3ij and X4ij with respect to Xsij , Psij and lij are obtained

easily using the correspondence presented previously. Since all the building blocks to construct dPPij

dWPkh

are defined, the assembly according to the chain-rule is

dPPij
dWPkh

=



∂X1ij

∂Xfmn

∂X1ij

∂Pfmn

∂X1ij

∂lmn
[0] [0]

∂X2ij

∂Xfmn

∂X2ij

∂Pfmn

∂X2ij

∂lmn
[0] [0]

[0] [0]
∂X3ij

∂lmn

∂X3ij

∂Xsmn

∂X3ij

∂Psmn

[0] [0]
∂X4ij

∂lmn

∂X4ij

∂Xsmn

∂X4ij

∂Psmn





∂Xfmn

∂WP1kh

∂Xfmn

∂WP2kh

[0] [0]

∂Pfmn

∂WP1kh

∂Pfmn

∂WP2kh

[0] [0]

dlmn
dWP1kh

dlmn
dWP2kh

dlmn
dWP3kh

dlmn
dWP4kh

[0] [0]
∂Xsmn

∂WP3kh

∂Xsmn

∂WP4kh

[0] [0]
∂Psmn

∂WP3kh

∂Psmn

∂WP4kh


(5.22)

Considering Equation (4.45), one may quickly conclude that the collocation point location only de-

pends on the panel corner’s locations. Therefore, the partial derivatives of CPij different from zero

are
∂CPij
∂X1ij

=
∂CPij
∂X2ij

=
∂CPij
∂X3ij

=
∂CPij
∂X4ij

=
1

4
[I] (5.23)

combining the results from Equation (5.23) and Equation (5.22) one may calculate the assembly

dCPij
dWPkh

=
∂CPij
∂PPmn

dPPmn
dWPkh

(5.24)

The next interest partial derivative is the panel’s areas DS with respect to the input points WP.

Observing Equation (4.46), it can be shown that dDSij

dWPkh
may be given by

dDSij
dWPkh

=
∂DSij
∂Umn

∂Umn

∂PPrs

dPPrs
dWPkh

(5.25)

where UT
mn = [XA XB XC]mn. Also, through Equation (4.46), it can be concluded that the non zero
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components of ∂Umn

∂PPrs
are given by

∂Umn

∂PPmn
=


−[I] [I] [0] [0]

−[I] [0] [I] [0]

−[I] [0] [0] [I]

 (5.26)

The partial derivatives for ∂DSij

∂Umn
may be found in section A.1 in Appendix A since each matrix entry is

calculated individually.

Considering now Equations (4.42) and (4.43), it can easily be noticed that the partial derivatives of

the unit normal n with respect to the input wing points WP are given by

dnij
dWPkh

=
∂nij
∂Nmn

∂Nmn

∂PPrs

dPPrs
dWPkh

(5.27)

Finally, from Equation (4.44), it can be observed that the second basis vector depends on the first

and third, for each panel. Therefore, it can be written that

dmij

dWPkh
=

[
∂mij

∂lmn

∂mij

∂nmn

]
dlmn

dWP1kh

dlmn
dWP2kh

dlmn
dWP3kh

dlmn
dWP4kh

dnmn
dWP1kh

dnmn
dWP2kh

dnmn
dWP3kh

dnmn
dWP4kh

 (5.28)

Since large expressions are present in the intermediate jacobians in Equations (5.27) and (5.28),

the expressions for ∂nij

∂Nmn
, ∂Nmn

∂PPrs
and the first matrix in the right hand side of Equation (5.28) are also

presented in section A.1 in the Appendix A.

5.3.2 Benchmark - AD and the Complex-Step Derivative

Since this module was constructed using symbolic differentiation, it was firstly required to guarantee

the resulting jacobians were being calculated correctly. To accomplish that task, the same wing config-

uration was used to verify the previous module . Only two benchmark cases are presented here for the

jacobians dCP
dWP and dLV

dWP although the analysis was carried for all the calculated jacobians.

To verify this sensitivity analysis module, the resulting jacobians were compared using both automatic

differentiation and the complex-step derivative with a step-size of h = 10−50. Consider Figures 5.2 (a)

and 5.2 (b). Each of the jacobians were unrolled, column by column, and for each entry on the jacobian,

labeled as the horizontal axis in both plots, the absolute error was calculated using both AD and the

CSD as reference, represented by the red and blue dots, respectively. According to the same figures,

this error is bounded for both cases and very small, < O(10−15), proving the derivatives were calculated

correctly and therefore are accurate.

As already said, one of the greatest benefits of using symbolic differentiation (SD) on this module

relates not only with the derivatives calculated accurately but also with the huge amount of computational

time saving. According to Table 5.3, the elapsed time using the developed module is about a thousand

times faster than using AD or the CSD. One of the reasons relates with algebraic simplifications, reducing

the number of calculations, and attention to jacobian sparsity, being only the nonzero entries calculated.
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(a) Absolute error for all the entries of dCP
dWP

(b) Absolute error for all the entries of dLV
dWP

Figure 5.2: Absolute error for all the entries of dCP
dWP and dLV

dWP

The same could be done using sparsity exploration on the AD tool and a gain would be obtained.

Nevertheless, coding this module by hand, one could also use MATLAB R© vectorization techniques to

improve even further the framework’s performance.

No. panels 200 450 800 1250 1800

CSD time [s] 20.05006 109.4079 289.9539 761.1905 2821.0137
AD time [s] 22.93737 148.1591 599.1266 2296.589 8623.2376
SD time [s] 0.117399 0.294621 0.554629 1.005761 1.822698

Savings CSD [%] 99.4 99.7 99.8 99.9 99.9
Savings AD [%] 99.5 99.8 99.9 100 100

Table 5.3: Computational cost of the Panels Definition sensitivity analysis module for M = N .

5.4 Sensitivities of Change of Basis Module

The partial derivatives of Change of Basis module were also calculated using symbolic differentiation

and coded by hand. The main reason is because the change of basis matrix equation is very simple

to differentiate although the goal here was not to particularly achieve less computational expense. No

benchmark with other methods will be provided here for the reason stated previously. This benchmark

was naturally done though. Remember Equation (4.47) which allows to write any point in the panel’s

(i, j) frame of reference. The partial derivative of the output point P
′

with respect to P is equal to minus

the partial derivative of the same point with respect to the origin CPij , as

∂P
′

∂P
= − ∂P

′

∂CPij
=


lij1 lij2 lij3

mij1 mij2 mij3

nij1 nij2 nij3

 (5.29)
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Similarly, taking the partial derivative with respect to LVT
ij = [lmn]ij , it will result in

∂P

∂LVij
=

[
P1−CPij1 P2−CPij2 P3−CPij3 0 0 0 0 0 0

0 0 0 P1−CPij1 P2−CPij2 P3−CPij3 0 0 0
0 0 0 0 0 0 P1−CPij1 P2−CPij2 P3−CPij3

]
(5.30)

All the building blocks are now determined to build the jacobians ∂LPP
∂PP , ∂LPP

∂CP and ∂LPP
∂LV . These

matrices are easily constructed attending the fact each corner point (i, j) written in the panel’s frame

of reference only depends on the panel’s collocation point CPij , the panel’s basis vectors LVij and its

coordinates in the global frame of reference.

5.5 Sensitivities of Aero Solver Module

It is now required to calculate all the intermediate jacobians which play a role in the adjoint method,

presented in the beginning of this chapter. Observing Table 4.4 one can remember that the residuals

depend explicitly on the variables CP, LPP, LV, α and V∞. Moreover, solving the residual system of

equations leads to the aerodynamic solution in terms of the doublet intensities µ, which depend implicitly

of the last five variables. Therefore, the sensitivity analysis for this module consists in calculating six

jacobian matrices. As already shown in section 5.3, symbolic differentiation and post coding can be a

great advantage, specially in MATLAB R© where vectorization is possible. For this reason and similarly to

section 5.3, all of these jacobians were calculated by hand with the aid of symbolic differentiation.

5.5.1 Partial Derivatives w.r.t. Collocation Points

Remember the residual associated with the panel (i, j), given by Equation (4.48). Taking the partial

derivative with respect to the collocation points and after some algebra yields

∂Rij
∂CPkh

=



N∑
n=1

M−1∑
m=1

(
∂Cijmn
∂CPkh

µmn +
∂Bijmn
∂CPkh

σmn

) if (k, h) = (i, j)

∂Cijkh
∂CPkh

µkh +
∂Bijkh
∂CPkh

σkh if (k, h) 6= (i, j) and k 6= M

∂Cijkh
∂CPkh

(
µ(M−1)h − µ1h

)
if (k, h) 6= (i, j) and k = M

(5.31)

where the partial derivative of ∂Cijmn

∂CPkh
is defined as

∂Cijmn
∂CPkh

=
∂C1ijmn
∂r1ijmn

(
∂r1ijmn
∂CPij

∂CPij
∂CPkh

+
∂r1ijmn
∂CPmn

∂CPmn
∂CPkh

)
+

∂C2ijmn
∂r2ijmn

(
∂r2ijmn
∂CP2

ij

∂CP2
ij

∂CPij

∂CPij
∂CPkh

+
∂r2ijmn
∂CPmn

∂CPmn
∂CPkh

)
(5.32)

where, additionally, r1ijmn and r2ijmn are the collocation point and respective image’s locations from

panel (i, j), written in the (m,n) panel’s frame of reference. With this in mind, the partial derivatives of

r1ijmn and r2ijmn with respect to the respective collocation points, in Equation (5.32), are calculated
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using Equation (5.29). Since CP2
ij is the image of CPij , the respective partial derivative is given by

∂CP2
ij

∂CPij
=


1 0 0

0 −1 0

0 0 1

 (5.33)

It should also be noticed that the source influence B has the same variable dependence as C, thus,
∂Bijmn

∂CPkh
is calculated using Equation (5.32) replacing C by B. All the partial derivatives of the source and

dipole influences with respect to all their dependencies, already and lately presented, are introduced in

section A.2 in Appendix A.

5.5.2 Partial Derivatives w.r.t. Local Corner Points
Each residual associated with panel (i, j) depends also on the influence panel’s corner points, written

in its own frame of reference. Taking the partial derivative with respect to the points X
′

1kh, X
′

2kh, X
′

3kh,

X
′

4kh, or simply with respect to LPPkh

∂Rij
∂LPPkh

=


∂Cijkh
∂LPPkh

(
µ(M−1)h − µ1h

)
if k = M

∂Cijkh
∂LPPkh

µkh +
∂Bijkh
∂LPPkh

σkh if k 6= M

(5.34)

5.5.3 Partial Derivatives w.r.t. Basis Vectors
The residuals also present explicit dependence on the panel’s basis vectors. Taking now the partial

derivatives with respect to LVkh, leads to

∂Rij
∂LVkh

=


∂Cijkh
∂LVkh

(
µ(M−1)h − µ1h

)
if k = M

∂Cijkh
∂LVkh

µkh +
∂Bijkh
∂LVkh

σkh + Bijkh
∂σkh
∂LVkh

if k 6= M

(5.35)

where ∂Cijkh

∂LVkh
is given by

∂Cijkh
∂LVkh

=
∂C1ijkh
∂r1ijmn

r1ijmn
∂LVkh

+
∂C2ijkh
∂r2ijmn

r2ijmn
∂LVkh

(5.36)

and r1ijmn

∂LVkh
and r2ijmn

∂LVkh
are calculated using Equation (5.30). As previously, ∂Bijkh

∂LVkh
is calculated easily

replacing C by B in Equation (5.36).

5.5.4 Partial Derivatives w.r.t. Angle-of-Attack and Airspeed
The residuals depend also on the angle of attack and on the absolute value of the free-stream velocity

vector. Taking the partial derivatives with respect to these two variables yields

∂Rij
∂α

=

N∑
n=1

M−1∑
m=1

Bijmn
∂σmn
∂α

(5.37a)

∂Rij
∂V∞

=

N∑
n=1

M−1∑
m=1

Bijmn
∂σmn
∂V∞

(5.37b)
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Partial Derivatives w.r.t. Source and Doublet Intensities

As observed in this section and also in section 5.5.3, it is required to calculate the partial derivatives of

the source intensities with respect to its dependencies. Observing Equation (4.49), it may be concluded

that those dependencies are on the panel’s unitary normal and the free-stream velocity vectors. Taking

the partial derivatives with respect to LVkh, α and V∞, results

∂σkh
∂LVkh

=

[
[0] [0]

∂σkh
∂nkh

]
= V∞.

[
[0 0 0] [0 0 0] [cosα 0 sinα]

]
(5.38)

∂σkh
∂α

= V∞. [nkh3 cosα− nkh1 sinα] (5.39)

∂σkh
∂V∞

=
σkh
V∞

(5.40)

5.5.5 Partial Derivative w.r.t. the Doublet Intensities
Finally, the residuals’ partial derivatives with respect to the double intensities still need to be calcu-

lated. Considering once more Equation (4.48) and taking the partial derivative with respect to µkh one

may write

∂Rij
∂µkh

=


Cij1h − CijMh if k = 1

Cij(M−1)h + CijMh if k = M − 1

Cijkh if k 6= 1 ∧ k 6= M − 1

(5.41)

5.5.6 Benchmark - Automatic Differentiation
It is now required to verify the sensitivity analysis of the present module since the differentiation

was carried by hand with the aid of symbolic differentiation. Assuming the same wing configuration as

previously, a benchmark with the results obtained with the forward mode of automatic differentiation will

be presented.

Jacobian Entry
0 2000 4000 6000 8000 10000 12000

A
bs

ol
ut

e 
E

rr
or

×10-14

0

1

2

3

4

5

6

7

8

9
Benchmark w/ AD

(a) Absolute error for all the entries of dR
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Figure 5.3: Absolute error for all the entries of dR
dCP and dR

dLV
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Figure 5.4: Absolute error for all the entries of dR
dµ and dR

dLPP
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Figure 5.5: Absolute error for all the entries of dR
dV∞

and dR
dα

Figures 5.3 through 5.5 presents the absolute error associated with the six jacobian matrices pro-

duced in this module, for all the jacobian entries, taking the results obtained with AD as reference and

for a mesh with 200 panels. The calculated errors are bounded and, for the worst case scenario, some

components are about 10−12, proving the constructed framework’s validity.

The developed module was also benchmarked with AD, according to the computational cost. The

run time spent by the AD tool corresponds to the time to generate the differentiated code with respect to

each of the independent variables, and the time to run it. The former corresponds to the smaller portion

of time and took about 10 seconds. As observed in Table 5.4, the new developed module is about 200

times faster than using AD with savings above 99%. Moreover, the AD tool run times are absolutely

unacceptable, even for course meshes, proving the efficiency of the new developed module.
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No. panels 50 200 450

SD time [s] 3.796 40.797 222.411
AD time [s] 749.964 8653.022 40582.198
savings [%] 99.5 99.5 99.5

Table 5.4: Computational cost of the Aero Solver sensitivity analysis module for M = N .

5.6 Sensitivities of Post Process Module

Paying close attention to Table 4.5, one may conclude that the number of inputs is much larger than

the number of outputs. In fact, the number of outputs is at most equal to five, corresponding to the

aerodynamic coefficients. Due to this characteristic, the application of the reverse mode of automatic

differentiation is well suited for implementation.

In order to apply the reverse-mode of AD, ADiMat provides another function called admDiffRev.m

for that effect. The function’s signature is the same as for admDiffFor.m. The result of using this

function associated with an handle to function post process.m is an augmented differentiated code,

able to calculate both the function values and associated derivatives, with the same name as the original

function but appended with the prefix a .

Figure 5.6 presents the computational runtime as a function of the post process.m number of inputs.

According to the figure, the measured data is well fitted by a linear function and is quite inexpensive even

for large number of inputs. Thus, this implementation is almost insensible to the mesh size.
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Figure 5.6: Computational cost of the Post-Process sensitivity analysis module as a function of the
number of inputs

5.7 Summary of the Chain Rule

Since all the jacobians have been derived, the detailed procedure to assemble the chain-rule in

Equation (5.9) will now be clarified. The procedure is composed by two major steps. The first corre-

sponds to assembly the intermediate jacobian dx2

dxDV
and the second corresponds to apply the adjoint
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method and the chain-rule. The algorithm is as follows:

1. Assembly of dx2

dxDV

(a) Use the forward mode of AD applied to the function wing geometry.m to calculate ∂WP
∂xDV

.

Replace the result in the respective entries in Equations (5.12), (5.13) and (5.14);

(b) Use Equations (5.15a) up to (5.15c) to construct ∂S
∂xDV

. Use also Equations (5.16a) and

(5.16b) to build ∂MAC
∂xDV

. Introduce both vectors in the respective entries in Equation (5.10);

(c) Follow the procedure presented in section 5.3.1 to calculate the intermediate jacobians ∂PP
∂WP ,

∂CP
∂WP , ∂LV

∂WP and ∂DS
∂WP . Assembly the jacobian ∂x1

∂WP according to its definition and replace

the results in Equations (5.12) and (5.14). Use also ∂DS
∂WP to finish the assembly of dDS

dxDV
in

Equation (5.13);

(d) Follow the procedure presented in section 5.4 to calculate ∂LPP
∂PP and ∂LPP

∂CP using Equation

(5.29), and use also Equation (5.30) to calculate ∂LPP
∂LV . Construct ∂LPP

∂x1
according to its

definition using the results just calculated;

(e) Replace finally the jacobians dx1

dxDV
, dDS
dxDV

and dLPP
dxDV

in the respective entries of dx2

dxDV
in Equa-

tion (5.10).

2. Assembly of df
dxDV

according to the chain-rule

(a) Follow the procedure presented in section 5.5.1 up to section 5.5.4 to calculate the non zero

entries of ∂R
∂x2

according to its definition. Remember that the entries corresponding to ∂R
∂PP ,

∂R
∂DS , ∂R∂S and ∂R

∂MAC are null. Next, use Equation (5.41) to calculate ∂R
∂µ ;

(b) Use the reverse mode of AD to the function post process.m and obtain ∂f
∂x2

and ∂f
∂µ , where

f is an interest function. Remember that the entry corresponding to ∂f
∂LPP is null;

(c) Apply the first step of the adjoint method by calculating the adjoint matrix [ψ] using Equation

(5.8b). Apply the last step of the method introducing [ψ] in Equation (5.8a) to obtain df
dx2

;

(d) Use the chain-rule of differential calculus to calculate df
dxDV

according to Equation (5.9).

5.8 Final Benchmark with Finite Differences

After the sensitivity analysis framework had been constructed, it was necessary to validate it, thus

guarantying the framework was free of programming errors and also measure its performance. To

accomplish this task, the resulting sensitivities of the aerodynamic coefficients with respect to the design

variables was compared with the same sensitivities calculated using finite-differences being the elapsed

time for both frameworks registered in Table 5.5. The parameter tmodel is the aerodynamic analysis

tool run time, tsens is the new sensitivity analysis framework time, and tFD is the measured time using

the FD method. It may be observed that the new developed framework becomes more efficient as the

number of design variables increases, since the percentage of time saved using the sensitivity analysis

framework increases with increasing number of design variables, proving its efficiency for accurate wing

discretization.
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It should also be shown the absolute error’s calculation for the sensitivities using both methods since

it provides the necessary confidence in the obtained results. The benchmark procedure started with

choosing a suited step size. After some blind attempts trying different step sizes it became evident that

h = 10−7 was suited. After isolating the aerodynamic analysis tool from its sensitivity analysis, the finite-

differences method was applied. The results are presented in Figure 5.7. According to the figures, the

sensitivities are calculated correctly since the absolute error is about O(10−6) for the values associated

with CL, CD, CMx and CMy and about O(10−4) for the aerodynamic efficiency CL

CD
.
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Figure 5.7: Benchmark of the developed sensitivity analysis framework with the finite-differences method

No. DV 32 80 128 224 320 392

tmodel [s] 0.037 0.083 0.239 0.876 1.946 3.037
tsens/tmodel [-] 53.69 41.65 34.56 27.77 25.07 24.01
tFD/tmodel [-] 18.31 61.47 120.07 224.78 316.24 390.19
savings [%] -193.2 32.2 71.1 87.6 92.1 93.8

Table 5.5: Computational cost benchmark between the sensitivity analysis framework and the finite-
differences method
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Chapter 6

Parametric Study

This chapter is devoted to survey the impact of changing both the wing’s geometrical characteristics and

flight condition on the wing’s aerodynamic behavior. First, a baseline wing configuration will be chosen

providing a representative benchmark for the new wing configurations. A convergence study is also

conducted to find a suitable mesh to obtain results. Special effort will be made to conclude about the

impact on the aerodynamic efficiency CL

CD
on the pitching and rolling moments CMy and CMx , about a

reference point located at the root chord, in the trailing edge of the baseline wing configuration. The main

reason behind it is related with the importance of those parameters on aircraft performance, structural

safety and flight equilibrium.

• Aerodynamic Efficiency: Directly related with performance measures such as maximum range

and maximum flight time;

• Rolling Moment about x axis: Directly related with the bending moment applied on the wing’s

root, which is related with the normal stress applied. For safety reasons, this may have to be no

higher than a certain value;

• Pitching Moment about y axis: Directly related with the moment produced about the aircraft CG.

For operational reasons, this value may have to be constant or no higher than a certain value.

For benchmark purposes, a plane rectangular wing with A = 6 and constant airfoil section was

chosen. The geometrical characteristics and flight condition are presented in Table 6.1.

Λ [◦ ] Γ [◦ ] δr [◦ ] δt [◦ ] b [m] cr [m] λ section airfoil V [m/s] α [◦ ]

0 0 0 0 6 1 1 NACA 0010 75 5

Table 6.1: Baseline wing configuration for the parametric study

6.1 Convergence Study

To find a suitable mesh, a convergence study was conducted for the baseline wing configuration.

The aerodynamic model was executed several times for increasing number of panels measuring the

values of the aerodynamic coefficients. The coarser and finer meshes are depicted in Figure 6.1. The

convergence behavior of the outputs CL and CD, and CMx
and CMy

was measured and it is presented

in Figure 6.2 (a) and 6.2 (b), respectively. All the values are converged in 3 decimal points. Since the

solver takes about 30 minutes to run in the finer mesh, all the following studies are carried in a courser
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(a) Coarser mesh (b) Finer mesh

Figure 6.1: Top view of the baseline wing configuration for the coarser and finer meshes

mesh, 50×10 panels, with an error no larger that 10% relatively to the best results for all the aerodynamic

coefficients.
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Figure 6.2: Convergence of the aerodynamic coefficients

6.2 Angle of Attack

First, the angle of attack effect on the aerodynamic coefficients is explored for the baseline wing

configuration. Figure 6.3 (a) shows the evolution of the aerodynamic efficiency CL

CD
, as a function of the

angle of attack. According to this picture, the aerodynamic efficiency increases from zero to about 49

for an optimal angle of attack of αopt = 1◦ and then it smoothly decreases for higher values of α. Thus,

one may quickly conclude that the angle of attack has a great impact on the aerodynamic efficiency and

that a given value for the angle of attack that maximizes the aerodynamic efficiency exists.

The angle of attack has also an impact on the moment coefficients, as it can be observed in Figure

6.3 (b). According to the picture, it can be observed that moment coefficients increase with the angle

of attack. The reason is because the aerodynamic forces increase with the angle of attack leading the

moments about the reference point to increase.
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Figure 6.3: Variation of the aerodynamic coefficients with the angle of attack

6.3 Taper Ratio

The influence of the taper ratio in the relevant aerodynamic coefficients will now be presented. To

evaluate the effect of the taper ratio, one may force the wing’s to work at the same lift coefficient and

with the same aspect ratio. Additionally, the wing span b will also be constrained to the baseline value.

This situation corresponds to evaluate the taper ratio’s effect on the Oswald efficiency factor with the

constraint

cr =
const

1 + λ
(6.1)

Figure 6.4 presents the taper ratio effect on the drag and moment coefficients. Considering first the

evolution of the drag coefficient in Figure 6.4 (a), it is observed that for a decreasing value of taper ratio,

the drag coefficient decreases to about λ = 0.35 and then it increases. Therefore, one may conclude

there must exist some value of taper ratio which minimizes CD for a given operating CL. Considering

now Figure 6.4 (b), it is observed that the moment coefficients decreases with decreasing taper ratio.

The decreasing tendency of the pitching moment is because as the taper ratio decreases, the root chord

increases and therefore the streamwise component of the center of pressure is closer to the reference

point. The decreasing tendency of the bending moment is due to the increase of the lift per unit span

near the wing’s root for decreasing taper ratio.

It is possible to reach the same conclusion observing Figure 6.5 where the normalized spanwise lift

distribution is plotted for different taper ratios. The elliptical lift distribution is also depicted for reference.

Comparing with the latter, it may observed that the load distribution increases near the wing root and,

decreases near the wing tip, when the taper ratio is diminished. Thus, for small taper ratio, more lift is

being generated near the root and therefore, weaker bending moments are present at the wing root. It

is also easy to understand why the drag coefficient is smaller for λ = 0.35 since the lift distribution curve

for that wing configuration is the closest to a wing with an elliptical lift distribution.
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Figure 6.4: Variation of the aerodynamic coefficients with the taper ratio
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Figure 6.5: Normalized spanwise lift distribution for different taper ratios

6.4 Twist Distribution

Next, the influence of the twist distribution is evaluated. Twisted wings are obtained through applying

twist to the wing’s root and tip. For this study, the tip twist is imposed to be symmetrical to the root twist

angle, for all wing configurations, with a linear variation in between.

Figure 6.6 (a) and 6.6 (b) presents the variation of the aerodynamic coefficients with the wing twist,

for a fixed lift coefficient. Observing Figure 6.6 (a) one may observe that the drag coefficient is minimum

about δr = 1.9◦ and δt = −1.9◦ . Considering now Figure 6.6 (b), it is observed that the pitching moment

is insensible to the wing twist and the bending moment decreases with increasing twist. Considering

the overall results, one may conclude that the twist and taper ratio effects are quite similar, except for

the pitching moment. This is intuitively explained since the local twist angle changes the local angle of

attack, adjusting the lift being generated at each wing section, similarly to the taper ratio effect.

An additional comment should be made about the wing’s twist distribution. The choice of keeping

the root’s twist angle higher than the tip’s was intentional. Typically, it is desirable to work with negative

torsion to guarantee the wing tips are the last wing part to stall. Thus, even if the wing’s root begins to
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lose lift, the pilot is still able to control the aircraft once the ailerons are located near the wing tips.
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Figure 6.6: Variation of the aerodynamic coefficients with the wing twist

6.5 Sweep Angle

Next, the effect of the sweep angle on the aerodynamic coefficients is studied. The parametric study

is similar to the previous cases studies where the lift coefficient was kept constant. Departing from

the baseline configuration, the values of drag and moment coefficients were tracked for successively

increasing sweep angles. These results are presented in Figure 6.7 (a) and 6.7 (b). All the wings

present the same area and aspect ratio. It can be observed that increasing the sweep angle results

in an increase in the aerodynamic drag and rolling moment and a decrease in the pitching moment.

The decrease of the latter is easily explained because increasing the sweep angle shifts the center of

pressure backwards. The increase in drag and rolling moment may be explained through Figure 6.8.

According to the figure, increasing the sweep angle increases the wing loading near the wing tips, thus

the lift distribution is deviated from the elliptical reference case.

Λ (◦)
0 5 10 15 20 25 30 35 40

C
D

0.015

0.02

0.025

0.03

0.035

0.04

(a) Variation of the drag coefficient with the wing sweep

Λ (◦)
0 5 10 15 20 25 30 35 40

C
M

x

0.09

0.095

0.1

C
M

y

-0.5

0

0.5

(b) Variation of the moment coefficients with the wing sweep

Figure 6.7: Variation of the aerodynamic coefficients with the wing sweep
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Figure 6.8: Normalized spanwise lift distribution for different sweep angles

6.6 Dihedral Angle

Next, the impact of varying the dihedral angle on the aerodynamic coefficients will be studied. The

new wing configurations are obtained from the baseline wing configuration keeping all the parameters

equal except the dihedral angle. Therefore, the projected xy wing area is the same for all test cases

and is used as reference. The study was carried again at constant lift-coefficient, where the remaining

aerodynamic coefficients were tracked as a function of the dihedral angle. These results are presented in

Figure 6.9 (a) and (b). According to Figure 6.9 (a), CD is optimal for a dihedral angle near 17◦ . Brederode

[66] justifies this trend stating the Munk’s second theorem, which shows that non-planar wings can be

more efficient than elliptical ones. Such wings can be approximated by employing dihedral. Considering

now Figure 6.9 (b), one may conclude that the pitching moment coefficient decreases increasing the

sweep angle and the reverse situation is observed for the rolling moment coefficient .

Brederode [66] also states that dihedral is not primarily used to enhance aerodynamic efficiency but

to provide rolling stability. He also recommends dihedral angles no higher than 5◦ . For this reason, the

dihedral will be bounded between 0◦ and 5◦ .

6.7 Airfoil Section

This section studies the airfoil shape effects on the aerodynamic coefficients. The baseline wing

configuration was kept the same as in the previous case studies. Two tests were conducted.

In the first study, the effect of airfoil camber was evaluated. According to Brederode [66], it is also

possible to obtain an elliptical lift distribution for maximum aerodynamic efficiency applying different airfoil

shapes, with different cambers along the wing’s span. In an attempt to produce such wing configurations,

four wings were tested, where the camber varies linearly along the wing span, being the higher cambered

airfoil located at the wing root. The airfoil shape at the tip was kept uncambered, with the same shape as

the baseline. The airfoil shapes at the root and the baseline may visualized in Figure 6.10 (a). As it can

be seen in Table 6.2, increasing the airfoil root camber results in a drag and rolling moment coefficients
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Figure 6.9: Variation of the aerodynamic coefficients with the wing dihedral

reduction. This behavior is quite similar to the taper ratio effect on the same two variables, thus one may

conclude about an approximation to the elliptical lift distribution.

The second study focus on the effect of airfoil thickness in the aerodynamic coefficients. Two addi-

tional wing configurations were tested in which the airfoil shape was kept constant along the wing span,

differing only on the airfoil thickness. To accomplish that, two symmetrical NACA 0015 and NACA 0018

were simulated, respectively. Their relative size and shape may be found in Figure 6.10 (b). The re-

sults are shown in Table 6.3. As it can be seen, the increased thickness translate into a significant drag

increase, for the same lift. Also, it can be observed that the rolling moment does not change and the

pitching moment is reduced. The rolling moment stays the same since no spanwise lift redistribution is

made. On the other hand, the pitching moment is reduced since a reduction in the angle of attack was

required to obtain the same lift-coefficient.
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Figure 6.10: Airfoil shapes used for parametric study
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max camber α (◦ ) CL CD CMx CMy

0 5.061 0.4000 0.0190 0.0903 0.2815
0.01 4.602 0.4000 0.0183 0.0888 0.2771
0.02 4.141 0.4000 0.0178 0.0874 0.2728
0.03 3.678 0.4000 0.0175 0.0859 0.2686
0.04 3.211 0.4000 0.0173 0.0844 0.2643

Table 6.2: Effect of airfoil camber on the aerodynamic coefficients, operating at the same lift-coefficient

airfoil α (◦ ) CL CD CMx CMy

NACA 0010 5.061 0.4000 0.0190 0.0903 0.2815
NACA 0015 4.886 0.4000 0.0223 0.0902 0.2721
NACA 0018 4.786 0.4000 0.0242 0.0902 0.2670

Table 6.3: Effect of airfoil thickness on the aerodynamic coefficients, operating at the same lift-coefficient

6.8 Remarks on Wing Parameters

It is now necessary to conclude about which parameters should be used as design variables in the

aerodynamic optimization problems that will be addressed in Chapter 7. In these problems, one is

typically interested in reducing the induced drag for a given target lift with eventual constraints in the

moment coefficients. That task can be achieved mainly by increasing the aspect ratio and maximizing

the Oswald efficiency factor. For this reason, parameters that affect these quantities should be used as

design variables.

In an attempt to solve the described type of aerodynamic design problems, the angle of attack will

be used as design variable since it is the main mechanism to adjust the lift and moment coefficients.

Moreover, it was shown in the respective parametric study that an optimal value that maximizes the

aerodynamic efficiency exists, although it will not be attempted to find it. The aspect ratio may be

increased by simply increasing the wing span and decreasing the root chord, therefore these parameters

will be also used as design variables. Although a decrease in the taper ratio also increases the aspect

ratio, this parameter plays an important role in the adjustment of the spanwise lift distribution which can

be used to minimize the drag coefficient. As it was also shown, if the wing twist is chosen appropriately,

the same goal can be achieved and therefore it is indifferent to operate with the taper ratio or wing

twist. Nevertheless, since the wing twist does not change the planform shape, it does not influence

much the pitching moment as opposed to the taper ratio. Due to these arguments two optimization

problems will be solved using each of these parameters separately. The influence of the airfoil shape

in the aerodynamic coefficients is up to some degree unknown since it is modeled using 24 degrees of

freedom per cross section as explained in section 4.4.1. Nevertheless, it can be stated with confidence

that exists a combination of camber and thickness that minimizes the wing drag coefficient by maximizing

the Oswald efficiency factor. An optimization problem will also be solved to explore the effect of the airfoil

shape in the wing drag.

68



Chapter 7

Wing Aerodynamic Optimization

This chapter presents the benefits of gradient-based optimization with efficient gradient estimation com-

pared with the traditional approach of forward finite-differences to sensitivity analysis. Towards that goal,

two representative aerodynamic optimization problems are solved using both approaches. A third prob-

lem is presented in Appendix B for completeness, similar to the first. For each problem, the optimization

time, the number of iterations and function evaluations are compared using both implementations. In the

first problem, a small subset of design variables are selected from all the possible available to minimize

the wing’s drag coefficient, at constant lift and wing area, subject to bounds. In the second problem, all

available design variables are selected, but in addition to the first, the pitching moment coefficient was

kept fixed.

The mainstream data flow in the aerodynamic optimization problem is well illustrated in Figure 7.1,

where the connection between the reformulated aerodynamic model, the new sensitivity analysis frame-

work and the optimizer is depicted. First, some design parameters from the baseline configuration are

chosen, corresponding to a point in the design space. Then, both aerodynamic information and respec-

tive sensitivities are generated and provided to the optimizer. Finally, the optimizer uses this information

to find a search direction in the design space and an acceptable step size so a new improved design is

obtained. The process in then repeated until the Karusch-Kuhn-Tucker optimality conditions are satis-

fied.
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Figure 7.1: Flowchart illustrating the aerodynamic optimization framework
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7.1 Optimizer

An important step related with the aerodynamic optimization is the choice of the optimizer. For this

effect, MATLAB R© provides a powerful toolbox called Optimization Toolbox [67], which allows the user to

solve a vast set o problems, namely linear programming (LP), mixed-integer linear programming (MILP),

quadratic programming (QP), nonlinear programming (NLP), among other solvers. For the present case

of nonlinear programming with constraints, MATLAB R© provides a function called fmincon. The nonlinear

programming mathematical statement is slightly different, although equivalent from the one expressed

in Equation (2.1). Thus, fmincon requires the problem to be formulated as

minimize f(x)

w.r.t. x

subject to [A]x ≤ b, [Aeq]x = beq

c(x) ≤ 0 ceq(x) = 0

xL ≤ x ≤ xU

(7.1)

After formulating the problem in this manner, fmincon accepts any combination of constraints. In

order to deal with linear equality and/or inequality constraints, the respective matrices and vectors should

be provided. Both nonlinear objective and constraint functions should be supplied to fmincon through

a function handle to their respective MATLAB R© functions. Additionally, if the gradient is calculated

externally by the user, it should be provided as a second output in those functions.

Several optimization related options may also be provided to the solver through a structure array.

To the effect, MATLAB R© provides a function called optimoptions, which creates that array according

to the user preferences. Examples of available options for fmincon are the optimization algorithm, the

maximum number of function evaluations and iterations, first-order optimality measure and the option to

provide analytical gradients for objective and constraints.

MATLAB R© R2015a version provides four different optimization algorithms for fmincon:’active-set’,

’sqp’, ’interior-point’ and ’trust-region-reflective’. The method ’trust-region-reflective’

is immediately discarded since it only accepts problems with bounds or linear equality constraints, but not

simultaneously. For medium size problems, MATLAB R© recommends to start first with ’interior-point’

and lastly with ’active-set’. After some informal test cases in a course mesh, the method ’sqp’

proved to be the best suited since it converged faster than the other methods, therefore, the method

was kept the same for all the remaining optimization problems. Since both gradient and function evalua-

tions are expensive computationally, the first order optimality condition was changed to 10−4 against the

default value of 10−6.

7.2 Wing Planform Optimization

The first optimization problem corresponds to minimize the wing drag coefficient with respect to the

design variables, subject to constant lift and wing area, and bounds. The design variables correspond to
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a small subset from all the design parameters available. They correspond to planform related variables:

wing span b, root chord cr and taper ratio λ, and also the angle of attack α. With this in mind, this

optimization problem may be casted as

minimize CD

w.r.t. xDV

subject to CL = 0.3, S = S0

xL ≤ xDV ≤ xU

(7.2)

where S0 is the baseline wing area. After posing the problem in mathematical terms, it is necessary to

define the baseline wing configuration and flight condition. The former was kept the same as in Chapter

6 but, the angle of attack has changed though. Both baseline wing configuration and flight condition are

tabulated in Table 7.1.

Λ [◦ ] Γ [◦ ] δr [◦ ] δt [◦ ] b [m] cr [m] λ section airfoil V [m/s] α [◦ ]

0 0 0 0 6 1 1 NACA 0010 75 4

Table 7.1: Baseline wing configuration to the first optimization problem

A baseline plane wing was chosen as the initial design and the resulting optimized design will also be

a plane wing since only planform related design variables will change. This imposition could be important

if it is desired an easy to build wing. The bounds and constraints values were chosen arbitrarily although

care was taken to keep the problem realistic. Table 7.2 summarizes both the bounds and initial design

vector for the current problem.

Design Vector (xDV) Lower Bound (xL) Initial Design (xDV0 ) Upper Bound (xU )

α [◦ ] 1 4 10
b [m] 5 6 8
cr [m] 1 1 3
λ [−] 0.1 1 1

Table 7.2: Initial values of the design vector and respective bounds for the first optimization problem

After both the problem and baseline wing configuration have been defined, the optimization takes

place. Figure 7.2 (a) shows the objective function history as a function of the iteration number, show-

ing that the optimization is concluded after 11 iterations, using either finite-differences or the developed

sensitivity analysis framework to estimate the gradient information required by the optimizer. In addi-

tion to the number of iterations, also the number of function evaluations and computational time were

tracked and benchmarked. A summary of these results are presented in Table 7.3. Considering the

optimization times, it can be observed that using finite-differences was about 3 times faster than using

the differentiation tool. Nevertheless, the number of function evaluations were about 2.5 times higher.

The cumulative number of function evaluations are represented in Figure 7.2 (b), using both FD and the

sensitivity framework. Since the minimum number of cumulative function evaluations may be given by
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(NDV + 1)(i + 1) for FD, and i + 1 for the sensitivity framework, where NDV is the number of design

variables and i is the iteration number as given in Figure 7.2 (b), one may conclude that the optimizer

spent 20 and 24 additional function evaluations using FD and the differentiation tool, respectively, during

line-search. Moreover, the same conclusion could be reached noticing that the plots in Figure 7.2 (b)

are not straight lines.
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Figure 7.2: Convergence process and number of function evaluations during the first optimization prob-
lem

These results show that the new sensitivity analysis framework is less efficient when dealing with a

small number of design variables. This conclusion could be inferred through the results of Table 5.5. As

it will be seen next, that is not the case when considering all the design variables available.

Gradient Calculation Method Time [s] Iterations Function Evaluations

Sensitivity Framework 4681.8 11 31
Forward Finite Differences 1314.7 11 79

Table 7.3: Benchmark of the first optimization case performance between different sensitivity analysis
methods

Table 7.4 presents the initial and optimized values for both the design vector, output functions, wing

area and aspect ratio, using both forward finite-differences and the sensitivity framework. The results

were obtained with a 40 × 10 panels mesh, in the chordwise and spanwise directions, respectively.

Considering the accuracy of the obtained results, it is observable that, in worst case scenario, the taper

ratio and root chord values obtained with finite-differences differ from the values obtained using the

framework at the fifth decimal place. All the other results obtained with FD match the ones obtained

with the developed framework. Considering the resulting wing drag coefficient, a reduction of about

33% is observed in comparison to the baseline wing. That reduction was possible through an angle of

attack decrease, a wing span increase (bound limited), a slight increase in the root chord and substantial

decrease in the taper ratio. Additionally, the drag coefficient reduction comes along with an increase in

the pitching moment coefficient and a slight reduction in the rolling moment coefficient. Similarly to the
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parametric study, the reference point is located at the trailing-edge, at the baseline configuration root

chord. The reduction in the angle of attack was necessary to adjust the value of CL and, the combined

change of the planform design variables was such that it produced a substantial increase in the aspect

ratio and Oswald efficiency. A geometrical comparison between the baseline and optimized configuration

is shown in Figures 7.3 (a) and 7.3 (b).

Design variables Baseline Optimized FW Optimized FD Outputs Baseline Optimized FW Optimized FD

α [◦ ] 4 3.177316 3.177317 CD 0.012777 0.008595 0.008595
b [m] 6 8.000000 8.000000 CL 0.314576 0.300000 0.300000
cr [m] 1 1.079303 1.079325 CMx 0.071026 0.064134 0.064133
λ 1 0.389785 0.389757 CMy 0.221416 0.287423 0.287421

S 6.000000 6.000000 6.000000
A 6.000000 10.66667 10.666667

Table 7.4: Baseline, optimized design vector and output values in the first optimization problem
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Figure 7.3: Geometrical comparison between wing configurations in the first problem

7.3 Full Wing Optimization

The second optimization problem is similar to the first except that all the design parameters available

were used and the pitching moment coefficient was forced to be equal to the baseline value. The

design vector is defined as in section 5.1.1. In addition to the nonlinear equality constraints found in

the first problem, the pitching moment was forced to be fixed to simulate cruise conditions, where the

trim condition and required lift are specified since the dynamic pressure is assumed constant during the

optimization. Thus, the problem may be mathematically expressed as

minimize CD

w.r.t. xDV

subject to CL = 0.3, S = S0, CMy = CMy0

xairfoil ∈ Ωeq, xL ≤ xDV ≤ xU

(7.3)
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where the xairfoil ∈ Ωeq stands for the equality constraints imposed to the bezier control points. These

constraints are the same as in section 4.4.1 and they are suggested by the green lines, in Figure 7.4.

The bounds may be defined in terms of the design vector partition:[α xgeo |xairfoil]. Table 7.5 provides

these bounds for [α xgeo] and Figure 7.4 shows how the airfoil control points were bounded. As already

stated in Chapter 4, those bounding boxes are required to produce acceptable airfoil shapes. The box

is centered at the baseline control point. The upper and lower edge ordinates are given by Py ± 0.3Py,

where Py is a generic control point ordinate. The abscissas of the side edges are given by Px ± 0.01,

Px ± 0.02 and Px ± 0.03 for the red, blue and black boxes, respectively, where Px is the generic control

point abscissa.

α [◦ ] Λ [◦ ] Γ [◦ ] δr [◦ ] δt [◦ ] b [m] cr [m] λ

xL 1 0 0 0 -3 5 1 0.1
[α xgeo] 4 0 0 0 0 6 1 1

xU 10 30 5 3 0 8 3 1

Table 7.5: Bounds and design vector for α and xgeo
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Figure 7.4: Bounding boxes of the airfoil control points

After stating the problem, the baseline wing configuration and respective flight condition must be

defined and it was chosen to be the same as in the first optimization problem (Table 7.1). Similarly to the

first problem, the optimization was performed using both the sensitivity analysis framework and forward

finite-differences. Again, these problems were compared in terms of number of iterations, number of

function evaluations and optimization time. A summary of these results are presented in Table 7.6.

The objective function history was tracked for both optimizations and it is represented in Figure 7.5 (a).

As depicted, the objective function had converged almost identically in 44 iterations, regardless of the

method to estimate the sensitivities. However, the number of function evaluations using finite-differences

is much higher than the same number using the new framework, as illustrated in Figure 7.5 (b). A direct

consequence of those many function evaluations was an increase in the optimization time. As observed

in Table 7.6, one may realize that the optimization using the new differentiation tool was about 9 times
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faster than the one using finite-differences. Using the new sensitivity analysis framework has provided

a great advantage in terms of computational time since it took approximately 2 hours as opposed to the

19 hours optimization using FD.
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Figure 7.5: Convergence process and number of function evaluations during the second optimization
problem

Gradient Calculation Method Time [s] Iterations Function Evaluations

Sensitivity Framework 7607.1 44 75
Forward Finite Differences 68726.9 44 10155

Table 7.6: Benchmark of the second optimization case performance between different sensitivity analy-
sis methods

The optimization results are presented in Table 7.7 where the baseline and optimized values for the

design variables and output functions are benchmarked using FD and the new framework. The results

were obtained using a mesh with 30 × 8 panels in the chordwise and spanwise directions, respectively.

The results were obtained in a relative course mesh due exclusively to extensive computational times

using finite-differences. As it can be observed, the objective function was reduced by approximately

72%. This reduction was possible through a decrease in the lift coefficient, an increase in the aspect

ratio and Oswald efficiency, achieved mainly through a combined effect of increasing the wing span and

adjusting the twist, chord and camber distributions. A comparison between the baseline and optimized

configurations is presented in Figure 7.6.

Figure 7.7 presents also a comparison between the airfoil shapes at their respective incidences

(angle of attack + local twist angle) and respective pressure distributions for different semi-spanwise

wing sections. The baseline shapes are drawn in blue and the optimized in dashed red. A common

feature between the optimized shapes is a relatively flat lower surface and much more curved upper

surface. As a result, the pressure coefficient distribution is smoother with smaller suction peaks. This

may present an advantage if viscous effects would be considered since high suction peaks usually

means adverse pressure gradients in the upper surface leading to boundary layer separation, increasing
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drag.

Design variables Baseline Optimized FW Optimized FD Outputs Baseline Optimized FW Optimized FD

α [◦ ] 4 1.000000 1.000000 CD 0.013429 0.003724 0.003725
Λ [◦ ] 0 6.011407 6.007157 CL 0.313735 0.300000 0.300000
Γ [◦ ] 0 5.000000 5.000000 CMx 0.071235 0.065081 0.065076
δr [◦ ] 0 2.230745 2.227752 CMy 0.220788 0.220788 0.220788
δt [◦ ] 0 -0.124150 -0.124778 S 6.000000 6.000000 6.000000
b [m] 6 8.000000 8.000000 A 6.000000 10.666667 10.666667
cr [m] 1 1.000000 1.000000
λ 1 0.500000 0.500000

Table 7.7: Baseline, optimized design vector and output values in the second optimization problem

0

1

2

3

4

55
4

3
2

1
0

0.5

-0.5

0

(a) Baseline wing

0

1

2

3

4

55
4

3
2

1
0

0

0.5

-0.5

(b) Optimized wing

Figure 7.6: Geometrical comparison between wing configurations in the second optimization problem
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Figure 7.7: Baseline and optimized airfoil shapes and respective coefficient of pressure distributions
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Chapter 8

Conclusions

8.1 Achievements

The main goal of this work was to develop an efficient aerodynamic optimization framework to be

incorporated in an existing aeroelastic tool with static aero-structural capabilities. As a result, the new

tool includes a fully revised panel method code for aerodynamic analysis and an efficient sensitivity

analysis framework that relies on exact gradient calculation.

Firstly, a review on optimization algorithms was conducted to provide sufficient background for a

conscious choice between MATLAB R© optimization algorithms. It was concluded that the SQP method,

a gradient-based optimization algorithm, is efficient enough since it presents a quadratic convergence

rate and it is one of the most powerful algorithms available to solve nonlinear constraint optimization

problems. Secondly, a survey on sensitivity analysis methods was presented since the optimization

algorithm required the gradient evaluation of the objective function and constraints. It was shown that

the adjoint method is the most efficient tool to estimate the sensitivities of aerodynamic models since

gradient information may be calculated exactly and independently of the number of inputs. Moreover,

both automatic differentiation and the complex-step derivative represent an alternative since the gradient

is also estimated exactly.

Sequentially, the aerodynamic tool developed by Cardeira [17] was firstly divided into modules and

then reformulated since the model was not compatible with efficient sensitivity analysis and errors where

found in the calculation of the aerodynamic coefficients. The module responsible for translating the de-

sign variables into a discrete set of points representing the discretized wing was improved. A new feature

was added to the model corresponding to an airfoil parametrization using bezier curves whose control

points correspond to the airfoil design variables. This feature allows the optimizer to explore different

airfoil configurations along the wingspan, adding more degrees of freedom to the wing and therefore,

reduce the wing drag even further. The module in charge of translating the previously generated set of

points into panels was reformulated. The respective original code was modified since the panel vertexes

were obtained directly from the generated discrete set of points and there was no guarantee that four

nearest points were coplanar. The module responsible for obtaining the aerodynamic coefficients was

revised since the formula to calculate the moment coefficients was wrong.

After, the sensitivity analysis framework was developed according to the criterion of exact derivative

calculation with the lowest computational cost possible. To meet this criterion, both modes of automatic

differentiation, symbolic differentiation and the adjoint method were employed. It was concluded that the

largest savings in computational runtime were achieved when symbolic differentiation was used since
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algebraic simplifications, sparsity exploration and code vectorization were possible. In that sense, it was

observed that the respective sensitivity analysis of the module responsible for the panels generation and

the aerodynamic solver were about 1000 and 200 times faster when compared to the implementation

using automatic differentiation, respectively. In order to pre-assemble the derivatives from the sensitivity

analysis of the aerodynamic solver and the post-process module, the semi analytical adjoint method

was used since the combined number of inputs was much larger than the number of outputs. As a

result, the sensitivity analysis framework proved to be more than 9 times faster when comparing to the

implementation of the finite-differences method to the aerodynamic model without compromising the

accuracy of the final jacobian.

Finally, two representative aerodynamic optimization problems were solved using the new tool and

a similar implementation using forward finite-differences. The first was a simple planform shape opti-

mization with respect to four design variables, subject to constant lift coefficient and wing area. The

second was a complete wing optimization with respect to all the design variables, subject to the same

constraints as the first, but in addition, the pitching moment coefficient was fixed to the baseline value.

From the first problem, it can be observed that the optimized design did not changed much using one

method over the other. Moreover, the new tool proved to be inefficient when dealing with a small number

of design variables since the cost of evaluating the aerodynamic model a few times is less computational

costly than evaluating the new sensitivity analysis framework. From the last problem, it is also observed

that the final design parameters between implementations did not change much. However, the new

tool proved to be considerably more efficient than the implementation using finite-differences since the

optimization process using the first was about 9 times faster, reducing an 19 hour optimization to one

lasting only 2 hours. According to these results, one can conclude that the new tool provides a much

better computational efficiency for designs using many design variables.

8.2 Future Work

When developing this work, a few ideas to be tested and implemented arose. The first relates to the

aerodynamic model. An improvement would be obtained if the wake was modeled to its exact shape

since it affects the inviscid solution. Another improvement could be to include viscous flow calculations

since skin friction represents a considerable percentage of the total drag, specially in cruise conditions. A

possible and simple solution could be the simulation of a displacement thickness through a transpiration

velocity in each panel. A second idea is to improve the wing modeling adding more design variables.

This could be achieved by controlling both the local chord lengths and twist angles at specific locations

along the wing span. The improvement would be obtained easily since the respective sensitivity analysis

is performed using automatic differentiation. The last idea corresponds to develop an efficient aero-

structural framework. A possible path to follow could be to couple the structural tool designed by Freire

[18] with the framework developed in the scope of this work.
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Appendix A

Details of Partial Derivatives

A.1 Panels Definition Module

The non-zero components of ∂DSij

∂Umn
in Equation (5.25) are given by

∂DSij
∂XA1ij

=
[
XBij2

(
XAij1

XBij2
−XAij2

XBij1
+XBij1

XCij2
−XBij2

XCij1

)
+

XBij3

(
XAij1

XBij3
−XAij3

XBij1
+XBij1

XCij3
−XBij3

XCij1

)]
/auxij (A.1)

∂DSij
∂XAij2

= −
[
XBij1

(
XAij1

XBij2
−XAij2

XBij1
+XBij1

XCij2
−XBij2

XCij1

)
−

XBij3

(
XAij2

XBij3
−XAij3

XBij2
+XBij2

XCij3
−XBij3

XCij2

)]
/auxij (A.2)

∂DSij
∂XAij3

= −
[
XBij1

(
XAij1XBij3 −XAij3XBij1 +XBij1XCij3 −XBij3XCij1

)
+

XBij2

(
XAij2XBij3 −XAij3XBij2 +XBij2XCij3 −XBij3XCij2

)]
/auxij (A.3)

∂DSij
∂XBij1

= −
[(
XAij2 −XCij2

) (
XAij1XBij2 −XAij2XBij1 +XBij1XCij2 −XBij2XCij1

)
+

(
XAij3 −XCij3

) (
XAij1XBij3 −XAij3XBij1 +XBij1XCij3 −XBij3XCij1

)]
/auxij (A.4)

∂DSij
∂XBij2

=
[(
XAij1

−XCij1

) (
XAij1

XBij2
−XAij2

XBij1
+XBij1

XCij2
−XBij2

XCij1

)
−

(
XAij3

−XCij3

) (
XAij2

XBij3
−XAij3

XBij2
+XBij2

XCij3
−XBij3

XCij2

)]
/auxij (A.5)

85



∂DSij
∂XBij3

=
[(
XAij1 −XCij1

) (
XAij1XBij3 −XAij3XBij1 +XBij1XCij3 −XBij3XCij1

)
+

(
XAij2 −XCij2

) (
XAij2XBij3 −XAij3XBij2 +XBij2XCij3 −XBij3XCij2

)]
/auxij (A.6)

∂DSij
∂XCij1

= −
[
XBij2

(
XAij1XBij2 −XAij2XBij1 +XBij1XCij2 −XBij2XCij1

)
+

XBij3

(
XAij1XBij3 −XAij3XBij1 +XBij1XCij3 −XBij3XCij1

)]
/auxij (A.7)

∂DSij
∂XCij2

=
[
XBij1

(
XAij1XBij2 −XAij2XBij1 +XBij1XCij2 −XBij2XCij1

)
−

XBij3

(
XAij2

XBij3
−XAij3

XBij2
+XBij2

XCij3
−XBij3

XCij2

)]
/auxij (A.8)

∂DSij
∂XCij3

=
[
XBij1

(
XAij1

XBij3
−XAij3

XBij1
+XBij1

XCij3
−XBij3

XCij1

)
+

XBij2

(
XAij2

XBij3
−XAij3

XBij2
+XBij2

XCij3
−XBij3

XCij2

)]
/auxij (A.9)

where auxij is defined as

auxij = 2
[(
XAij1

XBij2
−XAij2

XBij1
+XBij1

XCij2
−XBij2

XCij1

)2
(
XAij1

XBij3
−XAij3

XBij1
+XBij1

XCij3
−XBij3

XCij1

)2
(
XAij2XBij3 −XAij3XBij2 +XBij2XCij3 −XBij3XCij2

)2] 1
2

(A.10)

The non-zero components of ∂nij

∂Nmn
, in Equation (5.27), are given by

∂nij
∂Nij

=
1

‖Nij‖3


N2
ij2 +N2

ij3 − (Nij1Nij2) − (Nij1Nij3)

− (Nij1Nij2) N2
ij1 +N2

ij3 − (Nij2Nij3)

− (Nij1Nij3) − (Nij2Nij3) N2
ij1 +N2

ij2

 (A.11)

Additionally, in Equation (5.27), ∂Nmn

∂PPrs
is defined as

∂Nmn

∂PPrs
=

[
∂Nmn

∂X1rs

∂Nmn

∂X2rs

∂Nmn

∂X3rs

∂Nmn

∂X4rs

]
(A.12)
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where the non-zero components are given by

∂Nmn

∂X1mn

=


0 X2mn3

−X4mn3
X4mn2

−X2mn2

X4mn3 −X2mn3 0 X2mn1 −X4mn1

X2mn2 −X4mn2 X4mn1 −X2mn1 0

 (A.13)

∂Nmn

∂X2mn

=


0 X3mn3 −X1mn3 X1mn2 −X3mn2

X1mn3
−X3mn3

0 X3mn1
−X1mn1

X3mn2
−X1mn2

X1mn1
−X3mn1

0

 (A.14)

∂Nmn

∂X3mn

=


0 X4mn3 −X2mn3 X2mn2 −X4mn2

X2mn3 −X4mn3 0 X4mn1 −X2mn1

X4mn2
−X2mn2

X2mn1
−X4mn1

0

 (A.15)

∂Nmn

∂X4mn

=


0 X1mn3 −X3mn3 X3mn2 −X1mn2

X3mn3 −X1mn3 0 X1mn1 −X3mn1

X1mn2
−X3mn2

X3mn1
−X1mn1

0

 (A.16)

Similarly, in Equation (5.28)

[
∂mij

∂lij

∂mij

∂nij

]
=


0 −nij3 nij2 0 lij3 −lij2
nij3 0 −nij1 −lij3 0 lij1

−nij2 nij1 0 lij2 −lij1 0

 (A.17)

A.2 Aero Solver Module

Observing Equation (4.50b), it can be shown that

dC
dξ

=


1
4π

(
dqik
dξ

+
dqkj
dξ

)
ξ = xk, yk

1
4π

(
dq12
dξ

+
dq23
dξ

+
dq34
dξ

+
dq41
dξ

)
ξ = x, y, z

(A.18)

After some algebra, Equation (4.51b) can be manipulated to

qij = atan2 (uij , vij) (A.19)

where atan2 is the arc-tangent function with two arguments. The variables uij and vij are defined as

uij = z(xj − xi)(fijrj − gijri) (A.20a)

vij = z2(xj − xi)2rirj + fijgij (A.20b)

and additionally

fij = (yj − yi)ei − (xj − xi)hi (A.21a)
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gij = (yj − yi)ej − (xj − xi)hj (A.21b)

Taking the total derivative of contribution qij with respect to an arbitrary variable ξ it is obtained

dqij
dξ

=
vij

u2ij + v2ij

duij
dξ
− uij
u2ij + v2ij

dvij
dξ

(A.22)

Observing the explicit dependence of uij and vij on the variables z, xi, xj , ri, rj , gij and fij , one

can write

duij
dξ

=
∂uij
∂z

dz

dξ
+
∂uij
∂xj

dxj
dξ

+
∂uij
∂xi

dxi
dξ

+
∂uij
∂ri

dri
dξ

+
∂uij
∂rj

drj
dξ

+
∂uij
∂fij

dfij
dξ

+
∂uij
∂gij

dgij
dξ

(A.23)

dvij
dξ

=
∂vij
∂z

dz

dξ
+
∂vij
∂xj

dxj
dξ

+
∂vij
∂xi

dxi
dξ

+
∂vij
∂ri

dri
dξ

+
∂vij
∂rj

drj
dξ

+
∂vij
∂fij

dfij
dξ

+
∂vij
∂gij

dgij
dξ

(A.24)

Re-writing equations (A.23) and (A.24), and unrolling the partial derivatives, one obtains

duij
dξ

= (fijrj − gijri)
[
−(xi − xj)

dz

dξ
+ z

(
dxj
dξ
− dxi

dξ

)]
+z(xi − xj)

[
gij

dri
dξ

+ fij
drj
dξ
− rj

dfij
dξ

+ ri
dgij
dξ

] (A.25)

dvij
dξ

=2rirjz(xi − xj)
[
(xi − xj)

dz

dξ
+ z

(
dxi
dξ
− dxj

dξ

)]
+

z2(xi − xj)2
[
rj

dri
dξ

+ ri
drj
dξ

]
+ gij

dfij
dξ

+ fij
dgij
dξ

(A.26)

Considering the dependence of ri on the variables xi, yi, x, y and z, it can be stated that

dri
dξ

=
∂ri
∂xi

dxi
dξ

+
∂ri
∂yi

dyi
dξ

+
∂ri
∂x

dx

dξ
+
∂ri
∂y

dy

dξ
+
∂ri
∂z

dz

dξ
(A.27)

where the partial derivatives are given by

∂ri
∂xi

= −∂ri
∂x

= − (x− xi)
ri

(A.28)

∂ri
∂yi

= −∂ri
∂y

= − (y − yi)
ri

(A.29)

∂ri
∂z

=
z

ri
(A.30)

The derivatives of rj with respect to the generic variable ξ are easily obtained replacing the index i by j

on the previous equations.

Observing now the expressions for fij and gij in equations (A.21a) and (A.21b), and applying the

chain-rule to those, one gets

dfij
dξ

=
∂fij
∂xi

dxi
dξ

+
∂fij
∂xj

dxj
dξ

+
∂fij
∂yi

dyi
dξ

+
∂fij
∂yj

dyj
dξ

+
∂fij
∂ei

dei
dξ

+
∂fij
∂hi

dhi
dξ

(A.31)
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dgij
dξ

=
∂fij
∂xi

dxi
dξ

+
∂fij
∂xj

dxj
dξ

+
∂fij
∂yi

dyi
dξ

+
∂fij
∂yj

dyj
dξ

+
∂fij
∂ej

dej
dξ

+
∂fij
∂hj

dhj
dξ

(A.32)

The partial derivatives in both equations are given by

∂fij
∂xi

= −∂fij
∂xj

= hi (A.33)

∂fij
∂yi

= −∂fij
∂yj

= −ei (A.34)

∂fij
∂ei

=
∂gij
∂ej

= (yj − yi) (A.35)

∂fij
∂hi

=
∂gij
∂hj

= −(xj − xi) (A.36)

∂gij
∂xi

= −∂gij
∂xj

= hj (A.37)

∂gij
∂xi

= −∂gij
∂xj

= hj (A.38)

∂gij
∂yi

= −∂gij
∂yj

= −ej (A.39)

Finally, through equations (4.52d) and (4.52e), one can write

dei
dξ

=2

[
(x− xi)

(
dx

dξ
− dxi

dξ

)
+ z

dx

dξ

]
(A.40)

dhi
dξ

=(x− xi)
[

dy

dξ
− dyi

dξ

]
+ (y − yi)

[
dx

dξ
− dxi

dξ

]
(A.41)

Again, the respective derivatives for ej and hj are obtained replacing the index i by j.

Considering now the source influence in Equation (4.50a), it is possible to relate it with the dipole

influence C as

B = − 1

4π
[(s12 + s23 + s34 + s41) + 4π‖z‖C] (A.42)

Taking the derivative with respect to the generic variable ξ

dB
dξ

=



− 1
4π

(
dsik
dξ

+
dskj
dξ

+ 4π‖z‖dC
dξ

)
for ξ = xk, yk

− 1
4π

(
ds12
dξ

+
ds23
dξ

+
ds34
dξ

+
ds41
dξ

+ 4π‖z‖dC
dξ

)
for ξ = x, y

− 1
4π

(
ds12
dξ

+
ds23
dξ

+
ds34
dξ

+
ds41
dξ

+ 4π

(
−C + ‖z‖dC

dξ

))
for ξ = z < 0

− 1
4π

(
ds12
dξ

+
ds23
dξ

+
ds34
dξ

+
ds41
dξ

+ 4π

(
C + ‖z‖dC

dξ

))
for ξ = z > 0

(A.43)

Observing now Equation (4.51a) and paying attention to the dependencies of qij one may write

dsij
dξ

=
∂sij
∂x

dx

dξ
+
∂sij
∂y

dy

dξ
+
∂sij
∂xi

dxi
dξ

+
∂sij
∂xj

dxj
dξ

+
∂sij
∂yi

dyi
dξ

+

∂sij
∂yj

dyj
dξ

+
∂sij
∂ri

dri
dξ

+
∂sij
∂rj

drj
dξ

+
∂sij
∂dij

ddij
dξ

(A.44)
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Re-writing the equation and explaining the partial derivatives

dsij
dξ

=
1

dij
ln

(
ri + rj + dij
ri + rj − dij

)[
(yj − yi)

dx

dξ
+ (xi − xj)

dy

dξ
+ (y − yj)

dxi
dξ
−

(y − yi)
dxj
dξ
− (x− xj)

dyi
dξ

+ (x− xi)
dyj
dξ

]
+

2(xyi − xiy − xyj + xjy + xiyj − xjyi)
r2i + r2j + 2rirj − d2ij

[
dri
dξ
− drj

dξ

]
+
∂sij
∂dij

ddij
dξ

(A.45)

where ∂sij
∂dij

is given by

∂sij
∂dij

=
1

d2ij
ln

(
ri + rj + dij
ri + rj − dij

)
[(x− xi) (yi − yj)− (xi − xj) (y − yi)]−

1

dij(dij + ri + rj)

[
1

ri + rj − dij
+

ri + rj + dij

(ri + rj − dij)2

]
[(x− xi) (yi − yj)− (xi − xj) (y − yi)] (ri + rj − dij)

(A.46)

and ddij
dξ is given by

ddij
dξ

=
1

dij

[
(xi − xj)

(
dxi
dξ
− dxj

dξ

)
+ (yi − yj)

(
dyi
dξ
− dyj

dξ

)]
(A.47)
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Appendix B

Twist and Planform Optimization

This problem is similar to the first, presented in section 7.2, and it corresponds to minimize the wing drag

coefficient subject to constant lift coefficient and wing area, and bounds. Opposed to the first problem,

the angle of attack was kept constant and the lift distribution is expected to be rearranged through wing

twist. Therefore, the design variables were chosen to be the root and tip twist angles, δr and δt, the wing

span b, and the root chord cr. The optimization problem is mathematically described by

minimize CD

w.r.t. xDV

subject to CL = CL0, S = S0

xL ≤ xDV ≤ xU

(B.1)

where S0 is the baseline wing area, CL0 is the baseline lift coefficient, xL is the lower bound vector and

xU is the upper bound vector. Table B.1 shows both the initial design variables and respective bounds.

Design Vector (xDV) Lower Bound (xL) Initial Design (xDV0 ) Upper Bound (xU )

δr [◦ ] 0 0 6
δt [◦ ] -6 0 0
b [m] 5 6 8
cr [m] 1 1.5 3

Table B.1: Initial values of the design vector and respective bounds for the additional optimization prob-
lem

After the design variables have been defined, it is necessary to define a baseline wing configuration

and respective flight condition. The wing was chosen to be rectangular, without sweep and dihedral,

with constant airfoil shape along the wing span, as shown in Table B.2.

Λ [◦ ] Γ [◦ ] δr [◦ ] δt [◦ ] b [m] cr [m] λ section airfoil V [m/s] α [◦ ]

0 0 0 0 6 1.5 1 NACA 0010 75 4

Table B.2: Baseline wing configuration to the additional optimization problem

The optimization process was solved using both the new sensitivity analysis framework and finite dif-

ferences as previously. Figure B.1 (a) shows the optimization process using both methods. As depicted,

using either finite differences or the new framework, the optimizations converge in 21 iterations. During

the process, the number of function evaluations using finite differences is roughly double than using
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the framework. However, the optimization using finite differences was about 3 times faster than using

the new tool. According to these results, one may conclude that using finite differences is preferable if

very few design variables are being used, as one may suspect looking at Table 5.5. A summary of the

optimization process performance is tabulated in Table B.3.
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(b) Function evaluations

Figure B.1: Convergence process and number of function evaluations during the additional optimization
problem

Gradient Calculation Method Time [s] Iterations Function Evaluations

Sensitivity Framework 6053.3 21 86
Forward Finite Differences 1928.1 21 174

Table B.3: Benchmark of the additional optimization case performance between different sensitivity
analysis methods

The optimization results are presented in Table B.4 and a visual comparison between the baseline

and optimized wing configurations are presented in Figure B.2. Observing the objective function values

before and after the optimization one may observe a 28% reduction while satisfying the lift and area

equality constraints. The reduction was possible by adjusting the tip angle of twist to approach an

elliptical lift distribution and an increase in the wing’s aspect ratio, increasing b and decreasing cr.

Design variables Baseline Optimized FW Optimized FD Outputs Baseline Optimized FW Optimized FD

δr [◦ ] 0 0.000000 0.000000 CD 0.012968 0.009354 0.009354
δt [◦ ] 0 -2.128537 -2.128537 CL 0.266394 0.266394 0.266394
b [m] 6 9.000000 9.000000 CMx

0.059249 0.056615 0.056615
cr [m] 1.5 1.000000 1.000000 CMy

0.098610 0.182938 0.182938
S 9.000000 9.000000 9.000000
A 4.000000 9.000000 9.000000

Table B.4: Baseline, optimized design vector and output values of the additional optimization problem
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Figure B.2: Geometrical comparison between baseline and optimized wing configurations of the addi-
tional optimization problem
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