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Instituto Superior Técnico,Universidade de Lisboa, Portugal

July 2019

Abstract

Since the early days of aviation, aeroelastic problems have shown to be some of the most challenging
to solve. With the development of numerical methods, the study of aircraft structures and their
interaction with the surrounding air flow at different flight conditions has become easily accessible and,
thus, is now mandatory in the design phase of an aircraft. This work focuses on the development of a
numerical tool for aircraft wing fluid-structure interaction (FSI) analyses, in which the external airflow
and the internal structure interact, as well as the wind tunnel testing of two half wing prototypes to
help validate the accuracy of the numerical tool developed. A panel method was implemented for the
aerodynamic analysis and a finite-element model using equivalent beam elements was implemented
for the structural analysis, both coded in MATLABR© language. The wing shape was parametrized
using area, airfoil cross-section shape, aspect ratio, taper ratio, sweep angle and dihedral angle. Each
analysis models were successfully individually verified against other bibliographic sources and then the
two disciplines were coupled into the FSI numerical tool. A parametric study was also conducted to
study the influence of the wing aspect ratio on flutter speed. The validated FSI tool was then used in
an optimization framework to obtain optimized wing shapes with typical aircraft design objectives.
Keywords: Aircraft design, flutter, divergence speed, fluid-structure interaction, wind tunnel,
optimization

1. INTRODUCTION
Recent developments in wing design, such as active
aeroelastic wings [1]), higher aspect ratios (AR) and
morphing shapes during flight [2, 3], have furthered
the need of reliable prediction of aeroelastic phe-
nomena, since these new flexible wings can easily
lead to aeroelastic instabilities, even inside standard
flight envelope conditions. The novel designs are be-
ing adopted in Unmanned Air Vehicles (UAV), such
as the High Altitude Long Endurance (HALE) Air-
bus Zephyr in Fig.1, where the very high AR wing
decreases induced drag, thus improves the aerody-
namic performance.

Figure 1: Airbus Zephyr HALE UAV

Given that small to medium size UAVs fly at rela-
tively low speeds, their aerodynamic behaviour can

be accurately modelled by low complexity models.
However, there is a lack of readily available aeroe-
lastic experimental data for these speed ranges,
as most studies are performed at the transonic
speeds [5, 6, 7]. There are some attempts to improve
data for experimental confirmation, particularly for
the case of geometric non-linearities [8] but, for the
most part, there is a need for a broad range of aeroe-
lastic testing data cases [9], specially with the recent
numeric developments concerning the simulation of
geometric non-linear behaviour and Limit Cycle Os-
cillations [10, 11].

Besides the introduction of more complex geo-
metric definitions, there is interest in analysing sev-
eral possible interface methods between the aerody-
namic and structural models [12] to improve accu-
racy of current aeroelastic tools. Another advan-
tage of the increased accuracy of aeroelastic tools
is the possibility of incorporating optimizing algo-
rithms to their architecture to allow design refining
around the expected aeroelastic behaviour of an air-
craft, that leads to considerable design time savings.

The goals of this work are to develop an aeroelas-
tic analysis and design framework, capable of han-
dling highly flexible wings, that predicts accurately
the wing aeroelastic response, in particular diver-
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gence speed and flutter speed, as well as obtain-
ing experimental data to corroborate the results ob-
tained with the aeroelastic framework.

2. COMPUTATIONAL
AEROELASTICITY

Computational Aeroelasticity (CAE) specifically
refers to the coupling of Computational Fluid Dy-
namics (CFD) methods with Computational Struc-
tural Dynamics (CSD) tools to perform aeroelastic
analyses [6].

The basis for any CAE methodology is the cou-
pled equations of motion,

[M ]q̈(t) + [D]q̇(t) + [K]q(t) = F (t) , (1)

where M , D and K are generalized mass, damping
and stiffness matrices, respectively, F (t) is general-
ized force vector that accounts for the aerodynamic
loads, and q(t) is the generalized displacement vec-
tor [13]. It is then necessary to model each disci-
pline with CFD and CSD numerical tools, and then
provide an adequate coupling between the two.

2.1. Coupling Models
A typical structure of an aeroelastic tool is shown
in Fig. 2, where the Fluid-Structure Interface (FSI)
is highlighted.

Figure 2: Structure of a typical coupled aeroelastic
tool [6]

The FSI is paramount to connecting the sepa-
rate discipline modules of the aeroelastic frame-
work, and that can be done using a fully-coupled
model, a loosely coupled model or a closely coupled
model [6]. While the fully coupled FSI integrates
and solves the combined fluid and structural equa-
tions of motion simultaneously in one single solver,
the other two solve then separately using different
solvers. The first approach is not only very rigid
in terms of choice of discipline models but also
usually computationally expensive. In contrast,
the loosely and closely coupled models, though re-
quiring an interface to exchange information be-
tween aerodynamic and structural solvers and loos-
ing some accuracy, allow the flexibility of choos-
ing different solvers for each discipline [6]. While
in the loosely coupled the exchange of information
only takes place after partial or complete conver-
gence of each solver, in the closely coupled model
the discipline solvers exchange of information at the

boundary via an interface module, making the en-
tire CAE model tightly coupled and, thus, with im-
proved accuracy. The information exchanged are
surface loads, output of CFD and input to CSD,
and surface deformation, output of CSD and input
to CFD.

By selecting a loosely coupled or a closely coupled
model, it is possible to have two separate solvers for
each aerodynamic and structural model computa-
tions, both reducing the complexity of implementa-
tion and allowing an easier validation of results.

2.2. Discipline models

As far as aerodynamic models go, there are several
options to choose, as illustrated in Fig.11(a), de-
pending on the complexity of the flow considered.

(a) Aerodynamic models

(b) Structural models

Figure 3: FSI discipline models [14]

Since our aim is to study aeroelastic effects in
wings, 3D effects must be accounted for, in partic-
ular at the wing tip. However, the driving forces
in aeroelasticity are mainly inviscid, and the low
flow speeds considered in our design cases mean ro-
tational and compressibility effects might be dis-
carded. Given that we want to model the lift-
ing surface thickness, the appropriate models, bal-
ancing required complexity and available compu-
tational power, are the panel methods[15]. These
models are based on potential flow equations and
they are relatively easy to implement and integrate
in an FSI model.

As for structural models, while it is possible
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to choose between continuous and discrete mod-
els as shown in Fig.11(b), the implementation of
discrete models is required to couple it in the FSI
tool. Among the different Finite Elements (FE),
the beam FE is the simplest model, but accurate
enough for low and medium fidelity applications,
such as simulating a solid wing or a spar [16].

3. NUMERICAL IMPLEMENTATION
3.1. Aerodynamic Model
The methodology followed to implement the 3D
panel method is similar to the defined by Katz [17].
This model is based on the potential flow equation,
valid for incompressible, inviscid and irrotational
flow, ∇2Φ∗ = 0 , (2)

where Φ∗ is the total velocity potential. Equa-
tion (2) is applied to a body with known boundaries
SB , as shown in Fig.4. Applying Green’s theorem,

Figure 4: Potential flow over a closed body [17]

a general solution can be found by a sum of singu-
larities, such as sources (σ) and doublets (µ) placed
on the SB boundary,

Φ∗(x, y, z) =
1

4π

∫
body+wake

µn · ∇
(

1

r

)
dS

− 1

4π

∫
body

σ

(
1

r

)
dS + Φ∞ ,

(3)

where r is the distance to a point outside the SB
boundary and vector n points in the direction of po-
tential jump µ. Dirichlet boundary conditions are
used, which implies that the perturbation potential
Φ is specified on the entire SB surface.

The potential flow Eq.(2) does not include time
dependent terms directly and, given aeroelastic-
ity is an unsteady problem, these must be intro-
duced through the boundary conditions. Consid-
ering a constant flow of speed U∞ in the posi-
tive x direction, as shown in Fig. 5, a transla-
tion is applied to the body frame of reference as
(X0, Y0, Z0) = (−U∞t, 0, 0) for each time step.

An important definition that affects the accuracy
of the method is the wake geometry. A straight
wake convected at the flow incidence angle was
selected, as it requires fewer wake panels to be
defined, decreasing significantly the computational
cost, though with penalty of aerodynamic forces
overestimation [17] that means dynamic instabili-
ties will appear earlier in the simulations compared
to the experiments. The body translation is used

Figure 5: Inertial and body coordinates [17]

to define the new wake panel, with one extremity
on the previous wake panel and the other at a X0

distance from the other extremity, so any motion
of the wing will then translate into the new wake
panels.

With the boundary conditions inserted and defin-
ing the source strength as

σ = −n · (V0 + vrel + Ω× r) , (4)

where V0 = (Ẋ0, Ẏ0, Ż0) is the velocity of the
(x, y, z) system’s origin, vrel = (ẋ, ẏ, ż) is the rel-
ative velocity of the body fixed frame of reference,
Ω is the rate of rotation of the body’s frame of
reference, as shown in Fig.5, and r is the position
vector, the problem is reduced to a set of algebraic
equations with the doublet distribution µ as the un-
knowns.

The body’s surface is discretized into N panels
and the wake in NW panels, with collocation points
P at the panel centre and panel vertices 1, 2, 3, 4, as
shown in Fig. 6 for a panel k. Assuming constant

Figure 6: Influence of panel k on point P [17]
source strength σ and doublet strength µ for each
panel, and Eq.(2) can be rewritten as

N∑
k=1

Ckµk +

NW∑
l=1

Clµl +

N∑
k=1

Bkσk = 0 , (5)

for each internal point P , with

Ck =
1

4π

∫
1,2,3,4

δ

δn

(
1

r

)
dS

∣∣∣∣
k

and

Bk = − 1

4π

∫
1,2,3,4

(
1

r

)
dS

∣∣∣∣
k

.

(6)
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By using the Kutta condition, the wake doublets
µl can be defined in terms of the unknown surface
doublets µk, leading to a linear algebraic system of
N equation containing N unknown singularity vari-
ables µk.

After solving Eq.(5) for the surface doublets µk,
the velocity components can be evaluated numeri-
cally as

vl = −δµ
δl
, vm = − δµ

δm
, vn = −σ , (7)

using central differences, at panel coordinates
(l,m, n) as shown in Fig. 7, These perturbation

Figure 7: Panel coordinate system [17]

velocities are then related with the local velocity by
Vk = (U∞l

U∞m
U∞n

) + (vl, vmvn)k.
By defining the local velocity on each panel, the

pressure coefficient Cp can be computed on a panel
basis as

Cpk = 1− V 2
k

U2
∞
− 2

U2
∞

δφ

δt
. (8)

The pressure coefficient at time t+ ∆t is computed
using the Backward Euler method [18], yielding

Ct+∆t
pk

= 1−
V 2
t+∆t

U2
∞
− 2

U2
∞

φt+∆t − φt

∆t
. (9)

The main advantage of using a Backward Euler
method is that it is an implicit scheme, making the
solution unconditionally stable, thus enabling the
use of large time steps [19]. Finally, the aerody-
namic force Fk for each panel is given by

Fk = −Cpkq∞Sk , (10)

where Sk is the panel area and q∞ is the dynamic
pressure.

The implementation of the 3D unsteady panel
method was verified against the open-source soft-
ware XFLR-5 [20] in steady mode. A rectangu-
lar wing with NACA0015 airfoil, 1.5m span and
0.25m chord, operating at U∞=7m/s with 4◦ angle-
of-attack. The discretization used an uniform mesh
with 4000 panels, 100 in the chordwise direction
and 40 in the spanwise direction, as shown in Fig.8.
These wing dimensions match those used for the
aeroelastic experimental and numerical studies.

The verification results, shown in Tab.1, reveal
that, while the lift and pitching moment coefficients
exhibit a very good match between both softwares,
the drag coefficient shows a 37% disparity. Most

Figure 8: Aerodynamic computational mesh

likely, this is due to the wake shape handling [17] as
both models were inviscid but, since the drag force
is not very relevant in the aeroelastic response of a
wing, this disparity can be found irrelevant.

Aeroelastic framework XFLR-5 difference

CL 0.3092 0.3137 1.4%
CD 0.0032 0.00517 37.3%
CM -0.07353 -0.07506 1.4%

Table 1: Verification of aerodynamic coefficients

3.2. Structural Model

Excluding the damping effects in the fundamental
Eq.(1), due to the difficulty of estimating it theoret-
ically, Eq. (1) can be put as an eigenvalue problem,

([M ]− ω2[K])x = 0 , (11)

where ω is the system frequencies, which allow for a
prediction of the wing aeroelastic behavior and also
to adjust the ideal time step in the unsteady calcu-
lations according to the Nyquist-Shannon sampling
theorem [21],

ts =
1

fmax
, (12)

where fmax is the maximum frequency that is to be
observed by the structural solver.

It should be pointed that a damped system dis-
plays divergent behavior for higher airspeeds than
an undamped system so the divergence speed will
be underestimated.

The 3D beam finite element implementation im-
plied a discretization of the wing in spanwise sec-
tions, that matched those of the aerodynamic model
to facilitate the FSI. The wing geometric properties
and aerodynamic forces are assessed on those sec-
tions.

The selected 3D beam element is based on the
Euler-Bernoulli beam theory [22], and combines the
stiffness constants of a beam under the pure buck-
ling condition [kb], a torsion bar element under pure
torsion [kt] and a truss element under pure axial
loads [ka], given as
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[kb] =
EIz
L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2


[
kt
]

=
GJ

L

[
1 −1
−1 1

]
[
ka
]

=
AE

L

[
1 −1
−1 1

]
(13)

considering the nodal displacement vectors ub =
{v1 θz1 v2 θz2}, ut = {θx1 θx2} and ua =
{u1 u2}, for a beam of length L, elastic modulus E,
shear modulus G, cross-sectional area A and cross-
sectional torsion constant J ,

The representation of the 6-DOF beam element is
made by the superimposition of a beam element un-
der bending condition, a torsional bar, and a truss
element, as shown in Fig.9. The global stiffness ma-

Figure 9: 3D beam element [23]
trix [K] results from the assembly of the local beam
stiffness matrices [ke], after transformed from the
local reference frame to the global reference frame.

To implement the dynamic structural response,
a Newmark - β time integration scheme was cho-
sen [24] as, with careful selection of parameters, the
method is implicit and unconditionally stable, and
so the time step can be chosen freely. The time
integration procedure comprised six steps:

1. Define first acceleration estimation ẍi =
M−1(F −K xi)

2. Define Newmark time integration parameters
β = 0.5 , γ = 0.25 and time step ∆t

3. Calculate integration constants: a0 = 1
β∆t2 ,

a1 = 1
β∆t , a2 = 1

2β − 1, a3 = ∆t(1 − γ) and
a4 = γ∆t

4. Obtain effective stiffness matrix Keff = K +
a0M

5. Define Reff matrix Ri+1
eff = F +

M
(
a0x

i + a1ẋi + a2ẍi
)

6. Find displacement, velocity and acceleration
values for next time-step: xi+1 = K−1

effR
i+1
eff ,

ẍi+1 = a0

(
xi+1 − xi

)
−a1ẋ

i−a2ẍ
i and ẋi+1 =

ẋi + a3ẍ
i + a4ẍ

i+1.

3.3. Fluid-Structure Interaction
The interface between aerodynamic and structural
solvers uses closely coupled approach, that was

made simpler by the fact that both solvers use a
Lagrangian frame of reference. The implemented
interface model comprises four main steps:

1. Wing displacements are determined by the
structural solver using the force and moment
field from the aerodynamic module at t = N ;

2. From the displacements and mass and stiffness
matrices, the structure’s velocities and accel-
erations are computed using the Newmark - β
time integration scheme;

3. Using the structures dynamic behavior, the
mesh is changed using one of four interface al-
gorithms (described next);

4. Finally, a 3D rigid body transformation is ap-
plied to the body to update the aerodynamic
solver mesh for computations at t = N + 1.

The four interface algorithms include the Con-
ventional Serial Staggered Algorithm (CSS1), the
Serial Staggered Algorithm with First Order Struc-
tural Predictor (CSS2), the Serial Staggered Al-
gorithm with Second Order Structural Predictor
(CSS3) and an Improved Serial Staggered Algo-
rithm (CSS4). These estimate the new CFD mesh
points in different manners, as shown in Tab. 2:

The effect of these algorithms on flutter speed
computation were studied using the test wing
geometry described in Sec. 3.1 and extruded
polystyrene foam (E=23.92MPa, G=9.14MPa,
rho=31.453kg/m3). The corresponding predicted
flutter speeds were 16.66m/s, 17.35m/s, 16.25m/s
and 18.14m/s. Given the proximity of these val-
ues, the fact that the Newmark-β time integra-
tion scheme does not provide very accurate veloc-
ities and accelerations, and that CSS1 displayed
the best aeroelastic behavior transition from a non-
flutter condition to a flutter condition, this was the
preferred algorithm.

3.4. Framework Architecture

The aeroelastic framework was developed with
three goals in mind: user-friendly to debug and pro-
duce results; reusability to allow for modules to be
easily exchanged or added; and low maintenance to
reduce the time required to check connections be-
tween modules. This led to a modular framework
with clearly separated modules, which included:

• steady aerodynamic module: defines initial
aerodynamic mesh and starts aerodynamic
computations at t = 0;

• unsteady aerodynamic module: performs aero-
dynamic computations for any t > 0,

• structural module: defines structural mesh,
computes mass and stiffness matrices, and
nodal forces;
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Algorithm Displacement calculation
CSS1 xn+1 = u(n)
CSS2 xn+1 = u(n) + ∆t v(n)
CSS3 xn+1 = u(n) + ∆t(1.5v(n)− 0.5v(n− 1))
CSS4 xn+1 = u(n) + ∆t

2 v(n)

Table 2: FSI algorithms for displacement estimation

• Newmark module: performs structural time in-
tegration from time t to t+ ∆t;

• Fluid-Structure Interaction module: couples
the aerodynamic and structural modules and
advances the aerodynamic mesh from t to t +
∆t.

An analysis was made for the computing time for
a case with 300 iterations, using a computer with
an Intel R© Core

TM

i7-2630QM with 8Gb of RAM,
and the timings for each module are listed in Tab.
3. Most of the computing time is spent on the fluid

Module Time (s)

Fluid solver 1403.6
Structural solver and time integration 3.3
Fluid structure interaction 1.5
Other sources 0.9

Total 1409.3

Table 3: CPU time per aeroelastic framework mod-
ule

solver module due to the calculation of the aerody-
namic influence coefficients matrix, as each panel
must be compared to every other panel in the wing
for each time iteration.

4. NUMERICAL RESULTS
4.1. Problem Description
The objective is to perform numerical and exper-
imental dynamic aeroelastic analyses on a simple
rectangular wing. To do so, a baseline wing with
airfoil NACA 0015 made of extruded polystyrene
rigid foam is used, with properties shown in Tab.4.

Before the aeroelastic analysis design was started,
a modal analysis was performed, using the aeroelas-
tic framework developed using Eq.(11). The first 8
frequencies are shown in Tab.5. With the definition
of the wing natural vibration frequencies and con-
sidering that time step values lower than 0.005s are
not feasible to use due to program constraints, the
time step chosen is the lowest value possible. This
time step allows to capture both flapwise bending
and torsion modes, which were shown to be the ma-
jor components in achieving divergent behaviour.

4.2. Grid Convergence Study
A convergence study was conducted to assess the
required number of chordwise nc and spanwise ns

points. The wing test case parameters are summa-
rized in Tab.4.

The aerodynamic forces are the output parame-
ters used in the convergence study since they are the
primary source of wing loading, in particular the lift
component. To select the most appropriate mesh
for the aeroelastic analysis, the aerodynamic coef-
ficients were computed using four different meshes,
and the results are shown in Tab.6.

While the number of chordwise points affects
mainly the aerodynamic component, the spanwise
points also affect the structural module. As such,
ns should not be lower than 10 points. By checking
the aerodynamic coefficients, there is a low varia-
tion of the lift coefficient but coarser meshes grossly
overestimates the induced drag. Another impor-
tant value is the computational time, as the value
shown is for only one aerodynamic iteration, but
each numeric aeroelastic test performed is expected
to require more than 300 iterations per freestream
velocity. Therefore, the mesh that presents the best
trade-off between accuracy and computational cost
is the 40×20 mesh.

Another study was conducted to assess the wing
tip displacement variation with the number of pan-
els, resulting in the roughly the same conclusion
about mesh size.

4.3. Flutter Speed Estimation
Since most structural vibration phenomena can be
characterized as a damped harmonic motion, the
damping ratio g was estimated to find the flutter
speed, defined as the threshold between dynamic
stability and instability, that is, the transition from
positive to negative damping ratio [25].

The damping ratio g can be obtained from the
logarithmic increment [13], defined as

δn =
1

n
ln

Xi

Xi+n
=

2πg√
1− g2

. (14)

The damping ratio computed for a number of
freestream velocities is shown in Fig.10(bottom) us-
ing the parameters in Tab.4. In addition, a Fast-
Fourier transform (FFT) is performed on the corre-
sponding wing tip displacement behavior to check
the frequency evolution with the increase in veloc-
ity, also shown in Fig.10(top).

The flutter speed, corresponding to the transi-
tion from a positive to a negative damping ra-
tio, occurs at U=16.66m/s for the simulated wing.
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Fluid and structural solver options

Time step 0.005s
Total time 1.5s

FSI algorithm CSS1
Structural subiterations 0

Material properties

Young’s modulus 23.92MPa
Shear modulus 9.14MPa

Material density 31.453kg/m3

Wing geometric properties

Airfoil NACA 0015
Half span 0.75m

Root chord 0.25m
Taper ratio 1
Sweep angle 0◦

Dihedral angle 0◦

Angle of attack 4◦

Flight conditions

Freestream velocity 10.0m/s
Altitude 0m

Air density 1.225kg/m3

Table 4: Baseline numeric wing test case parameters

Figure 10: f-U and U-g graphs for the baseline numeric case

Mode Frequency (Hz)

1st flapwise bending 7.9

2nd flapwise bending 48.4
1st torsion 58.9

3rd flapwise bending 132.2

2nd torsion 176.8
1st chordwise bending 244.2

4th flapwise bending 248.0

5th flapwise bending 291.4

Table 5: Modes and natural frequencies of tested
wing

The null damping ratio is considered the primary
method to find the flutter speed but, by analysing
the frequency spectra, an approximate estimation
can also be found by checking when two separate
frequencies coalesce into a single value. As shown
in Fig.10(top), vibration modes 2 (torsion) and 3
(bending) have the same frequency for a velocity of
17.35m/s, implying that the wing is experiencing
divergent behaviour.

4.4. Flutter Speed Index Comparison

The Flutter speed index [6] is defined as

Vf =
U∞

bωa
√
µ
, (15)

where U∞ is the freestream velocity, b is the wing
span, ωa is the first torsional mode frequency and
µ is the mass ratio of the wing [6]. The definition
of the mass ratio of the wing comes from stability
theory [26], µ = m/ 1

2ρairSc̄, where m is the wing
mass, ρair is the air density, S the aerodynamic
wing area and c̄ the mean chord of the wing.

A comparison between the flutter speed index ob-
tained for the numeric analysis and an experimental
test is shown in Fig. 12. The baseline wing corre-
sponds to the one simulated in Sec.4.3, while the
reduced span wing has a half-span of 0.625m.

Figure 11: Experimental wing models
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Mesh nc× ns 20 × 10 40 × 20 64 × 30 100 × 40

CL 0.2947 0.3041 0.3075 0.3092
CD 0.0101 0.0060 0.0044 0.0032

Computing time 0.30s 1.29s 6.32s 26.48s

Table 6: Grid convergence test

Figure 12: Flutter speed index variation with
freestream velocity

For both the experimental and the numerical
cases, the reduced velocity remains close between
the two wings, despite having different span and
torsional behaviour.

The major difference occurs between the experi-
mental and numerical results, that is attributed to
the difference in the first torsional mode observed,
as all other parameters are equal. The disparities
can be explained by the overestimation of aerody-
namic forces and the lack of damping in the numeric
model, and by parasite vibrations of the experimen-
tal wing mount model that contribute to the damp-
ing of the wing natural vibrations.

Also worth noting that, for the numerical case, no
values of the reduced velocity are computed on the
baseline wing for a velocity greater than 17.35m/s
due to the presence of highly divergent behaviour of
the wing, consistent with the expected post-flutter.

4.5. Flutter Speed Sensitivity to Wing As-
pect Ratio

As the experimental testing showed, there is a sig-
nificant change in the wing’s aeroelastic behaviour
with aspect ratio, mainly due to the increase in wing
rigidity. To further study the variation of aeroelas-
tic behaviour, a parametric sensitivity analysis of
the wing flutter speed with respect to its aspect
ratio was performed using the numeric model de-
veloped.

The wing defined in Tab.4 was used but letting
the span vary so that the aspect ratio (AR = b/c̄)
ranged between 4 and 7.6. The numerical results
obtained are shown in Fig.13.

As expected, there is an increase of the flutter
speed with the decrease of the wing aspect ratio,
effectively doubling its value for aspect ratio val-
ues between 4 and 6, while the evolution for val-
ues greater than 6 is lower, thus exhibiting a in-
versely quadratic dependence with aspect ratio. As-
pect ratios greater than 8 were not computed since

Figure 13: Flutter speed sensitivity to wing aspect
ratio

the developed numerical code still does not account
for non-linear geometric or displacement behaviors.
The increase of flutter speed by decreasing the as-
pect ratio is mainly due to the increase of the wing’s
rigidity.

4.6. Wing Lift to Drag Optimization

The first optimization problem pursued was a
purely aerodynamic design problem for maximum
lift-to-drag ratio, with constraints in lift coefficient
and wing area to assure that the optimized wings
produce the same lift as the baseline. The baseline
wing geometry and operating conditions were the
same as in Tab.4.

The numerical analyses were conducted with
the static aerodynamic solver incorporated in the
aeroelastic framework, and the constrained opti-
mization algorithm SQP in function fgoalattain in
MATLAB R© was used to solve the problem cast in
the form

Maximize L/D
with respect to x
subject to S ≥ 0.375 m2

CL ≥ 0.3
1.3 ≤ b ≤ 1.7 m
0.25 m ≤ croot ≤ 0.4 m
λ ≥ 0.4
−5◦ ≤ θroot, θtip ≤ 5◦ ,

(16)

where the wing design variables vector x included
the half span b/2, root chord croot, tapper ratio λ,
root twist angle θroot and tip twist angle θtip.

Since only the static aerodynamic solver was used
in the analysis, the finer mesh in Tab.6 with 100
chordwise points and 40 spanwise points was used

The objective function, design parameters and
corresponding bounds, and the constraints are
shown in Tab.7, for both the baseline and opti-
mized wing. The optimizer satisfied all constraints
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Baseline wing Optimized wing

Lift-to-drag ratio 96.78 180

Half span 0.75 m 0.85 m
Root chord 0.25 m 0.3180 m
Tapper ratio 1 0.4
Root twist 0◦ −0.9411◦

Tip twist 0◦ 1.0769◦

Area 0.375 m2 0.3784 m2

Mass 0.1510 kg 0.1452 kg
Lift coefficient 0.3097 0.3034
Drag coefficient 0.0032 0.0017
Pitch coefficient −0.0738 −0.0790

Table 7: Static wing aerodynamic optimization

and, while there wing lift coefficient remained al-
most constant, the drag coefficient decreased, thus
leading to the desired increase in lift-to-drag ratio.
This resulted from an optimal wing tapper ratio
that led to an approximately elliptical lift distri-
bution, thus reducing the induced drag. The final
wing shape is shown in Fig.14.

Figure 14: Wing design for static aerodynamic op-
timization

4.7. Wing Flutter Speed Optimization
In this optimization problem, a function was de-
fined to determine the freestream speed for which
the numeric aeroelastic solver achieves a divergent
oscillatory solution, which was identified as the flut-
ter speed. Due to the added computational cost of
the unsteady analyses, the coarse mesh of 40 × 20
panels presented in Sec.4.2 was used.

The constraints are mostly the same as stated in
Sec.4.6, excluding the speed constraint that is not
applicable. The wing flutter optimization problem
can then be cast in the form

Maximize Uflutter
with respect to x
subject to CL ≥ 0.3

1.3 ≤ b ≤ 1.7 m
0.25 m ≤ croot ≤ 0.4 m
λ ≥ 0.4
−5◦ ≤ θroot, θtip ≤ 5◦ ,

(17)

The parameters of the optimal wing obtained are
listed in Tab.8.

The optimized wing achieved a large increase in
flutter speed compared to the baseline wing, while
also achieving a greater base CL, in part due to the
increase in tapper ratio and large wing tip twist.

Baseline wing Optimized wing

Flutter speed 16.66 m/s 28.56 m/s

Half span 0.75 m 0.85 m
Root chord 0.25 m 0.4 m
Tapper ratio 1 0.5848
Root twist 0◦ 0◦

Tip twist 0◦ 5◦

Area 0.375 m2 0.5388 m2

Mass 0.1510 kg 0.2875 kg
Lift coefficient 0.31 0.46

Table 8: Flutter speed optimization

The increase in wing mass is due to the required
increase in wing rigidity to enable the flutter speed
maximization.

5. CONCLUSIONS

A modular numeric aeroelastic framework was im-
plemented in MATLAB R© to reduced program com-
plexity and facilitate future add-ons or replace-
ments of existing modules. The aerodynamic mod-
ule was verified against open source software XFLR-
5 and the structural module accuracy compared to
ANSYS R©.

The numeric framework was shown to be able
to estimate the flutter speed both by computing
the damping ratio associated to the wing’s dynamic
behavior and the structural frequency spectra that
results from this dynamic behavior.

The comparison of numerical and experimental
data showed a discrepancy between the measured
frequency spectra for both cases, with the experi-
mental results displaying a higher rigidity compar-
ing to numerical results. While this variation can-
not be dismissed, it can be seen as an extra safety
margin since the numerical model underestimates
the wing flutter speed and thus experimental tests
can be performed within safety limits.

The effect of the wing aspect ratio on the flut-
ter speed was studied, which showed that the wing
bending rigidity plays a crucial role on the aeroe-
lastic instabilities and further illustrating the ma-
jor design challenge of increasing the aspect ratio
to improve the lift-to-drag ratio.

The optimization test cases served as another il-
lustration of the aeroelastic framework versatility
and also verify the results that were well withing
expectation for the static aerodynamic and struc-
tural cases, and the dynamic aeroelastic final case.
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