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Abstract

The usage of powerful optimization tools is becoming common in solving many engineering problems
due to available computational resources and mature numerical algorithms. In this work, an adjoint-
based high-fidelity aerodynamic shape optimization framework is used to manipulate a generic aircraft
fuselage shape to minimize the total aerodynamic drag with specific payload volume constraints. The
external fuselage shape is modified using the free-form deformation (FFD) technique to allow greater
flexibility. The impact of using different deformation approaches applied to the displacement of FFD
control points is studied, including displacements along the normal direction, the transverse axis direc-
tions, and cambering along the fuselage longitudinal direction. It is demonstrated that the combination
of flexible control point displacement in multiple FFD box cross-section planes together with a stream-
wise cambering can produce a very significant drag reduction, in excess of 40% compared to the selected
baseline shape, while still satisfying volume constraints to account for internal or protruding payloads.
Additionally, to complement the study, two real case scenarios inspired by TEKEVER UAV projects
are tackled, representing realistic integration challenges within UAV fuselages. The first case handles
the integration of a SATCOM antenna, represented by its enclosing spherical volume, while the second
case deals with the integration of a recovery parachute system, represented by an inclined box. The
final optimization cases highlighted the potential for aerodynamic improvement, with Case 1 achieving
a 4.6% drag reduction driven by lower pressure drag, while the last case demonstrated a 25% drag
increase due to stricter constraints and abrupt fuselage expansion.
Keywords: aircraft design, gradient-based optimization, adjoint method, free form deformation,
high-fidelity analysis, aerodynamic performance

1. Introduction

In recent years, the aviation industry has been ex-
panding towards more diverse solutions, proposing
novel aircraft configurations and shapes. In particu-
lar, Unmanned Aerial Vehicles (UAVs) have become
increasingly relevant in multiple sectors, includ-
ing agriculture, defense, and civil operations [1, 2].
With the market expanding in the UAVs, fuselage
shape optimization becomes imperative to enhance
the aerodynamic efficiency, structural attachment,
and overall performance.

The study focuses on the aerodynamic shape op-
timization of a typical fuselage using gradient-based
strategies to obtain a fast convergence towards an
optimal design. The gradients of the objective and
constraint functions are calculated using the adjoint
method [3], allowing the computational cost to re-
main independent of the number of design variables,
which is particularly beneficial in shape optimiza-
tion problems.

The Free-Form Deformation (FFD) method [4] is

used to parameterize the fuselage geometry to allow
flexible and smooth shape changes. The deforma-
tion strategy includes displacements along the lon-
gitudinal axis and normal-based deformations of the
control points, as well as local shape adjustments in
critical regions such as the nose and tail.

To complement the baseline study, two case sce-
narios inspired by TEKEVER UAV projects are in-
troduced. These aim to replicate real-world integra-
tion challenges by imposing internal constraints: a
spherical volume representing a SATCOM antenna,
and an inclined box simulating a parachute instal-
lation. These geometries pose local constraints in
the fuselage which must be maintained throughout
the optimization process, giving further insight into
the enforcement of constraints and control of shape
in real-world applications. In order to guarantee
design feasibility, these volume constraints are ap-
plied to preserve payload capacity and ensure that
the resulting fuselage geometries remain suitable for
internal component allocation and structural inte-
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gration. Through this framework, this work investi-
gates the potential of shape optimization techniques
to generate efficient, realistic, and mission-oriented
fuselage designs.

2. Background

2.1. Aerodynamic Forces

An aircraft’s aerodynamic performance is essen-
tially determined by the forces developed upon its
interaction with the surrounding airflow. These
forces are caused by the pressure and shear stress
distribution along the body surface and give rise
to lift and drag components. Among these, drag
is a dominant factor in aircraft design since it in-
fluences fuel economy, range, and cost of operating
the aircraft. Aircraft shape optimization, and most
particularly fuselage, is therefore mainly directed at
minimizing drag [5].

Generally speaking, the drag is usually divided
into three different categories, 1) Parasitic drag con-
sisting of form drag, skin friction, and interference
drag; 2) Lift-induced drag; and 3) Wave drag. In
this work, the main focus was on the first cate-
gory, since the wave drag [6] is important only for
transonic and supersonic speed, and the lift-induced
drag is created due to the lift, and fuselages are not
known for the generation of lift [7].

Among the components of parasitic drag, inter-
ference drag occurs at component intersections as
a result of boundary layer distortion and secondary
flows. Since no component intersections are taken
into account in the optimization problems, the at-
tention is focused on skin-friction and form drag [5].

Consequently, the optimization process targets
minimizing the remaining two types. Skin-friction
drag arises from boundary layer shear stresses and
depends on the surface area and flow regime. Al-
though typically smaller than form drag, it be-
comes increasingly significant when optimal geome-
tries with higher surface areas, like fuselages inte-
grating the payload, are being optimized. Another
important type of drag, the form drag, also referred
as pressure drag, is the drag on a body moving
through a fluid due to the pressure difference be-
tween the front and rear of the body. This type of
drag is directly dependent on the shape, or ”form”,
of the body, and is most pronounced when there is
flow separation. When the shape is poorly stream-
lined, the flow is not capable of remaining attached
to the surface and is separated from the surface, cre-
ating a wake area that is a region of low pressure
with increased turbulence. The larger and more
chaotic this wake, the greater the pressure difference
between the front and rear regions of the fuselage
[8].

2.2. Computational Fluid Dynamics (CFD)
Computational fluid dynamics (CFD) is a funda-
mental tool used to simulate turbulent flows in
aerospace applications. Unlike experimental means,
CFD provides a cheaper and more flexible ways of
simulating complex flows, especially around compo-
nents like fuselages and wings.

The simulations done in this work are based
on the Navier–Stokes equations, which dictate the
conservation of energy, mass, and momentum in
fluid flow and are the basis of CFD. Because of
the increased computational cost of simulating all
of the scales of turbulence with DNS or LES, a
Reynolds-Averaged Navier–Stokes (RANS) strat-
egy was used. RANS, on the other hand, offers
time-averaged solutions for the flow, which is an
effective and affordable way to simulate turbulent
flows in engineering applications. Note that this
method introduces additional terms that account
for the effects of turbulence, increasing the number
of variables [9].

To solve this problem, a turbulence model is re-
quired. For this work, the Spalart–Allmaras (SA)
was chosen. This is one of the most widely used
method in aerospace applications [10]. It is one of
the most straightforward, yet efficient method for
simulating turbulent flows.

Additionally, since the selected CFD solver only
provides a differentiated version of the Spalart-
Allmaras turbulence model, and gradient-based op-
timization will be used, this decision becomes es-
sential for our research [11].

2.3. Optimization Methods
Computational design problems are becoming more
common in manufacturing industries. For complex
systems like UAVs, the design is one of the most
important characteristics to take into consideration.
Optimizing to the specified objectives functions can
lead to several improvements. It is an engineers’
job to formulate the correct problem and find the
desired parameters according to the objectives. In
mathematical language, the optimization task can
be posed as

Minimize f(x)

by varying xi i = 1, . . . , nx

subject to gj(x) ≤ 0 j = 1, . . . , ng,

hl(x) = 0 l = 1, . . . , nh,

xi ≤ xi ≤ xi i = 1, . . . , nx.
(1)

and it basically demonstrates how an optimization
problem works: by adjusting the design variables xi

within the boundaries of the constraints gj and hl,
the objective function f can be minimized [12].
Gradient-based methods were selected in this

2



work because they are efficient and deterministic,
meaning they follow a defined sequence and re-
turn consistent results. These algorithms depend
on derivative information to drive the optimization
process and are best suited to problems with a large
design variable list.

To solve the constrained, nonlinear optimiza-
tion problems defined throughout this work, the
Sequential Least Squares Quadratic Programming
(SLSQP) algorithm was used. SLSQP iteratively
solves quadratic approximations to the Lagrangian,
while linearizing the constraints, with the benefit
of robustness as well as efficiency. Its stability and
documented performance in aerospace applications
made it a suitable option for the current optimiza-
tion framework [13].

After selecting the optimization algorithm, it is
important to select a suitable algorithm to effec-
tively compute the derivatives based on the problem
dimension. In this work, the chosen method was
the adjoint method. The adjoint method is con-
sidered to be an efficient and accurate method to
evaluate the sensitivities of a cost function. Its key
advantages is that its computational cost remains
independent of the number of design variables [3].

3. Implementation

This work uses the MACH-Aero framework to carry
out aerodynamic shape optimization [14]. This
framework combines various tools to deform the ge-
ometry, generate high-quality meshes, execute CFD
simulations, and iteratively update the design in
accordance with the specified variables and con-
straints.

The fuselages are parameterized using pyGeo,
which maps the surface mesh of the geometry to
a block of control points defined by the Free-Form
Deformation (FFD) box [4]. Once the surface de-
formation is defined, it is propagated to the vol-
ume mesh using IDWarp [15], a MACH-Aero mesh-
warping tool that preserves mesh quality through
an inverse distance weighting algorithm.

During the pre-processing stage, the initial mesh
is generated through pyHyp, a hyperbolic mesh gen-
eration tool that employs a marching algorithm to
create high-quality structured grids for CFD simu-
lations. ADflow is the computational fluid dynam-
ics (CFD) solver responsible for analysing the aero-
dynamic performance of each candidate geometry
[11]. The Reynolds-Averaged Navier–Stokes equa-
tions are solved using the Spalart–Allmaras turbu-
lence model.

Finally, PyOptSparse [16] is an object-oriented
framework for formulating and solving nonlinear
constrained optimization problems. It coordinates
the design variable updates, uses gradient informa-
tion provided by pyGeo and ADflow, and drives the

iterative process towards an optimal solution.
Collectively, these tools support fast optimization

cycles, keep mesh quality intact, and allow effective
handling of intricate geometries.

As mentioned, the FFD method serves as the
parametrization approach in this work, and it is
employed using tools from the open-source MACH-
Aero optimization framework. This method is a
geometry modification technique that parametrizes
the shape perturbation instead of the shape itself
[4]. It works as a control structure that encloses the
embedded fuselage, and any displacement applied
to its control points results in a smooth deforma-
tion of the volume inside. Note that the nodes that
are moved are located on the outer surface of the
FFD box and are referred to as FFD control points.
These nodes are mathematically linked to the mesh
points inside the box. When the control points suf-
fer any displacement, all the points within the FFD
box, including those on the fuselage surface, are au-
tomatically deformed based on their position rela-
tive to the box. By using the FFD method, the
geometry of the object is embedded into a box that
can be manipulated by moving these outer control
nodes, allowing for smooth and continuous shape
changes.

Another primary operation of the aerodynamic
optimization approach that has direct impact on
CFD accuracy as well as the computational cost
of simulations is the mesh generation [17]. Surface
mesh forms the outer boundary of the computa-
tional domain and provides an initial point to create
a volume mesh. For this purpose, structured sur-
face meshes were generated from the fuselage CAD
geometry (Fig. 1) using a multi-block topology.

Figure 1: Complete CAD model of the TEKEVER
ARX drone

Once the surface mesh was defined, the volume
mesh was generated using pyHyp. It starts with
a surface corresponding to the geometry, in this
case, of the TEKEVER ARX or the mesh used
for the parametrization studies; and then extrudes
the mesh in successive layers until it reaches the
defined distance from the original surface, forming
a structured volume mesh suitable for high-fidelity
CFD analysis. Several parameters were necessary
to be defined to complete this task. These in-
clude the first-layer height (s0), the number of lay-
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ers to extrude (N), and the total marching distance
(marchDist), for example. Besides these, more pa-
rameters are available to change the algorithm that
generates the mesh. However, default values were
used, as they seemed appropriate to generate the
fuselage due to their previous integration in simi-
lar shape optimization problems. Furthermore, the
computational domain was extended in the stream-
wise direction up to five chord lengths behind the
fuselage and the surface was extruded in all outward
directions to generate the full volume mesh around
the fuselage to ensure sufficient space for flow de-
velopment and ensure proper resolution of the wake
and pressure recovery region.

Note that for more complex geometries like the
TEKEVER ARX, an overset approach is applied.
Instead of having one complex mesh, this method
allows to split the domain into separate and over-
lapping meshes. The information of these meshes is
then interpolated in each iteration [18]. This pro-
cess helps generating meshes with refined regions,
such as near the trailing and leading edge of the
fuselage.

4. Results

The initial goal was to understand how differ-
ent FFD control point parametrization approaches
could be applied to a generalized fuselage geome-
try. Each approach was evaluated individually to
assess its influence on the final shape, guiding the
selection of the most suitable approach for the fi-
nal optimization studies. The explored approaches
included normal-based and axis-oriented displace-
ments. In addition, a method for introducing cam-
ber into the fuselage was also implemented. These
deformation strategies were first tested separately
and then combined to start integrating payload con-
straints, in specific, a spherical volume intersecting
the fuselage surface was introduced. The objective
was to evaluate how the optimizer would reshape
the fuselage around the sphere, resulting in a de-
formed geometry that accommodates the payload
while preserving aerodynamic performance.

An example of a comparison between the baseline
fuselage (in black) and the optimal one (in red) can
be observed in Fig.2. In this study, the goal was
to enclose the sphere that was initially intersecting
the baseline fuselage. This was achieved by allowing
displacements along the Z-axis in the y = 0 plane,
combined with normal-based displacements for the
rest of the FFD box. This led to, as summarized
in Tab.1, a 21.3% decrease in overall drag mainly
due to volume and area minimization. Since no
constraints were imposed, the fuselage would be ex-
pected to shrink even more, but the imposed lower
bounds of the design variables did not allow this to
happen.

Figure 2: Parametrization along Z-axis, combined
with normal vectors of FFD points.

Table 1: Optimization deformation strategy studies
and corresponding drag coefficient reduction.

Approaches Constraints ∆CD

(baseline) – ref
Normals None -16.6%
Y-axis None -21.6%
Z-axis None -11.7%
(Y, Z)-axis None -40.4%
Nose Camber None -2.1%
Tail Camber None -2.1%
(Tail, Nose) Camber None -2.3%
Camber + Normals None -17.1%
Camber + (Y, Z)-axis None -41.6%
Camber + Normals TS (IS) -16.9%
Camber + (Y, Z)-axis TS (IS) -39.8%
Normals TS (IS) -16.4%
Normals TS (IntS) -7.0%
Normals + Z-axis TS (IntS) -21.3%

TS = Triangulated Surface, IS = Internal Sphere,

IntS = Intersected Sphere.

Through the analysis of the optimal shapes pre-
sented, corresponding to the cases stated in Tab. 1,
it was possible to asses the effectiveness of the dif-
ferent shape parametrization approaches. Notice,
however, that these optimal shapes were obtained
from problems that differed slightly in terms of de-
sign variable bounds to overcome mesh morphing
fails. As such, the comparisons might not extrapo-
late directly to other fuselage geometries.

Looking at the approaches using deformations
along the Y- and Z-directions, they exhibited a
much greater drag reduction compared to the nor-
mal direction approach. The Y-direction only ap-
proach, corresponding to lateral fuselage deforma-
tions, led to considerably better shapes compared to
the Z-direction only approach, and, unsurprisingly
given the greater deformation freedom, the combi-
nation of both Y- and Z-direction deformations led
to an impressive 40% drag reduction. Even though
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this parametrization approach allowed the largest
minimization of drag, it still had some irregulari-
ties that had to be taken into account.

When considering the deformation using the cam-
ber function alone, little impact in the aerodynamic
performance was obtained, limited to about 2% re-
duction in drag, regardless of the regions manipu-
lated (nose, tail or both).

Referring to the cases where the payload was in-
tersected with the fuselage surface, the last two ap-
proaches presented in Tab. 1, only the deformation
strategy along the normal vectors was considered
because it prevented irregular deformations in the
fuselage while integrating the triangulated surface
constraint with the sphere intersected in the main
body. However, when comparing these cases, the
case where only displacements along the normals
of the FFD points were considered, resulted in a
7% drag reduction, while the combination with Z-
direction displacement in the plane y = 0 signifi-
cantly increased the reduction to over 21%, mostly
due to the influence of manipulating the FFD points
near the fuselage’s vertical symmetry XZ-plane.

Overall, for these cases, a drag reduction ranging
from 2.1% to 41.6% was observed. Despite the di-
rectional parametrization leading to greater drag re-
duction, the parametrization along the normal vec-
tors of the FFD box points was not discarded in
the TEKEVER ARX study cases. This approach
combined with a deformation along the vertical Z-
axis in the y = 0 plane have produced good results
as well, with the added benefit of reducing the sur-
face irregularities if the DV bounds are properly set.
This study highlighted the importance of selecting
appropriate parametrization approaches based on
both aerodynamic performance and payload con-
straints (internal to the fuselage or partially pro-
truding).

To further enhance the research, the already
tested parametrization approaches were imple-
mented to the TEKEVER ARX fuselage, which has
a more complex and realistic shape shown in Fig.
1. In relation to the original generic studies, a num-
ber of modifications were required to obtain efficient
and effective results.

In the end, four cases were examined. However,
since the third case was a combination and improve-
ment of the first two cases, these were not docu-
mented here.

The third case represented an integration of a
spherical volume that intersects the fuselage skin,
simulating a volume that fully encloses a SATCOM
antenna, observed in Fig. 3a. The integration pro-
cess experienced a number of problems, including
mesh failures, lack of symmetry of the obtained
results, despite the problem’s symmetry, and ex-
tended computation time due to the slow conver-

gence of the residuals. The fourth case, shown in
Fig. 3b, aimed to integrate an inclined box modeling
the installation of a parachute system. The pres-
ence of sharp corners and edges of the box caused
frequent mesh generation problems and convergence
issues as well.

(a) TEKEVER ARX fuselage optimisation with an
integrated satcom (Case 3).

(b) TEKEVER ARX fuselage optimisation with an
integrated parachute (Case 4).

Figure 3: Comparison between two TEKEVER
ARX fuselage optimisation cases.

After trying the various deformation approaches,
it was found that displacements along the fuselage’s
Y and Z axes were the most suitable to achieve
the shape changes required in each case. To re-
duce the computational cost, an approach to de-
form only half of the FFD box was adopted by in-
serting a symmetry plane at y = 0. by pairing
the FFD box control points on opposite sides of
the symmetry plane. This decreased the number of
design variables and increased overall optimization
efficiency. Another problem encountered while op-
timizing these four cases was the fact that the opti-
mizer often got trapped preventing further progress
when the fuselage surface intersected the sphere or
box surfaces. To overcome this, a modified baseline
fuselage was generated to ensure the entire box was
enclosed. This was achieved by applying a vertical
translation to selected FFD nodes along the Z axis,
effectively lifting the FFD box and, consequently,
the fuselage. The resulting geometry served as the
new initial shape for the optimization problem. An
example of this issue is shown in Fig. 4 where a com-
parison between the initial baseline fuselage (black)
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and the optimized result (red) is made.

Figure 4: Comparison between the baseline fuselage
(Black) and the optimized result (Red) (case 4).

Particularly, in the fourth case, even though the
optimizer could still converge under these condi-
tions, it did not satisfy all the constraints due to
the presence of sharp corners and edges in the orig-
inal box design. These sharp edges and corners re-
stricted the ability of the optimizer to create a con-
tinuous, smooth surface around the reference shape.
Consequently, additional changes to the box were
made and therefore, all sharp edges and corners
were eliminated. This modification minimized con-
flicting constraints and facilitated the optimizer’s
ability to identify feasible solutions that better in-
tegrated the box within the overall fuselage shape.

Although the same mesh was used in both op-
timization cases, the FFD box configurations were
quite different, see Figs. 3a and 3b. The third case
provided the optimizer with far greater freedom,
with a greater number of FFD control points al-
lowed to move. As shown in Tab. 2, while the num-
ber of design variables did not differ significantly
between the two cases, the control points of the
third case were spaced further apart. This means
that each displacement influenced a larger area of
the fuselage, causing a larger shape modification.

In contrast, the fourth case needed tighter geo-
metric control, as it aimed to integrate an inclined
box that modeled a parachute system without de-
forming the front part of the fuselage. The FFD
control points were placed closer to the payload,
aiming to achieve a localized deformation around
the inclined geometry. To manage this integration
more precisely, a new FFD box was defined with ad-
ditional sectional divisions near the payload. The
nodes near the front of the box were kept fixed, pre-
venting the optimizer from modifying the geometry
in that region, while the other selected nodes were
allowed to move along the Y and Z axes.

The bounds imposed on the FFD control points
also differed between the two cases, as the payloads
were located in distinct regions of the fuselage. Fur-
thermore, in the fourth case, the objective function
had to be scaled down to ensure smoother displace-
ments. This adjustment was necessary since, as ex-
plained, whenever the two surfaces intersected, the
optimizer would get trapped leading to a failed op-

timization.

In general, each case presented distinct challenges
related to FFD box design, control point placement,
and optimization parameters. These constraints led
to different outcomes, which will be analysed in de-
tail. A comparison of the optimization setups will
be provided, followed by an analysis of the pressure
coefficient (Cp) and skin friction coefficient (Cf ) dis-
tributions for both cases.

The parameters used for this third case (case 3)
are summarized in Tab. 2. The triangulated surface
constraint was applied with a spatial tolerance of
ρ = 750, to promote better spatial fitting between
the deformed fuselage and the SATCOM sphere.
Overall, this setup was designed to improve conver-
gence behaviour and explore if symmetry and im-
proved enforcement of spatial constraint could lead
to more efficient fuselage shapes.

A detailed comparison between the baseline and
optimized fuselages for case 3 are presented through
the pressure and skin-friction coefficient distribu-
tions, shown in Figs. 5 and 6, with the baseline
fuselage on the left side and the optimized geom-
etry on the right side in each figure. The differ-
ent views are divided along the symmetry plane at
y = 0, providing a clear comparison of the two coef-
ficients between the two stages of the optimization.
The following analysis highlights the key differences
between the two configurations and examines the
aerodynamic implications of the applied surface de-
formations.

Figure 5: Pressure coefficient distribution on the
optimized TEKEVER ARX fuselage of case 3

As observed in the pressure distribution shown in
Fig. 5, the optimized fuselage exhibits a completely
different pressure distribution when compared to
the baseline fuselage. Near the nose, the pressure
is still relatively high, as no shape changes in this
region were allowed. As flow progresses, the fuse-
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Table 2: ARX fuselage aerodynamic shape optimization parameters – Symmetry-Enforced Cases

Variable Description Quantity/ Value

Case 3 Case 4

Minimize:

CD Drag at fixed flight condition — —

By varying:

shape vertical func FFD vertical deformations (Y , Z) 30 27

shape horizontal func FFD horizontal deformations 24 18

Subject to:

xFFDy Bounds for Y displacements [−0.1, 0.1] [−0.1, 0.1]

xFFDz Bounds for Z displacements [−0.2, 0.2] [−0.3, 0.3]

KSgeom ≤ 0
Aggregated minimum distance

(spatial feasibility Condition 1)
1 1

L = 0
Non-intersection

(spatial feasibility Condition 2)
1 1

Objective scaling Scaling factor for objective 500 100

At condition:

Symmetry Enforced at y = 0 — —

Figure 6: Skin friction coefficient distribution on
the optimized TEKEVER ARX fuselage (case 3).

lage begins to widen, causing the flow to decelerate.
This results in a local increase in pressure and, con-
sequently, in the pressure coefficient. Near the aft of
the fuselage, and once the sphere is fully enclosed,
the geometry transitions into a region of decreasing
cross-sectional area. This leads to an acceleration of
the flow. This behaviour is reflected in the pressure
distribution, where a lower pressure region (dark
blue) emerges. Near the trailing edge, the geome-
try appears to provide a relatively smooth pressure
recovery, helping to stabilize the flow and reduce
potential flow separation.

The skin friction coefficient distribution shown
in Fig. 6 complements the pressure data by high-
lighting the skin-friction patterns. Near the nose,

skin friction is low, consistent with the stagnation
zone where tangential velocity is minimal. Along
the mid-fuselage, skin friction increases steadily, re-
flecting an attached boundary layer. The highest
values are concentrated over the top of the fuse-
lage, particularly around regions of increased cur-
vature where flow speeds are greatest. Towards the
tail, Cf gradually decreases, and isolated blue re-
gions, indicating negative or near-zero skin friction,
emerge, which may indicates possible flow separa-
tions, supporting what was previously discussed.

Overall, the (Cp) and (Cf ) distributions give a
good indication of how the flow behaves around the
optimized fuselage. According to Tab. 3, this final
case resulted in a 4.6% reduction in overall drag. In
this optimization case (case 3), pressure drag was
reduced by around 10.3%, while skin-friction drag
increased by approximately 2.3%. This means that
the optimizer was able to reduce the total drag by
essentially decreasing pressure drag. On the other
hand, the increase in skin-friction drag was due to
the larger volume and surface area of the fuselage
required to enclose the entire sphere, which natu-
rally leads to higher shear forces along the surface.

As already referred, some modifications were
made to case 4 to prevent previous issues encoun-
tered. To increase the flexibility of the optimizer,
while complying with the constraints, and prevent
the values of the design variable from reaching the
upper boundaries, the upper limits of the applied
design variables were increased. This allowed for
larger geometric deformations and improved the op-
timizer ability to adapt the fuselage shape around
the box.

Furthermore, the spatial fitness value of the tri-
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angulated surface, ρ, was reduced. This param-
eter controls how close the optimizer is required
to match the reference surface, in this case, the
box. Reducing ρ helps relax this constraint, giving
the optimizer more freedom to prioritize smoother
shapes over exact surface matching [19]. The goal
was to make the integration of the inclined box
easier by avoiding sharp transitions and giving the
optimizer more flexibility to generate a continuous
fuselage without being forced to fit the triangulated
surface too tightly. The optimized fuselage enclosed
the entire box while ending in a smooth way, avoid-
ing large pressure coefficient differences and helping
to keep the flow attached to the fuselage surface.
This, together with the smoothing of the box, al-
lowed a converged solution that respected the con-
straints.

A detailed comparison between the baseline (left-
side) and the optimized fuselage (right-side) for the
last case (Case 4) is shown in Figs. 7 and 9. The
same methodology is used to demonstrate the dis-
tribution of pressure and friction on the fuselages,
where a symmetry plane at y = 0 is used to divide
the different views.

Figure 7: Pressure coefficient distribution on the
optimized TEKEVER ARX fuselage (case 4).

As expected, the resulting fuselage is much more
similar to the baseline compared to the other cases.
This is due to the more restricted displacements ap-
plied to the FFD box. However, because the box
had to be fully enclosed while avoiding large defor-
mations in the front section of the fuselage, the ge-
ometry transitions sharply to enclose the parachute
box. This leads to a nearly perpendicular slope
in that region, which creates a high-pressure area.
Since the box is enclosed, the fuselage experiences
a pronounced pressure drop, accelerating the flow
around this section. To help maintain flow attach-
ment, a smooth and gradual slope is introduced

in the aft part of the fuselage, following the cross-
sectional enlargement.

Nevertheless, as shown in Tab.3, a flow separa-
tion occurred due to the significant increase in pres-
sure drag. Specifically, the fuselage experienced an
increase of nearly 43% compared to the baseline.
Figure 8 illustrates the region where this separa-
tion takes place, clearly showing where the stream-
lines reverse direction, and providing valuable in-
sight into the aerodynamic behaviour of the opti-
mized geometry.

Figure 8: TEKEVER ARX fuselage optimization
problem with an integrated box (case 4).

Figure 9: Skin friction coefficient distribution on
the optimized TEKEVER ARX fuselage of case 4

The skin friction distribution of the optimized
fuselage is compared with the baseline in Fig. 9. As
expected, since the fuselage did not undergo any
deformations near the nose, it remains identical to
that of the baseline in this region. As the flow en-
counters the wall enclosing the box, the velocity
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decreases, and consequently, so does the skin fric-
tion. This is visible in the light blue/green region,
corresponding to the region where the fuselage cross
section begins to expand. Supporting the previous
analysis, a second light blue/green region appears
where the cross section starts to decrease. In this
region however, the velocity does not show a sim-
ilar reduction, which may indicate a possible flow
separation.

Table 3: Comparison of drag coefficient variations
and computational time.

Config. t (h) ∆CD ∆CDp ∆CDv

Baseline – Ref Ref Ref
Case 3 118 –4.6% –10.3% +2.3%
Case 4 121 +24.7% +42.8% +2.5%

Overall, several conclusions can be drawn from
the analysis of this last case (Case 4). Firstly, it
must be noted that, contrary the trends observed
in the previous cases, the optimizer was not able
to minimize the total drag coefficient (CD). This
may be attributed to the restrictions applied, as
well as the bounds used for the different design vari-
ables, which limited the optimizer’s flexibility. In
Case 4, an increase of approximately 25% in total
drag was observed, as shown in Tab. 3. While the
skin friction drag increased by only 2.5%, remaining
within the range of the increases seen in the previ-
ous cases, the pressure drag component rose around
43%. This significant rise in pressure drag is likely
due to the nearly perpendicular slope introduced to
enclose the box, which created adverse pressure gra-
dients and led to flow separation. This highlights
how the smoothness of the fuselage streamlines con-
tribute to flow attachment and, consequently, im-
prove its aerodynamic characteristics.

5. Conclusions
This work used the MACH-Aero framework to per-
form aerodynamic fuselage shape optimization with
payload integration. The objective was to mini-
mize the overall drag while operating under geomet-
ric constraints and different design variables. The
Free-Form Deformation (FFD) method was used to
parametrize the geometry allowing flexible shape
control throughout the optimization process.
Several deformation approaches were explored,

combined with the triangulated surface constraint
method, to ensure that internal payloads could be
enclosed without generating infeasible fuselage ge-
ometry or compromising flow quality. These ap-
proaches were benchmarked using a basic fuselage
to establish the limitations and advantages of each,
and were used as the foundation to address more
realistic cases.
The final optimization cases (Cases 1, 2 and 3)

demonstrated how the integration of these tools
and approaches could lead to aerodynamic improve-
ments. In the spheric SATCOM integration case, a
total drag reduction of 4.6% was achieved, primarily
due to a 10.3% decrease in pressure drag. This gain
was slightly offset by an increase of approximately
2.3% in skin-friction drag, caused by the additional
surface area required to house the payload. On the
other hand, Case 4 presented a different outcome.
Despite following the same optimization framework,
the stricter design constraints and reduced geomet-
ric flexibility led to a total drag increase of approx-
imately 25%. While the increase in skin-friction
drag remained within the same range at 2.5%, the
pressure drag rose significantly, by about 43%, high-
lighting the adverse effects of the abrupt fuselage
expansion required to enclose the payload.

It is important to note that, compared to the
first studies, these final optimization problems were
subject to stricter constraints. Since the geometry
aimed to represent a real-case scenario, changes to
the fuselage could potentially affect the position-
ing of internal components or structural elements.
These restrictions limited the design space available
to the optimizer but made the problem more real-
istic. Despite this, the results showed that even
under such limitations, several aerodynamic gains
can still be achieved. This reinforces the potential
of the adopted optimization framework to support
and help improving future geometries, taking into
account different constraints and design variables.

Overall, this work provided valuable insights re-
garding aerodynamic shape optimization of fuse-
lages. It contributed to a deeper understanding
on how to parametrize different geometries, tak-
ing into account the several risks and irregularities
that might be obtained if the problem is not prop-
erly defined. It also provided knowledge in con-
straint enforcement, particularly regarding the tri-
angulated surface constraint method, and how these
approaches can be combined to produce the best
possible solution for enclosing various payloads into
the fuselage.
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