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Abstract

Given the rising number of applications of Unmanned Aerial Vehicles (UAVs) and consequent
expansion of that market, enhanced flight safety systems need to be developed. The main objective
of this work is to develop a Sense and Avoid (S&A) system for small fixed-wing UAVs. To achieve
this, firstly, a literature review of the sensors and systems used to detect obstacles, cooperatively and
non-cooperatively, was made, followed by a review of the main local and global path planning methods
for collision avoidance. Then, a hardware implementation was proposed, consisting of two ultrasonic
sensors, two laser rangefinders, and one LiDAR, integrated with a flight controller, a companion
computer, and other components essential to the UAV operation. A complete software implementation
was also proposed, ranging from the study and adaptation of the flight control software (PX4), with
emphasis on the handle and communication of sensor data, to the development of a software prototype,
based on the Vector Field Histogram (VFH) method, to be executed in the companion computer, to
receive sensor data, obtain obstacle positions, and return setpoints of a collision avoidance trajectory.
The validation tests have shown that the system is capable of, based on sensor data, compute obstacle
positions, transform them to polar histogram format, and generate trajectory setpoints representing
avoidance maneuvers of small deviations, with an update rate of 10Hz, thus real-time capable.
Keywords: obstacle detection, collision avoidance, Vector Field Histogram, flight controller, compan-

ion computer, ultrasonic sensor, laser rangefinder, LiDAR.

1. Introduction

Unmanned Aerial Vehicles (UAVs) have evolved
from primarily military applications to a wide range
of civil and commercial uses, such as surveillance,
agriculture, logistics and media [1]. These applica-
tions often require UAVs to operate at low altitudes,
where obstacles like buildings, trees and power lines
pose significant collision risks. Consequently, the
rapid expansion of the UAV market [2] emphasizes
the need for reliable safety systems.

This work addresses the safety enhancement of
small fixed-wing UAVs (with maximum takeoff
weight under 25kg, range under 10km, endurance
under 2h and flight altitude under 120m), with fo-
cus on the development of a Sense and Avoid (S&A)
system, aimed at detecting obstacles and avoiding
collisions autonomously during flight.

Building upon previous thesis [3-6] that mod-
eled sensors, optimized sensing configurations, and
simulated avoidance path-planning algorithms, for
fixed-wing UAVs, the contributions of this work lie,
firstly, on the design and proposal of a hardware
implementation of a S&A system, incorporating a

multi-sensor configuration, a flight controller, and
a companion computer; and, secondly, on the pro-
posal of a software implementation, based on the
adaptation of the flight control software, PX4, to
receive and handle data from the obstacle detection
sensors, and the development of a software proto-
type to be executed on the companion computer, to
receive sensor data from the flight controller, pro-
cess it, and generate avoidance trajectory setpoints
in real-time. Lastly, the complete S&A system is
validated through bench testing in a rover robot.

Obstacle sensing systems in UAVs are generally
divided into cooperative detection, when there is
information exchange between the aircraft and the
obstacle, and non-cooperative detection, otherwise.
The latter requires proper sensor hardware, such
as laser rangefinders, applied in [7] for a quadrotor
UAV, Light Detection and Ranging (LIDAR), con-
sidered in [8] for fixed-wing UAVs, and ultrasonic
sensors, applied in [9] also for a quadrotor. In turn,
path planning methods for collision avoidance in
UAVs can be global, when the obstacles are known,
and local, when the obstacles are not expected and



the path is updated in real-time. Of the latter, it
is worth noting the Vector Field Histogram (VFH)
method [10], applied in [11] for fixed-wing UAV.

2. Hardware Implementation

The hardware implementation of a S&A system re-
quires some decisions regarding the physical com-
ponents to comprise it, as well as how they are con-
figured and connected.

2.1. Sensor Hardware

Based on the sensing configuration presented in [6],
the hardware chosen to support the obstacle detec-
tion is composed of three different types of non-
cooperative active sensors: two ultrasonic sensors
(Fig. 1la), two laser rangefinders (Fig. 1b), and
one LiDAR (Fig. 1c). Their main specifications are
summarized in Tab. 1.
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[12].
Figure 1: Sensor hardware.
Table 1: Sensor hardware specifications.
Ultrasonic Laser LiDAR
sensor [12]  rangefinder [14]
[13]
Range (m) 0.20-7.65 0.20-100 0.20-50
Scan angle (°) - - 20-320
Resolution (cm) 1 1 1
Angular
resolution (°) - - <0.2
Update rate (Hz) 10 40-388 50-5000
Accuracy (cm) +10 +10 +10
Dimensions (mm)  22x19x15 30x20x43 51x48x44
Weight (g) 5.9 20 59

Two different models of ultrasonic sensors from
the Maxbotix are used, namely the MB1202 and
MB1242. They share specifications, such as de-
tection range, resolution, accuracy, and maximum
update rate, which is constrained by the duration
of a ranging cycle. The major difference between
them is the type of beam pattern, wider for MB1202
(more noise clutter) and narrower for MB1242 (less
noise clutter). To operate both sensors simultane-
ously on the same bus of the Inter-Integrated Cir-
cuit (I2C) communication interface and differenti-
ate their range measurements, they must have dif-
ferent addresses. Thus, the 12C address of MB1202
was changed 0x68, and MB1242 was kept with the
0x70.

Two

identical laser rangefinders, Lightware

LW20/c, are considered. Their detection range goes
up to 100m, much higher than ultrasonic sensor’s.
Relying on the speed of light, instead of the speed
of sound, allows the update rate to be higher too.
Moreover, it is tolerant to changes in background
lighting conditions, wind and noise, and the accu-
racy is not generally affected by the color or texture
of the target surface, nor the angle of incidence of
the beam [13]. Once again, the I12C address of one of
the two sensors had to be changed, therefore, using
the Lightware Studio software provided by the man-
ufacturer, one of the sensors was changed to 0x67
and the other kept the original address of 0x66.

To scan a wider area ahead the UAV, the Light-
ware SF45/B LiDAR sensor is used. With a de-
tection range up to 50m, the major features of this
LiDAR are the scanning angle, which can go from
20° to 320°, and the update rate, configurable from
50Hz to 5000Hz. The speed of rotation is dependent
on the scan angle and can go up to 5 sweeps per sec-
ond. Just like the laser rangefinder, it is also tol-
erant to changes in background lighting conditions,
wind and noise [14]. The scanning angle was con-
figured to range from -45° to 45°, given the turning
rate limitations of a fixed-wing UAV. Regarding the
communication interface, it was chosen not to use
I12C, but serial communication through one of the
telemetry (TELEM) ports of the flight controller.

2.2. Flight Controller and Companion Computer
It is to the flight controller that the obstacle de-
tection sensors are connected, since it is capable of
collecting their measurements and processing them
in a first instance. However, due to its limited com-
putational power, the processing necessary to the
application of a collision avoidance method is left
to a more powerful companion computer that di-
rectly communicates with the flight controller.

Figure 2: Holybro Pixhawk RPi CM4 baseboard
parts (from left to right): case with fan, baseboard,
Raspberry PI CM4, and Pixhawk 6X [15].

The flight controller chosen for this application is
the Pixhawk 6X from Holybro, which, together with
the Raspberry Pi Computer Module 4 (CM4) as
companion computer, are integrated in the Holybro
Pixhawk RPi CM4 baseboard. These components
are presented in Fig. 2.



2.3. Electrical Layout

Together with some auxiliary hardware compo-
nents, essential for the flight operation of a fixed-
wing UAV, such as a power module, a battery, a
DC motor, four servos, an Electronic Speed Con-
troller (ESC), a GPS module, a radio receiver, and
a telemetry module, an overall electrical layout of
the hardware connections is designed, as shown in
Fig. 3.

Even though the companion computer and the
flight controller are internally connected in the base-
board through the serial TELEM2 port, a connec-
tion over Ethernet was used instead, due to higher
bandwidth.

3. Software Implementation

The software implementation of the S&A system
addressed in this work can be seen as an applica-
tion with additional developments of existing open-
source solutions. Figure 4 presents a diagram of
the main components of the software (flight control
software, ground control software, and companion
computer software) and high-level interaction be-
tween them.

Figure 4: Diagram of S&A system software imple-
mentation.

3.1. Flight Control Software

The flight control software adopted in this work is
the PX4 open-source project [15], due to its reliabil-
ity, modular architecture, allowing for extension of
functionalities, good documentation, and increasing
presence in the industry, with a growing community
of users and developers. It supports different types
of vehicles, such as multicopters, fixed-wing UAVs,
and rovers.

3.1.1. PX4 Internal Communication: uORB

The communication between internal modules of
PX4 is done using the micro Object Request Bro-
ker (uORB) protocol. It is based on a mechanism
to publish/subscribe messages in topics, allowing
multiple independent instances of the same topic.
Each uORB topic must have a prior definition of
the fields that make up its message context.

The data from the obstacle detection sensors is
published in the distance_sensor uORB Topic,
whose fields are described in Tab. 2. The most
important fields are the device_id, a unique ID of
the sensor, the current_distance, the sensor range
measurement, and the current_yaw, which is the
only non-standard field, added to include the direc-

tion, in degrees (from —45° to 45°), in the horizon-
tal plane (yaw) of the LiDAR.

Table 2: Fields of uORB topic distance_sensor
[15].

Name Units  Description
timestamp ms Timestamp
device_id - Sensor 1D
min_distance m Minimum range
max_distance cm Maximum range
current_distance cm Current range
current_yaw deg Current yaw
variance m? Variance
signal_quality % Signal quality
type - Sensor type

h_fov rad Horizontal FOV
v_fov rad Vertical FOV

q - Orientation quaternion
orientation - Sensor orientation

The idea is to have a single distance_sensor
uORB topic with one instance for each sensor.
However, the two ultrasonic sensors will share one
instance due to driver limitations. The sensor data
that is internally organized in the distance_sensor
uORB topic is, then, streamed over MAVLink, both
to the Ground Control Station (GCS) and the com-
panion computer.

Other uORB topics are also used in the S&A sys-
tem. For example, the vehicle_local_position is
used to communicate the UAV local position, veloc-
ity and acceleration estimates, in a NED (North-
East-Down) frame, the trajectory_setpoint is
used to internally communicate position, velocity
and acceleration setpoints in a local NED frame,
and the vehicle_local_position_setpoint can be
used to monitor the setpoints used by the position
controller of PX4.

3.1.2. Drivers of Distance Sensors

The interface between the obstacle detection sen-
sors and the PX4 is done by drivers, which are
responsible for sensor initialization, acquisition of
data measurements, primary data processing, and
communication with the uORB messaging bus.
They can be controlled over MAVLink Console com-
mands.

The ultrasonic sensors are controlled by the built-
in mb12xx PX4 driver. It was build in such a way
that a single instance of the driver is capable of
controlling multiple ultrasonic sensors connected to
the same I2C bus, as long as they have different
12C addresses. In this case, the sensor update rate
is defined by the driver, as well as time interval
between reads of consecutive ultrasonic sensors. So,
the former was set to 10Hz and the latter to 50ms,
to match the the maximum time of a ranging cycle.

The laser rangefinders are controlled by the built-
in lightware laser_i2c PX4 driver. Contrary
to what happens with the ultrasonic sensors, this
driver is unable to control, in a single instance,
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Figure 3: Hardware electrical diagram.

multiple sensors with different I12C addresses in the
same I12C bus. For this reason, the solution found
to have two lasers connected at the same time was
by starting two independent instances of the driver
in the startup shell script of PX4.

The LiDAR is controlled by the built-in
lightware_sf45_serial PX4 driver. Unlike the
previous drivers, it is not included in the firmware
by default, so it needs to be manually enabled in
the PX4 firmware configuration.

Even though the LiDAR sensor measures the
scanning angle at each instant, the standard ver-
sion of its driver does not publish these measure-
ments, which are necessary to fulfill the custom
current_yaw field added to the distance_sensor
uORB topic. So, the s_update() function devel-
oped in [6] was included for that purpose.

3.1.3. MAVLink Communcation

The external communication between the flight con-
troller and other devices, such as the GCS and the
companion computer is done through MAVLink,
standing for Micro Air Vehicle Link. The MAVLink
messages are characterized by a name, an id, and
fields containing the data to be transmitted.

PX4 includes MAVLink as a module and, gener-
ally, MAVLink messages stream data of an already
existing uUORB message with similar fields. Further-
more, it can have independent instances to commu-
nicate with different peripheral devices simultane-

ously.

The MAVLink message DISTANCE_SENSOR
(ID=132) is the standard message used to commu-
nicate data from the obstacle detection sensors.
Although most of the fields are similar to the ones
of the homonym uORB topic, it had to be slightly
modified to suit the S&A system, with the custom
addition of the current_yaw and device_id fields.

Other MAVLink messages are important for the
S&A system, such as LOCAL_POSITION_NED, a stan-
dard message used to communicate the local posi-
tion of the UAV, SET_POSITION_TARGET_LOCAL_NED,
used to communicate position, velocity or accelera-
tion setpoints defined in the companion computer,
POSITION_TARGET_LOCAL_NED, which retrieves data
from the vehicle local position_setpoint
uORB topic to monitor the setpoints that are
actually being sent to the position controller of
PX4, and VFR_HUD, used to communicate head-up
display (HUD) information, such as airspeed,
groundspeed, heading, throttle, altitude MSL, and
climb rate

3.2. Ground Control Software

A GCS is a ground based system that allows a
human operator to monitor, control and manage
the systems of an UAV in real-time. In this work,
the open-source QGroundControl was used as GCS
software in a computer running Windows 10 OS, to
communicate with PX4 over USB or telemetry.



3.3. Communication Between PX4 and Companion
Computer

To communicate the obstacle detection sensors data
from the flight controller to the companion com-
puter, firstly, an Ethernet connection between them
is set. Then, the MAVLink interface to use in the
companion computer was chosen among MAVSDK,
pymavlink and MAVROS.

MAVSDK [16] is a cross-platform high-level API
to interface with MAVLink, that is easy to use,
but has limited low-level access and control over
the messages. On the opposite, pymavlink [17] is a
low-level Python library that provides fine-grained
control of the MAVLink messages, but presents a
steeper learning curve. Lastly, MAVROS [18] is a
Robot Operating System (ROS) package that acts
as a bridge between ROS and MAVLink by trans-
lating the MAVLink messages into ROS messages,
organized in ROS topics, and vice-versa. Since it
includes well-tested PX4 support and allows the in-
tegration of the S&A system as a ROS package,
MAVROS 1.19.1 with ROS1 Noectic was the option
selected to interface with MAVLink, despite being
more resource-intensive.

To communicate distinguishable data from
the five obstacle detection sensors, the
distance_sensor plugin of MAVROS had do
be modified to map the sensors from the device_id
field. Moreover, a custom ROS message was
created to include the device_id and current_yaw
fields.

3.4. Obstacle Detection and Collision Avoidance
Software

Given that ROS provides a flexible framework
for writing robotic software with MAVROS as
MAVLink interface, the remaining steps of obsta-
cle detection and collision avoidance can be devel-
oped as a software prototype within a ROS package.
This approach is not a novelty, since there is already
an open-source package, PX4-Avoidance [19], de-
veloped by the PX4 community, to enable obstacle
detection with stereo-vision camera hardware and
collision avoidance for multicopters.

Regarding the programming language, Python
was chosen in this phase of development, since it
is better for rapid prototyping, although C++ al-
lows better performance. The rospy Python li-
brary provides an interface with ROS for creation of
nodes, publish/subscription of topics, and interac-
tion with services and parameters. A multithread-
ing approach was considered, with the threading
Python module, to allow multiple tasks to run con-
currently within a single process.

The software prototype was divided in two main
parts: obstacle detection, responsible for pro-
cessing the data from the distance sensors and
transform it into two-dimensional positions; and

collision avoidance, responsible for generating,
in real-time, an avoidance trajectory for the UAV.
The approach followed here was based on the VFH
method.

3.4.1. Software Architecture

The architecture of the software prototype is illus-
trated in Fig. 5, including the files, classes, meth-
ods, and the data flow between methods.

Avoidance THRESHOLD Parameters
——— parameters: ~ SETPOINT_STEP (params.py)
Polar Hlslogram MIN_ANGLE STEP_ANGLE TIME_CLEAN_BINS
parameters:  MAXANGLE  GAMMA
POS_X_SONAR1 POS_Y_SONAR1 ~YAW_SONAR1
Sensor POS_X_SONAR2 POS_Y_SONAR2 YAW_SONAR2
— POS_X_LASER1 POS_Y_LASER1  YAW_LASER1
parameters: -
POS_X_LASER2 POS_Y_LASER2 YAW_LASER2
POS_X_LIDAR  POS_Y_LIDAR
_| Kalman Filter DT_SONAR P_SONAR R_SONAR Q_SONAR
parameters: DT_LASER P_LASER R_LASER Q_LASER
Collision Avoidance Node (collision_avoidance_node.py)
Class Vehicle
send_heartbeat()
[ subscribe_local_position() ] [ local_pose_callback() }——
local position data
[ subscribe_compass_data() ] [ compass_data_callback() ]‘
compass data
Class ObstacleDetector
[ subscribe_distance_sensors() J [ sensor_data_callback() JI
distance sensors data
sensor range
L init_KF() ) ( apply_KF() )
Kalman gain
\_to_body_frame()
filtered range
_— bstaele point
/ Class AvoidancePathGenerator (radial, azimuth)
/
‘ [ i ) |
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L B gram() J head ng
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data instants | histogram (radial)
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[ generate_avoidance_setpoints() }
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\ (ENU frame) |
\ /
\\ publish_setpoints() y /
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Figure 5: Software architecture of the obstacle de-
tection and collision avoidance implementation.

The software is organized in two main files: Pa-
rameters (params.py), where the main parame-
ters of the system, related to the distance sen-
sors, Kalman filter, polar histogram, and avoidance
process are configured/tuned; and the Collision
Avoidance Node (collision avoidance node.py),
where all the code developments are included.

3.4.2. Implementation of Obstacle Detection

The obstacle detection part of the software is im-
plemented within the class ObstacleDetector. It
starts with the subscription of five ROS topics, one
for each sensor, where data are being published by



MAVROS. This way, everytime new sensor data is
published on the corresponding topic, a callback
function is called to save it in sensor-specific vari-
ables and process it. A one-dimensional Kalman
filter, from the filterpy Python package, is ap-
plied to the range measurements of the ultrasonic
sensors and laser rangefinders to smooth noisy sen-
sor data and provide a better estimate of the true
distance to the obstacles.

Then, the filtered range measurements of the sen-
sors, cf, are transformed to polar coordinates of the
UAV body reference frame, so that they represent
two-dimensional obstacle positions. For this, the
position in Cartesian coordinates (Zsens, Ysens) and
orientation, Bsens, of each sensor, in the body frame,
specified as parameters, are used to compute the ra-
dial and azimuthal components of the obstacle po-
sition, (Tobs, Pobs ), from

‘ Create bins between MIN_ANGLE and MAX_ANGLE, evenly spaced from STEP_ANGLE
»|
R

I

filter_old_data()
)
i

Get the most recent (4, @obs) POINt from each sensor

/ Compute obstacle point in ENU frame:
ENU _ ENU
Tobs =

Tobs  Pobs = Pobs + Ocompass

Run
clean_old_histogram()

,<pﬁ,£m) is not null

Next sensor

ENU
(Tobs

Find bin of =NV
Compute obstacle density
Save time instant

Spread obstacle density to neighbour bins

Tobs = \/(JCOS (5sens) + xsens)Z + (dASin (Bsens) + ysens)2

(1)

and

dASin (Bsens) + Ysens (2)
d cos (ﬁsens) + Zsens

Pobs = arctan < =

3.4.3. Implementation of Collision Avoidance

The collision avoidance part of the software is
implemented mainly within the class Avoidan-
cePathGenerator, using some methods of the
class Vehicle.

Having the position of the obstacles detected by
a sensor, in polar coordinates of the body frame,
and aiming to apply the VFH method, a polar
histogram is generated to represent the obstacle
density in space, using the algorithm flowchart of
Fig. 6. It starts by the creation of the histogram
using the parameters MIN_ANGLE, MAX_ANGLE and
STEP_ANGLE, followed by a loop with frequency of
20Hz to update its bins using the most recent obsta-
cle position detected by each sensor, in East-North-
Up (ENU) frame, (rENV oENU) by finding the bin
in which the obstacle is inserted and computing its
obstacle density, hy, with the arbitrary function:
hy = 50_5%.. For safety reasons, the obstacle den-
sity of a bin is spread to its neighbor bins, using a
function controlled by the parameter v: hpt, = hg
(a = 1,...,7). That update process includes meth-
ods to erase old sensor data, as well as old histogram
data.

Next, concurrently to the update of the polar his-
togram, new trajectory setpoints for the UAV are
generated with frequency of approximately 10Hz
from the algorithm flowchart of Fig. 7. This pro-
cess starts from desired setpoint positions, in ENU
frame, given by an external offboard control script,
which are used to determine the desired direction.

Last sensor?

Wait 0.05 sec

Figure 6: Flowchart of the algorithm for creation
and continuous update of the polar histogram.

Then, the bins of the polar histogram with an ob-
stacle density below a THRESHOLD (available bins)
are selected and, from these, the one corresponding
to a direction closer to the average between the de-
sired direction and the direction followed in the last
iteration is chosen. From that direction, a new set-
point velocity in Cartesian coordinates is generated
using the SETPOINT_STEP parameter, as well as a
new setpoint position in the ENU frame using local
position data. Finally, it can be chosen to publish
the new setpoint position or velocity.

4)/ Get desired setpoint position (ENU frame)

| Compute desired direction (ENU frame) |

Get updated polar histogram

v

Select valid bins of polar histogram
(obstacle density below THRESHOLD)

v

| Choose valid bin closer to 0.5*desired_direction+0.5*ast_bin_chosen |

| Compute new setpoint position (ENU frame) |
Publish new setpoint
Wait 0.1 sec

Figure 7: Flowchart of the algorithm to generate
avoidance setpoints.



4. Validation Tests

To validate the previous hardware and software im-
plementations of the S&A system, a few real-world
bench tests were performed in a rover robot, given
the risks associated with testing new developments
in flight.

4.1. Rover System Setup

The hardware for testing in a rover was adapted
from the electrical layout of Fig. 3, resulting in
the setup of Fig. 8. For flight control software,
the rover_pos_control module of PX4 1.14.3 was
used.

Figure 8: Top view of rover setup (labeled hard-
ware).

4.2. Static Vehicle and Static Obstacles
The first test was conducted with a static rover
in front of three static obstacles A (0.55m?), B
(0.55m?) and C (0.35m?), arranged as shown in Fig.
9a. The objective was to validate the capabilities of
the system to detect obstacles, estimate its relative
positions and translate them to the polar histogram
of the VFH method.

The system was run for around 10 seconds, using
the parameters of Tab. 3.

(a) Arrangement of (b) Obstacles detected by sensors
static obstacles A, B during the test.
and C.

Figure 9: Static vehicle and static obstacles.

The data of the obstacles positions in polar coor-
dinates of the rover body frame, (7ops, Pobs), Were
plotted in Fig. 9b, separated by sensors. It can be
observed that the ultrasonic sensors did not detect
obstacles, since no obstacles were in their range.
The laser rangefinders detected obstacles along the

directions they were pointed. The LiDAR presented
detections in different directions, as expected.

It is possible to identify obstacle A, successfully
detected by both the Laser2 and the LiDAR, as
well as obstacles B and C, only detected by the
LiDAR. The cluster of LiDAR points in the right-
side, the single point in the left-side, and the points
in the top of the plot, including the one from Laserl,
correspond to the detection of the field walls. This
way, it can be concluded that the system was able
to detect the target obstacles successfully.

(a) t1 ~ 1.8s.

(b) to = 5.4s

Figure 10: Polar histograms for v = 1, v = 2 and
v =3.

The translation of the obstacles positions to polar
histogram, with bins from 0° to 360°, and step angle
of 10°, were plotted in Figs. 10a and 10b, from two
time instants, t; and to, when the pairs of obstacles
A B and A,C were detected, respectively.

At t = 1.8s, there are three main bins, one for
260° from the Laser2 detection of obstacle A, an-
other for 280° from the LiDAR detection of obstacle
B, and a smaller bin for 290° from the Laserl detec-
tion of the wall. At ¢ ~ 5.4s, there is the same main
bin for 260°, and another for 290° from the LiDAR
detection of obstacle C. The second and third plots
of the previous figures, present the effect of spread-
ing the obstacle density to neighbor bins, which are
controlled by . Having v = 1 leads to 0 neighbors,
v = 2 leads to 2 neighbors for each main bin, and
v = 3 leads to 3 neighbors for each main bin. An
example of a threshold line of 0.8 is also presented -
the bins with obstacles densities above 0.8 are con-



Table 3: Obstacle detection and collision avoidance software parameters.

Parameter Value Parameter Value Parameter Value
POS_X_SONAR1 (In) 0.2 POS_Y_LASER2 (m) -0.1 R_LASER 1
-1
POS_Y_SONAR1 (m) 0.2  YAW.LASER2 (°) -10 Q_LASER {100 100_1}
YAW_SONAR1 (°) 0 POS_X_LIDAR (m) 0.2 MIN_ANGLE (°) 0
POS_X_SONAR2 (m) 0.2  POS_Y_LIDAR (m) 0 MAX_ANGLE (°) 360
POS_Y_SONAR2 (In) -0.2 DT_SONAR 0.1 STEP_ANGLE (O) 10
YAW_SONAR1 (°) 0 P_SONAR 7 GAMMA 2
POS_X_LASER1 (In) 0.2 R_SONAR 1 TIME_CLEAN_BINS (s) 0.1
10-1
POS_Y.LASER1 (m) 0.1  Q.SONAR [ 0 100_1] THRESHOLD 0.9
YAW_LASER1 (O) 10 DT_LASER 0.05 SETPOINT_STEP 3
POS_X_LASER2 (m) 0.2  P_LASER 50

sidered unavailable and the others are considered
available.

4.3. Static Vehicle and Moving Obstacle

The next test was performed with a static rover and
an obstacle (0.55m?) moving in front of it, from the
left to right, at a speed of about 1m/s and a dis-
tance of around 3m. The objective of this test was
to validate the detection of dynamic obstacles and
its reflection in variations of the polar histogram.
The same parameters of Tab. 3 were used, with ex-
ception to THRESHOLD, which was changed to 0.90,
to make the system react only for obstacles below
5m of radial distance.

To assess the characteristics of the sensor data
that feed the system, the raw and filtered range
measurements of the sensors were saved, truncated
to the time intervals where the obstacle is detected,
and plotted in Figs. 1la, 11b, 1lc, 11d, and 1le,
respectively from the first to the last to detect the
obstacle. Given the positions of the sensors in the
vehicle, the sequence of detection by the lasers and
ultrasonic sensors is as expected for an obstacle
moving from left to right.

Laser2 Data Sonar2 Data

10 — Raw range
— Filtered range
29

20 22 24 26 28 30 32 34
Time (s)

Range (m)
Range (m)

(a) Laser2 range data.

Sonarl Data

(b) Sonar2 range data.

Laserl Data
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— Raw range
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(c) Sonarl range data.. (d) Laserl range data..
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(e) LiDAR range data.

Figure 11: Raw and filtered obstacle detection sen-
sors data

For all cases, the obstacle is detected through
range measurements between 2.8m and 4m, which
is within the tolerated distances. Moreover, the
Kalman filter performed reasonably for the lasers
and ultrasonic sensors, reducing the noise and
dampening the effect of outlier measurements that
could lead the system to unnecessary reactions.
Measurements of the ultrasonic sensors above 7m
were not, considered for filtering, since these sensors
measure the maximum range (7.65m) when no ob-
stacles are detected. Finally, the LiDAR data was
not subject to any filtering process, but presented
good results by detecting the obstacle at each scan.

The transformation of the data from all sensors
to obstacle positions in polar coordinates, in the
vehicle body frame, over the execution of the test,
resulted in Fig. 12a. The points are labeled by the
sensors that originated them, such that the cluster
of points distributed approximately along the —11°
azimuth came from Laser2, the points along the —3°
azimuth came from Sonar2, the points along the 3°
azimuth came from Sonarl, the points along the 11°
azimuth came from Laserl and the other scattered
points came from LiDAR. Once again, the evolution
of the point positions in time is in accordance with
the trajectory of the obstacle from left to right.

That classification of available/unavailable his-
togram bins was plotted over time in Fig. 12b,
together with the bins chosen each time. The de-
sired setpoints arbitrarily imputed to the system
were such that the desired direction was of 280°. As
soon as the obstacle covered that direction, the cor-
responding bin became unavailable and the system
was forced to chose another bin direction. Through-
out the time, as the obstacle moved to the right-
side, the bins affected were dynamically blocked
and released, from lower to higher angles, while the
system was dynamically choosing the available bin
closer to the desired direction. This way, it can be
concluded that the system successfully detects a dy-
namic obstacle and presents an intended solution to
avoid a collision.



(a) Position of obstacles de- (b) Available, unavailable,
tected in polar coordinates of and chosen bins of the po-
body frame, over time. lar histogram, over time.

Figure 12: S&A system outputs as a function of
time for static vehicle test.

5. Moving Vehicle and Static Obstacles
Finally, a test was performed with the rover moving
towards one static obstacle (0.55m?). The objec-
tive was to validate the capabilities of the system
to, based on the detection of obstacles, perform a
real-world collision avoidance maneuver. The soft-
ware was tuned with the parameters of Tab. 3,
hanging to v = 4 and TIME_CLEAN_BINS=1, to en-
hance safety. Regarding the avoidance part of the
software, it was decided to only publish setpoint
positions.

The rover performed the test at an average speed
of 2m/s. The local position (ENU frame) over time
was plotted in the Fig. 13a, together the position of
the obstacle. It shows that the rover was following a
linear trajectory towards the obstacle and, around
3m before colliding to it, a small deviation to the
right on the trajectory was made, allowing the suc-
cessful avoidance of a collision with the obstacle.

(a) Local position of Ve- (b) Available, unavailable,
hicle in earth-fixed ENU and chosen bins of the polar
frame over time. histogram, over time.

Figure 13: S&A system outputs as a function of
time for moving vehicle test.

The classification of histogram bins was plotted in
Fig. 13b. Initially, the rover was physically aligned
to the desired direction of 100° and, at the time in-
stant ¢ = 3.6s, the detection of the obstacle led to
the blocking of bins from 60° to 110°, forcing the
system to choose the direction of 120° and start
the avoidance trajectory. In the following seconds,
the blocked bins eventually evolved to the range
from 30° to 120°, forcing the vehicle to follow the
direction of 130°, until a moment when the polar
histogram data is cleaned and, since no further ob-
stacles were detected, the system returned to the
desired direction of 100°, finishing the avoidance
trajectory.

It is important to note that, as shown in Fig. 13a,
the desired direction followed before starting the
avoidance maneuver and the desired direction fol-
lowed after passing the obstacle was not the same,
even though the system published setpoint positions
in direction of 100° in both cases. This can be due
to a faulty calibration of the compass, which led to
inaccurate heading measures during the test.

This way, it can be concluded that the system
was able to perform obstacle detection and collision
avoidance in the presence of a single obstacle, at a
speed around 2m/s, by generating a trajectory of
avoidance setpoint position at a frequency of 10Hz.

6. Conclusions

This work presented a solution of a S&A system
to enhance the flight safety of small fixed-wing
UAVs. A hardware implementation was proposed
for the system using two ultrasonic sensors, two
laser rangefinders and one LiDAR as detection sen-
sors, a Pixhawk 6X as flight controller, a Rasp-
berry Pi CM4 as companion computer, and some
other components to complete the setup. A soft-
ware implementation was also proposed, regard-
ing the flight control software, PX4, which was
adapted and dissected into the most important
parts (WORB message bus, drivers of distance sen-
sors and MAVLink communicaiton); the ground
control software; and the companion computer soft-
ware, centered on the development, in the ROS en-
vironment, of a version of the VFH method as a
software prototype to receive sensor data and per-
form obstacle detection and collision avoidance.

Finally, the system was validated through real-
world tests in a rover. The first test, with static ve-
hicle and static obstacles, showed that the system
was able to determine obstacle positions and trans-
late them to a polar histogram. The second, with
static vehicle and one moving obstacle, showed the
capabilities of the system to detect dynamic obsta-
cles and choose, in real-time, the direction to follow,
accordingly. The last test, with the rover moving
towards one static obstacle, showed the overall S&A



system capability of performing obstacle detection
and collision avoidance through a small deviation
maneuver from trajectory setpoint positions pub-
lished at a rate of 10Hz.

This work leaves an open path to some future
improvements. Regarding obstacle detection, based
on the work done to handle multiple sensors in PX4
and receive their data separately in the companion
computer, it would be possible to implement sensor
fusion techniques, aiming to features such as obsta-
cle tracking. Regarding collision avoidance, more
advanced methods, such as the variants of VFH (e.g
VFH+ and VFH*) could be implemented to provide
a more reliable and optimized solution.
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