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Abstract

The design of rockets is known to be a complex task, not only due to the harsh operating conditions
but also the strong coupling among disciplines. A multidisciplinary optimisation (MDO) framework was
developed, aimed at providing preliminary designs of a single-stage solid propellant rocket. The choice of
the optimiser algorithm, MDO architecture and discipline models, namely, mass and sizing, flight dynamics,
aerodynamics, propulsion, structural and atmospheric, were such that the developed numerical tool has a
very low computational cost while being able to meet a set of pre-established mission requirements. The
resulting design framework solved a co-design optimisation problem, due to the coupling between the
trajectory and rocket sizing optimization processes. The capabilities of the design framework were tested
for different sets of design variables and multiple missions, with increasing complexity, for an optimisation
problem aimed at minimizing the total mass of the rocket while imposing a minimum altitude constraint,
with a prescribed payload capacity. First, studies with up to 10 geometric design variables showed that the
latter were capable of achieving the best results, as expected. Then, sensitivity studies of the payload and
the minimum altitude confirmed that the rocket sizing is greatly impacted by both. Lastly, comparisons with
real rockets, namely, the REXUS 2 and REXUS 10, showed very good agreement, achieving a total mass
reduction of 14.5% and 14.9%, respectively. Given the great modularity of the framework, a straightforward
extension to other types of rockets, such as multi-stage or liquid-propellant, is expected upon additional
development.
Keywords: MDO, Trajectory Optimization, Co-design, Sounding Rocket, Modularity

1. Introduction

Over the last two decades, a new generation of
entrepreneurs has made an unprecedented invest-
ment in Space, completely changing the paradigm.
Currently, private initiatives play an important role in
the future of the space industry, which is no longer
controlled by the political agendas of a few super-
powers [1]. As a consequence, space exploration,
space tourism and space infrastructure are now the
main focus of such private and semi-private initi-
atives, which have completely revived the global
space economy. As of 2022, 78% comes from com-
mercial space products, services, infrastructure and
support industries and only 22% from government
budgets [2].

As Science has always been the major benefi-
ciary from space human endeavours [3], it is expec-
ted that this new interest in space affairs will award
scientific groups with new lines of investment across
a wide range of applications, such as, Research and
Development (R&D) on new Launch Vehicles (LV)
designs capable of accomplishing their assigned
goals in compliance with the most demanding mis-
sion requirements.

Currently, the scientific research on modern Mul-
tidisciplinary Design Optimization (MDO) methods
applied to the design process of LV is a hotspot
in the aerospace industry, in an effort to further
minimize the material usage, manpower, cost and
time, while maximising the reliability, operability and
safety of such systems [4].

The main goal of this work is, then, to develop and
validate an MDO framework coupled with trajectory
optimisation capable of conducting the preliminary
design of sounding rockets with a minimum pay-
load capacity of 44 kg and 100 km minimum peak
altitude, so that the results may be compared to
well known and documented rockets, namely, the
Rocket borne Experiments for University Students
program (REXUS) [5].

2. Rocket Fundamentals
2.1. Mass and Sizing
A model, subdivided into six smaller subcompon-
ents, each of them related to a main rocket part,
was created from a set of analytical equations to
estimate the masses and component sizing. The
targeted rocket parts were: nose cone, modules,
fins, nozzle, body tube, and SRM, sorted by the
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model execution order. Additionally, a final com-
ponent was also created to calculate a few general
properties, namely, the initial mass, empty mass,
structural mass, and structural factor of the rocket.

2.2. Aerodynamics
An aerodynamic model was designed to estimate
the aerodynamic behaviour of the rocket at each
operating state. The Cd profile of the rocket was
calculated based on three main drag sources: nose
cone, base, and fins. To the Cd profile, a compress-
ible flow correction was applied for better accuracy
under compressible flow regimes. Additionally, a
recovery system contribution was also integrated
in the model to simulate the behaviour of the para-
chute deployment during the descent phase of the
flight profile.

2.3. Propulsion
A propulsion model was developed to accurately
predict the behaviour of the main physical prop-
erties of a Solid Rocket Motor (SRM) under real
operating conditions.

A set of analytical equations was assembled to
model the grain burnback, i.e., the propellant regres-
sion rate and respective propellant burning areas
over time.

Then, using the propellant burning area as the
main input, a second set of equations was as-
sembled to model the internal ballistic behaviour
of the motor, namely the combustion chamber pres-
sure and the thrust, using one-dimensional isen-
tropic flow equations [6].

2.4. Structures
After briefly analysing two key structural events,
buckling and fin flutter, a model was created to as-
sess the structural integrity of the rocket along the
flight profile. First, given a pair of drag and thrust
forces, the model calculates the resulting compress-
ive loading at the body tube cross-sectional area.
Then, it compares it with the critical buckling stress
in order to evaluate if, at any moment in time, the
rocket was subject to such a loading condition for
buckling to occur.

Additionally, the fin flutter velocity is also mon-
itored throughout the entire flight profile in order to
evaluate if the structural integrity of the fins remains
unharmed, as this is the pivotal rocket component
for stability.

2.5. Atmosphere
An atmospheric model adapted from the OpenAero-
Struct Python library was also developed to provide
with the main atmospheric properties throughout
the trajectory. Arrays with the values of each at-
mospheric parameter, retrieved from the standard
atmosphere convention tables [7, 8], were first cre-
ated.

By interpolating the altitude value (model input)
using the Akima1DInterpolator class imported from
the Scipy Python library [9, 10], it was possible to
find the respective values of all atmospheric para-
meters for each altitude, namely, temperature T ,
pressure Pa, density ρ, speed of sound c, grav-
itational acceleration g, dynamic viscosity µ and
kinematic viscosity k. These atmospheric property
values are the outputs of the model, which will be
fed to the other models within the trajectory group.

2.6. Flight Dynamics
A set of flight dynamics equations was developed,
capable of translating the complex interactions
between the rocket, the atmosphere, and any other
external factors with active influence on the rocket
[11].

In order to reduce the number of state variables
for simplicity and computational cost efficiency, a 2
degrees of freedom (DoF) plane model was chosen
over a more complex dynamics system, with a
higher DoF.

Thus, the flight dynamics of the rocket, graphic-
ally represented in Fig. 1 can be reduced to the
following set of equations:

V̇ =
T

m
cosα− D

m
− g sin γ, (1)

γ̇ = −
(

g

V
− V

Re + h

)
cos γ +

T

m
sinα, (2)

ẋ = V cos γ, (3)

ḣ = V sin γ. (4)

where v̇ is the rate change of the velocity, γ̇ is the
rate change of the pitch angle, ḣ the rate change in
altitude, and ẋ the rate change in downrange [11].

Figure 1: Flight Dynamics state variables and acting forces [11].

2.7. Trajectory
In order to implement a trajectory model capable
of reproducing the specific characteristics of the
four flight stages aforementioned, a high-level group
was created, with 5 coupled models within, namely,
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Flight Dynamics, Atmospheric, Propulsion, Aerody-
namics and Structural.
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c: Speed of Sound
ν: Kinematic Viscosity
g: Gravitational Acceleration

Figure 2: Overview of the trajectory model.

This model was then integrated in a top-level
group with the mass and sizing model in order to
create a framework capable of conducting an MDO
process coupled with trajectory optimisation.

3. Multidisciplinary Design Optimisation
Recent advancements in technology have improved
accessibility to higher computational power at gradu-
ally lower costs. Consequently, modern computer-
based engineering systems capable of conducting
complex MDO processes superseded the traditional
concurrent engineering philosophy-based systems,
where Disciplinary Design Optimisation (DDO) was
conducted.

3.1. MDO Architectures
The main MDO architectures currently in use by
the aerospace industry can be classified into two
different groups: single-level (or monolithic) and
multi-level (or distributed), according to the number
of optimisers used in each architecture (single or
multiple optimisers, respectively). The monolithic
MDO architectures solve a single optimisation prob-
lem while the distributed architectures decompose
the original problem into a set of smaller optimisa-
tion subproblems which provide the exact same
solution.

Single-level architectures are characterised by
only using an optimiser in the top level of the mul-
tidisciplinary system, which is the governing level
responsible to ensure multidisciplinary feasibility
[12].

The multidisciplinary feasible (MDF) architecture,
solves the optimisation problem by implementing
a system-level optimiser which calls a multidiscip-
linary analysis (MDA) responsible for solving all
governing equations at the subsystem/component
level until the coupling variables converge within the
specified tolerance limits [13].

As an alternative approach, the individual dis-
cipline feasible (IDF) architecture adds additional

independent variables to the problem to ensure that
each discipline can be solved separately, while in-
terdisciplinary equilibrium is maintained by a set of
optimisation constraints which ensure the overall
feasibility of the design once the optimisation con-
vergence is achieved [13]. IDF potentially solves
the high computational cost opened by the MDF
architecture by conducting each discipline feasibil-
ity analysis independently and, in parallel, favour-
ing speed and efficiency, at the cost of introducing
additional variables and optimisation constraints,
which increases the overall complexity of the ori-
ginal problem and might pose scalability issues for
larger applications [14], nonetheless.

In contrast to the single-level architectures, mul-
tilevel architectures divide the original optimisation
problem into a system-level optimisation problem
and several sub-system level problems, according
to the number of levels. The basic idea is for the
system-level optimisation problem to coordinate the
smaller sub-level problems which in turn will be
solved locally. The four most common architec-
tures of this sort are: Collaborative Optimisation
(CO), Concurrent SubSpace Optimisation (CSSO),
Bi-Level Integrated System Synthesis and Analyt-
ical Target Cascading (ATC).

After a thorough analysis, it was defined that the
most suitable architecture for the developed frame-
work was a single-level MDF architecture, as it is
capable of solving the optimisation problem using
a system-level optimiser that directly handles all
the design variables and constraints, relaying on a
MDA block to ensure multidisciplinary feasibility at
each iteration, balancing simplicity in the hierarch-
ical build of the design, efficiency of the data flows
and computational time and, most importantly, with
guaranteed feasibility,

3.2. Optimisation Algorithms
Optimisation algorithms are numerical methods de-
signed to systematically search for the variable val-
ues which optimise the objective function [15]. They
can be divided into two major groups: combinatorial
(or discrete) or continuous, depending on whether
the variables are discrete or continuous quantities,
respectively. Discrete optimisation algorithms are
hardly suitable for rocket design applications due to
the continuous nature of the majority of the design
variables involved, which typically represent phys-
ical properties (continuous in their essence) [15].
Therefore, these will not be focused.

Continuous optimisation algorithms can be fur-
ther divided into two other groups: linear and non-
linear.

Linear Programming (LP) algorithms are particu-
larly designed for the minimisation (or maximisation)
of a linear objective function subject to linear con-
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straints.
Nonlinear Programming algorithms (NLP) are

suitable for nonlinear, yet smooth, objective func-
tions with at least continuous first partial derivatives
on the solution target regions of the design space
[15]. By nature, the objective function, inequality,
and equality constraints have a nonlinear behaviour
in the rocket design environment with variables hav-
ing quadratic, cubic, exponential or otherwise non-
linear relationship. Consequently, NLP algorithms
need to be used in this work.

One of the most efficient methods for constrained
nonlinear optimisation problems is Sequential Quad-
ratic Programming (SQP), regarding function eval-
uations and computation cost [16]. Some of the
most interesting characteristics are: Linear con-
straints and bounds remain satisfied; For n active
constraints, SQP methods can achieve local con-
vergence with quadratic convergence rate; Local
convergence speed is superlinear; and, a large
number of constraints can be treated by an active
set strategy and the computation of gradients for
inactive restrictions can be omitted.

In essence, Sequential Least Squares Quadratic
Programming (SLSQP) is an optimisation method
within the SQP wider family in which the con-
straints are linearized about the current point and a
quadratic approximation of the objective function is
defined [16].

Its formulation can be posed in standard form as

min
y∈Rn

fk(y) (5)

subject to gk(y) ≤ 0, (6)
where

fk(y) =
1

2
(y − xk)

TBk(y − xk) +

∇f(xk)
T (y − xk) + f(xk),

(7)

gkj (y) = ∇gj(xk)
T (y − xk) +

gj(xk), j = 1, . . . ,m.
(8)

Then, the Least Squares mathematical method
is used to solve iteratively a set of Quadratic Pro-
gramming subproblems, starting in given vector of
parameters, x0, until a (k + 1)th iterate, xk+1, is
reached in which the objective function converges
within a specific tolerance condition, in compliance
with all equality and inequality constraints [16].

In each iteration k, the optimiser needs to evalu-
ate the function and constraint gradients, ∆f and
∆g, respectively, to determine a search direction dk.
Then, a line search is performed along that direction
to find the step length αk that minimises the f(x),
and a new iteration then follows at [16]:

xk+1 := xk + αkdk , (9)

where dk is the search direction within the kth step
and αk is the step length.

3.3. Trajectory Optimisation
Trajectory optimisation problems are a part of the
larger optimal control theory branch of mathematics,
which specifically seeks to find the optimal control
law of a dynamic system that satisfies a set of con-
straints while minimising a cost function.

A general mathematical problem definition can
be defined as follows:

Optimal Trajectory: {x∗(t), u∗(t)} (10)
System Dynamics: ẋ = f(t, x, u) (11)

Constraints: cmin < c(t, x, u) < cmax (12)
Boundary Conditions: bmin < b(t0, x0, tf , xf )

< bmax (13)
Cost Functional: J = ϕ(t0, x0, tf , xf )+∫ tf

t0

g(t, x, u) dt (14)

where x is for the state variables, u is for control
variables, f(t, x, u) are the system dynamics func-
tions, cmin, cmax and c(t, x, u) are the lower, upper
bounds and boundary function, respectively, bmin,
bmax, b(t0, x0, tf , xf ) are the lower, upper bounds
and boundary function, respectively, and, finally, J
is the cost function.

3.3.1 Direct vs Indirect Collocation

Generally speaking, collocation methods belong to
a broader transcription family of methods, in which
differential equations governing the rocket system
dynamics are enforced in a grid of points discretised
from an initial continuous time interval, called colloc-
ation nodes, ensuring that the discretised approxim-
ations at these points are faithful to the continuous
dynamics [17].

Collocation methods can be formulated in two
different approaches: direct or indirect. Direct meth-
ods first discretise and then optimise while indirect
methods optimise and then discretise [18], as illus-
trated in Fig. 3.

Indirect collocation methods, first establish the
necessary and sufficient conditions for optimality,
thus forming a Hamiltonian boundary-value prob-
lem (HBVP) which is analytically derived by ap-
plying the Pontryagin’s Minimum Principle (PMP).
Then, the newly created differential equations gov-
erning the adjoint variables, the control equation,
and the boundary conditions form a new Two Point
Boundary Value Problem (TPBVP). Then, TPBVP
is discretised using a collocation method, such as,
Hermite-Simpson, for example, transforming the
continuous-time problem into a finite-dimensional
nonlinear programming problem (NLP), which is
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Figure 3: Comparison between direct and indirect collocation
methods [19].

numerically solved through the application of optim-
isation solvers, such as, gradient-based methods
or sequential quadratic programming (SQP), until
the Karush-Kuhn-Tucker (KKT) optimality conditions
are met [20].

In contrast, direct collocation methods are the
most used in the context of trajectory optimisation
due to their simplicity, robustness, and range of ap-
plication [20]. These methods are characterised by
first discretising a continuous time interval into a
grid of collocation points. Then, the state and con-
trol variables are also discretised at the collocation
points, in which dynamics are enforced. Lastly, a
nonlinear program is formulated from the discret-
ised points and solved [20].

In comparison with the latter, indirect methods are
commonly more accurate, providing stronger solu-
tions with reliable error estimates due to analytically
deriving the necessary and sufficient conditions in
the early stages of the problem formulation, at the
cost of requiring a better initialisation as they tend
to have smaller convergence regions [18].

Therefore, at the preliminary design level, for a
single-stage suborbital trajectory optimisation pro-
cess, the direct collocation methods are the better
choice because they have proven to be simpler,
computationally faster, and accurate enough, while
avoiding potential convergence issues for problems
with increased complexity.

3.3.2 Pseudo-spectral Methods

Pseudo-spectral methods have gained traction in
the trajectory optimisation field in recent years
as a powerful, highly efficient alternative for the
already well-established direct collocation methods
to solve continuous nonlinear constrained optimal
control problems with smooth functions, such as
single-phase rocket trajectory optimisation prob-
lems. Highly complex applications of this method

range from low-thrust orbit transfers, impulsive or-
bit transfers, ascent guidance, reentry trajectory
design, spacecraft attitude control, among others
[21].

Figure 4: Pseudo-spectral procedure.

The basic idea behind a pseudospectral method
is to build a high-order polynomial so that its time
derivative values match the values of the system dy-
namics differential equations (state and control vari-
able differential equations) at all collocation points
across the entire time interval of the trajectory. By
evaluating both the polynomial time derivatives and
the physical time derivatives for a well-distributed
representative number of discretisation nodes, it
is possible to use numerical methods (Legendre-
Gauss, Legendre-Gauss-Radau, Legendre-Gauss-
Lobatto or Chebyshev-Gauss-Lobatto) to minimise
the existing defects until a preset maximum toler-
ance limit is satisfied [20].

The major difference between direct collocation
methods and pseudo-spectral resides in the fact
that the first typically divides the trajectory into mul-
tiple segments and independently attempts to find a
low-order polynomial that suits well with the system
dynamics differential equations at the collocation
points, facing the necessity of setting continuity con-
straints between segments and additional interior
nodes within segments, whereas the latter is based
on building a one segment high-order polynomial
whose time derivatives match the system dynamics
differential equations for all the collocation nodes,
which suits well only for problems with smooth flight
dynamics without significant function discontinuities
[20].

Given that pseudospectral collocation methods
are particularly powerful and highly efficient meth-
ods for solving continuous nonlinear constrained
optimal control problems when compared to other
direct collocation methods, these were the methods
selected for the framework to solve the trajectory
optimisation problem. Particularly, the high-order
Gauss-Lobatto quadrature rules, as higher order
polynomials offer an improved accuracy to the col-
location method due to the finite precision, and, the
number of parameters solved by the NLP problem is
potentially lower in comparison to other lower order
polynomials.
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4. Rocket Design Framework
4.1. MDO Python Libraries
In order to implement a multidisciplinary system for
the current rocket design optimisation problem, it
was necessary to search for an available software
framework with the following characteristics: ability
for handling with a system with multiple coupled
disciplines integrated with trajectory optimisation;
support a wide range of optimisers so that a suitable
option can be chosen according to specific optimisa-
tion requirements of the problem; an open-source
framework with proof of capabilities to handle the
optimisation problem at hand; a modular environ-
ment for easier model construction; and, lastly, a
good metadata and data handling capabilities for
less advanced non database specialised users.

After careful consideration, it was defined that
the framework under development was to be im-
plemented using the OpenMDAO Python library
[22] for the multidisciplinary optimisation integrated
with the Dymos Python library [23] for the trajectory
optimisation end of the problem, thus producing a
coupled approach to the preliminary rocket design.

4.1.1 OpenMDAO

OpenMDAO is an open-source object-oriented soft-
ware framework crafted for multidisciplinary design,
analysis and optimisation applications, programmed
mainly in the Python language (for scripting conveni-
ence) and completely capable of interacting with
other compiled languages, such as, SWIG, Cython,
C and C++, among others.

Since it was first introduced for NASA’s next-
generation advanced single-aisle civil transport pro-
ject in 2008 at the NASA Glenn Research Center
(based in Cleveland, USA) [24], it has been un-
der continuous development with several compel-
ling use cases across a wide range of applications:
from a Cubesat MDO problem for maximised data
download capabilities [25], to a low-order aerostruc-
tural wing optimisation [26], to a structural topology
optimisation [27], etc.

4.1.2 Dymos

Dymos is an open-source software tool built on top
of the OpenMDAO framework designed to solve
optimal control problems, such as trajectory optim-
isation. The combination of a framework built from
a OpenMDAO optimisation architecture integrated
width a Dymos trajectory optimisation opens the
possibility to solve co-design optimisation problems
with high computational efficiency even for com-
plex use cases. The proposed framework will allow
the implementation of a static system model within
each optimisation cycle (a mass and sizing model,
for example), which will receive new desig variable

values from optimiser, and then sends the rocket
sizing as its outputs (for example, the length and
mass of the rocket) to a trajectory group capable
of conducting all the necessary dynamic calcula-
tions through Ordinary Differential Equations (ODE)
or Differential-Algebraic Equations (DAE) [23]. A
standard architecture of this framework is shown in
Fig. 5

Figure 5: XDSM diagram of a standard coupled co-design prob-
lem, i.e., a MDO problem coupled with trajectory optimisation
(OpenMDAO base framework integrated with Dymos) [23].

In terms of trajectory optimisation processes,
Dymos allows for the implementation of direct
transcription methods, particularly, pseudospectral
(high-order Gauss-Lobatto and Radau) [23].

4.2. MDO Framework Implementation
In terms of the hierarchical structure of the frame-
work, it was created a top-level group containing
the optimiser and two other main groups: the mass
and sizing group, which essentially is the mass and
sizing model, and the trajectory group, which es-
sentially is the trajectory model presented in Fig. 2.
For each set of design variables x, directly handled
by the optimiser, the mass and sizing generates a
new rocket configuration, from which a few main
parameters are fed within the trajectory model and
a new objective function evaluation value is sent
back to the optimiser.

At the trajectory level, the flight dynamics model
handles four state variables (downrange x, altitude
h, velocity v, pitch angle γ, and also their time de-
rivatives, respectively, ẋ, ḣ, v̇ and γ̇. A remaining
state variable time derivative, ṁ, is handled by the
propulsion model.

These state variables are particularly important
in the trajectory integration process because they
mark the state values of the trajectory, i.e., the pro-
gress of the trajectory at each point in time, as well
as the time progress of other models.

At the end of each trajectory simulation, the final
altitude and the smallest difference between the
critical stress of the body tube and the applied com-
pressive stress are sent back to the optimiser, which
does a constraint defect analysis, gradient evalu-
ation, and a new iteration begins after a linesearch
process.

Figure 6 illustrates the XDSM diagram of the
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MDO framework implementation. It is possible to
observe that the design variables, x, coupled vari-
ables, local variables, static variables (constants), d,
constraint variables, h and σ, all the six developed
models, as well as, the optimiser, SLSQP.

SLSQP x , d1 x , d2 d3 d4 d5 d6

mrocket
Mass and

Sizing Model
m0,mpi , Lgrain,Rgi ,Rgo croot , ctip,Sf ,Rrocket , nfins , tf ,Rref area Rrocket , tbt

h
Flight Dynamics

Model
h m, ṁ v

g Atmospheric
Model

P, g P, v , g

Thrust
Propulsion
Model

Thrust

D
Aerodynamic

Model

σ Structural
Model

Figure 6: XDSM diagram of the framework highlighting the
optimizer SLSQP (blue), the models (green) and design, coupled,
local, and static variables (grey).

5. Rocket Optimal Design
5.1. Problem Formulation
In order to get a first assessment of the capabilities
of the developed MDO framework in the context of
a real problem, it is important to formally define it.

The chosen optimisation objective f was to min-
imise the rocket lift-off total mass subject to a min-
imum peak altitude constraint of 100 km, using the
SLSQP optimisation method.

5.2. Parametric study of optimiser parameters
As the framework was thought for a quick prelim-
inary rocket design application, it is of the utmost
importance to use the best setup configuration to
obtain the most computationally cost-efficient beha-
viour from the optimiser. To that end, a parametric
study on the impact of the optimiser tolerance, as
well as, the step size of the finite-difference gradient
approximations was conducted.

As expected, generally speaking, it was observed
that lower tolerance levels provide with more ac-
curate results at a higher computational cost, as
expected.

Regarding the impact of the step size in the optim-
isation process results, it was observed that the sys-
tem convergence times were well under 10 minutes
for most cases, across different initial guess points
and tolerance levels. In contrast, it was observed
that for lower tolerances with a 10-3 step size, signi-
ficantly less function and gradient evaluations were
required to achieve slightly better results.

It was concluded that the best optimisation setting
is to use a tolerance of 10-5 with a step size of 10-3,
as this is the one which provided with the lowest
objective function evaluation which complied with
the imposed altitude constraint.

5.3. Benchmark Case Study
In this first case study, the main parameters of the
optimised rocket were compared with several known

masses and dimensions of the REXUS 2, using only
one design variable, the rocket diameter Drocket.
The obtained results are presented in Table 1.

Table 1: Comparison between the REXUS 2 and the optimised
rocket configuration [5, 28].

Parameter Unit REXUS 2
Optimised

Deviation
Rocket

Length [m] 5.620 5.822 + 3.4%
Diameter [m] 0.3560 0.364 + 2.2%
Total Mass [kg] 514.000 501.768 - 2.4%
Propellant Mass [kg] 290.000 282.610 - 2.5%
Structural Mass [kg] 126.000 121.158 - 3.8%
SRM Length [m] 2.800 2.895 + 3.4%
Fin Root Chord [m] 0.590 0.582 - 1.4%
Fin Tip Chord [m] 0.400 0.408 + 2.0%

After analysis, it can be observed that the results
align well with the REXUS 2 with an average relative
deviation of 2.64% was and a total mass reduction
of 2.4%.

In terms of the flight profile, a general agreement
between both REXUS 2 and the optimised rocket
was noticed, with some discrepancies due to the
fact that the flight profile of the REXUS 2 was only
a prediction done in preparation for the mission it-
self and so it did not take into account atmospheric
and other real conditions effects. Another contrib-
uting factor was the significant differences in the
thrust profiles from both rockets. Figure 8 shows
both thrust-profiles, highlighting the discrepancy
between the engine burnout times.
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Figure 7: Thrust profile comparison of the Rexus 2 and the
optimised rocket.

Finally, a visual comparison of both rockets is
presented in Figure 8.

5.4. Multivariable Case Study
A multivariable case study then followed, with sig-
nificant improvements being observed in the optim-
isation behaviour of the framework. By setting 10
design variables the optimisation capabilities of the
framework improved as the optimizer had control
over more variables and a larger design space to
work with, thus naturally achieving substantially bet-
ter results, as expected. Table 2 portrays a compar-
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Figure 8: Visual comparison of the Rexus 2 and the optimised
rocket comparison.

ison between the REXUS 2 and the new optimised
rocket.

Table 2: Comparison between the REXUS 2 and the multivari-
able optimised rocket configuration [5, 28].

Parameter Unit REXUS 2 Optimised DeviationRocket

Length [m] 5.620 5.600 -0.4%
Diameter [m] 0.356 0.350 -1.7%
Total Mass [kg] 514.000 439.530 -14.5%
Payload Mass [kg] 98.000 98.000 0.0%
Propellant Mass [kg] 290.000 247.842 -14.5%
Structural Mass [kg] 126.000 105.545 -16.2%
SRM Length [m] 2.800 2.560 -8.6%
Fin Root Chord [m] 0.59 0.56 -5.1%
Fin Tip Chord [m] 0.400 0.392 -2 %

The rocket total lift-off and the propellant masses
were reduced 14.5%, as well as the structural mass
which was reduced 16.2%, all major improvements
from the previous case study

In terms of the flight profile, a good agreement
was observed regarding the previous case study
and the REXUS 2 flight profiles, as portrayed in Fig.
9.

5.5. Payload and Minimum Altitude Sensitivity Ana-
lysis

In previous case studies, the optimisation capabilit-
ies of the developed framework were put to test, first
for a single design variable optimisation problem,
and, afterwards, for a more demanding multivariable
optimisation problem with ten geometric design vari-
ables. After this initial testing, a sensitivity analysis
of two significant optimisation parameters was con-
ducted: minimum altitude and payload.

First, in order to assess the payload sensitivity,
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Figure 9: Flight profile comparison between the Rexus 2 and
the single and multivariable optimised rockets.

the payload was set to 112.3 kg, matching with the
REXUS 10 [28].

It was possible to observe a decrease of 5.7%
in the rocket lift-off total mass when compared to
the REXUS 2 rocket and a 10.2% increase when
compared to the previous multivariable optimised
rocket. Moreover, it was possible to observe a gen-
eral increase in the other compared parameters
which aligns well with the expected behaviour of the
framework given that more payload was carried.

It then followed a minimum altitude sensitivity
analysis by changing the original altitude constraint
from 100 km to 82.45 km, the altitude reached by
REXUS 10 [28].

In contrast to the payload sensitivity analysis, it
was possible to observe a general decrease in the
other compared parameters which aligns well with
the expected behaviour of the framework given that
a lower altitude constraint was imposed, as por-
trayed in Fig. 10.
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Figure 10: Comparison between the Rexus 2 expected flight
profile, retrieved from [5], with the optimised rocket flight pro-
files of the benchmark with and without parachute deployment,
multivariable case study with parachute deployment and altitude
sensitivity analysis.

5.5.1 Rexus 10 Case Study

As a final test, the impact of the coupled effect of
the payload and minimum altitude in the optimisa-
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tion results was tested using the REXUS 10 flight
mission data for comparison. The payload was set
to 112.3 kg and the altitude constraint to 82.45 km.

Results showed that the optimised rocket had
a total lift-off mass of 449.7 kg which is an inter-
mediary value between the two previous sensitivity
analysis obtained values. This can be explained by
the combined effect of the payload and minimum
altitude, the payload tends to cause a general in-
crease in rocket sizing parameters, as opposed to,
a general decrease caused by a minimum altitude
reduction.

From flight data comparison between the REXUS
10 mission and the trajectory simulation a general
matching behaviour was observed with a few dif-
ferences: the speeds were generally higher for the
optimised rocket following a simulated trajectory,
the trajectory profile was too parabolic and the ter-
minal velocity of the optimised rocket flight profile
was manifestly higher than expected which might
be related to a poor parachute sizing.

5.6. MDO with High Fidelity Structural Analysis
Additionally, the developed MDO framework was
integrated with a high fidelity structural analysis
model, developed by [29], and a new optimisation
process was created in order to test with high accur-
acy to what extent the structural mass of the rocket
could be minimised.

Using an iterative procedure, it was possible to
couple the trajectory simulation with flow and FEM
structural analysis ran in SOLIDWORKS, in or-
der to minimise the structural mass of the rocket,
given a fixed diameter of the body tube. From the
obtained results, it was possible to observe a thick-
ness reduction trend in the majority of the analysed
components which translated in a 16.8% reduction
in the structural mass. Even though, the observed
results are positive, they should be perceived with
caution given the fact that only four iterations were
conducted due to computational time limitations,
which were possibly not enough to reach a final con-
vergence. Consequently, further testing is needed
in order to corroborate this results.

6. Conclusions
In this work, a low computational cost multidiscip-
linary optimisation (MDO) framework capable of
solving co-design optimization problems in the con-
text of preliminary design of single-stage solid pro-
pellant rockets was developed. Six disciplinary
models were successfully developed and integrated
within an MDF architecture. As for the optimizer, a
gradient-based SLSQP optimization algorithm was
selected and successfully integrated in the frame-
work. In addition, the Gauss-Lobatto pseudospec-
tral method was selected to solve the trajectory
optimisation problem.

The developed framework underwent several
tests in order to assess its optimisation capabilit-
ies. First, parametric studies of two main optimisa-
tion parameters, the tolerance level of the SLSQP
method and the step size of the finite difference,
were conducted. From this tests, it was concluded
that the best setup for optimisation was using a
tolerance level of 10-5 and a step size of the finite
difference method of 10-3.

An initial benchmark case study was conducted
to assess the accuracy of the framework with the
results showing great agreement when compared
to the benchmark rocket, the REXUS 2. A mul-
tivariable case study with 10 design variables then
followed, further proving the efficiency and robust-
ness of the developed framework by achieving a
14.5% total lift-off mass reduction.

Afterwards, a sensitivity analysis allowed to con-
clude that the payload and minimum altitude greatly
influence the behaviour of the optimisation process,
with the results showing a significant mass reduc-
tion between the REXUS 10 and the optimised rock-
ets.

Finally, the framework was integrated in a high
fidelity structural analysis, and was able to success-
fully achieve a 16.8% total mass reduction, although
further testing needs to be conducted in other to cor-
roborate these result as the iterative convergence
process needed to be interrupted due to major time
limitations.

Overall, the developed framework shows good
signs of being capable of performing the design
optimisation of a single stage sounding rocket at
a preliminary level. Given its great modularity, a
straightforward extension to a larger spectrum of
applications is expected, such as multi-stage or
liquid-propellant, upon additional development.
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