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”Nothing in life is to be feared, it is only to be understood.

Now is the time to understand more, so that we may fear less.”
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Resumo

Projetar um foguete é uma tarefa complexa, não só devido às condições difı́ceis do meio, mas

também devido ao forte acoplamento entre disciplinas. Neste âmbito foi desenvolvida uma ferramenta

de optimização multidisciplinar (MDO), com o objetivo de executar o design preliminar de um foguete

com um único estágio movido a propulsão sólida. A escolha do algoritmo de optimização, da arquite-

tura MDO e dos modelos disciplinares, nomeadamente, massa e dimensionamento, dinâmica de voo,

aerodinâmica, propulsão, estrutural e atmosférico, foi feita de forma a que a ferramenta numérica desen-

volvida tenha um custo computacional reduzido, sendo simultaneamente capaz de satisfazer um con-

junto de requisitos de missão pré-estabelecidos para problemas de optimização de co-projeto, devido ao

acoplamento entre os processos de optimização da trajetória e de dimensionamento do foguete. As ca-

pacidades desta ferramenta foram testadas para diferentes conjuntos de variáveis de projeto e múltiplas

missões de crescente complexidade, para problemas de optimização destinados a minimizar a massa

total do foguete, impondo simultaneamente uma restrição de altitude mı́nima, dada uma capacidade de

carga útil prescrita. Em primeiro lugar, estudos com até 10 variáveis geométricas mostraram que o uso

do seu número máximo permitiu obter os melhores resultados, como esperado. Seguidamente, estudos

de sensibilidade da carga útil e da altitude mı́nima confirmaram que o dimensionamento do foguete é

significativamente afetado por ambos. Finalmente, por intermédio de comparações com foguetes reais,

nomeadamente o REXUS 2 e o REXUS 10, foi possı́vel mostrar uma boa concordância geral dos re-

sultados, alcançando uma redução da massa total de 14,5 % e 14,9%, respetivamente. Dada a grande

modularidade da ferramenta, perspetiva-se que uma extensão da aplicação da mesma para foguetes

com múltiplos estágios ou movidos a propelente lı́quido, possa ser feita mediante desenvolvimentos

adicionais.

Palavras-chave: MDO, Trajetória, Co-projeto, Foguete Sonda, Modularidade
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Abstract

The design of rockets is known to be a complex task, not only due to the harsh operating conditions

but also the strong coupling among disciplines. A multidisciplinary optimisation (MDO) framework was

developed, aimed at providing preliminary designs of a single-stage solid propellant rocket. The choice

of the optimiser algorithm, MDO architecture and discipline models, namely, mass and sizing, flight dy-

namics, aerodynamics, propulsion, structural and atmospheric, were such that the developed numerical

tool has a very low computational cost while being able to meet a set of pre-established mission require-

ments. The resulting design framework solved a co-design optimisation problem, due to the coupling

between the trajectory and rocket sizing optimization processes. The capabilities of the design frame-

work were tested for different sets of design variables and multiple missions, with increasing complexity,

for an optimisation problem aimed at minimizing the total mass of the rocket while imposing a minimum

altitude constraint, with a prescribed payload capacity. First, studies with up to 10 geometric design vari-

ables showed that the latter were capable of achieving the best results, as expected. Then, sensitivity

studies of the payload and the minimum altitude confirmed that the rocket sizing is greatly impacted by

both. Lastly, comparisons with real rockets, namely the REXUS 2 and REXUS 10, showed very good

agreement, achieving a total mass reduction of 14.5 % and 14.9%, respectively. Given the great mod-

ularity of the framework, a straightforward extension to other types of rockets, such as multi-stage or

liquid-propellant, is expected upon additional development.

Keywords: MDO, Trajectory, Co-design, Sounding Rocket, Modularity
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Chapter 1

Introduction

1.1 Motivation and Objectives

Over the last two decades, a new generation of entrepreneurs has made an unprecedented invest-

ment in Space, completely changing the paradigm. Private companies, such as SpaceX, Virgin Galatic,

Rocket Lab, United Launch Alliance, Blue Origin, Deep Space Industries and Astra Space have now an

important role in the future of the space industry, no longer controlled by the political agendas of a few

superpower nations [1].

Presently, 70 countries have an active space program, 20 of which have an annual civilian budget

above $100 million [2]. Furthermore, the global space economy is experiencing a rapid expansion

nearly doubling in size from $304 billion [3], in 2012, to $546 billion, in 2022, 78% of which comes

from commercial space products, services, infrastructure and support industries and only 22% from

government budgets [4].

The private sector has recently played such an important role that government space agencies

formed public-private partnerships with the largest conglomerates in the world in a joint effort to make

us a space fairing society [5]. As an example of this, in 2021 and for the first time in history, the National

Aeronautics and Space Administration (NASA) selected a private company to provide a Launch Vehicle

(LV) for a major mission [6]. SpaceX was commissioned a $2.9 billion contract to develop the Starship

Human Lander to carry astronauts to the moon as part of the Artemis mission [7].

While space exploration, space tourism, and space infrastructure are now the main focus of such

private and semi-private initiatives [1], Science has always been the major beneficiary of space human

endeavours [5, 8, 9] because it has only been possible to overcome the simplest technological mile-

stones in space with the greatest sense of passion, ingenuity, and inspiration, three key drivers towards

scientific progress [10]. Thousands of consumer goods, health and medicine practices and devices,

industrial products, energy, environment, public safety and transportation technologies available today

have been developed as the result of NASA spin-off technologies [11].

In the near future, scientific groups will continuously be awarded with new lines of Research and

Development (R&D) on new Launch Vehicle (LV) designs capable of accomplishing their assigned goals
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in compliance with the most demanding mission requirements.

Currently, the scientific research on modern Multidisciplinary Design Optimisation (MDO) methods

applied to the design process of LVs is a hotspot in the aerospace industry, in an effort to further minimise

the material usage, manpower, cost, and time, while maximising the reliability, operability, and safety of

such systems [12].

The main goal of this dissertation is, then, to develop and validate an MDO framework coupled with

trajectory optimisation capable of conducting the preliminary design of sounding rockets with a minimum

payload capacity of 44 kg and 100 km minimum peak altitude, so that the results may be compared

to well known and documented rockets, namely, the Rocket borne Experiments for University Students

program (REXUS) [13].

In the pursuit of such an endeavour, several secondary objectives were established:

• Identify the main systems and subsystems of sounding rockets to be modelled;

• Identify the main mission requirements, design variables, and their couplings;

• Select a suitable MDO architecture, optimisation algorithm and trajectory optimisation method;

1.2 Launch Vehicle Design

LVs are highly complex, expensive, and typically, expendable rocket-powered vehicles intended to

place a determined payload at a specific altitude, carrying a specific speed [14].

Several LV architectures have been developed that can be classified according to different criteria:

traditional rockets, lifting bodies and winged bodies in terms of structure; expendable or reusable in

terms of usability; orbital or suborbital in terms of trajectory; simple payload carriers or more complex

human transport spacecrafts in terms of mission assignment; and rocket-based combined cycle, duct-

engine (commonly called “air breathing engines”), liquid, solid or hybrid, in terms of propulsion [15], as

schematically presented in Figure 1.1.

Launch vehicles are composed by multiple integrated systems and subsystems, each of them involv-

ing detailed knowledge of different disciplines, such as, aerodynamics, propulsion, structures, trajectory,

guidance, navigation, and control [16].

Rapidly enough, LV design becomes fundamentally an optimisation problem in which the most im-

portant task is to develop a great sense of understanding of not only the physical phenomena involved

but also the interactions between disciplines with the main goal set to achieve the design that optimally

complies with all mission requirements of performance, affordability, reusability, operability, safety, and

reliability [17].

One of the possible approaches to rocket design is the Concurrent engineering method [18], illus-

trated in Figure 1.2a. This method relies on an iterative process in which a central data set controlled by

a senior systems engineer is updated with the results from every engineering team, traditionally working

sequentially but more recently simultaneously in their specific discipline models. In addition, most design

choices are made through periodic multidisciplinary collaborative work sessions [18].
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Figure 1.1: Launch vehicle architectures [15].

The advantages of this method are enhanced collaborative work between multidisciplinary engineer-

ing teams and reliance on human empirical non-heuristic intuition over major design choices [18]. Some

major disadvantages, however, include a total dependence on the concatenation of local disciplinary

optimisations, which might jeopardise the achieved optimal system due to the lack of awareness of pos-

sible conflicting interactions between disciplines [18], a significant dependence on the quality of the initial

values assumed for the design variables which, in the case of poor choices, might lead to local optimum

values instead of their global optimum [16], and, lastly, a clear restriction to Fixed Point Iterations (FPI)

instead of a more desirable wide search through the design space [19].

(a) Concurrent engineering [18]. (b) MDO framework [20].

Figure 1.2: Launch vehicle design methodologies.

In the 1990s, as governmental space programs became increasingly more ambitious and private

companies gradually started to get involved, a ferocious and renewed commercial competitiveness,
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cost-efficiency, and marketability of space affairs and activities led into a new design methodology that

could overcome the existing concurrent engineering limitations [18]. The new paradigm, labelled MDO,

was based on the idea of taking advantage of the most recent technological advancements to develop

computer-based engineering systems capable of conducting the design process of a space launch sys-

tem, in compliance with its assigned mission requirements, in a completely automated fashion consid-

ering all the complex interactions, coupled effects, and trade-offs between different subsystems and

disciplines through the entire design space [21].

Objectively, concurrent engineering is an optimisation system that consists of optimising the design

variables simultaneously but separately for each discipline. This stands as a problem every time there is

a shared variable (a variable that affects multiple disciplines) because the optimisation of such variables

will very likely reach conflicting values among disciplines [21]. In contrast, MDO frameworks fully depend

on multidisciplinary performance metrics with respect to as many design variables as possible, automat-

ically finding the best trade-offs between disciplines for each shared variable, balancing the losses in

one discipline with the benefits of that precise change in another, finally achieving the best feasible sys-

tem possible [21]. Figure 1.2b shows a high-level MDO framework structure using the Multidisciplinary

Design Feasible (MDF) architecture [20].

1.3 Sounding Rockets

1.3.1 A Brief History Overview

Since 1903, when Konstantin E. Tsiolkovsky first mathematically introduced the concept of using

a reaction engined device to reach high altitudes in space [22], rocket research efforts started to be

seen as a new form of Science. R. H. Goddard followed Tsiolkovsky’s steps, breaking a few important

milestones: predicted that the performance of the traditional solid rockets could be improved by burning

liquid fuels in a small combustion chamber, by arranging the rocket configuration in stages and by using

the De Laval nozzle configuration to increase the achieved exhaust speeds far beyond the speed of

sound [23]. Later, in 1926, Herman Oberth defined the mathematical laws that govern rocketry and

space flight [24], further corroborating Goddard’s ideas of using rockets as platforms to carry objects ”as

far as the moon” [25].

These early days of rocketry were followed by an epoch filled with scientific innovation, technological

development, and an increased level of sophistication in rocket design. Goddard launched the world’s

first liquid-fuel rocket (3 m long, liquid oxygen and gasoline fuelled rocket with a 4.5 kg lift-off weight

[26]) and introduced the first instruments in his rockets (an aneroid barometer, a thermometer, and a

camera) making them truly sounding rockets [27]. The Soviet Union (USSR) answered with the world’s

first jet assisted aircraft take-off (JATO) [28] in 1931, and with their first liquid-fuelled sounding rocket

launches in 1933 [29]. In the following years, several rocket R&D groups were established worldwide,

which further accelerated the already achieved progress in sounding rocket development: the Verein fur

Raumschiffarht (Rocket Society) in Germany, the American Rocket Society, and the Soviet Jet Propul-
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sion Research Institute (RNII) [30].

During the World War II (WWII) (1939-1945), Germans, Soviets and Americans developed new

cutting-edge technologies for military purposes, which culminated with the first mass-produced rocket,

the V-2 (Vergeltungswaffe 2) [31], a long-range guided missile (14.04 m long, 1.65 m in diameter, 5580

km/h maximum speed, 12980 kg of GLOW, and 750 kg of explosive charge), acknowledged to have

been technologically 10 years ahead of its time [32]. The V-2 introduced a series of technological ad-

vancements: a pre-chamber system that enhanced the overall engine fuel mixing capabilities, a new fuel

injection system for higher thrusts, a shorter and rounder combustion chamber attached to a new nozzle

configuration with reduced friction (using a 30 degree opening angle instead of the more conventional

10 - 12 degree angles), a cutting-edge aerodynamic shape, inspired by a bullet round shape, a new

guidance system called Inertial Guidance System and a new radio transmission system, which could

relay live performance information [33].

In the aftermath of WWII, following a series of Allied coalition experimental V-2 rocket launches in

German soil, the U.S condensed decades worth of scientific knowledge by recruiting hundreds of highly

selected engineers and technicians from the V-2 development program (under project Paperclip) and

granting them citizenship to conduct further experimental launches in U.S. soil (at White Sands Proving

Ground, New Mexico) [34, 35]. Suddenly, turbo-pump systems, gyro-stabilization systems, aerodynamic

and jet-deflector flight controls, automatic sequencing launch systems, flight trajectory tracking systems,

recording devices, gimbal-mounted clustered rocket motors and parachute recovery systems were a

known reality [36].

The period comprehended between the late 1950s to the early 1970s became known as the “golden

age” of sounding rockets [37], as aerospace engineers started to systematically test clever and practical

new solutions for highly complicated problems: from aerodynamic analysis of decreased stability at

high Mach number [38], development and testing of revolutionary payload recovery systems [39, 40],

neutralization of the falling mass hazard by the fragmentation of the spent vehicle assembly through a

controlled explosion [41], development of new empirical methods based on experimental data for a rapid

determination of the aerodynamic distributed loads during the ascent flight phase [42], development of

pratical methods for the evaluation of aerothermal effects on sounding rockets [43], changes in rocket

engine characteristics at staging, rocket trajectories and new atmospheric drag profiles to solve the

two-stage sounding rocket problem [44], a new fluidic sounding rocket motor ignition system is found

feasible which disregards using wiring and any supply of eletrical and stored energy [45], optimum thrust

programming for a minimum GLOW to reach a specified altitude [46], aeroelastic analysis of sounding

rocket vehicles [47], to the research on the application of new structural materials for sounding rockets,

such as fiber reinforced plastics [48].

An average of 500 launches per year worldwide was reported in this period [37], a significant amount

of which came from a very successful NASA international cooperative program, which established co-

operation between the U.S and 19 countries, with a diverse range of scientific applications: aeronomy,

biology, particles and fields, galactic astronomy, ionospheric physics, meteorology, special projects, ra-

dio astronomy, solar physics, test and support [37]. Furthermore, a great number of nations launched
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their own sounding rocket programs independently starting to create their own research capabilities,

namely, Canada, Argentina, India, Japan, Denmark, Norway, France, Germany, Spain, Sweden, United

Kingdom, among others [49].

In the 1980s and 1990s, sounding rocket R&D activities entered in a stall phase and were partially

overlooked by public funding and private investment [50]. Seen as a well known reality in a field with little

margin for technological innovation, they were surpassed by other more ambitious space endeavours,

such as the International Space Station (ISS), the Space Shuttle program, and satellite in-orbit place-

ment missions, for commercial and scientific research purposes [50]. As a consequence, suborbital

launches, in particular, sounding rocket ones, decreased drastically from several hundred to well under

100 per year [50].

1.3.2 Main Features and Current Applications

Amongst all existing LVs, sounding rockets have the simplest design, being typically composed by

four main systems: structural system, which makes up the frame of the rocket (nose cone, rocket external

casing, etc); guidance system, which includes all avionic components and physical parts meant to control

the rocket during manoeuvres and provide stability during the launch and atmospheric flight (on-board

computers, sensors, radars, fins, thrust vectoring systems, etc); recovery system, crucial in the recovery

process of the rocket (the most common choice of all being the parachute); and propulsion system,

which includes the rocket engine and all related parts (fuel tank, insulation layer, combustion chamber,

nozzle, etc) [51–53]. The main parts of a sounding rocket are presented in Figure 1.3.

Figure 1.3: Sounding Rocket main parts [53].

Since their first introduction, sounding rockets have always been connected to the aerospace techno-

logical development, being the backbone of every major space program due to their innovation, flexibility,

quick turn-around at a relatively low cost, and an excellent range of scientific applications across multiple

fields such as space science and micro-gravity research [37, 54].

In terms of space science, these are the only type of LV capable of performing scientific flight missions

regarding atmospheric and ionospheric phenomena because the highest altitude attainable by a balloon-

borne instrument is 40 km and the lowest altitude reachable by an orbiting satellite is about 160 km,

conducting in-situ experiments in that particular region [55, 56]. Additionally, sounding rockets are an

excellent platform for scientific theory validation and instrument operational performance testing before

their implementation on orbiting satellites [55]. They are commonly used to take measurements of
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transient phenomena at very short notice, such as photometry, radiation, and magnetic-field properties

in Low Earth Orbit (LEO) from solar activity [55].

In terms of microgravity, sounding rockets are typically used to conduct scientific suborbital flights

of up to 12 minutes under microgravity conditions (less than 10-5 g [56]) for: material science, studying

the effects of gravity during solidification of metals; fluid physics, studying the combustion behaviours in

low-gravity conditions; astrobiology, studying the benefits of microgravity for medical purposes helping

to assess the possibility of life beyond earth [55].

In the foreseeable future and despite all technological progress, sounding-rocket experimentation

will remain a useful tool to test new scientific theories and instruments due to its unmatched reliability,

affordability, practicability, and simplicity [54].

1.4 State of the Art

From the beginning of the 21st century to the present, an emerging market for Suborbital Reusable

and Expendable Launch Vehicles has resurfaced, being expected to lead to a complete renaissance

in sounding rocket technological demand [49]. Today, several sounding rocket research programs still

remain operationally active and assume a relevant role in the aerospace scientific community due to their

innovation, flexibility, quick turn-around, and low-cost, fundamentally performing science observation

missions and experimental scientific instrument testing for technological proof of concept missions [55].

Despite all past technological advancements, several fundamental issues in the LV design process,

particularly for sounding rockets, still remain unaddressed: insufficient payload accommodation, which

leads to a high cost per kg of payload, poor cost/reliability relation, inefficient weight management (weight

reduction is typically linked to higher complex dynamics systems and technological development costs),

performance requirements management, high design sensitivities to environmental uncertainties and

manufacturing processes, lack of reusable features, and poor compartmentalization of the design which

if improved has been associated with higher efficiency and robustness of the launch system [17].

In an attempt to mitigate these issues, the application of MDO methods based on advanced computer

algorithms has been used as an effective solution to optimise the design of a new generation of sounding

rockets.

In 2004, an engineering team working for the European Aeronautic Defence and Space Company

(EADS) applied such methodology in the design of a post-Ariane 5 new expendable European LV family

in an attempt to maximise the injected payload mass by finding the best staging configuration and the

propulsion parameters for a given class of payload into orbit [16]. Later, a Genetic Algorithm (GA)

optimiser was implemented in an MDO integrated framework with five discipline models (propulsion,

system aerodynamics, mass properties, flight dynamics, and a mass-based cost model) to optimise

the design of a liquid-fuelled two or three-stage space launcher towards minimum cost and weight [57].

More recently, an MDF optimisation approach coupled with a GA optimiser and refined with a Gradient-

Based algorithm was applied to design a microsatellite space launcher, taking into account structures,

aerodynamics, trajectory optimisation, and cost models. It was concluded that this approach allowed
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to significantly reduce the required time to evaluate the technical and economic feasibility of the design

with cost minimisation [58].

Following alternative strategies, in 2006, three multilevel multidisciplinary optimisation techniques, Bi-

Level Integrated System Synthesis (BLISS), Collaborative optimisation (CO), and Modified Collaborative

optimisation (MCO), were evaluated, compared and contrasted against the industry’s already accepted

MDO technique, All-at-Once (AAO) and Fixed-Point Iteration (FPI) approach. This study was one of

the first to test MDO techniques in realistic scenarios and demonstrated that the BLISS approach was

the most promising one and also that there was an overall improvement across the three MDO studied

methods over traditional AAO and FPI design process methods [19].

In 2011, a fitness inheritance technique coupled with a Particle Swarm Optimisation (PSO) algorithm

within an integrated MDO framework was implemented to minimise the lift-off weight of a solid propel-

lant launch vehicle through the optimisation of several disciplines: propulsion, structures, aerodynamics,

and three-degree of freedom trajectory simulation. Results showed that the PSO approach had a very

promising performance overall, significantly decreasing the number of function evaluations without con-

siderable negative effects on the quality of the solutions [59]. This method was also used in the design

of a single-stage solid propellant sounding rocket to reach a peak altitude of 100 km and carrying a

payload of 20 kg with the results showing that the PSO method converged to an optimum solution with

acceptable precision [60].

In 2015, an MDO framework of a hybrid rocket using a multi-objective genetic algorithm (MOGA) to

investigate the effects of multi-combustion was developed. It was concluded that multi-combustion is not

effective for the cases of maximum altitude and minimum total mass [61].

In 2017, an MDO approach was conducted to find the optimal design configuration of a single-stage

sounding rocket with solid propulsion for lift-off mass minimisation, ensuring lift capabilities to send

small payloads above the Von Karman line, paying special attention to the propulsion system sizing and

thrust level selection. It was found that the nozzle expansion ratio should be optimised for the baseline

configuration during the design process, propellant mass fraction has significant impact on sizing, high

length-to-diameter ratio (slender body) and high nose fineness are recommended, and relatively long

burn duration for each Solid Rocket Motor (SRM) size favours performance maximisation [62].

In 2021, a slightly different approach to maximise the payload accommodation while meeting several

path constraints was conducted by running several evolution algorithms in parallel to solve the MDO

problem [63], accounting for the optimal thrust law for the maximum combustion chamber internal pres-

sure (a complete grain geometry redesign was needed) and the ascent trajectory optimisation through

the implementation of a global, self-adaptive, partially restarted differential evolution optimisation algo-

rithm using an ε-constraint handling technique based on the work of Takahama and Sakai [64] which had

the ability to explore the design space searching for the global optimal solution within feasible regions.

Besides MDO applications, other worth mentioning research work in the context of sounding rocket

development has also been published in recent years.

In 2016, a pseudo-analytic approach was used to determine the optimal launching conditions for

the maximum peak altitude of a sounding rocket, considering a constant mass flow of propellant in a
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standard atmosphere. It was concluded that, in a burnout situation, the increase in the rocket mass at

a given mass ratio results in the increase of the optimal mass flow rate, and also that, the optimal mass

flow rate varies linearly with the rocket mass [65].

In 2018, a methodology was proposed to design a new generation of sounding rockets using a

general body configuration with four canards and four tail wings, assuming different payload masses and

microgravity duration. Aerodynamic forces were calculated with high fidelity models, and three different

guidance algorithms were used for the trajectory integration: constant altitude, near-radial and sun-

pointing. It was concluded that the sun-pointing guidance algorithm offers nearly perfect microgravity

conditions [66].

In 2021, a simple conceptual design procedure of a two-stage sounding rocket and its nozzles was

conducted to reach maximum apogee using commercial software programs to perform Computational

Fluid Dynamics (CFD) and rocket computation structural design analysis concluding that a thermal coat-

ing is needed to face the maximum temperatures felt at a height of 50 km at Mach four, and also that

the highest drag coefficient, CD, values were achieved at Mach 1 due to the formation of shock waves

[67]. In the same year, a general sounding rocket preliminary design process for maximum range and

payload mass under several construction restrictions was published. It was concluded that for a single-

stage sounding rocket, a significant increase in the maximum speed and range only occurs until the

ratio of the initial mass to the propellant mass is approximately 50, the achievable range of SRM is much

lower because the specific thrust is 10-15% smaller comparatively to Liquid Rocket Engines (LRE). With

SRM, more than 3 stages result in no significant increase in flight performance.

In 2022, a new type of design domain for a single-stage sounding rocket, varying three global design

variables for peak altitude optimisation: thrust, burn time and propellant fraction, concluded that while

maintaining the thrust constant, a greater propellant load does not guarantee an increased apogee

altitude, there is an optimum burn time which allows altitude maximization, there is an optimal initial

mass for a specific thrust targeted regardless of burn time and mass ratio, and that using only three

global design variables simplifies the implementation of an iterative design system capable of maximizing

the peak altitude of a single-stage sounding rocket, with a clear understanding of their influence on flight

performance [68].

1.5 Dissertation Outline

The dissertation outline comprises seven chapters as follows:

• Chapter 1: Introduction - Serves the purpose of introducing the dissertations’ motivation, objec-

tives, context and state of the art;

• Chapter 2: Rocket Fundamentals - Some theoretical rocket fundamentals are presented, as well

as, the models used in the development of the MDO framework (questions of performance, mass

and sizing, aerodynamics, propulsion, structures, atmosphere, and trajectory are focused);

9



• Chapter 3: Multidisciplinary Design Optimisation - A brief theoretical overview of several MDO

concepts, architectures, and optimisation algorithms is presented. Additionally, the trajectory opti-

misation topic is briefly discussed, with a special emphasis on direct collocation methods;

• Chapter 4: Rocket Design Framework - A comprehensive analysis of the used Python libraries

(OpenMDAO integrated with Dymos) used to implement the MDO framework, as well as the actual

implementation of the system;

• Chapter 5: Rocket Optimal Design - The developed MDO framework is tested to showcase its

true optimisation capabilities in conducting a rapid, low computational cost yet accurate enough

optimised sounding rocket preliminary design;

• Chapter 6: MDO with High Fidelity Structural Analysis - The developed MDO framework is

integrated in a High Fidelity Structural Analysis model, developed by Fernandes [70], in order to

assess how further can the structural mass be optimised taking an already optimised rocket as the

starting point;

• Chapter 7: Conclusion - The main conclusions and achievements of the dissertation are empha-

sised, followed by relevant future work suggestions.
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Chapter 2

Rocket Fundamentals

The design process of an LV is highly complex, requiring a deep understanding of not only the

physical phenomena involved, but also, the interactions between different disciplines (aerodynamics,

propulsion, structures, mass and sizing, etc.). Figure 2.1 serves the purpose of showing the high level

of complexity involved in a typical preliminary design process.

Figure 2.1: Launch vehicle typical preliminary design process [52].
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2.1 Performance

In this section, a few basic rocket flight performance parameters will be defined, with a special em-

phasis on the rocket velocity change, an important parameter commonly used in the early stages of

rocket design to assess the energy requirements for the intended mission profile.

To overcome the influence of the Earth’s atmosphere, a rocket needs to produce thrust, T , to balance

the intense aerodynamic drag and gravitational weight pulling it down during the most energy consuming

stage of any rocket flight, the propelled ascent.

The total impulse, I, results from the sum of all measured values of thrust over a period of time [52]:

I =

∫ t

0

Tdt = mpc , (2.1)

where mp is the total mass of propellant and c is the rocket specific exhaust velocity.

By dividing the total impulse with the consumed propellant weight per unit time, ẇp, the specific

impulse Isp is obtained, and, alternatively, by dividing it by the total propellant volume, Vp, the volumetric

specific impulse, IV it is obtained. These are two important performance parameters because they

quantitatively portray the overall power and size of the rocket engine and they are commonly used to

compare different rocket propellants and engine architectures [52, 69].

Isp =
I

ẇp
=

T

ṁpg0
=

c

g0
, (2.2)

IV =
I

Vp
=

mpg0Isp
Vp

= ρpg0Isp , (2.3)

where ṁp is the propellant mass flow rate, g0 = 9.80665 m/s2 is the sea level gravitational acceleration,

and ρp is the propellant mass density [52, 69].

To have a rough appreciation of the efficiency of the overall rocket design, a parameter called

Impulse-to-Weight Ratio, I
W is commonly used:

I

W
=

Ispmp

(mp +ms +mPL)g0
, (2.4)

Or, alternatively, the Trust-to-Weight Ratio, T
W :

T

W
=

T

(mp +ms +mPL)g0
. (2.5)

where W is the total weight of the rocket, ms is the structural mass of the rocket and mPL is the payload

mass [69].

In energy terms, a rocket needs to gain just enough kinetic energy to change its velocity from a rest

position, at launch, to a targeted velocity that allows it to reach a specific altitude or place a payload

into a desired orbit, accounting for all the energy losses throughout the mission profile. Thus, the rocket

overall change in velocity, ∆v, needs to take into account: the physically unavoidable change in ve-

locity to reach orbit, ∆vorbit; and compensate the energy losses due to gravitational effects effectively
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expressed through gravity velocity losses, ∆vgravity, aerodynamic losses translated into drag velocity

losses, ∆vdrag and steering energy losses here treated as steering induced velocity losses, ∆vsteering

[52],

∆v = ∆vorbit +∆vsteering +∆vdrag +∆vgravity. (2.6)

The Tsiolkovsky rocket equation is a simple approach to calculate the ∆vorbit term that only requires

knowing the rocket’s specific impulse, Isp, initial and final masses, m0 and mf , respectively,

∆vorbit = Isp g0 ln
m0

mf
. (2.7)

During spaceflight, the engine thrust direction will most likely not be parallel to the velocity direction,

which represents the steering losses,

∆vsteering =

∫ tf

0

2T

m
sin2

(
δ + α

2

)
dt, (2.8)

where m is the instantaneous mass of the rocket, δ is the gimbal angle (the angle between the thrust

line and the longitudinal body axis of the rocket), and α is the angle of attack. To attenuate these losses,

the combined angle composed by the angle of the attack and the gimbal angle should be minimised.

To estimate the drag losses during the rocket ascent phase, one has to integrate the acting gravita-

tional force through the ascent time period, as

∆vdrag =

∫ tf

0

D

m
dt =

CDSref
1
2ρv

2

m
dt, (2.9)

where CD is the drag coefficient, Sref is the reference area, ρ is the atmospheric density, and v is the

instantaneous rocket speed. One direct conclusion is that the aerodynamic losses may be minimised

forcing ρ → 0 as fast as possible, which suggests ascending as quickly as possible, in other words,

prescribing a vertical trajectory.

Furthermore, the gravity losses might be calculated as

∆vgravity =

∫ tf

0

g sinγ dt, (2.10)

where g is the instantaneous gravitational acceleration and γ is the flight path angle of the rocket [52].

These losses need to be integrated during the atmospheric ascent phase time period because, as the

rocket ascends, the gravitational acceleration will vary with altitude, and the rocket might suffer sudden

changes in the flight path angle caused by unexpected wind gusts. Additionally, it might be concluded

that these losses are only null either when the rocket is no longer under the influence of gravity or when

the gravity vector is perpendicular to the velocity vector.
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2.2 Mass and Sizing

The mass and sizing model is responsible for the estimation of masses and component sizing. Before

the model was developed, it was necessary to identify the main rocket parts to be modelled. Figure 2.2

portrays the main rocket parts: nose cone tip, nose cone, payload module, service module, recovery

module, body tube, propellant, casing, fins, boat tail, and nozzle.

Figure 2.2: Rocket Layout Configuration [70].

Having identified the main rocket parts, a set of equations was assembled to model their mass and

sizing.

Nose Cone and Nose Cone Tip

First, the rocket nose cone and tip equations were derived. Using their length-to-diameter ratios, it is

possible to obtain the rocket length and nose cone length from the diameter. Additionally, the nose cone

diameter is considered to be equal to the nose cone of the rocket. Lastly, the mass of the nose cone

was obtained knowing the density of the material, its thickness, and surface area, while the mass of the

nose cone tip was obtained knowing its structural material density and volume, [52]:

Lrocket = (L/D)rocketDrocket , (2.11)

Lnc = Dnc(L/D)nose cone , (2.12)

Dnc = Drocket , (2.13)

Sr = πR2
rocket , (2.14)

mnc = ρnctncSnc , (2.15)

mtip = ρtipVtip , (2.16)

where Lrocket, is the rocket length, (L/D)rocket is the rocket length-to-diameter ratio (typically between

15 and 25 [62]), Lnc is the nose cone length, Dnc is the nose cone diameter, (L/D)nose cone is the nose
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cone length-to-diameter ratio (typically assumes values between 3 and 6 [62], Drocket the diameter of

the rocket, Rrocket is the radius of the rocket, Sr the rocket reference area, mnc is the nose cone mass,

ρnc is the density of the nose cone structural material. tnc is the thickness of the nose cone wall, Snc

is the nose cone surface area, mtip is the mass of the tip, ρtip is the density of the tip, and Vtip is the

volume of the tip.

Service, Recovery and Payload Modules

From the REXUS rocket standard configuration [13], a few parameters were fixed: the recovery

system mass, mR = 8.3 kg; the control and guidance systems operating within the service module, mS

= 13 kg; the module length, Lm = 30 cm.

Then, a set of equations was developed to calculate the mass of the service, recovery, and payload

modules, mS , mR and mmPL, knowing the dimensions of the rocket, Drocket and Rrocket, the density

of the module building materials ρm, for a given module thickness tm. Finally, the total mass of each

module was calculated by summing up the module mass, mm, to the previously mentioned masses,

Vm = π(R2
rocket − (Rrocket − tm)2)Lm + 2πtmR2

rocket , (2.17)

mm = Vmρm , (2.18)

mxt = mm +mx , (2.19)

where Vm is the volume of a single module, tm is the thickness of the module diameter, mm is the

structural mass of the module, mx is the mass of a general module structure (it can either be the service

module, the recovery module or the payload module), and mxt is total module mass.

Fins

From the REXUS standard fin dimensions [71], the main geometric measurements of the fins were

used to build a set of equations dependent on the diameter of the rocket.

cr = KcrDrocket , (2.20)

ctip =
Kc tip

2
, (2.21)

Fss = KFssDrocket , (2.22)

mfins = nfins(Afins)ρfinstfins , (2.23)

where cr is the fin root chord, ctip is the fin tip chord, Fss is the fin semi span, mfins, the total mass of

the finset, Kcr a constant of the fin root cord, Kc tip a constant of the fin tip chord, Fss a constant of the

fin semi span, and, mfins is the mass of the fins. These equations were confirmed to be in accordance

with the REXUS standard fins, a rocket with comparable characteristics, as converged in the benchmark

case study in Section 5.3.
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Nozzle

The nozzle was designed using the engine dimensioning calculation procedure in [52]. Equations

to calculate the nozzle throat area, exit area, length, mass, and the length and mass of the nozzle

convergent section, here named as ”nozzle adapter”, were derived as

At =
cdelTvac

Pcg0IspV ac
, (2.24)

Ae = εAt , (2.25)

Ln = 0.8

(
2Re − 2Rt

2 tan(α)

)
, (2.26)

Lna =
(DRocket − 2tbt)− 2Rt

2 tan(αconvergent)
, (2.27)

mna = ρnaVna , (2.28)

mn = ρnmn , (2.29)

where cdel, nozzle exhaust velocity, Tvac, average thrust in vacuum, Pc, average internal casing pressure,

g0, gravitational acceleration at sea level, Isp vac, specific impulse in vacuum, At, nozzle throat area,

Ae, nozzle exit area, Ln, nozzle length, Lna, nozzle adapter length, Re, nozzle exit radius, Rt, nozzle

radius, α, nozzle angle, αconvergent, tbt, body tube thickness, ϵ, nozzle expansion ratio, nozzle convergent

section angle, mna, nozzle adapter mass, ρna, nozzle adapter density, ρn, nozzle density, Vna, nozzle

adapter volume.

Rocket Motor

The rocket motor was sized using a set of equations designed to model the geometric properties of

a solid rocket motor (SRM). This choice of propulsion system will be justified later in Section 2.4.

Lg = Lc − 2tc , (2.30)

Rgi = Rgo − tg , (2.31)

Rgo = Rrocket − tc , (2.32)

mp = πLg(R
2
go −R2

gi)ρp , (2.33)

mc = π(R2
c − (Rc − tc)

2)(Lc − 2tc) + 2πtcR
2
c , (2.34)

where Lg, is the grain length, Lc is the casing length, tc is the casing thickness, Rgi is the grain inner

radius, Rgo is the grain outer radius, mp is the propellant mass, ρp is the propellant density, and Rc is the

casing radius.
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Rocket Sizing

A further set of equations was derived to calculate a few important remaining parameters: the body

tube length Lbt, volume Vbt and mass mbt, the rocket total lift-off mass m0, the rocket structural mass

ms and the rocket empty mass mf .

Lbt = Lrocket − Lnc − 3Lm − Ln − Lna , (2.35)

Vbt = π(R2
rocket − (Rrocket − tbt)

2)Lbt , (2.36)

mbt = ρbtVbt , (2.37)

m0 = mnc +mtip +mPLt +mEt +mSt +mRt +mfins +mbt+ ,

+mn +mna +mw +mp +mc

ms = mtip +mnc +mmPL +mmE +mw +mSt +mRt

+mbt +mc +mfins +mn +mna , (2.38)

mf = m0 −mp , (2.39)

where Lbt, is the body tube length, Vbt is the body tube volume, mbt is the body tube mass, m0 is the

rocket initial mass, ms is rocket structural mass and mf is the rocket empty mass.

2.2.1 Mass and Sizing Model

A model was created from the equations presented in the previous section. It was subdivided into

six smaller sub-models or components, each of them responsible for the dimensioning process of a

rocket main part: nose cone, modules, fins, nozzle, body tube, and SRM sorted by the model execution

order. Additionally, a final component was also created to calculate a few general properties, namely, the

rocket’s initial mass, empty mass, structural mass and structural factor. To consult the complete set of

equations used for the mass and sizing calculations for each component, please refer to the Appendix B.

Figure 2.2 gives a simplified view of the rocket main parts included in the model, highlighting the inputs,

outputs, and main components.

Figure 2.3: Mass and sizing simplified schema highlighting the inputs, outputs and inner components of
the model.
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2.3 Aerodynamics

During its flight, a sounding rocket has to withstand complex interactions with the atmosphere [72].

In this section, the most prominent aerodynamic properties will be presented, following the selection

of two main aerodynamic components, namely, the nose cone and fin configurations, and finally, a

aerodynamics model will be proposed.

2.3.1 Aerodynamic Properties

During the atmospheric phase, a rocket is subjected to a number of different aerodynamic properties:

lift, L, drag, D, friction, dynamic pressure, q, heating, acoustics, and stability, all of which depend on the

rocket geometry and size, free-stream relative velocity, V , atmospheric density, ρ, Reynolds number, Re,

and Mach number, M [72].

Lift is the component of the aerodynamic force in the direction perpendicular to the body relative air

velocity that is generated from a pressure difference between its surfaces [72], defined as

L =
1

2
CLρAV 2 , (2.40)

where CL is the lift coefficient and A is the frontal cross sectional area. When designing the body

shape of the rocket, it is crucial to assess its behaviour under zero lift conditions. Typically, it is chosen

an axisymmetric geometry that guarantees that the coefficient of lift is null for a zero angle of attack

(CL = 0 , α = 0) and also that lift will only be induced either during pitch events, where the rocket

experiences a non-zero angle of attack, or under small flight perturbations, where the induced lift will

counteract small variations in the angle of attack, thus helping to stabilise the rocket (if the static margin

is positive) [73].

Drag is the component of the aerodynamic force that opposes the motion of an LV, enforcing signif-

icant negative effects during atmospheric flight, such as energy losses and heating issues [72]. Figure

2.4 shows several types of drag, depending on their source: skin friction drag, body pressure drag,

parasitic pressure drag, fin-body interference drag, fin tip vortex related drag and base drag.

Figure 2.4: Main sources of drag of a rocket [74].
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All these drag sources have complex interactions between each other, and although they directly

influence the overall drag force acting on the rocket, only the most significant were considered in the

model to reduce the number of variables and achieve the maximum computational efficiency. For now,

only a general definition of the drag force will be formally defined [75]:

D =
1

2
CDρAV 2 , (2.41)

where CD is the drag coefficient.

Another parameter which is related to drag that holds special importance in terms of the assessment

of the structural aerodynamic loading sustained by an LV is the dynamic pressure , q, [72]:

q =
1

2
ρV 2 , (2.42)

During its ascent phase, the rockets’ acceleration and associated speed increase. As a conse-

quence, the rocket has to withstand strong positive dynamic pressure variations, which need to be

limited to avoid potential structural failures due to aerodynamic loading overstress [52].

Figure 2.5: Space Shuttle’s typical dynamic pressure vs mission elapsed time profile [52].

A good example of the importance of this parameter in the LV design process is portrayed in Figure

2.5, in which a throttle down - throttle up manoeuvre is used in order to comply with dynamic pressure

constraints near the max-q point, during a typical space shuttle mission profile [52].

2.3.2 Nose Cone, Tail Fins and Recovery System

In rocket design, the geometric configuration of the nose cone and tail fins has a particularly signifi-

cant impact on the overall aerodynamic performance of the rocket.

In general terms, a better aerodynamic behaviour will lessen the resulting aerodynamic forces, either

longitudinal or lateral, which will then generate reduced structural stresses. This translates into smaller

thicknesses of the rocket structure and, ultimately, less weight [52]. Additionally, the presence of smaller
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aerodynamic forces has the coupled effect of reducing energy losses throughout the atmospheric flight,

leading to less required propellant at lift-off, further minimising the weight of the rocket at launch. Thus,

it is of great significance to select the pair of geometries that results in the best compromise in terms of

mass, volume, structural strength, manufacturing costs, and aerodynamic performance [52].

Nose Cone

To select the best nose cone configuration, the following criteria will be followed:

• The best transonic behaviour, as the greatest aerodynamic loads are generated under transonic

flight regimes, while maintaining a satisfactory behaviour under subsonic and supersonic flight

regimes;

• Highest volume-to-mass ratio as it is highly desirable for a nose cone to have the highest volume

possible to accommodate the payload while minimising its mass;

Figure 2.6: Comparison between seven nose typical cone geometric shapes [73].

Figure 2.7: Drag coefficient profile for different nose cone configurations [73].

Figure 2.7 presents the drag profiles (drag coefficient curves as a function of Mach number) of

the forementioned nose cones presented in Fig. 2.6, compared with Saturn V for perspective. These

were obtained by the Missile DATCOM design tool [76] for a nose cone reference model [73]. From this

analysis, only two candidates remain: the 1/2 Power and 3/4 Power configurations, because they present

20



similar performance levels under subsonic conditions and clearly outperform every other configuration

of the lot in the transonic, supersonic, and hypersonic flight regimes.

To evaluate the impact that each configuration has in terms of mass and volume, their respective

values were compared with the conical configuration, here used as a reference, in Table 2.1

Table 2.1: Nose cone mass and volume analysis. Adapted from [73].

Nose Cone % Mass Difference % Volume Difference

Conical 0% 0%
1/2 Power 26% 39%
3/4 Power 12% 18%

The 1/2 Power configuration offers the best volume to mass ratio increase. Additionally, considering it

outperforms the 3/4 Power configuration in the transonic region, while presenting a similar performance

in the other flight regimes, it is the selected nose cone configuration of the process.

Tail Fins

Tail fins are one of the most influential rocket parts in rocket design. Their main purpose is to give

stability to the rocket, allowing it to follow an intended trajectory even under great external destabilising

forces [77]. This can only be achieved by placing the centre pressure (CP) below the centre of mass

(CM) along the roll axis, so that for every sudden change in the angle of attack, a restoring force acting

on the CP is originated (positive static margin), creating a restoring moment and consequently allowing

the rocket to recover to its original direction, thus mitigating the perturbation [77]. However, the external

placement of the tail fins along the aft. end of the body tube has serious aerodynamic implications that

need to be accounted for [77].

Figure 2.8: Rocket stability and control diagram [78].

Thus, the selection, according to the mission requirements, of the best tail configuration is crucial in

finding the optimal rocket design. Several aspects, then, need to be taken into consideration [79]: the fin

planform shape, geometry, aspect ratio, and cross-section.

Figure 2.9a presents the following planforms [80]: (a) rectangular, (b) swept, (c) swept tapered, (d)
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(a) Tail fin planform shapes (b) Tail fin cross-section shapes

Figure 2.9: Tail fin properties.

clipped delta, (e) trapezoidal, and (f) elliptical; and fig. 2.9b the cross-sections: a) double-diamond, b)

NACA, c) single-diamond, d) biconvex, e) hexagonal blunt-base , f) single-wedge.

After thorough analysis of the works of several authors [13, 80–83], the selected tail fin configuration

was a swept-tappered planform shape with a symmetrical double-diamond cross-section.

The swept-tappered planform is the planform which pushes the centre of pressure the furthest back

along the roll axis, which is crucial for stability.

As for the symmetrical double-diamond cross-section, it ensures that the leading and trailing edges

have a sharp end, which is best for supersonic conditions, in aerodynamic terms. Additionally, this

design maintains the maximum thickness throughout the full central section of the fin cord, which adds

considerable strength and stiffness, thus being less susceptible to vibration and consequently to ”fin

flutter” [83].

Recovery System

After reaching its peak altitude, a sounding rocket starts to rapidly descend, gaining excessive speed

at increasingly higher rates. Thus, integrating a recovery system is pivotal to ensure a descent with

controlled speed, a safe landing, and, finally, a successful recovery for further reuse.

The traditional recovery system is the parachute, which taking advantage of the resulting high drag

after inflation, will effectively slow down the rocket, thus controlling the achieved descent rate until a safe

terminal speed has been reached.

Although many variations exist, the recovery system being modelled will be a combined drogue-

main parachute configuration with side-ejection, which consists in deploying a smaller parachute, named

”Drogue parachute”, at altitudes as high as 15 km [84], to gradually attenuate the rocket at high speed,

well within the supersonic region, and then a significantly larger subsonic main parachute, at altitudes

between 3 and 7.5 km [85], further increasing the body drag of the rocket until it smoothly reaches

terminal speeds of around 5 to 8 m/s [85, 86].

Figure 2.10 illustrates a complete sounding rocket recovery sequence divided in seven stages: from

the moment the drogue parachute is deployed in S1 to the final low speed, fully inflated, and stabilised
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descent phase, in S7.

Figure 2.10: Schematics of a complete sounding rocket parachute recovery sequence from drogue
parachute deployment, in S1, to the main parachute fully inflated, in S7. Adapted from [85].

2.3.3 Aerodynamic Model

This model was designed to estimate the aerodynamic behaviour of the rocket at each operating

state. Its simplified diagram is illustrated in Fig. 2.11.

Figure 2.11: Aerodynamics model diagram.

A first approach was made following the works of several authors [87–91] by first calculating the var-

ious components of the coefficient of drag from empirical relations based on its geometric dimensions.

However, the obtained results were not faithful to the expected physical behaviour since the applied

empirical relations had been derived for high-power model rockets, so, they could not be applied to a

suborbital rocket with roughly 5 to 10 times their size. For a more detailed explanation on this first model

formulation, please refer to Appendix B.6.

A second aerodynamics model was then drawn using a simpler formulation. Only three sources

of drag were considered in the calculation of the total zero lift drag coefficient, Cd0: nose cone drag

coefficient, Cdnc, base drag coefficient, Cdb and fins drag coefficient, Cdf , as
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Cd0 = Cdnc + Cdb + Cdf . (2.43)

The nose cone drag coefficient values were calculated through a direct interpolation of the data

points of the 1/2 power nose cone drag coefficient profile presented in Figure 2.7 retrieved from the

Missile DATCOM software [73]. The base and fin drag coefficients were calculated through empirical

relations based on several atmospheric parameters, the geometric dimensions of these components

and the mach number of the rocket [92]. Figure 2.12 portrays the Cd0 profile of the model compared

with the Saturn V for perspective.

Ultimately, the Cd0 was used to calculate the drag force applying Equation (2.41) and the dynamic

pressure was calculated through Equation (2.42).
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Figure 2.12: Drag profiles of the main components compared with the Saturn V drag profile to give
perspective.

Compressible Flow Correction

The previous expressions for Cd are only valid for incompressible flow, thus, their application needs

to be extended to cover the compressible flow regime [91].

At subsonic speed (Ma < 0.8), the compressible flow correction for the aerodynamic coefficient is

defined as

Cd =
Ci√

1−M2
a

, (2.44)

where Ma is the free stream Mach number. At the transonic region (0.8 ≤ Ma ≤ 1.1), the corrected

aerodynamic coefficient is given by

Cd =
Ci√

1− (0.8)2
. (2.45)
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Lastly, at supersonic speed (Ma > 1.1), the corrected aerodynamic coefficient is

Cd =
Ci√

M2
a − 1

. (2.46)

Recovery System Contribution

In order to simulate the presence of the recovery system upon its activation, an additional contribution

was introduced to the produced drag.

Table 2.2 presents the main characteristics of the recovery system:

Table 2.2: Recovery system main characteristics. Adapted from [85].

Parameter Unit Parachute

Drogue Main

Area [m2] 0.9 7.28
CD - 0.3 0.55
Mass [kg] 1.3 0.6
Deployment Altitude [km] 7.5 - 15 3 - 7.5
Expected Inflation Force [kN] 53 25

After the drogue parachute descent altitude is reached, an additional component of drag is calculated

as

Ddrogue =
1

2
ρv2CDdrogueSdrogue , (2.47)

where Ddrogue is the drag component due to the drogue parachute, CDdrogue is the drag coefficient of

the drogue parachute, and Sdrogue is the drogue parachute area.

Similarly, after the main parachute descent altitude is reached, an additional component of induced

drag is calculated as

Dmain parachute =
1

2
ρv2CDmain parachuteSmain parachute , (2.48)

where Dmain parachute is the drag component due to the main parachute, CDmain parachute is the drag

coefficient of the main parachute, and Smain parachute is the main parachute area.

2.4 Propulsion

At first sight, the main purpose of the propulsion system might be seen as solely to generate the

required propulsive force to put an LV in motion so that it can prescribe a desired mission profile. Yet,

given certain mission requirements, a careful choice of the most adequate propulsion system might

maximise the performance and safety, as well as, minimise operational risks and overall costs of the

entire mission. Thus, the right selection of a propulsion system is of pivotal importance [51].
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Propulsion System Selection

Within the jet engine class, duct engines, commonly known as air-breathing engines, are the best

solution for the majority of modern commercial aviation applications. Their working principle assents

on using the surrounding medium as the oxidizing agent for the combustion of in-vehicle stored fuels to

generate thrust. However, they have strong maximum service ceiling limitations (as an example, 14000

- 17000 m for turbojets and 20000, 30000 and 45000 m at 3, 5 and 12 Mach respectively for ramjets

) due to the lack of oxygen concentration with altitude in atmospheric air, thus making them unsuitable

for space applications [51]. Alternatively, rocket engines have both the oxidizer and propellant stored

inside the vehicle being completely independent of the physical properties of the surrounding medium

to sustain normal operating conditions thus making them a suitable option space flight.

Figure 2.13: Different types of jet engines.

Figure 2.13 portrays the several existing different types of engines within the Jet Engine family.

As other forms of energy supply are still not a proven concept for suborbital flight, namely, nuclear,

solar and electric, the only viable option left rests within the Chemical Rocket Engines (CREs) subset

[51]. Inside these engines, chemical energy is transformed into heat energy by a high temperature

combustion reaction of the solid propellant. High pressurized gases are forced out of the combustion

chamber into the nozzle, which acting as an accelerator, allows them to expand, trading static pressure

with dynamic pressure, as they steeply accelerate until supersonic speeds have been reached at the

nozzle exit [93]. It is precisely the opposing force originated from the described change in linear mo-

mentum of the ejected matter at the nozzle that allows the rocket to move forward, thus being commonly

known as a propulsive force acting on the center mass of the rocket [51].

Figure 2.14 illustrates the three existing types of this engines based on the propellant physical state:

Solid Rocket Motor (SRM); Liquid Rocket Engine (LRE); or Hybrid Rocket Engine (HRE), when propel-

lants in different states are simultaneously used.

LREs are commonly used in heavy rockets because they provide throttling control and engine shut

off and re-ignition capabilities, which are essential for space maneuvering. However, these features

come at the cost of requiring the installation of complex turbo pumps, valves, high-pressure tanks, and

other mechanical parts operating at high rates and temperatures, significantly increasing the complexity

of the design and the overall operation and maintenance costs.

In contrast, SRMs are a much simpler choice, fairly easy to operate, highly affordable to manufacture
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Figure 2.14: Schematic view of CREs [94].

and maintain, with greater fuel volumetric efficiency, although they do not provide throttling control or

engine cut-off and re-ignition capabilities.

A modern solution that has already been tested for a wide range of space applications and which

simultaneously exploits the advantages of SRMs and LREs is the HRE [95]. By combining within the

same propulsion system, a solid propellant with liquid or gaseous oxidizer, it is possible to control the

thrust curve for specific periods of time throughout the flight [96]. Although these systems provide high

storage safety, prevent inadverted ignitions and allow for high propellant versatility selection, they offer

poorer fuel volumetric and combustion efficiency in comparison to SRMs.

Table 2.3: Qualitative comparison of the main characteristics of CREs [95, 96].

Parameter SRM LRE HRE

Throttling Control
Engine Cut-Off and Re-Ignition
Manufacturing and Operating Complexity Low High Medium
Cost Low High Medium
Performance Low to Medium High Medium

From Table 2.3, which summarizes the main characteristics of CREs, it may be concluded that for

mission profiles which do not require throttling control or engine cut-off and re-ignition capabilities, which

is the case of the majority of single-stage sounding rockets performing suborbital flights, the most ad-

vantageous option is the SRM.

Grain Geometry Selection

The grain is a processed solid propellant mass, which normally represents 80 to 94% of its mass [51].

Additionally, it is the grain perforation geometry that directly influences the thrust profile of the engine

because it allows the engineers to effectively control the propellant instantaneous burned area along the

propelled flight and, consequently, the obtained chamber pressure and produced thrust. This serves to

show the importance of choosing a suitable grain perforation when designing a SRM.
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Figure 2.15: Several cross-sections of perforated internal-burning propellant grains [93].

Due to the extensive diversity of existing grain configurations, portrayed in Figure 2.15, other as-

pects, aside from the geometry, need to be considered in order to make a final decision: best grain

compactness possible, minimum erosive burning, minimum unburnt propellant slivers, minimum shift in

the centre of gravity [51].

In the suborbital flight context, high burning areas are needed to produce high chamber pressure and

thrust levels in the first seconds of the flight in order to place the rocket outside the atmospheric region

as soon as possible in order to minimise gravity losses, followed by a period of lower burning areas,

lower chamber pressures, and thrust levels in order to minimise excessive speed and their resulting

drag losses. Thus, dual-phase or a regressive thrust-time profile are the optimal solutions over neutral

or progressive thrust-time profiles [51].

Figure 2.16: Propellant grains and their thrust profile [93].

As the propulsion model is being designed for an MDO application, it is important to avoid highly

complex grain configurations because they will most likely present unnecessary burnback and internal

ballistic evaluation challenges, which, in the end, will be of minimal consequence to the final optimisation

results. Instead, a simpler, mathematically efficient to model configuration was preferred.

Figure 2.16 portrays four of these simpler configurations along with their burnback direction and

thrust-time profiles. It was decided to model a propulsion system which mimics the behaviour of an

SRM integrated with a cylindrical grain with lateral combustion by sequentially conducting an instanta-

neous burnback analysis followed by an internal ballistic analysis, i. e., by first evaluating the propellant

regression to assess the instantaneous burning areas, given an initial grain radius and a known burn-
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ing direction, and afterwards, by using one-dimensional isentropic flow equations [97] to evaluate the

resulting chamber pressure and thrust, among other parameters.

2.4.1 Propulsion Model

This model was developed to accurately predict the behaviour of the main physical properties of a

SRM under real operating conditions. Its simplified flowchart is depicted in Fig. 2.17, where the main

inputs and outputs are listed.

Figure 2.17: Propulsion model diagram highlighting inputs, outputs and inner components.

Grain Burnback Component

First, based on the works of several authors [98–102], a set of analytical equations was assembled

to model the grain burnback, i.e, the propellant regression rate and respective propellant burning areas

over time,

mpi = mp0 − (m0 −mi) , (2.49)

Rp =

√
−mpi

ρpπLgrain +R2
i

, (2.50)

Ab = 2πRpLgrain , (2.51)

where mpi is the instantaneous propellant mass, mp0 is the initial propellant mass, m0 is the rocket lift-off

mass, mi is instantaneous rocket mass, Rp is the port radius, ρp is the propellant density, Lgrain, is the

grain length, Ri is the grain inner radius, and Ab is the instantaneous burning area.

Internal Ballistic Component

Then, using the propellant burning area as the main input, a second set of equations was assembled

to model the internal ballistic behaviour of the motor, namely the combustion chamber pressure and the

thrust, using one-dimensional isentropic flow equations [97], as
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Te = Tt(1 +
γ − 1

2
M2

e )
−1 , (2.52)

Pt =

[
aρpAb

CDAt

] 1
1−n

, (2.53)

Pe = Pt(1 +
γ − 1

2
M2

e )
−γ
γ−1 , (2.54)

Ve = Me

√
γRTe , (2.55)

ṁ = −CDAtPt , (2.56)

Thrust = ṁVe + (Pe − P )Ae , (2.57)

where a is the burn rate coefficient, CD is the nozzle discharge coefficient, At is the nozzle throat area, n

is the propellant ballistic exponent, Te is the nozzle exit temperature, Tt is the nozzle throat temperature,

γ is the gas specific heat ratio, Me is the nozzle exit mach number, Pe is the nozzle exit pressure, Pt is

the internal casing total pressure, Ve is the nozzle exit velocity, R is the universal gas constant, and P is

the atmospheric pressure.

2.5 Structures

One of the major challenges throughout the rocket design optimisation process is to guarantee that

every candidate rocket configuration, will withstand beyond all the expected internal and external loading

for the intended mission profile.

The structural challenge resides in the fact that increasing structural stiffness and strength, although

highly desirable, is highly dependent on increasing the material thickness, thus, the overall structural

mass and the manufacturing cost. One way to address this issue, is to test the application of different

structural aerospace materials with enhanced physical properties only in major critical rocket compo-

nents. However, these solution poses two main difficulties: typically, the better the material’s structural

properties, higher its manufacturing costs; and blindly conducting real structural testing under a con-

trolled environment might still significantly increase the overall production cost of the rocket;

Thus, integrating a structural analysis model at the preliminary stage of the design process plays a

crucial role in finding the perfect balance between material selection and its required thickness in order to

engineer the most lightweight and cost-effective rocket design configuration possible which still complies

with all structural constraints.

A simple model was built to test the occurrence of two critical phenomena during flight: buckling of

the body tube and fin flutter.

2.5.1 Buckling

In cylindrical thin shell structures subject to high compressive forces, such as the rocket body tube,

buckling is a common phenomenon. It occurs when a structure undergoes axial compressive forces be-
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yond their critical point, deforming into a configuration with compromised structural integrity and weak-

ened physical properties, such as strength and stiffness, consequently no longer meeting the initial

design’s structural requirements. Therefore, it is crucial to integrate a buckling analysis to the design

process to guarantee that the buckling critical stress will not be exceeded, for any in-flight loading con-

dition.

The linearised buckling equation for the critical stress of a thin elastic cylindrical shell is given by

[103]

σcrit =
γE√

3(1− v2)

(
th

R

)
, (2.58)

where E is the cylindrical shell Young modulus, R its radius, th its thickness, v the material Poisson’s

ratio and γ a multiplication factor given by

γ = 1− 0.901
(
1− e−ϕ

)
with ϕ =

1

16

√
R

th
. (2.59)

Consequently, the critical axial load for buckling, Lcrit, may be calculated by simply multiplying it by

the cross-sectional area of the sell as

Lcrit = σcritπ((R
2)− (R− th)2) . (2.60)

Additionally, it is standard practice to apply a factor of safety in every major structural analysis, which

ensures that a safety margin will prevent structural failure within operation conditions. For this buckling

analysis, a safety factor of 1.4 will be applied, in accordance with the structural design requirements and

factors of safety for spaceflight hardware defined by NASA [104].

2.5.2 Fin Flutter

Another well-documented phenomenon that might lead to structural failure that cannot be overlooked

is fin flutter [105]. This results from combined elastic bending and torsion events originated by the

interaction with the atmospheric air stream, which might excite the tail fin structure when exceeded a

certain air stream velocity value, called flutter velocity Vf , matching its natural frequency, leading to

amplified oscillations that might end up surpassing the deformation levels tolerated by the stiffness of

the material and, finally, undermining its structural integrity [106].

Following the Flutter Boundary Equation [107], it is possible to calculate the flutter velocity as

Vf = a

√√√√ GE

Y AR3

(t/cr)3(AR+2)

(
λ+1
2

) (
P
P0

) , (2.61)

where a is the speed of sound at an altitude where the rocket reaches maximum velocity, GE is the

effective shear modulus of the tail fins (for isotropic materials E = 2G(1 + v)), AR is the aspect ratio of

the tail fins, P0 is the atmospheric pressure at sea level, P is the atmospheric pressure at the reference

altitude of the speed of sound, t is the tail fin thickness, cr is the tail fin root cord, and λ is the tail fin
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tapper ratio. Y is a constant value given by [106]

Y =
24ϵγP0

π
, (2.62)

where ϵ is the distance of the fin centre of mass behind the fin quarter-chord and γ is the specific heat

air ratio (typically it is considered to be equal to 1.4 [51]).

2.5.3 Structural Model

After a brief theoretical analysis of two key structural events, namely, buckling and fin flutter, a model

was created to assess the structural integrity of the rocket along the flight profile. First, given a pair of

drag and thrust forces, the model calculates the resulting compressive loading at the body tube cross-

sectional area. Then, it compares it with the critical buckling stress in order to evaluate if, at any moment

in time, the rocket was subject to such a loading condition for buckling to occur, given the previously

established safety factor of 1.4.

Additionally, the fin flutter velocity is also monitored throughout the entire flight profile in order to

evaluate if the structural integrity of the fins remains unharmed, as this is the pivotal rocket component

for stability.

Structural Model

Drag

Thrust

Buckling Stress Difference

Fin Flutter Velocity

Critical Buckling StressSpeed of Sound

Fin Aspect Ratio

Atmospheric Pressure at Sea Level 

Body Tube Thickness

Atmospheric Pressure 

Fin thickness

Fin Chord Root

Fin Tapper Ratio

Figure 2.18: Structural model diagram highlighting inputs and outputs.

2.6 Atmosphere

During its ascent, an LV undergoes aerothermal loads that directly depend on the thermodynamic

properties of the atmosphere, which are the by-product of the chemical composition of the various

atmospheric layers of gases, solar activity and planetary gravity, rotation and magnetic field [108]. At

relatively low altitudes (below 15 km), the atmosphere can be considered to be in thermal equilibrium.

However, this does not remain true for higher atmospheric layers, where all thermodynamic properties

are strongly affected by altitude [108].
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Although technologically possible depending on the level of resources at our disposal, it is completely

unrealistic, at an academic level, to have access to real live data of the atmospheric properties for each

trajectory simulation. Thus, it is necessary to create an atmospheric model which will feed standard

values of the most common atmospheric parameters to multiple other models, such as aerodynamic,

propulsion, and flight dynamics [108].

2.6.1 Atmospheric Model

Following the 1976 U.S. Standard Atmosphere Convention [109] for the altitude range of 0 ≤ h ≤ 86

km and the 1962 U.S Standard Atmosphere Convention [110] for higher altitudes, a first approach was

conducted in order to build this model by adapting the methodology in [108].

Assuming thermodynamic equilibrium and constant or linear temperature variation in the fist layers

of the atmosphere, the temperature distribution with altitude was defined as

T = Ti + a(h− hi) , (2.63)

with a =
dT

dh
= − (n− 1)

n

g

R
, (2.64)

where the subscript i refers to the reference quantities at the beginning of each layer, n is the polytropic

exponent (in adiabatic conditions n = γ, the specific heat ratio), g the gravitational acceleration, R is

the specific gas constant and a is the thermal lapse rate, a crucial parameter which determines the

stability of hydrostatic equilibrium within the layer (a < 0 means decreasing temperatures with altitude

and thermal stability while a > 0 means increasing temperatures with altitude and thermal instability).

From the temperature distribution, it was possible to define the atmospheric pressure, Pa and atmo-

spheric density, ρ, considering that the gravitational acceleration varies with altitude:

g = g0

(
r0

r0 + h

)2

, (2.65)

p = pi

[
1 +

a(h− hi)

RTi

]−{ g0
aR [1+β(Ti

a −hi)]
}
e

βg0
aR (h−hi) , (2.66)

ρ =
p

RT
, (2.67)

where r0 is the earth radius and β = 2
r0

.

Additionally, a non-dimensional parameter commonly used to distinguish the flow regime in which a

moving LV actually is, the Knudsen number, Kn, was introduced as the ratio between the mean free

path of the flow undisturbed molecules, λ, and the characteristic length of the vehicle, lc,

Kn =
λ

lc
(2.68)
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Under this parameter, there are several reference values for each flow regime:


Continuum flow, if Kn ≤ 0.01,

Transitional flow, if 0.01 < Kn < 10,

Free-molecular flow, if 10 ≤ Kn

(2.69)

Then, following an alternative methodology adapted from the OpenAeroStruct Python library was

followed [111]. In this new version of the model, arrays with the values of each atmospheric parameter

retrieved from the standard atmosphere convention tables [109, 110] were created as plotted in Fig.

2.20.

Figure 2.19: Atmospheric model diagram highlighting inputs and outputs.

By interpolating the altitude value (model input) using the Akima1DInterpolator class imported from

the Scipy Python library [112, 113], it was possible to find the respective values of all atmospheric

parameters for each particular altitude, namely, temperature T , pressure Pa, density ρ, speed of sound

c, gravitational acceleration g, dynamic viscosity µ, and kinematic viscosity k.
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Figure 2.20: Atmospheric properties.
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Figure 2.20: Atmospheric properties.

2.7 Flight Dynamics

To successfully determine the prescribed trajectory of an LV it is crucial to rigorously understand

its dynamic behaviour. Thus, it is necessary to define a set of flight dynamics equations, commonly

known as equations of motion, capable of translating the complex interactions between the rocket, the

atmosphere and any other external factors with active influence on the rocket into formal mathematics

[114].

In order to reduce the number of state variables for simplicity and computational cost efficiency, a 2

DoF plane model was preferred rather than more complex 3 DoF, 4 Dof, 5 DoF or even 6 Dof models.

Accordingly, the following assumptions were made:

• The rotational motion of the LV was not considered in the calculation of the trajectory flight path.

Hence, it was rather considered that the acting forces were applied in the centre of mass of the
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rocket throughout the flight, as illustrated in Fig. 2.24;

• The thrust vector, T⃗ , is always aligned to the velocity vector, v⃗, the aerodynamic drag vector, D⃗

has the opposite direction to v⃗ and the lift vector, L⃗, is perpendicular to v⃗;

• The Weight vector, W⃗ is always pointing to the center of the Earth;

• The rocket is assumed to be a rigid body with variable mass;

• Expected effects from the rotation of the Earth, such as the Coriolis effect and centripetal accel-

eration are disregarded due to their impact being considered negligible for the suborbital flights

under study. The curvature of the Earth was disregarded due to the small downrange expected

values (30 to 60 km) in comparison to the radius of the Earth (6378 km measured at the equator,

6371 km at the poles);

Thus, the flight dynamics of the rocket can be reduced to the following set of equations, which

determine the time rate of change of four variables: velocity, v, flight path angle, γ, altitude, h, and

downrange, x [114]:

V̇ =
T

m
cosα− D

m
− g sin γ , (2.70)

γ̇ = −
(

g

V
− V

Re + h

)
cos γ +

T

m
sinα , (2.71)

ẋ = V cos γ , (2.72)

ḣ = V sin γ , (2.73)

Figure 2.21 portrays the typical flight dynamics states variables and acting forces during space flight.

Figure 2.21: Flight Dynamics state variables and acting forces [114].
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2.7.1 Flight Dynamics Model

Following the 2 DoF flight dynamics system previously presented, a flight dynamics model was cre-

ated to be integrated in the trajectory model, at a higher level.

This flight dynamics model is responsible for handling four state variables (downrange, x, altitude,

h, velocity, v, pitch angle, γ, and also their time derivatives, respectively: ẋ, ḣ, v̇ and γ̇. This bears

particular importance because these are the state variables which keep track of the progress of the

trajectory integration process at each point in time. Figure 2.22 portrays the flight dynamics model, its

inputs and outputs.

Figure 2.22: Flight dynamics diagram highlighting inputs and outputs.

2.8 Trajectory

In order to place a desired payload at a specific altitude, an LV needs to follow a carefully planned

flight profile, taking into account the safety and operational constraints, adverse atmospheric conditions

and any unforeseen technical malfunctions, aimed at minimising the overall mission costs.

In the case of sounding rockets, the trajectory can be divided into four main different flight phases:

lift off, pitch over manoeuvre, gravity turn and descent.

Lift off vertical flight : Although it is relatively common among sounding rockets to lift-off with a launch-

ing angle between 75 ° to 85 ° from a launch rail, immediately starting a gravity turn, it is a standard

procedure for the first flight phase to be a vertical powered ascent. During this phase, the rocket

gains as much speed and altitude in the shortest amount of time as possible, while maintaining a

zero angle of attack to reduce gravity and drag energy losses [52]. After a few seconds of flight

time, the rocket is already several hundred meters high with enough speed and altitude to have

cleared service towers or any other infrastructure, then proceeding to the pitch over manoeuvre.
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Pitch over manoeuvre :

The initial vertical flight, although necessary to quickly gain altitude and speed, proves to be far

from optimal after a few seconds of flight time as the gravity energy losses start to have a significant

toll, so the solution is to smoothly transition to a gravity turn in which the rocket gradually turns

around it’s transverse axis in a gravity aided manoeuvre, minimising energy losses and, ultimately,

optimising fuel consumption [52]. The aim of this short flight phase is solely for the rocket to

produce a small pitch angle, which dictates the beginning of the gravity turn.

By using movable fins, gimbled thrust, vernier thrusters, thrust vanes or other means of active

attitude flight controls, as illustrated in Fig. 2.23, it is possible to induce a moment applied to the

rocket centre of mass resulting in an angular velocity around the rocket’s transverse axis, making

it gently pitch towards the desired flight path angle.

Figure 2.23: Rocket active attitude control systems [115].

During this manoeuvre, the rocket undergoes small angles of attack, which potentially might cause

high structurally demanding transverse loads; therefore, it should be performed under low dynamic

pressure conditions to avoid destructive loads that might jeopardise the integrity of the structure.

Gravity Turn :

Triggered by the pitch manoeuvre, the gravity turn fundamentally consists in a smooth gradual turn

in the rocket pitch angle solely aided by gravity, slowly bringing the flight path angle of the rocket

towards the horizontal axis at the apogee [52]. Moreover, if, during this manoeuvrer, the thrust

vector is maintained aligned to the velocity vector of the rocket, a null angle of attack can also be

maintained, which is important to minimise the transverse loads acting on the structure, specially

through the maximum dynamic pressure point, also known as ”max-q”.

After the main engine cut-off, only the drag and gravity forces remain acting on the rocket, so it

enters a coasting phase while under the gravity turn until it frees itself from atmospheric influence
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(if existent, the payload fairing separation takes place at this point), continuing the gravity turn until

the apogee. Figure 2.24, portrays the crucial effect of the gravity in this turning manoeuvre.

Figure 2.24: Gravity turn schematics. Adapted from [116].

Descent Flight

After reaching the apogee, the rocket starts a descent phase in which it rapidly gains speed as it loses

altitude. At atmospheric re-entrance, the rocket starts heating up and slowing down subject to increasing

drag forces under atmospheric flight conditions. When the rocket speed has slowed enough, a drogue

parachute is deployed to drastically slow the rocket from supersonic to subsonic conditions, at which

point the main parachute is deployed to further decrease the rocket velocity until a desired terminal

speed is achieved [52]. Finally, the rocket enters a controlled descent until it reaches the ground, at

which point retrieving action is activated.

A detailed sounding rocket flight sequence is portrayed in Fig. 2.25.

Figure 2.25: Sounding Rocket Trajectory Profile [117].
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2.8.1 Trajectory Model

In order to implement this model, a high-level group was created, with 5 coupled models within,

namely, Flight Dynamics, Atmospheric, Propulsion, Aerodynamics and Structural. Fig. 2.26 gives an

overview of these models and their couplings.

Trajectory Model

Flight Dynamics
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Atmospheric
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Aerodynamics
Model

Propulsion
Model

Structural
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Thrust
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D
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m: Instantaneous Rocket Mass
𝑚: Rocket Mass RateChange
v: Velocity
D: Drag
h: Altitude
P: Pressure
c: Speed of Sound
ν: Kinematic Viscosity
g: Gravitational Acceleration

Figure 2.26: Overview of the trajectory model.

This model was then integrated in a top-level group with the mass and sizing model in order to create

a framework capable of conducting an MDO process coupled with trajectory optimisation.
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Chapter 3

Multidisciplinary Design Optimisation

Recent advancements in technology have improved accessibility to higher computational power at

gradually lower costs. Consequently, modern computer-based engineering systems capable of con-

ducting complex MDO processes superseded the traditional concurrent engineering philosophy-based

systems, where Disciplinary Design Optimisation (DDO) was conducted.

In this chapter, a brief overview of the basic concepts of a typical MDO problem formulation is given,

then a short analysis of the most commonly used MDO architectures is presented, followed by a short

analysis of optimisation algorithms. Afterwards, the main trajectory optimisation methods are explained

with special emphasis on direct collocation, in particular, pseudo-spectral methods.

3.1 MDO Main Concepts

The biggest advantage in using a multidisciplinary analysis is the capacity to understand the complex

interactions and trade-offs between disciplines towards the global optimum result of the objective func-

tion [118]. A classic example, is the aerostructural optimisation process in aircraft wing design. In order

to enhance the aerodynamic performance of a wing, the engineer adjusts a few geometric parameters

which, in most cases, reduce its structural strength. Thus, the positive effects in aerodynamics achieved

from the adjustment of the values of several geometric properties, called design variables in the con-

text of MDO, need to be balanced with their negative and undesirable effects on the wing’s structural

properties [21, 111].

As the number of disciplines and variables integrated in the MDO process increases, such coupling

among disciplines also exponentially increases, which begs for the necessity to carefully select only

the most significant parameters to the objective function as design variables, treating the others as

constants.

3.1.1 Design Variables

The design variables are treated as an input vector x = [x1, x2, x3, ..., xn] of the system, whose value

evolves during the optimisation process in order to find the best design.
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Typically, they can be divided into two groups: local variables, when they are specific to one discipline,

or global variables, when they are shared by multiple disciplines [119].

One important characteristic of these variables is that they need to be independent, i.e., they can

not be a linear combination of other design variables, otherwise, it would lead to poor performance and

unpredictable system behaviour [21].

Another important aspect regards their bounds definition (lower and upper), in terms of the physical

significance of the problem. For instance, design variables which represent a physical property, such as

mass and length of the rocket, need to be constrained to guarantee that the optimal solution remains

within a physically feasible standpoint [21].

However, it is of the utmost importance not to over-restrict the design space by setting too conserva-

tive bounds, consequently conditioning the optimiser to look for a solution outside the optimal region, or

not to under-restrict the design space by setting too loose bounds, giving the optimiser a broader design

space to work with at higher computational costs [120].

3.1.2 Objective Function

The objective function is the mathematical expression that translates how the design variables impact

a target parameter subject to optimisation, e.g., the rocket lift-off total mass or the propellant lift-off mass.

By convention, the optimisation process typically intends to minimise the objective function, although

it can equally be applied in a maximisation context with the following alternative formulation [21]

max[f(x)] = −min[f(x)] . (3.1)

For a single-objective optimisation problem, the selection of the appropriate objective function bears

a critical importance because there may be several significant metrics to minimise with complex trade-

offs to balance. Alternatively, a multiple-objective formulation may be a more suitable solution for these

cases. Essentially, the objective function is the linear combination of n objectives [21]:

f̄ =

n∑
i

wifi(x) (3.2)

where wi is the weighting factor and fi(x) represents the same individual objective.

3.1.3 Constraints

Similarly to variable boundaries, constraints need to be defined in a typical MDO problem formulation

to ensure physical feasibility of the design space [21]. There are two types: equality and inequality

constraints, as posed as

g(x) = 0 , (3.3)
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h(x) < 0 , (3.4)

where g(x) and h(x) are the constraint functions.

The difference between bounds and constraints resides in the fact that the optimisation process is

being restricted or constrained, in their broadest sense. Bounds only constrict the design space, i.e.,

only constrict the range of values from which they can be managed. A constraint, however, allows the

designer to tailor the feasibility region of the optimiser with detail. Therefore, an optimal solution will

only be returned when the optimiser has successfully minimised/maximised the objective function with

all constraints satisfied.

3.1.4 State and Coupling Variables

In order to enhance our understanding about the crucial balancing process of variable trade-off anal-

ysis, it is necessary to define all types of variables involved, according to the role they play in the

optimisation process [21].

Besides the already defined design variables, in Section 3.1.1, there are fundamentally two other

major groups: state and coupling variables. State variables, ȳ, serve the purpose of evaluating the

performance of the system and are simply the outputs of the disciplines, representing the system’s

response to a certain set of design variable values, thus describing the state of the system at any

given time. Coupling variables, y, are shared variables within the system, which serve the purpose of

linking together the behaviour of each discipline. Their role is to ensure interdisciplinary feasibility and

convergence. Typically, coupling variables are a subset of state variables.

Figure 3.1: XDSM of the MDF architecture with a Gauss-Seidel MDA [118].

Without focusing too much on the details, Fig. 3.1 portrays an Extended Design Structure Matrix

(XDSM) of a Multidisciplinary Design Feasible (MDF) architecture with a Gauss-Seidel multidisciplinary
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analysis and serves to show a typical MDO architecture with the special emphasis on the role of each

variable within the optimisation process [118]. For each individual block, upside and right side connec-

tions represent the inputs, whereas downside and left side connections represent the outputs. Looking

from up to bottom and from left to right, it can clearly be observed that the optimiser has direct control

over all design variables x (its outputs), which are fed to the inner multidisciplinary analysis block (its in-

puts). This block directly manages the coupling variables, y, which are inputs and outputs of the analysis

1, 2, and 3 blocks, representing the several disciplines of the multidisciplinary model.

3.2 MDO Architectures

The ultimate goal of any MDO problem is to find which design configuration is the optimal solution

within a given design space subject to specific constraints under one or multiple optimisation objectives.

Existing literature [18, 19, 121–125] makes it clear that the choice of the right MDO architecture

directly influences the computational cost and the quality of the final design. This choice involves being

versed in the main advantages and disadvantages of the existing architectures, their specific applicability

and scalability in the extent of each problem, and adequate implementation associated with a good

choice of optimisation algorithm [118].

The main MDO architectures currently in use by the aerospace industry can be organised under

several different criteria. They can be classified into two different groups: single level (or monolithic) and

multi level (or distributed), according to the number of optimisers used in each architecture (single or

multiple optimisers, respectively). The monolithic MDO architectures solve a single optimisation prob-

lem, while the distributed architectures decompose the original problem into a set of smaller optimisation

subproblems that provide the exact same solution. Figure 3.2 portrays the most common single level

and multilevel architectures.

Figure 3.2: MDO architectures [18].

Single-level architectures are characterised by only using an optimiser at the top level of the multidis-

ciplinary system, which is the governing level responsible for ensuring multidisciplinary feasibility [126].
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It now follows a brief overview of the three most common single-level architectures: Multidisciplinary

Feasible (MDF), Individual Discipline Feasible (IDE) and All-at-Once (AAO).

The MDF architecture, solves the optimisation problem by implementing a system-level optimiser

which calls a multidisciplinary analysis (MDA) responsible for solving all governing equations at the

subsystem/component level until the coupling variables converge within the specified tolerance limits

[127]. In other words, multidisciplinary feasibility is guaranteed at every iteration. While this approach

ensures simplicity and multidisciplinary feasibility at each iteration, it may present convergence issues,

requiring under-relaxation measures and poor performances from gradient-based optimiser sensitivity

analysis. Additionally, very limited advantage is taken from variable couplings leaving little to no room

for parallel processing outside the MDA module, which consequently might lead to significantly higher

computational costs which might pose an issue for large scale application problems [119, 124].

As an alternative approach, the IDF architecture adds additional independent variables to the prob-

lem to ensure that each discipline can be solved separately, while interdisciplinary equilibrium is main-

tained by a set of optimisation constraints that ensure the overall feasibility of the design once the

optimisation convergence is achieved [127]. IDF potentially solves the high computational cost opened

by the MDF architecture by conducting each discipline feasibility analysis independently and, in par-

allel, favouring speed and efficiency, at the cost of introducing additional variables and optimisation

constraints, increasing the overall complexity of the original problem which might pose scalability issues

for larger applications [124].

Still on the topic of MDO single-level architectures, the AAO architecture is considered the most

elementary, as a system-level optimiser responsible for the optimisation of a global objective function

handles the design variables z, coupling variables y, and state variables x, as well as, calls different

discipline evaluators at the subsystem level which solve their local equations (residuals). These residuals

are handled by the optimiser as equality constraints R = 0 [119]. Similarly to the IDF architecture,

AAO offers parallel data processing capabilities which prove to be extremely beneficial for small scale

applications. However, in comparison, a higher number of variables is handled at the optimiser level and

the overall feasibility of the design is not guaranteed whenever optimisation convergence has not been

achieved, as well, which makes this method not ideal for large-scale applications, such as rocket design

optimisation problems [119].

In contrast to the single-level, multilevel architectures divide the original optimisation problem into a

single system-level optimisation problem and several sub-system level ones, according to the number

of levels. The basic idea is for the system-level optimisation problem to coordinate the smaller sub-

level problems, which in turn will be solved locally. The four most common architectures of this sort

are: Collaborative Optimisation (CO), Concurrent SubSpace Optimisation (CSSO), Bi-Level Integrated

System Synthesis and Analytical Target Cascading (ATC).

In general, these architectures allow for better subsystem level autonomy, dividing the general optimi-

sation problem into a set of smaller ones, which can be solved locally at the discipline level. Additionally,

having various optimisation levels allows for the most advantageous optimisation algorithms to be ap-

plied at each level, without any external interference. Additionally, they can also perform parallel data
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processing, which proves to be extremely beneficial in small scale applications [118].

The main drawbacks are a greater overall complexity of the system, scalability issues for some

architectures and overall optimisation process inefficiencies for highly hierarchical architectures handling

a high number of coupling variables [118].

After a thorough analysis, it was defined that the most suitable architecture for the developed frame-

work was a single-level MDF architecture, as it is capable of solving the optimisation problem using a

system-level optimiser that directly handles all the design variables and constraints, relaying on a MDA

block to ensure multidisciplinary feasibility at each iteration, balancing simplicity in the hierarchical build

of the design, efficiency of the data flows, and computational time. Most importantly, MDF guarantees

feasibility at each optimisation iteration, which is found to be critical in the context of rocket design cou-

pled with trajectory optimisation, as it means that any found solution can be physically engineered while

satisfying an optimal trajectory.

In this case, the optimiser would be at the system top-level, managing all design variables fed to the

mass and sizing model, allowing for a new candidate configuration to be designed., passed onto the

trajectory model, within which a flight dynamics model would ensure the overall feasibility of the system

by imposing the state variables at the collocation nodes along the trajectory integration process.

3.3 Optimisation Algorithms

Optimisation algorithms are numerical methods designed to systematically search for the best values

for variables that optimise the objective function [128].

Figure 3.3: Taxonomy of optimisation algorithms. Adapted from [129].

Figure 3.3 portrays a glimpse of the wide range of optimisation algorithms, each one tailored to a

specific optimisation problem. It is of unwavering importance to choose the most suitable optimisation
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algorithm for each MDO problem, as this choice will directly influence the speed convergence, compu-

tational cost, and accuracy of the solution [128].

Optimisation algorithms can be divided into two major groups: combinatorial (or discrete) or contin-

uous, depending on whether the variables are discrete or continuous quantities, respectively. Discrete

optimisation algorithms are hardly suitable for rocket design applications due to the continuous nature of

the majority of the design variables involved, which typically represent physical properties (continuous

in their essence) [128]. Therefore, these will not be covered in the present section.

Continuous optimisation algorithms can be further divided into two groups: linear and nonlinear.

Linear Programming (LP) algorithms are particularly designed for the minimisation (or maximisation) of a

linear objective function subject to linear constraints. Commonly used methods are the simplex method

[130, 131] and the interior-point method [132]. For further reading on this algorithms, please refer to

[128]. Nonlinear Programming algorithms (NLP) are suitable for nonlinear yet smooth objective functions

with at least continuous first partial derivatives on the solution target regions of the design space [128].

By nature, the objective function, inequality and equality constraints have a nonlinear behaviour in a

rocket design environment with variables having a quadratic, cubic, exponential or otherwise nonlinear

relationships. Consequently, NLP algorithms need to be used in this work.

Gradient-based algorithms are a particularly interesting solution in the context of MDO rocket design

problems, as these are typically continuous nonlinear constrained, and so the optimiser can quickly

converge into the local optima, guided by the gradients of the objective and constraint functions. It is

important to note that only by defining a good enough feasible region within the design space and also

by making a good initial guess for the solution, will these methods be effective, otherwise struggling with

convergence or quickly converging into local optima which, do not represent the global optimal solution

of the objective function of the problem [21].

Among all optimisation algorithms of this sort, the most popular include: Newton’s method, Quasi-

Newton Methods, particularly, the Broyden-Fletcher-Goldfarb-Shanno (BFGS), and Sequential Quadratic

Programming (SQP) methods, more specifically the Sequential Least Squares Quadratic Programming

(SLSQP) methods, for constrained problems.

Alternatively, Gradient-free algorithms are methods which do not require gradient information, so

they might pose as an interesting option for problems where the derivatives are unknown, e.g., when the

used models within the system are seen as ”black-boxes” and the only known quantities are their inputs

and outputs.

For problems which might pose convergence issues or for which it might be particularly challenging

to set the constraints, global search algorithms can arise as a suitable solution. These algorithms

generically search through the entire design space and look for the best solution, only by setting an

objective function, without the need of any sort of derivative information or initial guess. Good examples

of these are the Genetic algorithms [133, 134], within the Evolutionary algorithms, and the Particle

Swarm Intelligence [59, 60], within the Swarm Intelligence algorithms. However, their need for a very

large number of function evaluations, makes them less computationally efficient for rocket design.
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Sequential Least Squares Quadratic Programming

One of the most efficient methods for constrained nonlinear optimisation problems is the Sequential

Quadratic Programming (SQP), regarding function evaluations and computation cost [135]. Some of the

most interesting characteristics are:

• Linear constraints and bounds remain satisfied;

• For n active constraints, SQP methods can achieve local convergence with quadratic convergence

rate;

• Local convergence speed is superlinear;

• A large number of constraints can be treated by an active set strategy, and the computation of

gradients for inactive restrictions can be omitted.

In essence, SLSQP is an optimisation method within the SQP wider family in which the constraints

are linearised about the current point and a quadratic approximation of the objective function is defined

[135].

Its formulation can be posed in standard form as

min
y∈Rn

fk(y) (3.5)

subject to gk(y) ≤ 0, (3.6)

where

fk(y) =
1

2
(y − xk)

TBk(y − xk) +∇f(xk)
T (y − xk) + f(xk), (3.7)

gkj (y) = ∇gj(xk)
T (y − xk) + gj(xk), j = 1, . . . ,m. (3.8)

Then, the Least Squares mathematical method is used to solve iteratively a set of Quadratic Pro-

gramming subproblems, starting with a given vector of parameters, x0, until a (k + 1)th iterate, xk+1, is

reached in which the objective function converges within a specific tolerance condition, in compliance

with all equality and inequality constraints [135].

In each iteration k, the optimiser needs to evaluate the function and constraint gradients, ∆f and ∆g,

respectively, to determine a search direction dk. Then, a line search is performed along that direction to

find the setp length αk that minimises the f(x), and a new iteration then follows at [135]:

xk+1 := xk + αkdk , (3.9)

where dk is the search direction within the kth step and αk is the step length.

48



3.4 Trajectory Optimisation

In a rocket design process, given a specific set of mission requirements, it is necessary to find the

optimal flight profile for every rocket.

Trajectory optimisation problems are a part of the larger optimal control theory branch of mathemat-

ics, which specifically seeks to find the optimal control law of a dynamic system that satisfies some set of

constraints while minimising some cost function. In the present case, the controls could be the thrust or

nozzle gimbal angle, e.g., with the dynamic system being the rocket itself [136]. A general mathematical

problem definition can be defined as follows:

Optimal Trajectory: {x∗(t), u∗(t)} (3.10)

System Dynamics: ẋ = f(t, x, u) (3.11)

Constraints: cmin < c(t, x, u) < cmax (3.12)

Boundary Conditions: bmin < b(t0, x0, tf , xf ) < bmax (3.13)

Cost Functional: J = ϕ(t0, x0, tf , xf ) +

∫ tf

t0

g(t, x, u) dt (3.14)

where x represents the state variables, u the control variables, f(t, x, u) the system dynamics func-

tions, cmin, cmax and c(t, x, u) the lower, upper bounds, and boundary functions, respectively, bmin, bmax,

b(t0, x0, tf , xf ) the lower, upper bounds and boundary function, respectively, and, finally, J represents

the cost function.

Figure 3.4 portrays the main trajectory optimisation methods currently used.

Figure 3.4: Taxonomy of the trajectory optimisation methods [137].
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A trajectory optimisation problem can be first subdivided into two distinct subsets: analytical and

numerical. Analytical optimal control methods are extremely efficient for closed-loop problems with

simple system dynamics (linear, for example) where the analytical solution can easily be found, therefore

not suitable for the current trajectory problem. Alternatively, the numerical optimal control methods are

a more suitable option due to their efficiency in finding the best solution for highly non-convex problems

with multiple local minima.

The latter subset can be further subdivided into three categories: heuristic, direct and indirect meth-

ods. The main advantage of the heuristic methods is that they are completely independent of any given

initial information, being fully capable of conducting a global search through the design space in order

to find a suitable starting point to initialise the optimisation problem. Thus, these methods are typically

used coupled with other methods, namely, the indirect methods [137]. The direct and indirect numerical

optimal control methods are present in a wide range of spacecraft trajectory optimisation applications.

There are mainly three different types of methods: differential inclusion, collocation, and shooting, from

which only the collocation subset is of interest, given that the differential inclusion method is better suited

for modelling the behaviour of dynamic systems with significant uncertainties, which is not the case as

the set of equations of motion is well-defined, and, similarly, the shooting method faces path constraint

handling issues [137].

Direct vs Indirect Collocation

Generally speaking, collocation methods belong to a broader transcription family of methods, in

which differential equations governing the rocket system dynamics are enforced in a grid of points dis-

cretised from an initial continuous time interval, called collocation nodes, ensuring that the discretised

approximations at these points are faithful to the continuous dynamics [136]. This proves to be a criti-

cal property as it allows to change an otherwise complex time-continuous dynamic system optimisation

problem into a much simpler Nonlinear Programming Problem (NLP). Therefore the trajectory can easily

be solved with significantly reduced computational costs by interpolating and numerically solving all the

state and control variables, constraints, derivatives and objective functions for the interior points of the

trajectory without losing track of the physical significance of the problem [138, 139].

Collocation methods can be formulated in two different approaches: direct or indirect. Direct methods

first discretise and then optimise while indirect methods optimise and then discretise [140], as illustrated

in Fig. 3.5.

Starting with the indirect collocation methods, they first establish the necessary and sufficient condi-

tions for optimality, thus forming a Hamiltonian boundary-value problem (HBVP) which is analytically de-

rived by applying the Pontryagin’s Minimum Principle (PMP). Then, the newly created differential equa-

tions governing the adjoint variables, the control equation, and the boundary conditions form a new Two

Point Boundary Value Problem (TPBVP). Then, TPBVP is discretised using a collocation method, such

as Hermite-Simpson, for example, transforming the continuous-time problem into a finite-dimensional

nonlinear programming problem (NLP), which is numerically solved through the application of optimi-

sation solvers, such as gradient-based methods or sequential quadratic programming (SQP), until the
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Figure 3.5: Comparison between direct and indirect collocation methods [141].

Karush-Kuhn-Tucker (KKT) optimality conditions are met [142].

In contrast, direct collocation methods are the most used in the context of trajectory optimisation

due to their simplicity, robustness, and range of application [142]. These methods are characterised

by first discretising a continuous time interval into a grid of collocation points. Then, the state and

control variables are also discretised at the collocation points, in which dynamics are enforced. Lastly, a

nonlinear program is formulated from the discretised points and solved [142].

In comparison with the latter, indirect methods are commonly more accurate, providing stronger

solutions with reliable error estimates due to the necessary and sufficient conditions being derived an-

alytically in the early stages of the problem formulation, at the cost of requiring a better initialisation as

they tend to have smaller convergence regions [140].

Therefore, at the preliminary design level, for a single-stage suborbital trajectory optimisation pro-

cess, the direct collocation methods are the better choice because they have proven to be simpler,

computationally faster, and accurate enough, while avoiding potential convergence issues for problems

with increased complexity.

Pseudospectral Collocation Methods

Pseudo-spectral methods have gained traction in the trajectory optimisation field in recent years as a

powerful, highly efficient alternative for the already well-established direct collocation methods, to solve

continuous nonlinear constrained optimal control problems with smooth functions, such as single-phase

rocket trajectory optimisation problems. Highly complex applications of this method range from low-

thrust orbit transfers, impulsive orbit transfers, ascent guidance, reentry trajectory design, and spacecraft

attitude control, among others [143].

The basic idea behind a pseudospectral method is to build a high-order polynomial so that its time
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Figure 3.6: Pseudo-spectral procedure.

derivative values match the values of the system dynamics differential equations (state and control vari-

able differential equations) at all collocation points, across the entire time interval of the trajectory. By

evaluating both the polynomial time derivatives and the physical time derivatives for a well-distributed

representative number of discretisation nodes, it is possible to use numerical methods (Legendre-Gauss,

Legendre-Gauss-Radau, Legendre-Gauss-Lobatto or Chebyshev-Gauss-Lobatto) to minimise the exist-

ing defects until a preset maximum tolerance limit is satisfied [142].

The major difference between direct collocation methods and pseudo-spectral resides in the fact that

the first typically divides the trajectory into multiple segments and independently attempts to find a low-

order polynomial that suits well with the system dynamics differential equations at the collocation points,

facing the necessity of setting continuity constraints between segments and additional interior nodes

within segments, whereas the latter is based on building a one segment high-order polynomial whose

time derivatives match the system dynamics differential equations for all the collocation nodes, which

suits well only for problems with smooth flight dynamics without significant function discontinuities [142].

Given that pseudospectral collocation methods are particularly powerful and highly efficient for con-

tinuous nonlinear constrained optimal control problems when compared to other direct collocation meth-

ods, these were the methods selected for the framework to solve the trajectory optimisation problem.

Particularly, the high-order Gauss-Lobatto quadrature rules, as higher order polynomials offer improved

accuracy to the collocation method due to the finite precision and the number of parameters solved by

the NLP problem is potentially lower in comparison to other lower order polynomials.
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Chapter 4

Rocket Design Framework

4.1 MDO Python Lybraries

In order to implement a multidisciplinary system for the current rocket design optimisation problem,

it was necessary to search for an available software framework with the following characteristics:

• Handling a system with multiple coupled disciplines integrated with trajectory optimisation;

• Support a wide range of optimisers so that a suitable option can be chosen according to specific

optimisation requirements of the problem;

• Free and open-source framework with proven capabilities in handling a wide range of optimisation

problems;

• Modular environment for easier model construction;

• Good metadata and data handling capabilities for less advanced non database specialised users;

After careful consideration, it was defined that the framework currently under development was to be

implemented using the OpenMDAO Python library [144] for the multidisciplinary optimisation integrated

with the Dymos Python library [145] for the trajectory optimisation end of the problem, thus producing a

coupled approach to the preliminary rocket design.

OpenMDAO

OpenMDAO is an open-source object-oriented software framework crafted for multidisciplinary de-

sign, analysis and optimisation applications, programmed mainly in the Python language (for scripting

convenience) and completely capable of interacting with other compiled languages, such as SWIG,

Cython, C and C++, among others.

Figure 4.1 illustrates a standard modularised architecture implemented using OpenMDAO, emphacis-

ing the main hierarchical layers within every problem formulation: Component (lowest-level), Group

(mid-level), and Problem (top-level) [146].
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Figure 4.1: OpenMDAO standard modularized architecture [146].

Unlike other similar available options, it significantly eases the computational costs solving large-

scale MDO problems by using distributed-memory parallelism and high-performance computing (HPC)

resources by integrating the MPI [147] and PETSc Python libraries [148].

Since it was first introduced for NASA’s next-generation advanced single-aisle civil transport project

in 2008 at the NASA Glenn Research Center (based in Cleveland, USA) [149], it has been under con-

tinuous development with several compelling use cases across a wide range of applications: from a

Cubesat MDO problem for maximised data download capabilities [150], to a low-order aerostructural

wing optimisation [151], to a structural topology optimisation [152], etc.

Dymos

Dymos is an open-source software tool built on top of the OpenMDAO framework designed to solve

optimal control problems, such as trajectory optimisation. The combination of a framework built from an

OpenMDAO optimisation problem integrated with a Dymos trajectory optimisation opens the possibility

to solve co-design optimisation problems with high computational efficiency even for complex use cases.

The proposed framework will allow the implementation of a static system model within each optimisation

cycle (a mass and sizing model, for example), which will receive new design variable values from the

optimiser, send its outputs (for example, the length and mass of the rocket) towards a trajectory group

capable of conducting all the necessary dynamic calculations through Ordinary Differential Equations

(ODE) or Differential-Algebraic Equations (DAE) [145].

The advantage in using this coupled co-design system over a more traditional sequential approach is

that the optimiser defined at a top-level can control the values of all the design variables, either affecting

the static or the dynamic parts of the model allowing the propagation of the derivatives and potentially

finding better designs with lower computational costs [145]. Fig. 4.2 portrays an XDSM diagram of a

standard coupled co-design problem emphasising the existent data flows between the optimiser, the

static system model, and the Ordinary Differential Equations block (in the presented framework, the
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SLSQP block, the mass and sizing model, and the flight dynamics model within the trajectory model,

respectively).

Figure 4.2: XDSM diagram of a standard coupled co-design problem, i.e., a MDO problem coupled with
trajectory optimisation (OpenMDAO base framework integrated with Dymos) [145].

In the context of MDO, Dymos performs specially well for gradient-based problems dealing with

differentiated time-integration schemes by creating transient models from ODEs, which, in turn, can be

coupled with other models from the co-design system [145].

In terms of trajectory optimisation processes, Dymos allows for the implementation of direct tran-

scription methods, particularly pseudospectral (high-order Gauss-Lobatto and Radau), briefly discussed

in Section 3.4, in their implicit or explicit formulations [145].

4.2 MDO Framework Implementation

Previously in Chapter 2, the basic mathematical equations were arranged in a set of models, each

designed to represent the behaviour of a particular discipline of the rocket analysis. In total, six models

were developed: mass and sizing, flight dynamics, atmospheric, propulsion, aerodynamic, and struc-

tural. This section serves the purpose of showcasing how the framework was implemented and providing

a general overview of the main data flows in the system.

In terms of the hierarchical structure of the framework, regarding the OpenMDAO standard modu-

larised architecture previously portrayed in Figure 4.1, it was created a top-level group containing the

optimiser and two major groups: the mass and sizing group, which essentially is the mass and sizing

model, and the trajectory group, which essentially is the trajetory model presented in Fig. 2.26. For each

set of design variables x, directly handled by the optimiser, the mass and sizing generates a new rocket

configuration, from which a few main parameters are fed within the trajectory model and a new objective

function evaluation value is sent back to the optimiser.

At the trajectory level, the flight dynamics model handles four state variables (downrange x, altitude

h, velocity v, pitch angle γ, and also their time derivatives, respectively, ẋ, ḣ, v̇ and γ̇. The remaining ṁ,

which represents the propellant instantaneous burned mass is handled by the propulsion model.

These state variables are particularly important in the trajectory integration process because they

mark the state values of the trajectory, i.e., the progress of the trajectory at each point in time, particularly
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at the collocation nodes, as briefly explained in Section 3.4. Additionally, they also control the time

progress of the other models. For example, the altitude h, is an output of the flight dynamics, and

an input of the atmospheric model. As it is integrated over time, each new value is received by the

atmospheric model and consequently, the corresponding atmospheric properties, which are dependent

on the altitude, are dynamically updated and received as inputs by other models, which, consequently,

will be influenced by that first change in the altitude. This effect also serves to show the extremely

coupled behaviour of the multidisciplinary optimisation system.

At the end of each trajectory simulation, the final altitude and the smallest difference between the

critical stress of the body tube and the applied compressive stress are sent back to the optimiser, which

does a constraint defect analysis and a gradient evaluation, and a new iteration begins after a linesearch

process.

Figure 4.3 illustrates the XDSM diagram of the MDO framework implementation. It is possible to ob-

serve the design variables, x, coupled variables, local variables, static variables (constants) d, constraint

variables, h and σ, all six developed models, as well as, the optimiser, SLSQP.

SLSQP x , d1 x , d2 d3 d4 d5 d6

mrocket
Mass and

Sizing Model
m0,mpi , Lgrain,Rgi ,Rgo croot , ctip,Sf ,Rrocket , nfins , tf ,Rref area Rrocket , tbt

h
Flight Dynamics

Model
h m, ṁ v

g Atmospheric
Model

P, g P, v , g

Thrust
Propulsion
Model

Thrust

D
Aerodynamic

Model

σ Structural
Model

Figure 4.3: XDSM diagram of the framework highlighting the optimizer SLSQP (blue), the models (green)
and design, coupled, local, and static variables (grey).
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Chapter 5

Rocket Optimal Design

In this Chapter, the obtained results from a series of tests and case studies conducted with the

developed framework are presented.

First, in Section 5.1, the problem formulation of the optimisation process under study is presented,

then a series of parametric studies of two main optimisation parameters are conducted in Section 5.2,

then in Section 5.3, a benchmark case study was conducted and the optimised rocket compared with

the REXUS 2 sounding rocket [13]. In section 5.4, a follow-up multivariable case study is conducted,

and finally, a series of sensitive analysis of a couple significant parameters, such as, minimum altitude

and payload, were also conducted and the optimised results compared with the REXUS 10 sounding

rocket, in Section 5.5.

As a reference for all the computational times presented in this Chapter, Table 5.1 lists the main

computational characteristics of the used system.

Table 5.1: Computational characteristics.

Parameter Details

Operating system name Microsoft Windows 10 Home
Version 10.0.19045 Build 19045
System manufacturer Acer Predator G3-572
System type x64-based PC
Processor Intel(R) Core(TM) i7-7700HQ @ 2.80GHz, 4 Cores
Installed physical memory (RAM) 16.0 GB
Storage unit SSD 128 GB

5.1 Problem Definition

In order to get a first assessment of the capabilities of the developed MDO framework in the context

of a real problem, it is important to, first, formally define it.

The chosen optimisation objective f was to minimise the rocket lift-off total mass subject to a con-

straint of reaching a peak altitude of at least 100 km, using the SLSQP optimisation method, briefly

explained in Chapter 3.

57



Table 5.2 shows the initial conditions, constraints, and problem formulation of the optimisation prob-

lem:

Table 5.2: Initial conditions and problem formulation.

Conditions Parameter Unit Value Problem formulation
v [m/s] 0

minimise: f(mrocket)
With respect to design variable: Drocket

Subject to constraints: hf ≥ 100km

Initial h [m] 0
x [m] 0
θ [rad] 1.57

Final ḣ [m/s] 0 mPL ≥ 44

5.2 Parametric Study of Optimiser Parameters

As the framework was designed for a quick preliminary rocket design application, it is of the ut-

most importance to use the best setup configuration to obtain the most computationally cost-efficient

behaviour from the optimiser. To that end, a parametric study on the impact of the optimiser tolerance

as well as the step size of the finite-difference gradient approximations was conducted.

It was observed that the step size of the finite difference method, here used to approximate the

derivatives, directly influenced the number of function and gradient evaluations, the number of iterations

and, consequently, the computational time of the optimisation process. Therefore, in order to better

assess the accuracy of the framework, several step sizes were tested: 10-2 and 10-3. Similarly, the

tolerance level of the SLSQP method was varied ranging from higher tolerances, such as 10-1, 10-2 and

10-3 to smaller ones such as 10-4 and 10-5, in order to evaluate the trade-off between the quality of the

solution and the required computational time.

Tables 5.3 and 5.4 compile the obtained results of the tolerance analysis for computed step sizes of

10-2 and 10-3, respectively.

Table 5.3: Tolerance analysis for a step size of the finite difference method of 10-2.

Initial
Parameter

Tolerance

Diameter 10-1 10-2 10-3 10-4 10-5

0.3382

Rocket Diameter 0.3460 0.3589 0.3590 0.3589 0.3587

Rocket Total Lift off Mass 472.4 511.1 511.4 511.1 510.6

Altitude 70505.6 99803.1 101051.2 101180.4 100077.4

Computational Time 1’10” 1’45” 2’01” 4’26” 6’44”

Step Size 10-2 10-2 10-2 10-2 10-2

Function Evaluation 3 4 5 14 21

Gradient Evaluation 2 3 4 7 10

Number of Iterations 1 2 3 7 10
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Table 5.3 – continued from previous page.

Initial
Parameter

Tolerance

Diameter 10-1 10-2 10-3 10-4 10-5

0.3560

Rocket Diameter 0.3568 0.3589 0.3589 0.3589 0.3589

Rocket Total Lift off Mass 504.6 511.2 511.1 511.1 511.1

Altitude 96485.9 100690.2 999997.8 99997.8 99997.8

Computational Time 1’02” 1’32” 8’24” 8’24” 12’20”

Step Size 10-2 10-2 10-2 10-2 10-2

Function Evaluation 3 4 30 30 41

Gradient Evaluation 1 2 10 1 11

Number of Iterations 1 2 10 1 11

0.3738

Rocket Diameter 0.3600 0.3590 0.3590

Rocket Total Lift off Mass 514.4 511.5 511.2
* *

Altitude 101863.3 100787.5 100521.5

Computational Time 1’30” 2’00” 2’26” 40’35” 40’05”

Step Size 10-2 10-2 10-2 10-2 10-2

Function Evaluation 2 2 2 167 152

Gradient Evaluation 2 2 2 Unk Unk

Number of Iterations 2 2 2 Unk Unk

* Indicates that no convergence was observed within a reasonable time frame (under 100 iterations or 30 minutes of

computational time).

Table 5.4: Tolerance analysis for a step size of the finite difference method of 10-3.

Initial
Parameter

Tolerance

Diameter 10-1 10-2 10-3 10-4 10-5

0.3382

Rocket Diameter 0.3461 0.3589 0.3590 0.3589 0.3588

Rocket Total Lift off Mass 472.4 511.1 511.4 511.2 510.6

Altitude 70505.6 99803.1 101051.2 100589.9 100077.4

Computational Time 1’40” 2’15” 7’54” 5’29” 5’29”

Step Size 10-3 10-3 10-3 10-3 10-3

Function Evaluation 3 4 5 19 19

Gradient Evaluation 1 3 3 8 8

Number of Iterations 1 3 3 8 8

0.3560

Rocket Diameter 0.3597 0.3589 0.3589 0.3589 0.3589

Rocket Total Lift off Mass 513.5 511.2 511.1 511.0 511.0

Altitude 99809.8 100690.2 100130.0 100091.0 100091.0
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Table 5.4 – continued from previous page.

Initial
Parameter

Tolerance

Diameter 10-1 10-2 10-3 10-4 10-5

0.3560

Computational Time 0’57” 1’28” 2’16” 3’32” 4’30”

Step Size 10-3 10-3 10-3 10-3 10-3

Function Evaluation 2 2 7 12 12

Gradient Evaluation 1 4 3 5 5

Number of Iterations 1 2 3 5 5

0.3738

Rocket Diameter 0.3653 0.3590 0.3588 0.3587

Rocket Total Lift off Mass 531.2 511.4 510.6 510.6 *

Altitude 113474.6 101725.8 99583.4 99922.02

Computational Time 0’55” 2’00” 2’02” 3’12” 36’53”

Step Size 10-3 10-3 10-3 10-3 10-3

Function Evaluation 2 5 9 9 102

Gradient Evaluation 1 4 6 6 Unk

Number of Iterations 1 4 6 6 Unk

* Indicates that no convergence was observed within a reasonable time frame (under 100 iterations or 30 minutes of

computational time).

Generally speaking, it was observed that lower tolerance levels provided more accurate results with

higher computational costs, as expected.

In terms of the objective function, for larger tolerances (10-1, 10-2), an average relative deviation of

1.87% was observed with a similar behaviour for both step sizes, whereas, for lower tolerances (10-3

and 10-4), this deviation comes down to approximately 0.1%.

In terms of the constraint violations, for a tolerance of 10-1, the constraint violation averages approx-

imately 13%, whereas for tolerances of 10-2 and smaller, this value steeply decreases to consistently

under 0.5% for the most cases.

Regarding the impact of the step size in the optimisation results, it was observed that the system

convergence times were well under 10 minutes for most cases, across different initial guess points and

tolerance levels. In comparison with the 10-2 step size obtained results, it was observed that with the 10-3

step size, significantly less function and gradient evaluations were required in order to achieve slightly

better results.

From the data presented in the previous Tables, it can be concluded that the best optimisation setting

is to use a tolerance of 10-5 with a step size of 10-3, as this is the one which provided with the lowest

objective function evaluation which complied with the imposed altitude constraint.
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5.3 Benchmark Case Study

Following the parametric study conducted in the previous section, a benchmark case study was con-

ducted in order to evaluate the optimisation capabilities of the framework were 8 geometric parameters

were compared with the REXUS 2 sounding rocket along with their respective relative deviations in order

to evaluate any major discrepancies, as portrayed in Table 5.5. Furthermore, the key flight events and

the thrust profiles were also analysed.

Table 5.5: Comparison between the REXUS 2 and the optimised rocket configuration [13, 153].

Parameter Unit REXUS 2
Optimised

Deviation
Rocket

Length [m] 5.620 5.822 + 3.4%
Diameter [m] 0.3560 0.364 + 2.2%
Total Mass [kg] 514.000 501.768 - 2.4%
Propellant Mass [kg] 290.000 282.610 - 2.5%
Structural Mass [kg] 126.000 121.158 - 3.8%
SRM Length [m] 2.800 2.895 + 3.4%
Fin Root Chord [m] 0.590 0.582 - 1.4%
Fin Tip Chord [m] 0.400 0.408 + 2.0%

As it can be found in Table 5.5, all compared parameters align well with the REXUS 2, with the

biggest relative deviation observed being a 3.8% reduction in the structural mass.

In terms of the key events analysis, Table 5.6 portrays a comparison between the key flight events of

both rockets. It can be observed that there is a major discrepancy between both rockets SRM burn-out

times, which can be justified by observing the difference between the thrust profiles of both rockets,

portrayed in Fig. 5.1. The REXUS 2 has a dual-thrust profile, with a boost phase of 4 seconds at 84.5

kN and a sustain phase of roughly 21 seconds at 13.3 kN [153], whereas, the optimised model has

a regressive thrust profile starting at 36.2 kN gradually decreasing to a final 15.5 kN, and thus, this

difference might have been due to the much higher burning rates in the boost phase of the REXUS 2.

Table 5.6: Key flight events [13, 153].

Number
Time [s] Altitude [km]

Event
REXUS 2 Optimised REXUS 2 Optimised

Rocket Rocket

1 T+ 0.0 T+ 0.0 0.00 0.00 Lift-Off

2 T+ 26.0 T+ 31.09 22.72 20.11 SRM Burn-Out

3 T+ 153.0 T+ 163.8 100.24 100.08 Apogee

4 T+ 300.0 T+ 302.06 3.30 3.30 Recovery Sequence Activation

As for the flight profile analysis, it was found that there is a general agreement between both REXUS

2 and the optimised rocket, as seen in Figure 5.2. The differences observed were due to the fact that the

REXUS 2 flight profile was only a prediction in preparation for the actual mission, so atmospheric, aero-

dynamic and other factors may not have been taken into account. The evidence for this assumption lays
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with the fact that the REXUS 2 flight path is almost a perfect parabola, which is not possible under real

atmospheric conditions. The presence of aerodynamic air resistance combined with the changes with

altitude of the atmospheric parameters, namely, atmospheric density and pressure, would cause a more

irregular profile shape, slowing substantially the rocket during the propelled ascent and atmospheric

re-entrance phases.
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Figure 5.1: Thrust profile comparison of the Rexus 2 and the optimised rocket.

Additionally, it was observed that after the recovery sequence activation, i.e., after the parachute

deployment, the predicted flight profile of the REXUS 2 follows an excessively steep descent, which

further supports this assumption. In order to completely clarify this issue, a comparison between both

REXUS 2 flight profile with the optimised rocket flight profiles with and without parachute deployment

was conducted, which can also be seen in Figure 5.2. Interestingly enough, this comparison allowed to

appreciate the impact of the recovery system in the final stages of the flight profile. A controlled slow

descent is expected in order to safely land a rocket with terminal velocities up to 8 m/s [85, 86], which is

not possible in such a small amount of time as the REXUS 2 flight profile suggests.
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Figure 5.2: Comparison between the Rexus 2 expected flight profile, retrieved from [13], with the opti-
mised rocket flight profile paths with and without parachute deployment.
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Finally, a visual comparison of both rockets is illustrated in Fig. 5.3, with a side-by-side 2D schematic

view of both configurations highlighting some main dimensions.
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Figure 5.3: 2D schematic comparison between the REXUS and the optimised rocket configuration.

5.4 Multivariable Case Study

In the previous section, a benchmark case study was conducted for an optimisation procedure with

only one design variable. To further test the capabilities of the framework, a multivariable follow-up test

was prepared using 10 geometric design variables. Table 5.7 portrays the selected design variables,

their initial values, lower and upper bounds and the final optimised value.

After analysing the previous table, it is interesting to note that several variables which have reduced

impact in the objective function, the lift-off rocket mass, were only slightly changed, while other variables

with much more impact were drawn to their lower or upper bounds in order to minimise the objective

function. This behaviour is relevant because it might indicate that there might be a malfunction within

the system. Although it is true that, in order to minimise the objective function, the optimiser will rightfully

try to reduce the thicknesses of the components as much as possible, the imposed structural constraint

should restrain the optimiser from searching for new values beyond the feasible region of the design

space, even if their bounds allow it. Table 5.8 presents a comparison between the characteristics of the

REXUS 2 and the optimised rocket.
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Table 5.7: Design Variable initial value, lower and upper bounds and optimised value.

Design Variable Unit Initial Lower Upper Optimised
Value Bound Bound Value

Rocket Diameter [m] 0.356 0.3500 0.3650 0.3500
Body Tube Thickness [m] 0.003 0.0028 0.0032 0.0028
SRM Grain Thickness [m] 0.067 0.062 0.070 0.062
SRM Casing Thickness [m] 0.0025 0.002 0.003 0.002
Nozzle Throat Area [m2] 0.005 0.003 0.008 0.00350
Nozzle Angle [rad] 0.2618 0.2618 0.5236 0.2618
Rocket Length to Diameter Ratio - 16.0000 16.0000 17.5000 16.0000
Nose Cone Length to Diameter Ratio [m] 4.0000 3.8000 4.2000 4.1990
Expansion Ratio - 10.0000 9.0000 10.0000 9.9999
Nozzle Convergent Section Angle [rad] 0.4500 0.4500 0.5500 0.5236

Table 5.8: Comparison between the REXUS 2 and the multivariable optimised rocket configuration [13,
153].

Parameter Unit REXUS 2 Optimised DeviationRocket

Length [m] 5.620 5.600 -0.4%
Diameter [m] 0.356 0.350 -1.7%
Total Mass [kg] 514.000 439.530 -14.5%
Propellant Mass [kg] 290.000 247.842 -14.5%
Structural Mass [kg] 126.000 105.545 -16.2%
SRM Length [m] 2.800 2.560 -8.6%
Fin Root Chord [m] 0.59 0.56 -5.1%
Fin Tip Chord [m] 0.400 0.392 -2 %

From this table, it is possible to observe that a reduction of 14.5 % in rocket total mass and pro-

pellant mass was achieved, along with a 16.2% reduction in the structural mass, which is a significant

improvement from the benchmark case study. This was an expected result as the optimiser manages

ten design variables against only one in the former case study. Also, these results align well with the

observed behaviour of the optimiser regarding the thickness reduction of the components.

As for the flight profile analysis, it was observed that the optimised rocket in the current case study

followed a similar profile to the other two, yet the burnout time significantly lowered, as a consequence

of the total mass reduction, which demanded much less propellant to be burned, as Fig. 5.4 portrays.
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Figure 5.4: Comparison between the optimised rocket configuration and REXUS.
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This leads to the conclusion that, from this optimisation process, a new configuration was found

which is capable of meeting the intended mission requirements (to reach a minimum peak altitude of

100 km) with 14.5% less propellant.

Finally, a visual comparison of both rockets is illustrated in Fig. 5.5, with a side-by-side 2D schematic

view of both configurations highlighting some main dimensions.
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Figure 5.5: 2D schematic comparison between the REXUS and the multivariable case study optimised
rocket configuration.

5.5 Payload and Minimum Altitude Sensitivity Analysis

In previous case studies, the optimisation capabilities of the developed framework were put to test,

first for a single design variable optimisation problem and, afterwards, for a more demanding multivari-

able optimisation problem with ten geometric design variables. After this initial testing, a sensitivity

analysis of two significant optimisation parameters was conducted: minimum altitude and the payload.

5.5.1 Payload Sensitivity Analysis

In order to assess the payload sensitivity, the payload was set to 112.3 kg, matching with the REXUS

10 [153] and the same optimisation setup was used with adjusted variable upper bounds in order to give

the optimiser enough design space to find a feasible solution. Table 5.9 presents a comparison between

the optimised rocket configuration with the REXUS 2.
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From this comparison, it was possible to observe the impact of the payload in the rocket designed

configuration. The new rocket reached an altitude of 100.15 km with a total lift-off mass of 484.6 kg,

which represents a 5.7% decrease when compared to the REXUS 2 rocket and a 10.2% increase when

compared to the previous multivariable optimised rocket. Moreover, it was possible to observe a gen-

eral increase in the other compared parameters which aligns well with the expected behaviour of the

framework given that more payload was carried.

Table 5.9: Comparison between the REXUS 2 and the payload sensitivity analysis new optimised rocket
configuration [13, 153].

Parameter Unit REXUS 2
Optimised

Deviation
Rocket

Length [m] 5.620 5.792 +3.1%
Diameter [m] 0.356 0.362 +1.7%
Total Mass [kg] 514.000 484.551 -5.7%
Propellant Mass [kg] 290.000 265.176 -8.6%
Structural Mass [kg] 126.000 111.786 -11.3%
SRM Length [m] 2.800 2.628 -6.1%
Fin Root Chord [m] 0.59 0.58 -1.8%
Fin Tip Chord [m] 0.400 0.405 +1.4 %

5.5.2 Minimum Altitude Sensitivity Analysis

Continuing this sensitivity analysis, the impact of the minimum altitude was also tested by changing

the original altitude constraint from 100 km to 82.45 km, the altitude reached by REXUS 10 [153], while

maintaining the original payload of 98 kg. The same optimisation setup was used, with adjusted variable

lower bounds in order to give the optimiser enough design space to find a feasible solution, obtaining

the results presented in Table 5.10.

Table 5.10: Comparison between the REXUS 2 and the altitude sensitivity analysis new optimised rocket
configuration [13, 153].

Parameter Unit REXUS 2
Optimised

Deviation
Rocket

Length [m] 5.620 5.568 -0.9%
Diameter [m] 0.356 0.348 -2.2%
Total Mass [kg] 514.000 426.550 -17.0%
Propellant Mass [kg] 290.000 237.286 -18.2%
Structural Mass [kg] 126.000 102.842 -18.38%
SRM Length [m] 2.800 2.469 -11.8%
Fin Root Chord [m] 0.59 0.56 -6.0%
Fin Tip Chord [m] 0.400 0.390 -2.6 %

These results clearly showed the impact of the minimum altitude in this new optimised rocket. Reach-

ing a peak altitude of 82.89 km with a total lift-off mass of 426.6 kg, which represents a 17.0% decrease

when compared to the REXUS 2 rocket and a - 2.95% when compared with the multivariable optimised

rocket, with a completely different mission profile as Fig 5.6 portrays. In contrast to the payload sensitivity
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analysis results, it was possible to observe a general decrease in the compared geometric parameters

which aligns well with the expected behaviour of the framework given that a lower altitude constraint was

imposed.
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Figure 5.6: Comparison between the Rexus 2 expected flight profile, retrieved from [13], with the opti-
mised rocket flight profile paths of the benchmark with and without parachute deployment, multivariable
case study with parachute deployment and altitude sensitivity analysis.

5.5.3 Rexus 10 Case Study: Payload and Minimum Altitude Sensitivity Analysis

As a final test, the impact of the coupled effect of the payload and minimum altitude in the optimisation

results was tested using the REXUS 10 flight mission data for comparison. The payload was set to 112.3

kg and the altitude constraint to 82.45 km. Table 5.11 presents the obtained results in comparison to the

REXUS 10.

Table 5.11: Comparison between the REXUS 10 and the optimised rocket configuration [153].

Parameter Unit REXUS 10
Optimised

Deviation
Rocket

Length [m] 5.620 5.568 -0.9%
Diameter [m] 0.356 0.348 -2.2%
Total Mass [kg] 528.300 449.718 -14.9%
Propellant Mass [kg] 290.000 238.653 -17.7%
Structural Mass [kg] 126.000 102.850 -18.4%
SRM Length [m] 2.800 2.483 -11.4%
Fin Root Chord [m] 0.590 0.557 -5.6%
Fin Tip Chord [m] 0.400 0.390 -2.56 %

From these results, it can be observed that the optimised rocket had a total lift-off mass of 449.7

kg for a peak altitude of which is an intermediary value between the two previous sensitivity analysis

obtained values. This can be explained by the combined effect of the payload and minimum altitude

acting simultaneously. As it was confirmed earlier in this Chapter, an increase in the carried payload
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results in heavier designs, whereas, an altitude constraint reduction leads to lighter designs. Thus, the

expected value for the objective function, the total mass lift-off mass of the rocket, was a number which

balanced these two contrasting effects.

Table 5.12: Design Variable initial value, lower and upper bounds and optimised value.

Design Variable Unit Initial Lower Upper Optimised
Value Bound Bound Value

Rocket Diameter [m] 0.35 0.3480 0.3650 0.348
Body Tube Thickness [m] 0.003 0.0028 0.0032 0.0028
SRM Grain Thickness [m] 0.068 0.062 0.07 0.062
SRM Casing Thickness [m] 0.002 0.002 0.003 0.002
Nozzle Throat Area [m2] 0.005 0.003 0.008 0.003202
Nozzle Angle [rad] 0.3 0.2618 0.5236 0.2618
Rocket Length to Diameter Ratio - 16.5 16 18 16.0
Nose Cone Length to Diameter Ratio [m] 4 3.8 4.4 4.399
Expansion Ratio - 10 9 10 10
Nozzle Convergent Section Angle [rad] 0.45 0.45 0.55 0.5236

In terms of optimisation, results were compared with the REXUS 10. It was observed a rocket

lift-off total mass optimisation of 14.9%, 17.7% in propellant mass and 18.4% in structural mass. In

addition, other evaluated parameters were observed to be in accordance with the REXUS 10. Although

these results are positive, they need to be considered with great caution because it was observed that

the optimiser dragged every thickness to its lower bound in order to minimise the objective functions

portrayed in Table 5.12, which further strengthens earlier signs that the structural model might not be

properly evaluating the compressive stresses at the body tube.

In terms of the key flight events, these are presented in Table 5.13.

Table 5.13: Key flight events [153].

Number
Time [s] Altitude [km]

Event
REXUS 10 Optimised REXUS 10 Optimised

Rocket Rocket

1 T+ 0.0 T+ 0.0 0.00 0.00 Lift-Off

2 T+ 26.0 T+ 19.39 20.38 12.3246 SRM Burn-Out

3 T+ 140.00 T+ 126 82.45 82.60 Apogee

4 T+ 380.0 T+ 341.82 3.30 3.30 Recovery Sequence Activation

It is possible to note some discrepancies which need to be addressed: first, the SRM burn-out

time happens earlier in the flight due to the fact that the optimised rocket carried 17.7% less propellant

mass; second, the optimised rocket reached the apogee 14 seconds earlier in the flight, in comparison

to the REXUS 10, which might be related either to a generally higher total velocity profile or to an

underestimation of the drag profile. This argument also serves to justify the discrepancy in the recovery

sequence activation times of both rockets.

To further understand this mismatch in the key flight events, a few available parameters from the flight

data of the REXUS 10 mission [153] and the framework were compared, as presented in Fig. 5.7.
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(a) REXUS 10 flight profile [153].
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(b) Optimised rocket flight profile.
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(c) REXUS 10 altitude profile [153].
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(d) Optimised rocket altitude profile.
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(e) REXUS 10 ground range profile [153].
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(f) Optimised rocket downrange profile.
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(g) REXUS 10 total velocity profile [153].
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(h) Optimised rocket total velocity profile.

Figure 5.7: Comparison of several flight parameters of the REXUS 10 mission and the optimised rocket.
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After comparing both flight data, the following conclusions were reached:

• As portrayed in Figures 5.7a and 5.7b, the trajectory profile of the optimised rocket was too

parabolic when compared to the real flight data of the REXUS 10 mission, which suggests that

there might be possible issues in the behaviour of the aerodynamics model;

• The hypothesis that higher speeds could be causing a discrepancy in the key flight events was

confirmed, as it can be seen in figures 5.7g and 5.7h.

• Compared to the optimised rocket, the REXUS 10 took an additional 300 seconds to reach the

ground which suggests that the terminal velocity after parachute deployment was higher than ex-

pected. After review, it was found that the reached terminal velocity was 20.74 m/s, which is

excessive and confirms the earlier assumptions.

Finally, a visual comparison of both rockets is illustrated in Fig. 5.8, with a side-by-side 2D schematic

view of both configurations highlighting some main dimensions.

2.
80

0.14

0.
30

0.
30

0.01

1.
23

0.356

0.40

5.
62

0.717

(a) REXUS configuration.

0.348

1.
53

1

2.
69

9

0.30

0.30

2.
48

3

0.22

0.22
0.14

0.
39

0

0.696

5.
56

8

(b) Optimised rocket configuration.

Figure 5.8: 2D schematic comparison between the REXUS and the REXUS 10 case study optimised
rocket configuration.
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Chapter 6

MDO with High Fidelity Structural

Analysis

In Section 5.3, an optimised rocket was compared with the REXUS 2 sounding rocket and a 3.8%

structural mass reduction was achieved. In order to truly appreciate how further this mass can be

reduced, a completely new optimisation process was created where the developed MDO framework

was integrated with a high fidelity structural analysis model, developed by Fernandes [70].

6.1 Optimisation Process Description

The optimisation process was composed of the following steps:

• As the objective was to evaluate to what extent the structural mass of the optimised rocket of the

benchmark case study could be minimised, its diameter was fixed in order to start the process;

• This diameter was used as a design variable in the MDO framework to create an initial rocket con-

figuration, so that an initial trajectory simulation could be conducted to determine a first estimate

of the suborbital flight ∆v.

• This initial value of the ∆v was sent to the mass and sizing model so that a new rocket configuration

could be modelled. At the mass and sizing model, the convergence between the structural factor

σ and the structural mass ms was guaranteed through an internal iterative process involving four

equations and four variables, namely: the propellant mass, mp, the structural mass, ms, ∆v and σ;

• After convergence was achieved, a candidate rocket configuration was sent to the MDO framework,

a new trajectory simulation was conducted and a new ∆v was obtained, adjusted to the new

configuration;

• This adjustment in the ∆v, posed a problem because it did not match the previous ∆v which

originated the current candidate configuration. For this reason, a new convergence had to occur,

this time in order to converge the ∆v with the candidate rocket configuration.
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• Next, a series of simulations, including both flow and Finite Element Method (FEM) were run in

SOLIDWORKS so that real stresses imposed on each component could be calculated;

• Finally, the difference between the allowed maximum stresses and the real stresses was calculated

for each component. If this difference was positive, it meant that the component could withstand

more demanding loading conditions and, thus, the thickness would be reduced. If a negative

difference was observed, the opposite happened;

• This process only ended when, between two consecutive iterations, significant thickness changes

were not observed in any component;

Figure A.1 portrays a detailed flowchart of the optimisation process, in which, it is possible to see the

existing dataflows between the MDO framework and the high fidelity structural system, as well as the

internal convergence cycles.

6.2 Results

In this section, the obtained results from an optimisation process conducted using the previous pro-

cedure are presented. The results will be presented sequentially, following the interior convergence

cycles within the global iterative loop.

Starting with the ∆v and σ convergence, Table 6.1 portrays the evolution of the rocket initial mass

m0, final mass mf , structural mass ms, and initial propellant mass mp0. For each parameter, the initial

and final masses along with their relative deviations are presented.

Table 6.1: Initial and final values of m0, mf , ms, and mp0 for the σ, and ms convergence process over
four iterations.

m0 mf ms mp0Iteration
Initial Final Dev. % Initial Final Dev. % Initial Final Dev. % Initial Final Dev. %

1 352.08 346.65 1.56 161.69 156.25 3.48 112.69 107.25 5.07 190.4 190.4 0.0
2 346.65 339.66 2.06 156.25 153.48 1.81 107.25 104.48 2.65 190.4 186.18 2.2661
3 340.7725 333.39 2.21 154.60 147.98 4.47 105.59 98.98 6.68 186.18 185.41 0.4153
4 339.66 322.53 5.31 153.48 142.80 7.48 104.48 93.80 11.3859 186.18 179.73 3.9357

It can be seen that a general trend of mass reduction was achieved which is consistent with the

thickness reduction observed at each component presented further in the present section.

Regarding the ∆v, it was observed an unexpected upward trend during the iterative process, which

might be associated with the fact that the kick angle was not optimised during the procedure and, as

a consequence of the successive weight adjustments made, the trajectories started to place the rocket

at the apogee with slightly higher horizontal speeds than expected, which might be the reason for this

unexpected behaviour.

Figure 6.1 graphically portrays the ∆v evolution throughout the iterative process.
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Figure 6.1: ∆v evolution along the iterative process.

In terms of the thickness evolution, Figure 6.2 illustrates the evolution of the thicknesses of several

main components throughout the optimisation process.
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Figure 6.2: Thickness evolution along the iterative process.

From this figure, it can be seen that the thickness of the majority of the components decreased along

the iterative process, as expected, with two exceptions: the thickness of the vessel domes, which are

the top and bottom extremities of the rocket SRM casing, slightly increased; and the thickness of the

vessel cylinder, which is the thickness of the SRM casing.

Regarding these results, the observed decrease in the thicknesses of the majority of the components

can be justified by the fact that the guessed initial values were too conservative, so, as the initial stresses

at each component were too far from their specific allowed maximum stresses, it was expected a general

trend of thickness reduction along the iterative process.
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Addressing now the two exceptions observed, their initial values were the lowest of the set, and so

it is possible that they were implausible initial guesses, which further strengthens the confidence in the

obtained results, as the structural analysis was capable of analysing these components and determine

that in order to comply with their maximum stress allowed, it was not possible to further decrease their

thickness, which, on the contrary, had to be maintained or increased, even though, the optimisation

objective favoured against it.

Additionally, it was observed that the rocket total mass diminished 29.56 kg, which represents a

8.4% reduction. As for the propellant mass, it diminished 10.67 kg representing a 5.6% downsizing.

Furthermore, the structural mass was reduced in 18.89 kg, which represents a reduction of 16.8%.

Figure 6.3 graphically showcases the evolution of these masses along the iterative process: rocket

structural mass, mstructural, propellant initial mass, minitial propellant, rocket initial mass, m0, and rocket

final mass, mf .
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Figure 6.3: Mass evolution along the iterative process.
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Chapter 7

Conclusions

7.1 Concluding Remarks

The main goal of this dissertation was to develop and validate an MDO framework coupled with

trajectory optimisation capable of optimising the preliminary design of a sounding rocket with a minimum

payload capacity of 44 kg and 100 km reachable peak altitude.

Six models were then developed: mass and sizing, flight dynamics, atmospheric, propulsion, aero-

dynamics, and structural.

A mass and sizing model containing seven components (nose cone, modules, fins, nozzle, body

tube, SRM, and a component for the estimation of general parameters) was developed, followed by an

aerodynamics model capable of estimating the Cd profile of the rocket based on three sources: nose

cone, base and fins, with a compressible flow correction for better accuracy under compressible flow

regimes and a recovery system contribution to simulate the behaviour of the deployment of a parachute

during the descent phase of the flight profile.

Afterwards, a propulsion model was developed, divided in two components: the grain burnback and

the internal ballistics, each intended to simulate the grain regression and the internal ballistic behaviour

of the SRM using one-dimensional isentropic flow equations, respectively.

Next, a structural model was developed in order to perform a simplified buckling analysis of the body

tube cylindrical shell, and also, a fin flutter analysis to ensure the integrity of the fins throughout the

rocket trajectory.

An atmospheric model following both the 1962 and the 1976 U.S Standard Atmosphere Conventions

for the prediction of the atmospheric properties for a given altitude was adapted from the OpenAeroStruct

Python library and integrated in the framework.

Then, a 2 DoF flight dynamics model was developed in order to calculate four state variables for the

trajectory model: the rate of change of the velocity, v̇, pitch angle, γ̇, altitude ḣ and downrange ẋ.

After their individual development, the couplings among variables were identified and a trajectory

model was assembled using five of these modules: flight dynamics, atmospheric, propulsion, aerody-

namic and structural.
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After extensive research, it was then decided to develop a framework following a MDF architecture,

using a SLSQP as the global optimiser and a pseudospectral method for the direct collocation of the

integration process of the trajectory.

It then followed the selection of an available open-source software capable of conducting multidis-

ciplinary optimisation coupled with trajectory optimisation upon which was decided to implement this

framework using the OpenMDAO and Dymos Python libraries.

Having the framework fully implemented, a series of parametric studies were conducted focused on

two main optimisation parameters: the tolerance level of the SLSQP method and the step size of the

finite difference method for three different initial points of the design space. This studies indicated that

the framework is capable of conducting optimisation processes consistently under 10 minutes, subject

to tolerance levels as low as 10-5 with a step size of 10-2 and 10-3. After analysis, the best optimisation

setup was achieved using a tolerance level of 10-5 for the SLSQP optimiser and a finite difference method

step size of 10-3.

A benchmark case study was conducted in order to assess the framework behaviour under a real

optimisation environment. Using a single design variable, the rocket diameter Drocket, a good agree-

ment between the optimised and the benchmark rocket, the REXUS 2 was observed with an absolute

average relative deviation of 2.64% and a 2.4% rocket total mass reduction. As for the trajectory analy-

sis, an overall agreement was observed with some discrepancies found in the burn-out time due to the

difference in the thrust profile of both rockets.

A multivariable case study then followed, with a significant improvement in the optimisation behaviour

of the framework. The rocket total lift-off and the propellant masses were reduced 14.5%, as well as the

structural mass, which was reduced 16.2%.

A sensitivity analysis was conducted for two main parameters: payload and altitude. It was confirmed

that a positive change in the carried payload significantly increases the masses of the rocket, with a

10.2% increase in the rocket lift-off total mass. As for the altitude sensitivity analysis, it was observed

that reducing the altitude constraint from 100 km to 82.45 km, in order to match the REXUS 10 mission,

resulted in a 3% total mass reduction, which was the expected behaviour.

A final case study was then conducted in order to evaluate the coupled effect of both parameters by

increasing the payload value from 90 kg to 112.3 kg and lowering the altitude constraint from 100 km to

82.45 km, matching the REXUS 10 mission requirements. The optimised results were then compared

with the REXUS 10 rocket and a general mass reduction was observed: 14.9% in the rocket lift-off total

mass, 17.7% in the propellant mass and 18.4% in the structural mass. Additionally, the flight data of

both the REXUS 10 mission and the optimisation trajectory simulation were compared, it was concluded

that higher speeds were achieved in the simulated trajectory and that the followed flight path was too

parabolic which suggests that the aerodynamics model might require further improvements.

Finally, in order to find the optimal structural mass of the optimised rocket, the MDO framework

was integrated with a High Fidelty Structural Model in a new optimisation process. Using an iterative

procedure, it was possible to couple the trajectory simulation with flow and FEM structural analysis run in

SOLIDWORKS in order to minimise the structural mass of the rocket, given a fixed diameter of the body
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tube. From the obtained results, it was possible to observe a thickness reduction trend in the majority

of the analysed components with a reduction of 16.8% in structural mass, as expected. Nonetheless,

these results need to be taken with caution given the fact that only four iterations were conducted due to

computational time limitations, which was not enough to reach a final convergence.

Overall, the developed framework shows good signs of being capable of performing the design opti-

misation of a single-stage sounding rocket at a preliminary level. Yet, further testing is needed to truly

appreciate its capabilities.

7.2 Future Work

Although the developed framework shows encouraging signs, there is room for further improvements

across several areas.

At the model level, the flight dynamics model could be improved from the current 2 DoF to a much

more interesting 6 DoF system dynamics; also, the aerodynamics could be further improved if other

sources of drag were to be included in the model, thus giving a more robust drag evaluation. The

structural model could also be improved if a more precise structural analysis was to be conducted and

not limited to buckling and fin flutter.

Additionally, a cost model could be implemented in order to bring a more realistic approach to the

preliminary design process.
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9780817644376; 0817644377.

[109] U. S. N. Oceanic, A. Administration, and U. S. C. on Extension to the Standard Atmosphere.
U.S. Standard Atmosphere, 1976. NOAA - SIT 76-1562. National Oceanic and Amospheric [sic]
Administration, 1976.

[110] U. S. C. on Extension to the Standard Atmosphere, U. S. N. Aeronautics, and S. Administration.
U.S. Standard Atmosphere, 1962: ICAO Standard Atmosphere to 20 Kilometers; Proposed ICAO
Extension to 32 Kilometers; Tables and Data to 700 Kilometers. U.S. Government Printing Office,
1962.

[111] J. P. Jasa, J. T. Hwang, and J. R. R. A. Martins. Open-source coupled aerostructural optimisation
using python. Structural and Multidisciplinary optimisation, 57(4):1815–1827, April 2018. DOI:10.
1007/s00158-018-1912-8.

[112] H. Akima. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures.
Journal of the ACM, 17(4):589–602, Oct. 1970. ISSN 1557-735X. DOI:10.1145/321607.321609.

[113] Akima1DInterpolator &#x2014; SciPy v1.14.1 Manual. https://docs.scipy.org/doc/scipy/

reference/generated/scipy.interpolate.Akima1DInterpolator.html. [Accessed 05-10-
2024].

[114] P. Sforza. Theory of Aerospace Propulsion. Aerospace Engineering. Elsevier Science, 2016.
ISBN 9780128096017. DOI:10.1016/c2009-0-61051-5.

[115] L. Sopegno, P. Livreri, M. Stefanovic, and K. P. Valavanis. Thrust Vector Controller Comparison
for a Finless Rocket. Machines, 11(3):394, Mar. 2023. ISSN 2075-1702. DOI:10.3390/machines
11030394.

[116] I. Gerth and E. Mooij. Guidance for Autonomous Precision Landing on Atmosphereless Bodies. In
AIAA Guidance, navigation, and control conference, page 0088. American Institute of Aeronautics
and Astronautics, Jan. 2014. DOI:10.2514/6.2014-0088.

[117] SpaceForest. Perun. Commercial suborbital rocket flights! https://spaceforest.pl/perun/,
2024. [Accessed 09-10-2024].

[118] J. R. R. A. Martins and A. B. Lambe. Multidisciplinary Design optimisation: A Survey of Archi-
tectures. AIAA Journal, 51(9):2049–2075, Sept. 2013. ISSN 1533-385X. DOI:10.2514/1.j05189
5.

[119] M. Balesdent. Multidisciplinary Design optimisation of Launch Vehicles. PhD thesis, Ecole Cen-
trale de Nantes (ECN), 11 2011. English.

[120] N. Alexandrov and R. Lewis. Algorithmic perspectives on problem formulations in MDO. In 8th
Symposium on Multidisciplinary Analysis and optimisation. American Institute of Aeronautics and
Astronautics, Sept. 2000. DOI:10.2514/6.2000-4719.

[121] R. Balling and J. Sobieszczanski-Sobieski. optimisation of coupled systems - A critical overview of
approaches. In 5th Symposium on Multidisciplinary Analysis and optimisation. American Institute
of Aeronautics and Astronautics, Aug. 1994. doi: 10.2514/6.1994-4330. DOI:10.2514/6.1994-43
30.

84

http://dx.doi.org/10.1007/s00158-018-1912-8
http://dx.doi.org/10.1007/s00158-018-1912-8
http://dx.doi.org/10.1145/321607.321609
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Akima1DInterpolator.html
http://dx.doi.org/10.1016/C2009-0-61051-5
http://dx.doi.org/10.3390/machines11030394
http://dx.doi.org/10.3390/machines11030394
http://dx.doi.org/10.2514/6.2014-0088
https://spaceforest.pl/perun/
http://dx.doi.org/10.2514/1.j051895
http://dx.doi.org/10.2514/1.j051895
http://dx.doi.org/10.2514/6.2000-4719
http://dx.doi.org/10.2514/6.1994-4330
http://dx.doi.org/10.2514/6.1994-4330


[122] J. Sobieszczanski-Sobieski and R. T. Haftka. Multidisciplinary aerospace design optimisation:
survey of recent developments. Structural optimisation, 14(1):1–23, Aug. 1997. ISSN 1615-1488.
DOI:10.1007/bf01197554.

[123] J. Agte, O. de Weck, J. Sobieszczanski-Sobieski, P. Arendsen, A. Morris, and M. Spieck. MDO:
assessment and direction for advancement—an opinion of one international group. Structural and
Multidisciplinary optimisation, 40(1–6):17–33, Apr. 2009. ISSN 1615-1488. DOI:10.1007/s00158-
009-0381-5.

[124] N. Tedford and J. R. R. A. Martins. On the Common Structure of MDO Problems: A Comparison
of Architectures. In 11th AIAA/ISSMO Multidisciplinary Analysis and optimisation Conference.
American Institute of Aeronautics and Astronautics, June 2006. DOI:10.2514/6.2006-7080.
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Appendix A

Flowcharts and Diagrams

A.1 MDO Diagram

Figure A.1: Flowchart of the MDO framework integrated with a High Fidelity Structural Analysis model.
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A.2 2D Rocket Schematics

Figure A.2: 2D Schematic view of the REXUS 2. Adapted from [13].
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Figure A.3: 2D Schematic view of the benchmark case study optimised rocket.
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Figure A.4: 2D Schematic view of the multivariable case study optimised rocket.
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Figure A.5: 2D Schematic view of the Rexus 10 case study optimised rocket.
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Appendix B

Equations

B.1 Propulsion Model Equations

Table B.1: Burnback Analysis Equations.

Parameter Symbol Equation Reference

Initial Propellant Mass mp0

mpi = mp0 − (m0 −mi) (B.1) [52]Instantaneous Propellant Mass mpi

Propellant Mass Density ρp

Rp =

√
−mpi

ρpπLgrain +R2
i

(B.2) [52]
Initial Rocket Mass m0

Instantaneous Rocket Mass mi

Port Radius Rp

Propellant Burning Area Ab

Ab = 2πRpLgrain (B.3) [52]Grain Length Lgrain

Grain Inner Radius Ri

Table B.2: Internal Ballistic Equations.

Parameter Symbol Equation Reference

Internal Chamber Pressure Pc

Te = Tc

[
1 +

γ − 1

2
M2

e

]−1

(B.4) [97]Burn Rate Coefficient a
Propellant mass density ρp
Propellant Burning Area Ab

Pc =

[
aρpAb

CDAt

] 1
1−n

(B.5) [97, 154]Nozzle Discharge Coefficient CD

Nozzle Throat Area At

Propellant Ballistic Exponent n

Pe = Pc

[
1 +

γ − 1

2
M2

e

] −γ
γ−1

(B.6) [97, 154]
Nozzle Exit Pressure Pe

Nozzle Exit Velocity Ve

Gas Universal Constant R
Nozzle Gases Exit Temperature Te

Ve = Me

√
γRTe (B.7) [97, 154]Internal Chamber Temperature Tc

Gas Specific Heat Ratio γ
Nozzle Exit Mach Number Me

ṁ = −CDAtPt (B.8) [97]Thrust T
Thrust Coefficient CF

Mass Rate Change ṁ

Thrust = ṁVe + (Pe − P )Ae (B.9) [97]Gravitational Acceleration g
Specific Impulse Isp
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B.2 Mass and Sizing Model Equations

Table B.3: Nose Cone Component Equations.

Parameter Symbol Equation Reference

Rocket Radius Rrocket

Rrocket =
Drocket

2
(B.10) [52]Rocket Length Lrocket

Rocket Length to Diameter Ratio L/Drocket

Lrocket = L/DrocketDrocket (B.11) [52]Nose Cone Length to Diameter Ratio L/Dnose cone

Rocket Reference Area Sr

Sr = πR2
rocket (B.12) [52]Nose Cone Diameter Dnc

Nose Cone Length Lnc

Dnc = Drocket (B.13) [52]Nose Cone Surface Area Snc

Nose Cone Tip Mass mnc

Lnc = DncL/Dnose cone (B.14) [52]Nose Cone Mass mnc

Nose Cone Mass Density ρnc

mtip = ρtipVtip (B.15) [52]Nose Cone Tip Mass Density ρtip
Nose Cone Tip Mass mtip

mnc = ρnctncSnc (B.16) [52]Nose Cone Tip Volume Vtip

Nose Cone Thickness tnc

Table B.4: Modules Component Equations.

Parameter Symbol Equation Reference

Module Thickness tm
VmPL = π(R2

PL − (R2
rocket − tm)2)(LPL − (2tm)) (B.17)

+ 2πtmR2
rocket

-Rocket Radius Rrocket

Module Mass Density ρm

mmPL = ρmVmPL (B.18)
Payload Module Mass mmPL -Module Length Lm

Vm = π(R2
rocket − (Rrocket − tm)2)Lm + 2πtmR2

rocket (B.19)Module Volume Vm -Experiment Mass mE

mm = Vmρm (B.20)Recovery System Mass mR

mEt = mm +mE (B.21)

-Module Volume Vm

Payload Module Volume VmPL -Payload Length LPL

Payload Radius RPL mSt = mm +mS (B.22) -Experiment Module Total Mass mEt

mRt = mm +mR (B.23)Service Module Total Mass mSt -Recovery Module Total Mass mRt

Payload Module Total Mass mmPL mPLt = mmPL +mPL (B.24) -Payload Module Total Mass mPLt

Table B.5: Fins Component Equations.

Parameter Symbol Equation Reference

Fin Root Chord cr
cr = KcrDrocket (B.25) -Fin Root Chord Constant Kcr

Rocket Diameter Drocket

ctip = Kc tipDrocket (B.26) -Fin Tip Chord ctip
Fin Tip Chord Constant Kc tip

Fss = KFssDrocket (B.27) -Fin Semi Span Fss

Fin Semi Span Constant KFss

-Fin Surface Area Afins
Afins =

crctip
2Fss

(B.28)Fins Mass mfins

Fin Mean Thickness tfins
Fin Mass Density ρfins mfins = nfins(Afinstfins)ρfins (B.29) -Number of fins nfins
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Table B.6: Nozzle Component Equations.

Parameter Symbol Equation Reference

Nozzle Throat Area At At =
cdelTvac

Pcg0IspV ac

(B.30) [52]Nozzle Exhaust Velocity cdel
Average Thrust in Vacuum Tvac Ae = εAt (B.31) [52]Average Internal Casing Pressure Pc

Gravitational Acceleration at Sea Level g0
Rt =

√
At

π
(B.32) [52]Specific Impulse in Vacuum Isp V ac

Nozzle Expansion Ratio ε
Re =

√
Ae

π
(B.33) [52]Nozzle Exit Area Ae

Nozzle Throat Radius Rt

Nozzle Exit Radius Re Dn = 2Re (B.34) [52]
Nozzle Convergent Section Angle αconvergent

Nozzle Diameter Dn
Ln = 0.8

(
2Re − 2Rt

2 tan(α)

)
(B.35) [52]Nozzle Angle α

Nozzle Length Ln

Lna =
(DRocket − 2tbt)− 2Rt

2 tan(αconvergent)
(B.36) [52]Nozzle Adapter Length Lna

Nozzle Adapter Mass Density ρna
Nozzle Mass Density ρn

mna = ρnaVna (B.37) [52]Nozzle Adapter Volume Vna

Nozzle Volume Vn

mn = ρnmn (B.38) [52]Nozzle Adapter Mass mna

Nozzle Mass mn

Table B.7: Body Tube Component Equations.

Parameter Symbol Equation Reference

Body Tube Length Lbt

Lbt = Lrocket − Lnc − 3Lm − Ln − Lna (B.39)Rocket Length Lrocket

Nose Cone Length Lnc

Module Length Lm

Vbt = π(R2
rocket − (Rrocket − tbt)

2)Lbt (B.40) [52]Nozzle Adapter Length Lna

Nozzle Length Ln

Body Tube Thickness tbt

mbt = ρbtVbt (B.41)Body Tube Volume Vbt

Body Tube Mass mbt

Table B.8: SRM Component Equations.

Parameter Symbol Equation Reference

SRM Casing Length Lc

Lc = Lbt (B.42) -Rocket Radius Rrocket

Rc = Rrocket − tbt (B.43)
Body Tube Length Lbt

-SRM Casing Radius Rc

mc =
(
π(R2

c − (Rc − tc)
2)(Lc − 2tc) + 2πtcR

2
c

)
ρc (B.44)

Body Tube Thickness tbt

-Casing Thickness tc

Rgo = Rrocket − tc (B.45)
Casing Mass Density ρc

-Casing Mass mc

Rgi = Rgo − tg (B.46)
Nozzle Length Ln

-Body Tube Thickness tbt
Body Tube Volume Vbt

Lg = Lc (B.47) -Body Tube Mass mbt

Grain Outer Radius Rgo

mp = πLg(R
2
go −R2

gi)ρp (B.48) -Grain Inner Radius Rgi

Grain Length Lg

mins =
(
0.02(πLc(R

2
c − (Rc − tc)

2)
)
ρins (B.49) [52]Grain Web Thickness tg

mSRM = mc +mins +mp (B.50) [52]
Propellant Mass Density ρp
Propellant Mass mp

Insulation Density mins
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Table B.9: Rocket Component Equations.

Parameter Symbol Equation Reference

Rocket Initial Mass m0

SRM Casing Length Lc

m0 = mnc +mtip +mPLt +mEt +mSt +mRt

+mfins +mbt +mn +mna +mw +mp (B.51)

+mc

[51]
Rocket Length Lrocket

Nose Cone Mass mnc

Nose Cone Tip Mass mtip

Experiment Module Total Mass mEt

Service Module Total Mass mSt

ms = mtip +mnc +mmPL +mmE +mw

+mSt +mRt +mbt +mc +mfins (B.52)

+mn +mna

[51]

Recovery Module Total Mass mRt

Payload Module Total Mass mPLt

Fins Mass mfins

Body Tube Mass mbt

Nozzle Mass mn

Nozzle Adapter Mass mna

Wiring Mass mw

σ =
ms

ms +mp
(B.53)

[51]Propellant Mass mp

SRM casing mc

Propellant Mass Density ρp

Propellant Mass mp
mf = m0 −mp (B.54) [51]

Structural Mass ms

Structural Factor σ

Rocket Final Mass mf

B.3 Aerodynamics Model Equations

Table B.10: Aerodynamics Equations.

Parameter Symbol Equation Reference

Zero lift Drag Coefficient Cd0 Cd0 = Cdnc + Cdb + Cdf (B.55) [90]

Nose Cone Drag Cdb

C ′
d =



Cd0√
1−M2

a

, Ma < 0.8

Cd0√
1−0.82

, 0.8 < Ma < 1.1

Cd0√
M2

a−1
, Ma > 1.1

(B.56) [91]

Fin Drag Coefficient Cdf

Drag Coefficient Correction C ′
d

Free Stream Mach Number Ma

Free Stream Density ρ

Free Stream Velocity v

Rocket Reference Area Srocket

Drocket =
1

2
ρv2C ′

dSrocketv
2 (B.57) [51]Rocket Drag Drocket

Drogue Induced Drag Coefficient CDdrogue

Drogue Parachute Cross-Section Area Sdrogue

Ddrogue =
1

2
ρv2CDdrogueSdrogue (B.58) [85]Main Parachute Induced Drag Coefficient CDmain parachute

Drogue Parachute Drag Ddrogue

Dmain parachute =
1

2
ρv2Cmain parachuteSmain parachute (B.59) [85]

Main Parachute Cross-Section Area Smain parachute

Main Parachute Drag Dmain parachute

95



B.4 Structural Model Equations

Table B.11: Buckling Equations.

Parameter Symbol Equation Reference

Buckling Critical Stress σcrit
σcrit =

γE√
3(1− v2)

(
th

R

)
(B.60) [103]

Multiplication Factor γ

Cylindrical Shell Young Modulus E

γ = 1− 0.901
(
1− e−ϕ

)
(B.61) [103]

Poisson Ratio v

Body Tube Thickness th

Body Tube Radius R

Lcrit = σcritπ(R
2 − (R− th)2) (B.62) [103]

Exponent Factor ϕ

Buckling Critical Load Lcrit

Table B.12: Fin Flutter Equations.

Parameter Symbol Equation Reference

Fin Flutter Velocity Vf

Vf = a

√√√√ GE

Y AR3

(t/cr)3(AR+2)

(
λ+1
2

) (
P
P0

) (B.63) [107]

Speed of Sound a

Effective Shear Modulus of the Fins GE

Fins Aspect Ratio AR

Fins Thickness t

Fins Root Cord cr

Fins Tapper Ratio λ

Y =
24ϵγP0

π
(B.64) [107]

Atmospheric Air Pressure P

Atmospheric Air Pressure at Sea Level P0

Flutter Constant Y

Fin 1/4 Cord to CM Distance ϵ

Atmospheric Air Specific Heat Ratio γ

B.5 Flight Dynamics Model Equations

Table B.13: Flight Dynamics Equations.

Parameter Symbol Equation Reference

Velocity v
v̇ =

Thrust

m
cosα− D

m
− g sin γ (B.65) [108]Rocket Thrust Thrust

Rocket Mass m

γ̇ = −
(
g

v
− v

Re + h

)
cos γ +

Thrust

m
sinα (B.66) [108]

Angle of Attack α

Rocket Drag D

Gravitational Acceleration g

ẋ = v cos γ (B.67) [108]
Pitch Angle γ

Pitch Angle Rate γ̇

ḣ = v sin γ (B.68) [108]
Earth Radius Re

Rocket Altitude h

Downrange rate ẋ

B.6 Barrowman and Mandel Aerodynamic Coefficient Derivation

First, it is important to acknowledge that there are two main conventions available in the literature to

define what are essentially the two orthogonal components of the same force, the aerodynamic force.
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On the one hand, the convention used by Barrowman [87, 88], according to which the aerodynamic force

components are defined relative to the rocket’s roll axis, which will be used here to calculate the normal

force coefficient, CN , and, on the other hand, the convention used by Mandell et. al [90], which defines

the aerodynamic force components in relation to the rocket’s apparent velocity vector, V , which will be

used here to calculate the drag force coefficient, CD.

Figure B.1: Aerodynamic force conventions: used by Barrowman, on the right, and by Mandell, on the
left [91].

Normal Force and Centre of Pressure

A brief set of equations for estimating the aerodynamic normal force and the centre pressure location

will now be presented following the full derivation of Barrowman’s method [88].

Initially, Barrowman lists a strict set of assumptions:

• Angle of attack of the rocket lower than 10 ◦ (α < 10◦ );

• Compressibility effects can be negleted (for velocities under 0.4 Ma);

• Lift forces on the rocket body tube can be neglected;

• The air flow is smooth and does not change abruptly;

• The rocket body is slender;

• The nose cone of the rocket progresses smoothly from its base to a point edge;

• The rocket is an axisymmetric rigid body and the fins are approximated to thin flat plates;

Similarly to the given definition for the drag force, in equation 2.41, Barrowman defines the normal

force on the rocket as:

FN =
1

2
ρV 2ArCN (B.69)

where Ar is the cross sectional area of the base of the rocket’s nose cone.
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Because it is assumed there only to be incompressible flow and that viscous forces are neglected, CN

is a function of only α. Additionally, only small angles of α are assumed, and so, CN can be expressed

as a linear function of α:

CN = CNαα (B.70)

where CNα is the total stability derivative of the normal force coefficient.

CNα is calculated as the sum of each individual rocket’s component stability derivative:

CNα(R) =
∑
P∈R

CNα(P ) (B.71)

where P refers to a specific rocket component and R refers to the rocket itself.

Regarding the location of the centre of pressure, it is assumed that it lies on the rocket’s roll axis with

a position defined according to its distance from the nose cone tip, Xcp. It is calculated as follows:

Xcp(R) =

∑
P∈R

CNα(P )Xcp(P )

CNα(R)
(B.72)

where Xcp(P ) is the centre of pressure distance of component P to the tip of the nose cone of the rocket.

Barrowman’s assumption that the lift forces on the rocket body are negligible has been questioned

by experiments conducted in particularly long slender bodies by Dahlquist [155]. A possible solution to

this problem suggested by Box et. al [91] is to extend Barrowman’s equations, adding terms that take

into account the normal force due to body lift, as proposed by Galejs [156].

The normal force coefficient due to body lift is, then, defined as follows [156]:

CN(L) = K
Ap

Ar
α2 (B.73)

where K is a constant with values ranging from 1.0 to 1.5, Ap is the planform area of the rocket (excluding

the fins) and Ar is the reference area for the rocket which is the cross-sectional area at the base of the

nose cone. Consequently, CN(L) is not a linear function of α.

Galejs also defines,

CNα2 =
CN(L)

α
= K

Ap

Ar
α (B.74)

which can be added to equation B.71.

The centre of pressure due to the body lift force, Xcp(L) can be determined by calculating the centre

of the planform area.

To determine the new centre of pressure of the rocket, Xcp(R), the terms CNα2 and Xcp(L) should be

added to equation B.72.

Drag Force

After having defined the set of equations to determine the rocket’s normal force and the centre of
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pressure, a new set of equations will be presented for estimating the coefficient of drag force of the

rocket as proposed by Mandel et. all [90] following Box’s method [91].

Initially, the drag force coefficient will be divided into its main components which will be calculated for

a zero angle of attack:

• Body Drag - the component fundamentally related to the rocket forebody [90]:

CD(fb) =

[
1 +

60

(
l(TR)

db
)3

+ 0.0025
lb
db

] [
2.7

ln
db

+ 4
lb
db

+ 2

(
1− dd

db

)
lc
db

]
Cf(fb) (B.75)

where lTR is the total length of the rocket body, lc is the length of the boat tail, db is the maximum

rocket body diameter, Cf(fb) is the rocket forebody’s coefficient of viscous friction (here definided

by equation XX) [91];

• Base Drag - the component related to a low pressure region at the base of the rocket due to the

boundary layer separation [90]:

CD(b) = 0.029

(
dd

db

)3
√
CD(fb)

(B.76)

• Fin Drag - the component related to the presence of a finset attached to the rocket body [90]:

CD(f) = 2Cf(f)

(
1 + 2

Tf

lm

)
4nAfp

πd2f
(B.77)

where Cf(f) is the fins’ coefficient of viscous friction (here defined by equation XX), Tf is the fin

thickness, n is the number of fins and df is the diameter of the body tube at the fin root, Afp is the

fin planform area (for a trapezoidal fin the exposed part is given by Afe = 1
2 (lr + lt) ls and the full

planform area is assumed to extend to the centre line of the rocket body Afp = Afe +
1
2df lr) [91];

• Interference Drag - the component which translates the interference effects between the fins and

the rocket body [90]:

CD(i) = 2Cf(f)

(
1 + 2

Tf

lm

)
4n(Afp −Afe)

πd2f
(B.78)

• Viscous Friction Drag - the component which relates to the skin friction between the rocket body

and the air flow due to the latter’s viscosity properties, the reason why it is highly dependent on the

Reynolds number, Re [90]:

Cf =


1.328√

Re
when Re ≤ Rec

0.074

Re
1
5
− B

Re when Re ≥ Rec

(B.79)

where B is a parameter defined as:

B = Rec

(
0.074

Re
1
5

− 1.328√
Re

)
(B.80)

99



The total drag coefficient for a zero angle of attack, CD(0), can be easily calculated by summing up

its individual drag coefficients, as follows [90]:

CD(0) = CD(fb) + CD(b) + CD(f) + CD(i) (B.81)

For small angles of attack, Mandell et. al. [90] suggests that two more components, derived from

wind tunnel experiments, should be added to the zero angle of attack drag coefficient, previously defined

in equation B.81.

• Coefficient of alpha drag on the rocket body - component related to the additional drag enforced

on the rocket body under small angles of attack [90]:

CDb(α) = 2δα2 +
3.6η(1.36lTR − 0.55ln)

πdb
α3 (B.82)

where α is the angle of attack and both δ and η are experimental coefficients derived from wind

tunnel testing.

• Coefficient of alpha drag on the rocket’s fins - component associated with the additional drag

enforced on the rocket fin’s under small angles of attack [90]:

CDf(α) = α2

[
1.2

Afp4

πd2f
+ 3.12(kfb + kbf − 1)

(
Afe4

πd2f

)]
(B.83)

where kfb and kbf are the fin-body interference coefficient and body-fin interference coefficient,

respectively.

kfb = 0.8065R2
s + 1.1553Rs (B.84)

kbf = 0.1935R2
s + 0.8174Rs + 1 (B.85)

where Rs is the fin section ratio which is the ratio between the total fin’s span, lTS, and the diameter

of the body tube at the point of the fins, df .

The total coefficient of drag of the rocket can now be calculated by summing up these coefficients:

CD = CD(0) + CDbα + CDfα (B.86)

Finally, the axial force coefficient can be estimated:

CA =
CDcosα− 1

2CNsin(2α)

1− sin2α
(B.87)
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