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Resumo

Nesta tese, realiza-se a otimização de trajetória e con�guração da aeronove em simultâneo, com o objectivo

de obter um UAV e um trajeto que cumpram uma missão com desempenho máximo.

A componente aeroestrutural é tratada pela ferramenta OpenAeroStruct. Esta é uma ferramenta de baixa

�delidade que usa um método de painéis com malha de vórtices e um método de elementos �nitos para modelar

o escoamento e o comportamento estrutural de superfícies sustentadoras. A ferramenta é modi�cada para aco-

modar propulsão elétrica e calcular parâmetros de performance pertinentes, bem como incluir a componente de

trajetória, que é implementada atráves de um método de colocação.

A otimização é realizada através de um método de gradientes, para diversos objectivos, tais como minimizar

a energia consumida durante a fase de subida, minimizar o tempo de subida até uma determinada altitude e

maximizar o alcance, partindo de uma fase de voo cruzeiro. O problema de minimização de energia é também

otimizado, individualmente, através da trajetória e da con�guração, por forma a melhor quanti�car os benefícios

da otimização acoplada.

Veri�ca-se que a otimização acoplada permite minimizar a energia em mais 33% e 10.8%, relativamente às

otimizações de trajetória e design isoladas, respetivamente. Observa-se também que o tempo de voo e a energia

dispendida estão fortemente correlacionados, com as funções objectivo das duas soluções a variarem menos

de 0.2% entre si. A otimização acoplada requer mais esforço computacional, sendo que o custo não aumenta

linearmente com o tamanho do problema.

Palavras-chave: Otimização de trajetória, Projeto aeroestrutural, Otimização multidisciplinar, Método

de gradientes
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Abstract

In this work, coupled aircraft design and trajectory optimization is performed with the objective of producing

a tailored UAV con�guration and path that ful�l a mission at peak performance.

The aerostructural component is handled by the OpenAeroStruct framework. This is a low-�delity tool that

uses a vortex-lattice method and a 1D �nite-element analysis to model lifting surfaces. An upgrade of the frame-

work is developed to accommodate propulsion and its performance metrics, as well as trajectory dependent com-

putations. An electric propulsive system is considered where the propeller is modelled using a relation derived

from Blade Element and Momentum Theory. A direct collocation method is used for the trajectory component.

Gradient-based optimization is performed for di�erent objectives, such as minimum energy consumed during

climb, minimum time to climb to an arbitratry altitude, and maximum �nal distance starting from a cruise �ight

stage. The energy minimization problem is also optimized solely through trajectory or aircraft design, isolated,

to better quantify the bene�ts of the coupled optimization.

We verify that the coupled optimization is able to further minimize energy in 33% and 10.8%, relative to

the isolated trajectory and aircraft design optimizations. We also see that �ight time and energy are strongly

linked, with the objectives of both solutions varying less than 0.2%. We observe that the coupled optimization is

computationally more expensive and that the cost does not increase linearly with problem size.

Keywords: Trajectory optimization, Aerostructural design, Multidisciplinary design optimization, Gradient-

based optimization
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Chapter 1

Introduction

1.1 Motivation

There has never been a wider range of aircraft. The technological and scienti�c advancements made in the

�elds of aeronautics, avionics, materials, among others, allowed the development of many types of aircraft, which

have also grown more complex and sophisticated. They di�er in size, con�guration, type of propulsion and the

way they take o� and land. Some examples are shown in Fig. 4.2.

The �xed wing airplane is the most common type as it has become the main option for commercial �ight.

There are many possible con�gurations just within this type of aircraft. There is the most traditional con�gura-

tion with main wing and tail, but there is also canard, delta wing and tandem, for example. Then there are also

seaplanes, adapted to land on water and the blended wing body aircraft.

The second most common type is helicopters. Their main advantage is that they take o� vertically, which

is useful in many applications, like transportation within cities, sea rescue and military combat. Con�gurations

vary mostly on the approach to rotors. There is the traditional single rotor, coaxial rotors (seen in Fig. 1.1(a)) and

tandem rotor. Then there are also tilt rotor aircraft (Fig. 1.1(b)), which are almost hybrid between helicopters

and planes.

Unmanned aerial vehicles (UAV) can be any of the two types above, or some novel con�guration, as not having

passengers allows for di�erent organization of components. The most advanced UAV have been used specially

in military operations, but they are versatile, built in many sizes and with di�erent propulsive solutions.

(a) Kamov Ka-32A11BC [1] (b) Boeing V-22 Osprey [2] (c) General Atomics MQ-9 Italian Air Force [3]

Figure 1.1: Several aircraft for di�erent missions.
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Di�erent missions have di�erent requirements that need adaptation of existing aircraft or even new solutions.

The search for innovative and more advanced solutions is what drives the development of new aircraft, or once

the solution is established, the appearance of novel con�gurations, in the attempt of improving performance.

This is where aircraft design optimization comes in. Manufacturers usually build new products as iterations

of proven concepts but with modi�cations that improve certain characteristics of the previous model. In the

case of commercial aircraft, for example, it is usually decrease fuel consumption, as a way to increase pro�t. In

other applications, it might be a faster aircraft, a greater payload, etc. Whatever the objective, the aircraft itself

can be improved through any of the di�erent engineering disciplines involved, such as the propulsive system,

aerodynamics and structures.

As for a mission objective, it can be further optimized through trajectory optimization. This consists in �nding

the best route and speed to complete the mission, whether it is simply going from A to B or heading to a certain

zone and hovering around a target area. This part of the mission optimization is commonly done post design,

so it is limited by the capabilities of the aircraft. Granted, the design is carried to satisfy some extreme �ight

limit conditions, but combining design and trajectory allows optimizing both con�guration and mission to the

fullest. The result is not necessarily a �exible solution, but rather very speci�c aircraft, tailored to ful�ll a certain

mission at peak performance.

1.2 Aircraft Design and Trajectory Optimization

Aircraft Design

Aircraft design does not have to, but often does, consider multiple disciplines, as it has more practical appli-

cability and is therefore more relevant. This is because designing the aerodynamic shape of a wing without con-

sidering the structures that will sustain it might result in a body that is ill prepared to withstand the aerodynamic

loads, so both need to be accounted for. Moreover, they are coupled, meaning their behaviours are codependent

and changing design parameters usually a�ects both. Hence, it becomes necessary to perform Multidisciplinary

Design Optimization (MDO). This approach incorporates all disciplines and solves them simultaneously, produc-

ing an optimal result that is better than if they were solved sequentially.

Trajectory Optimization

Flight is commonly separated in stages and the design is evaluated at the di�erent stage conditions. However,

this is not really trajectory optimization, as nothing is being changed in the trajectory itself.

Trajectory optimization is a subset of optimal control problems that consists in �nding the sequence of po-

sitions and velocities that compose the path which optimizes a parameter of choice. Position and velocity are

designated by state variables, which are controlled by inputs, also known as control variables. It has multiple

applications, such as air tra�c management, collision avoidance or simply improving mission performance.
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1.3 Objectives and Deliverables

One of the aims of this thesis is to perform trajectory and multidisciplinary design optimization simultane-

ously, tailored for small �xed-wing electric UAVs, with conventional wing plus tail con�guration.

Aerodynamic and structural disciplines are key elements of the optimization. They have been extensively

studied, with many models developed to simulate their behaviours, making it important to review them.

Likewise, trajectory optimization is part of a larger �eld called optimal control. This is a topic that has

been actively studied for many years and has yielded many techniques to approach problems. Therefore, it is

of interest to study their applicability in trajectory optimization, understand their implementation and compare

their performance.

The optimization �eld itself has undergone continuous development. Here, it is crucial to understand what

methods are available to integrate several disciplines in the same problem, as well as what algorithms exist to

solve the coupled analysis and the optimization problem.

The integration of disciplines is a key step to attain the objectives of this thesis. To do so, we will resort to

the OpenAeroStruct (OAS) framework [4], which will be responsible for handling the aerostructural analyses,

which make up the aircraft design component seen in the diagram of Fig. 1.2. Modi�cations will be made

to accommodate the implementation of electric propulsion and the trajectory component. The extension of

the framework will allow to perform coupled design and trajectory optimization, as well optimize each of the

components individually.

Figure 1.2: The two main topics of the thesis and the underlying disciplines combined in one optimization.

In summary, this thesis aims to:

• Upgrade the OAS framework to include electric propulsion and perform trajectory dependent computa-

tions;

• Perform coupled design and trajectory optimization;

• Demonstrate improvements of the combined optimization relative to the isolated optimizations;

• Explore the design space and test the framework by performing optimization for di�erent objectives.

The contributions of this thesis are the upgraded framework and the study of coupled design and trajectory

optimization illustrative test cases.
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1.4 Thesis Outline

Chapter 2 starts by introducing the parameters that de�ne the wing geometry. Then, the dynamics, aerody-

namics, structural and propulsive models are described, culminating in the de�nition of the design optimization

problem.

The theoretical background on optimal control is explored in Chap. 3. It delves into direct transcription

methods, where a simple control problem is used to compare shooting and collocation methods, and culminates

with the de�nition of the trajectory optimization problem.

Optimization and multidisciplinary integration are discussed in Chap. 4. It starts with the formulation of the

combined design and trajectory optimization problem, followed by the presentation of multidisciplinary analysis

and optimization architectures, as well as optimization algorithms background. Finally, the multidisciplinary

framework implemented is shown and discussed.

The baseline conditions of optimization are de�ned in Chap. 5, followed by the discussion of the optimization

results for di�erent objectives.

Lastly, this work’s achievements are summed up in Chap. 6 where suggestions for future developments are

also made.
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Chapter 2

Aircraft Design Physics

In this chapter, the models of the disciplines of analyses and their theoretical background are presented. We

start by introducing the parameters that de�ne the planform and the structural element. Then, we focus on

the assumptions under which the equations of motion are built, followed by the aerodynamic, structural and

propulsion models. Finally, the design optimization problem is formulated and the multipoint optimization is

discussed.

2.1 Aircraft Geometry

Some geometric parameters of the aircraft are de�ned in this section. Starting with the planform parameters,

let us initially consider a rectangular wing. The two larger sides are called leading and trailing edges, front and

back of wing, respectively, and the other two are the wing tips. The distance between tips is called span b, and

the distance between leading and trailing edges is the chord c.
In a rectangular wing, the chord is constant, however it is common to have variable chord along the span.

In that case, it is designated by c(y), where y is the spanwise distance from the root, such that c(0) = croot andc(b/2) = ctip .

From these parameters, others can be obtained, such as the taper ratio,

� = ctipcroot (2.1)

the wing area, where c̄ is the average chord, S = bc̄ (2.2)

and the aspect ratio

A = b2/S. (2.3)

Another common geometrical feature are swept wings. The sweep angle, considered positive as shown in

Fig. 2.1(a), can be determined at any fraction of the chord, but is here shown at the leading edge. Additionally, the

wing can make an angle with the horizontal line, which is designated by dihedral angle and considered positive

as shown in Fig. 2.1(b).
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(a) (b)

Figure 2.1: Geometrical parameters of the wing.

In our model, the wing’s spar is represented by a tube with a radius r and wall thickness t as shown in Fig.

2.2(a). The tube can be placed at any fraction of chord and this position limits the maximum diameter to the

height ℎ of the section. Its length l can be de�ned for the half wing as

l = b/2cos Λ%c cos ℸ . (2.4)

(a) (b)

Figure 2.2: Geometrical parameters of the spar.

2.2 Aircraft Dynamics

In this section, the assumptions under which the �ight dynamics model is constructed are presented. The

forces acting on the aircraft are de�ned and the equations of motion are derived in two frames.

Three reference frames are used in this work (Fig. 2.3). The aircraft frame A(x′, y′, z′) has its origin at the

center of mass of the aircraft and moves with it. The x′ axis is the aircraft’s longitudinal axis and the z′ axis is

perpendicular to it, pointing upwards; The �ight path frame P (x, y, z) also has its origin in the center of mass

of the aircraft and moves with it. It di�ers from the aircraft frame in that the x axis is aligned with the airspeed

vector V∞; Finally, the inertial Earth frame is designated by E(xE , yE , zE). The Earth is assumed non-rotating

and its curvature is neglected, so the origin is on the ground, the x axis is aligned with the local horizon and thez axis is normal to it pointing upwards, so the gravitational acceleration g is negative.

In this work, only the longitudinal component of �ight is considered, so it is assumed there is no rotation

about the x and z axis and no translational motion along y. Wind speed and sideslip angle (�) are also assumed
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Figure 2.3: Inertial Earth frame  , aircraft frame  and �ight path frame  .

to be zero.

The forces acting on the aircraft are the gravitational force, W = mg , where m is the mass, the aerodynamic

forces lift (L) and drag (D), and the propulsive force, thrust T .

As it will be seen in detail in Sec. 2.3, the aerodynamic forces are calculated on the panels that compose the

lifting surfaces, so L and D are obtained as the sum of the panels’ contributions. When writing the equilibrium

of forces, the aircraft is characterized by its center of mass, where the all forces are applied. The moments are

naturally computed on a panel basis too, but for the sake of simplicity, they are here represented as a resultant

force acting on each surface with an arm equal to the distance between the center of mass and the respective

aerodynamic center. These simpli�cations are represented in �gures 2.4(a) and 2.4(b), respectively.

(a) Representation of the forces acting on the aircraft’s center of mass.

(b) Simpli�ed representation of the moments about the center of mass of the aircraft.

Figure 2.4: Simpli�ed diagram of forces and moments acting on the aircraft.
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The derivation of the equations of motion is done in the �ight path frame and in the Earth frame. The �ight

path frame is useful when considering levelled �ight, as it moves with the aircraft and yields a simpler system.

When �ight is not levelled, or if di�erent stages of a trajectory are considered, it is necessary to transpose the

equations onto an inertial frame so that quantities can be calculated in the same reference system. The Earth

frame is useful in that situation.

The derivation of the equations of motion in the Earth frame starts with Newton’s second law relative to the

translation of the center of mass, ∑F = mV̇∞ (2.5)

where the resultant of forces applied in the center of mass is

∑F = T + L + D +W. (2.6)

Writing the forces in the two components of the Earth frame yields

∑FxE = T cos(� + 
) − D cos(
 ) − L sin(
 ) = mẍ (2.7a)

∑FzE = L cos(
 ) + T sin(� + 
) − W − D sin(
 ) = mz̈. (2.7b)

Similarly, the derivation of the equations of motion in the �ight path frame also has Newton’s second law as

starting point ∑F = m(V̇∞ + ! × V∞) (2.8)

and breaking Eq. (2.8) into the two components of the 2D �ight path frame leads to

∑Fx = T cos(�) − D − W sin(
 ) = mV̇∞ (2.9a)

∑Fz = L + T sin(�) − W cos(
 ) = m
̇V∞. (2.9b)

The moments equation is derived from the rotation about the center of mass,

∑M = I(Ḣ + ! × H) (2.10)

with the resultant of moments about the center of mass given by

∑M = rT × T + Mw + rw × Lw + rw × Dw + Mt + r t × Lt + r t × Dt . (2.11)

Since �ight is considered two dimensional and both the �ow and the aircraft are symmetric over the longi-

tudinal axis, there is only pitching moment. It is assumed that thrust is parallel to x′ and aligned with the center

of mass, so rT × T = 0. Additionally, the aircraft is considered to always be in a state of equilibrium of moments,

as the time and spatial scales considered are large enough for the non stationary terms to be neglected.

My = Mw + rw × Lw + rw × Dw + Mt + r t × Lt + r t × Dt = 0 (2.12)
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2.3 Aerodynamic Model

There are many Computational Fluid Dynamics (CFD) models and methods that can be used for aerodynamic

simulation. They vary in complexity and �delity and as consequence in the computational cost too, which cannot

always be supported by the available computational resources. For that reason, a compromise has to be made.

Figure 2.5: Graphical representation of the computational e�ort - �delity/precision trade-o� for di�erent CFD
approaches. Adapted from [5].

The trade-o� between computational cost and �delity is achieved through the simpli�cation of the models

used to describe the �uid dynamics, as represented in Fig. 2.5.

Direct Numerical Simulation (DNS) is the most accurate approach for simulating turbulent �ows, as it solves

the full Navier-Stokes (NS) equations. It uses a very �ne mesh that captures all scales of the �ow, from the

smallest to the largest eddies [6], which makes DNS computationally very expensive and only applicable with

high performance computer systems. With the appropriate mesh, time step and a numerical scheme that is

designed to minimize dispersion and dissipation errors, an accurate solution for the NS equations is obtained. In

this situation, the only errors are those introduced by the residual approximations incorporated in the numerical

scheme and in the number-representation technology of the computing machine [7].

The level of detail DNS provides is not always necessary or the cost to obtain it can not be supported, hence ap-

proximations can be made. In Reynolds-averaged Navier-Stokes (RANS) approaches, all unsteadiness is regarded

as part of turbulence and averaged out [8]. Turbulent variables are averaged through Reynolds decomposition

[9] if the �ow is assumed incompressible or through Favre decomposition [10] if assumed compressible. Equa-

tions are solved for these averaged quantities and the e�ect of instantaneous turbulent motion is modelled by a

turbulence model, such as k − " [11], k − ! [12, 13], Spalart-Allmaras [14], SST [15] or v2f [16].

In Large Eddy Simulation (LES), the large scale motions of turbulent �ow are computed directly whereas

small scale motions are modelled, resulting in a signi�cant reduction in computational cost compared to DNS.

A spatial �lter is applied to the velocity so that only large scale motion is captured for direct simulation. That

is because large eddies provide more signi�cant information for the �ow simulation, as they are generally more

energetic than the small scale ones and responsible for most of the momentum transfer and turbulent mixing.

LES computes these eddies directly whereas RANS models them and for that reason, LES generally has higher

�delity.
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Another simpli�cation is the assumption of inviscid �ow, in which case the viscosity e�ects are neglected and

the shear stress terms vanishes, thus reducing the Navier-Stokes equations to the Euler equations. In �ows far

from solid surfaces, viscosity e�ects are negligible resulting in small induced errors. Close to surfaces, however,

boundary layer e�ects will be lost, which means coarser grids can be used and less computational resources are

needed, yet resulting in lower �delity. A correction is usually made for the viscous drag contribution, which can

be estimated through a skin friction model and form factor model for the added pressure drag. Compressibility

e�ects and shocks are still captured, which is why Euler equations are used for �ows at high Mach numbers.

The �ow can be further simpli�ed by considering the velocity �eld irrotational ∇ × V = 0. In that case there

is a velocity potential �, such that ∇� = V and the governing equation becomes the Prandtl-Glauert equation,

here written for subsonic �ow [17]

∇̃2� = (1 − M2) )2�)x2 + )2�)y2 + )2�)z2 = 0. (2.13)

If the �ow can be considered incompressible, M → 0 and the equation becomes the Laplacian. Potential �ow

leaves out some important �ow behavior such as separation, skin-friction drag, and transonic shocks.

Panel methods are numerical schemes that solve the Prandtl-Glauert equation by superimposing surface

distributions of singularities over the panels. A Vortex-Lattice Method (VLM) is used in this work, which is

a vortex based panel method that extends Prandtl’s lifting line theory by superimposing multiple horseshoe

vortices in the chord and span directions of the wing surface [18].

The horseshoe vortex, represented in Fig. 2.6, is composed by three �laments: the bound vortex bc and

the trailing edge vortices, ab and cd . The latter extend to in�nity, all with the same strength Γ, as stated in

Helmholtz’s vortex theorems [18].

The lifting surface is divided inm trapezoidal panels of length l, as the one delimited by the dashed line in Fig.

2.6, with two sides parallel to the freestream direction. Every panel has a control point placed on its certerline at34 l from the front of the panel and a bound vortex at 14 l.

Figure 2.6: Representation of a horseshoe vortex [18].

Vortices induce a �ow �eld in the surroundings. The velocity of this �ow �eld on a point P at a distance r ,
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due to a segment dl of the horseshoe vortex with circulation strength Γ is expressed by the Biot-Savart law [18],

dV ind = Γ4� dl × rr3 = Γa. (2.14)

The induced component of velocity on a control point is in�uenced by each �lament of every vortex system,

including of its own panel. In other words, the induced velocity on control point k due to panel j is the sum of

the �laments’ contributions, V kj = V abkj + V bckj + V cdkj = Γj (aabkj + abckj + acdkj ), (2.15)

and the total induced velocity on that same control point is obtained by going through every panel,

V kind = m∑j=1 Γj (aabkj + abckj + acdkj ). (2.16)

Adding the freestream velocity to this result gives the total velocity,

V k = V∞ + V kind . (2.17)

An impermeability condition is imposed on every control point so that the normal velocity is zero,

V k ⋅ nk = 0. (2.18)

The linear system arises from combining equations (2.16), (2.17) and (2.18),

V∞ ⋅ nk + m∑j=1 Γj (aabkj + abckj + acdkj ) ⋅ nk = 0 (2.19)

⇔AkjΓj = −V∞ ⋅ nk (2.20)

where A is the aerodynamic in�uence coe�cients matrix (m × m).

Having solved this system for the circulation strengths of the horseshoe vortices, the Kutta-Joukowski theo-

rem [18] is applied to compute the aerodynamic forces acting on each panel,

Fk = �Γk (V∞ + vk ) × lk , (2.21)

where v is the velocity at the center of the bound vortex and l is the bound vortex vector.

The aerodynamic force is a three dimensional vector computed in the aircraft frame. Because there is sym-

metry, the net force in the y′ axis is zero. As shown in Fig. 2.7, the other two components are transposed onto

the �ight path frame, yielding the induced lift and drag, respectively

L = −Fx′ sin(�) + Fz′ cos(�) (2.22)

D = Fx′ cos(�) + Fz′ sin(�). (2.23)
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Figure 2.7: Decomposition of the aerodynamic force and wing’s angle of attack.

The induced lift coe�cient is given by CL1 = L12�SV∞2 (2.24)

and the total lift on the panel is obtained by adding the lift for �ef f = 0, CL0
CL = CL1 + CL0 . (2.25)

Analogously, the induced drag coe�cient is given by

CD1 = D12�SV 2∞ (2.26)

and the total drag is the result of adding the viscous drag and zero-lift drag contributions,

CD = CD0 + CD1 + CDv , (2.27)

where the viscous drag is computed using �at-plate-based estimates as in [19, Section 12.5.3]. This estimate is

adjusted using a form factor, which accounts for pressure drag due to �ow separation [4].

The angle �ef f , depicted in Fig. 2.7, is the e�ective angle of attack the airspeed makes with the chord line of

the section that contains the panel. For the wing, it can be obtained as the sum of the incident angle of attack� , measured from the longitudinal axis of the aircraft to the airspeed, and the twist angle � , measured from the

longitudinal axis to the chord line. If twist varies along the span, the e�ective angle of attack can be written for

any spanwise position y as �ef f w (y) = � + �(y). (2.28)

The same principle applies for the tail’s angle of attack. The di�erence is that we chose to de�ne a tail with

constant twist along the span, making an angle �t with the longitudinal axis, which is controlled during the �ight.

This way, the tail functions as a stabilator and its e�ective angle of attack is given by

�ef f t = � + �t . (2.29)
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2.4 Structural Model

Similarly to what is done in aerodynamics, the structures of an aircraft, in particular of the wings, have to

be modelled and its behaviour simulated. This is essential to make sure they can withstand the stresses and

loads they will be subject to and that the integrity of the aircraft is ensured. This is usually done using numerical

techniques in which the continuum is discretized and the governing equations are solved locally for each element.

The discretization is an essential part of the simulation process because these problems are continuous, which

makes it impractical to solve them numerically. The domain is discretized through methods such as the Boundary

Element Method (BEM), Finite Volume Method (FVM), Finite Element Method (FEM) or Spectral Method, among

others. In this work, FEM is used to evaluate the deformation of the lifting surfaces due to the aerodynamic

forces.

The constitutive equation relates stress and strain and it can be written as Hooke’s law for linearly elastic

materials [20], � = D", (2.30)

where � = [�x �y �z �xy �yz �xz]T and " = ["x "y "z 
xy 
yz 
xz]T are the stress and strain

vectors, respectively, and D is the elasticity matrix in sti�ness form. In compliance form, D−1 can be written for

isotropic materials in terms of the six stress and strain terms as [20],

D−1 = 1E
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −� −� 0 0 0−� 1 −� 0 0 0−� −� 1 0 0 00 0 0 2(1 + �) 0 00 0 0 0 2(1 + �) 00 0 0 0 0 2(1 + �)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.31)

where E is Young’s modulus and � is Poisson’s ratio of the material.

FEM’s underlying principle for computing the deformations is that the total potential energy, for a state of

equilibrium, must be stationary for variations of the admissible displacements [20]. To apply this principle, the

partial di�erential equation that governs the physical phenomena must be reformulated in a variational (weak)

form, which is done by multiplying the equation by an arbitrary �eld and integrating over the element. Virtual

work is a weak form of equilibrium equations in which the arbitrary function is a virtual displacement [21]. Its

application, as in the literature [20, 21], results in a linear system that relates the distributed forces F and the

displacements u, Ku = F, (2.32)

where K is the sti�ness matrix.

The equivalent spatial beam used in this work is a combination of truss, torsion and beam elements that

model the behaviour due to axial, torsional and bending loads. Each spatial beam element has three translational

and three rotational DOF for each of its two nodes. It is the result of the superimposition of four elements: one

bar with axial displacements, one torsion element with rotation about its longitudinal axis, and two beams with
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translational and rotational deformation (bending).

Figure 2.8: Spatial beam with 6 DOF per node. Adapted from [4].

The truss element is represented in Fig. 2.9. It has one translational DOF per node for the axial displacement.

Figure 2.9: Truss element with two DOF for axial displacements.

Its sti�ness matrix and displacements vector are given, respectively, by

ka = EAL ⎡⎢⎢⎣ 1 −1−1 1 ⎤⎥⎥⎦ (2.33)

and ua = [u1 u2]T , (2.34)

where A is the element’s cross sectional area, L its length and E is Young’s modulus.

The torsional element, represented in Fig. 2.10, has also one DOF per node, but in this case it is rotational.

Figure 2.10: Torsional element with two DOF.
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The sti�ness matrix and the displacements vector for this element are given by

kt = GJL ⎡⎢⎢⎣ 1 −1−1 1 ⎤⎥⎥⎦ (2.35)

and ut = [�x1 �x2]T , (2.36)

where G is the shear modulus and J is is the polar moment of inertia.

The pure bending element with two translational and two rotational DOF per node is represented in Fig. 2.11

for the bending about the the z axis.

Figure 2.11: Beam element under pure bending with four DOF.

The sti�ness matrix is given by

kb = EIzL3
⎡⎢⎢⎢⎢⎢⎢⎣
12 6L −12 6L6L 4L2 −6L 2L2−12 −6L 12 −6L6L 2L2 −6L 4L2

⎤⎥⎥⎥⎥⎥⎥⎦
, (2.37)

where Iz is the second moment of inertia about the z axis and the displacements vector is de�ned as

ub = [v1 �z1 v2 �z2]T . (2.38)

The complete sti�ness matrix of an element is obtained by superimposing the sti�ness matrices of the indi-

vidual elements, yielding

ke =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X 0 0 0 0 0 −X 0 0 0 0 0Y1 0 0 0 Y2 0 −Y1 0 0 0 Y2Z1 0 −Z2 0 0 0 −Z1 0 −Z2 0S 0 0 0 0 0 −S 0 0Z3 0 0 0 Z2 0 Z4 0Y3 0 −Y2 0 0 0 Y4X 0 0 0 0 0Y1 0 0 0 Y2
Symmetric Z1 0 −Z2 0S 0 0Z3 0Y3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.39)
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, with the displacements vector as

ue = [u1 v1 w1 �x1 �y1 �z1 u2 v2 w2 �x2 �y2 �z2] (2.40)

and

X = AEL Y1 = 12EIzL3 Y2 = 6EIzL2 Y3 = 4EIzL Y4 = 2EIzLS = GIxL Z1 = 12EIyL3 Z2 = 6EIyL2 Z3 = 4EIyL Z4 = 2EIyL .
A matrix like (2.39) is assembled for each spatial beam element in its local frame. Subsequently, it needs to

be converted to a global frame so that the global sti�ness matrix K can be assembled.

Once this is done, the linear system (2.32) can be solved for the displacements, provided that the aerodynamic

loads are known. With nodal displacements, the deformation of the structure under loading can be calculated.

It is also useful to know the stress distribution along the spar. To do so, the stresses on each beam element need

to be calculated, which requires transforming the nodal displacements back into the local frame and applying

the constitutive equation locally. The spar here considered has a circular cross-section.

Axial load �axial = NA = E", "axial = ΔuL ⇒ �axial = EΔuL (2.41)Bending load �bend = MirIi = E", "bend = r Δ�iL ⇒ �bend = Er Δ�iL (2.42)

Torsional load � = TrJ = E", � = TLGJ ⇒ � = Gr �L (2.43)

where � and � represent normal and shear stresses, respectively, the subscript i is the axis y or z and r is the

tube’s radius, the point of maximum stress.

(a) Typical stress vs. strain behaviour. (b) Stress components [22].

Figure 2.12: Strees-strain relation and stress components.

The Von Mises yield criterion, which is a result of distortion energy failure theory [23], is used to evaluate

failure. The criterion states that a structural component is safe as long as the distortion energy per unit volume
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(Ud ) in the material does not exceed the distortion energy that causes yield UY ,

Ud < UY . (2.44)

⇔ 1 + �3E �2VM < 1 + �3E �2Y , (2.45)

where �VM is the Von Mises stress and �Y is the the uniaxial stress yield limit. The Von Mises stress, also referred

to as equivalent stress, is de�ned as the uniaxial tensile stress that would create a distortion energy equal to the

one created by the applied stresses represented in Fig. 2.12(b),

�VM = √12((�x − �y )2 + (�y − �z)2 + (�z − �x )2) + 3(�2xy + �2yz + �2zx ). (2.46)

As seen in Fig. 2.12(a), the yield stress is the limit of the material’s elastic behaviour, therefore, to avoid plastic

deformation, the equivalent stress must be lower than the yield stress. Simplifying Eq. (2.45),

�2VM < �2Y . (2.47)

In this case, normal stresses are being applied on the tube in the axial direction only. Consequently, normal

stresses in the y and z directions are zero, �y = �z = 0, and since there is only torsion about the x axis, �yz =�zx = 0. The Von Mises stress for this tube is thus given by

�VM = √�2x + 3�2xy , (2.48)

where �x is the sum of the axial and bending loads,

�x = �axial + �bend = EΔuL + Er Δ�L , (2.49)

with Δ� being the norm of the rotations about y and z
Δ� = √Δ�2y + Δ�2z (2.50)

The total weight of the spar is calculated by adding the contribution of each element’s weight We ,
We = g�material ∫ dV (2.51)

where �material is the material’s density and g is the gravitational acceleration.

2.5 Propulsion Model

Fuel mass is usually calculated using the Breguet equation [24], which accounts for the lift to drag ratio (L/D),
the proportion of fuel weight to take-o� weight and the speci�c fuel consumption coe�cient.

However, the propulsive system in this work is electric, so mass does not vary during �ight. The Breguet
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equation can be modi�ed for electric propulsion, but it is always written under the assumption that there is

equilibrium of forces, which may be true during cruise but not necessarily when trajectory is being optimized.

One of the main goals of this work is to perform trajectory optimization. To that end, it becomes necessary to

model the propulsive system in a way that thrust is calculated explicitly, as well as the energy spent.

Electric propulsive systems are a common solution for UAV applications because these systems are smaller

and easier to integrate into aircraft of this size. It has other advantages, such as lower noise emissions, useful for

stealth missions, and a much higher e�ciency than that of combustion based systems. However, the low speci�c

energy of state of the art batteries limits electric propulsion’s performance and endurance, making it hard to

meet the requirements of long duration missions and an economically prohibitive solution for civil aviation.

The type of aircraft and mission being optimized in this work, however, have speci�cations that allow the

use of electric propulsion which is a good option when combined with the advantages mentioned above.

2.5.1 Battery

Batteries are a energy storage solution that has been extensively studied and researched with the objective of

reaching metrics that make them a viable alternative to fossil fuels. There are many di�erent types of batteries.

Some are already well matured and widely used in our daily lives, like the Lead-acid (Pb-acid), Lithium-ion (Li-

ion) and Lithium-polymer (Li-Po) batteries, while others are still in research stage but with promising results, as

is the case of Lithium-Air. The typical speci�c energies of di�erent types of batteries is shown in table 2.1.

Table 2.1: Types of batteries and their speci�c energy values [25, 26].
Battery Speci�c energy [Wh/kg]

Pb-acid 35-40
Li-ion 150-250
Li-Po 100-265
Li-O2 500-900
Li-Air 1700

In this work, the energy density of the battery is considered 210 Wh/Kg, a value within the range of Li/ion

and Li-Po batteries. Considering a Li-Air battery for example, could yield unrealistic results for what is possible

today, making it more di�cult to evaluate the impact of the aircraft design and trajectory in the performance.

Simulating the in�uence of other batteries in the performance of an aircraft has its interest, but it is not in the

scope of this work.

The available energy Ebat for the mission is given by

Ebat = embat , (2.52)

where mbat is the battery’s mass and the its speci�c energy e is assumed constant.

The typical discharge curve of a Li-Po battery is represented in Fig. 2.13, where it is shown how the voltage

varies with the discharge capacity for di�erent constant currents.

As can be seen in the �gure, this battery starts at 4.2 V but quickly drops to the nominal voltage (≈ 3.7V - 3.5V),
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Figure 2.13: Typical discharge curve for Li-Po battery for several C-rates [27].

which it maintains for most of the discharge, until it reaches the performance cli� and drops to the cut-o� voltage

of 2.75 V, imposed to protect the battery. Li-Po batteries exhibit this nearly �at discharge, from 5% to 80% of the

cycle. A linear or even higher model of the discharge could be used, but it would increase the complexity of the

overall model due to a component whose behaviour is not the priority of this work. Moreover, the variation of

output is very small in this interval (around 5%), so any gain in precision would be minimal. For these reasons,

the available electric power is assumed constant and superior to the power drawn by the motor.

2.5.2 Motor

Electric motors convert electric energy into mechanical energy and they can be of alternating current (AC)

or direct current (DC). AC motors tend to have higher torque but DC motors have a wider spectrum of optimal

power settings and no e�ciency losses in the DC-AC conversion.

DC motors can be divided in two main types: brushed and brushless. In brushed motors, the wire coils

form an armature that acts as an electromagnet. It is fed electric current, whose direction is reversed through

a mechanical commutator. With the change of current’s direction, the polarity of the armature’s electromagnet

also changes and because there is a stationary magnet around it, the armature rotates. In brushless motors, the

rotor is the permanent magnet and the coils are static. Commutation is done electronically, which is more precise

than with mechanical brushes. Brushless motors have the advantage of being more e�cient than brushed motors,

generating less noise, having longer lifetime and higher power to weight ratio [28].

DC brushless motors can be further divided in in-runners and out-runners. The main di�erence between

them is that the in-runner has the magnets placed on the shaft and the windings on the outer part of the motor,

whereas the out-runner has the magnets turning on the external part of motor, around the stator [28]. The main

advantage of the out-runner are that it has high torque which eliminates the need of a gearbox, thus reducing

the number of moving parts and weight.

The electric motor’s response can be approximated by a �rst order model, represented by the equivalent

circuit in Fig. 2.14.
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Figure 2.14: Equivalent circuit for a DC electric motor [28].

In this model, the shaft torque is assumed to be proportional to the current i,
QM = (i − i0)KQ (2.53)

where i0 is the current under no load, also interpreted as friction current, and KQ is a torque constant, which can

be considered equal to the speed constant Kv ≈ KQ [28].

The rotation rate Ω is related to the electromotive force (EMF), vm , by means of the speed constant

Ω = vmKv (2.54)

and the EMF can be obtained by solving the circuit’s equation, according to Kirchho�’s voltage law

v = vm + iR ⇔ vm = v − iR (2.55)

where R is the motor’s resistance.

Finally, the motor’s loss factor LF can be de�ned as the ratio between the input and output powers

LF = PmPe (2.56)

where Pm is the power on the shaft, given by Pm = QMΩ (2.57)

and Pe is the electric power Pe = vi. (2.58)

The motor can be represented by a �rst order model such as the one just described, but for same reason as in

the battery, a simpler model is used. It is assumed that the electric motor has a constant maximum power of 180

W, and the actual power is controlled by a throttle setting �T , such that

Pm = �T PMax , �T ∈ [0, 1]. (2.59)

The loss factor is given by Eq. (2.56). Although it is usually dependent on the rotation speed and other

parameters intrinsic to the motor, as its resistance R, speed constant Kv and no load current I0, in this work, it

will be assumed constant with a value of 50%.
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2.5.3 Propeller

The mechanical power that the motor transmits to the shaft is converted by the propeller into thrust force. It

is assumed losses in that transmission are negligible. The performance of the propeller is usually described with

Blade Element and Momentum Theory, which is the base of the relation used in this work to compute the thrust.

Pdisk = TV∞ + �2 T( − V∞ + √V 2∞ + 2T�Adisk) (2.60)

A complete description of the theory and derivation of the equation is made in [29]. Pdisk is the power supplied

to the propeller disk, here assumed equal to Pm , T is the thrust, V∞ is the freestream velocity, � is the air density

and Adisk is the disk area of the propeller. The correction factor � accounts for induced-power losses related to

non-uniform in�ow, tip e�ects, and other simpli�cations made in momentum theory [30]. It is assumed � = 1.2,
where the ideal is 1. The disk area is calculated byAdisk = � d24 , where the disk diameter d is 30 cm, corresponding

to a typical propeller diameter for the class of UAV being studied in this work.

2.5.4 Propulsive System

The combination of the models of the propulsion components previously described results in the algorithm

of the propulsive system.

1. The mechanical power, controlled by the throttle setting �T , is calculated through Eq. (2.59).

2. This mechanical power and air speed are inputs to Eq. (2.60), from which thrust is explicitly calculated

using the Newton-Raphson method.

3. The electrical power is obtained from the loss factor relation (2.56).

4. It is then used to calculate the electrical energy spent Ee
Ee = ∫ Pedt. (2.61)

which is limited by the energy of the battery

Ee ≤ Ebat = mbate. (2.62)

2.6 Aircraft Design and Control

The optimization of the aircraft’s design can be performed with the objective of minimizing the electrical

energy spent Ee . The trimming design variables are the angle of attack � and the angle of the horizontal stabilator�t . The geometric variables of the wing and tail are the angles of sweep Λw , Λt and dihedral ℸw , ℸt , the span bw ,bt , and the chord distributions c(y)w , c(y)t . The wing also has a twist distribution design variable �(y)w . The

structural design variables are the spar thickness distributions t(y)w and t(y)t . Finally, the propulsion variable is

the throttle setting �T .
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This optimization is performed on a �ight segment with prescribed constant parameters (air density, speed,

etc). It is assumed that there is equilibrium of forces and moments, therefore three equilibrium constraints are

imposed so that equations (2.9a), (2.9b) and (2.12) are equal to zero. One energy constraint ensures that the total

energy consumed does not exceed the battery capacity (Eq. (2.62)). One aerodynamic constraint is imposed on

each panel so that the lift on every 2D section does not exceed the maximum, thus limiting angles of attack that

would lead to stalling conditions and unrealistic results. Two structural constraints are imposed to prevent failure

of the wing and tail’s spars, which is achieved through the Von Mises yield criterion

Failure = �VM − �YFoS < 0, (2.63)

where FoS is the factor of safety. Additionally, there are two geometric constraints, one for each spar, to prevent

material intersection, which is achieved by enforcing

I ntersect = t(y) − r(y) < 0, (2.64)

where r(y) is the radius of the spar at the spanwise position y .

This optimization problem can be then formulated in standard form as

Minimize Eew.r.t. �T , �, �t , �(y)w , Λw , Λt , ℸw , ℸt ,bw , bt , c(y)w , c(y)t , t(y)w , t(y)tsubject toequilibrium constraints ∑Fx = 0, ∑Fz = 0, Cmy = 0energy constraint Espent ≤ Ebat (2.65)aerodynamic constraints Clw < ClwmaxClt < Cltmaxstructural constraints Failurew < 0Failuret < 0geometric constraints Intersectw < 0Intersectt < 0.
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2.7 Aircraft Performance and Operating Point

The problem formulated in Sec. 2.6 is written for a single �ight stage (one optimization point), but can be

generalized for any number of stages (multipoint). This requires identifying and separating variables that change

during �ight stages (local) from those that are kept constant (global).

For example, if the mission is considered to have a climb phase and cruise, two input values for airspeed and

air density are required, and the stabilator angle, a local design variable, would be a design vector of size 2. The

spar thickness, on the other hand, is a design variable constant throughout �ight stages, so its size would remain

the same. The di�erence between a global and a local design variable is that the former has its optimal value

calculated accounting for both stages, whereas the latter has an optimal value for each.

This can be extrapolated for as many �ight segments as desired. If the number of stages is su�ciently large,

complex trajectories can be considered in the aircraft design while maintaining a simple and linear model. This

principle is applied when optimizing the trajectory, which is discretized by several segments. Figure 2.15 depicts

a multipoint for a generic trajectory, with a vector of some local variables and another with global ones.

The aircraft performance is measured primarily by the value of the objective of optimization. In the case of

energy spent, it is done with the results (2.61) and (2.62) from Sec. 2.5.4. Additionally, the total and propulsive

e�ciency coe�cients can be used. The former is de�ned as the ratio of the potential and kinetic energy to the

electrical energy consumed �total = mgz + 0.5mV 2∞∫ Pedt (2.66)

and the latter is de�ned as �prop = TV∞Pm . (2.67)

Figure 2.15: Multipoint optimization for generic trajectory with local variables (�, �t , �T ) and global variables
(�(y)w , Λw , Λt , ℸw , ℸt , bw , bt , c(y)w , c(y)t , t(y)w , t(y)t )
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Chapter 3

Trajectory Optimization

This chapter starts by presenting the formulation of an optimal control problem, followed by the example of

a one dimensional trajectory problem, which is later used to demonstrate and compare the di�erences of direct

shooting and collocation methods of transcription. Lastly, the trajectory optimization problem is formulated.

3.1 Trajectory Optimal Control

In an optimization problem, the aim is to �nd the feasible inputs to the system that will optimize a chosen

parameter. When the inputs are the control variables that will determine the state of the system, it is called

an optimal control problem (OCP). A more speci�c problem is when the state is the position and velocity that

compose the trajectory that leads to the optimal solution. In this case, it is a trajectory optimization problem.

Let us take the example of the one dimensional displacement of an unitary point mass, represented in Fig.

3.1. It is initially at rest, positioned at x0 and the objective is to arrive at an arbitrary �nal position xf with zero

velocity (ẋ = 0) in the least amount of time. Hence, the objective variable is the elapsed time tf and this is a

minimization problem.

The state of the system at any given time can be described by the position x(t) and velocity ẋ(t) of the mass,

which are the variables that compose the state vector s. The initial velocity is zero, so the only way the mass

will move from x0 to xf is if a force F is applied. The sequence of the force values chosen as a function of time

is responsible for changing the state, and therefore must be chosen so that the trajectory minimizes the elapsed

time. Hence, the force F is the control u.

The restrictions of this problem are the �nal position and speed, as well as the interval of allowable speed

and force values. These would be the state and control constraints that must be obeyed when searching for the

optimal control and trajectory.

Figure 3.1: Bang bang control problem.
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In a more general way, a system can be de�ned by the state s(t), the control u(t), the time t ∈ [t0, tf ] and any

eventual time independent parameters p. The parameter of optimization J , called objective variable or functional,

is dependent on these variables and can be written as a function of a boundary objective term and/or an integral

along the entire trajectory. A problem with both terms is said to be in Bolza form, a problem only with the

boundary term is in Mayer form and a problem only with the integral term is in Lagrangian form [31, 32].

A trajectory optimization problem can be posed in Bolza form, to minimize the objective function J ,
J = Φ(s(t0), t0, s(tf ), tf , p) + ∫ tft0 (s(t), u(t), t0, tf , p)dt (3.1a)

with respect to the design variables, s(t), u(t), t , p (3.1b)

and subject to the dynamics of the system, de�ned by a set of ordinary di�erential equations, also referred to as

state equations, ṡ(t) = f (s(t), u(t), t , p). (3.1c)

The problem is also subject the initial and terminal conditions, the boundary constraints,

�min ≤ �(s(t0), t0, s(tf ), tf , p) ≤ �max . (3.1d)

Additionally, the path constraints must be satis�ed,

 min ≤  (s(t), u(t), t , p) ≤  max , (3.1e)

as well as the bounds on state variables, slow ≤ s(t) ≤ sup (3.1f)

and control variables, ulow ≤ u(t) ≤ uup . (3.1g)

The dynamics of the system are described by a set of di�erential equations (3.1c), which can be seen as

dynamic constraints. Additionally, there are path constraints that enforce restrictions on the trajectory and

boundary constraints that de�ne the values of initial and �nal states.

The dimension and complexity of the problem would have to be very small for it to be solved analytically,

so numerical methods are used. Figure 3.2 presents a diagram adapted from Mir et al. [33], with optimal control

problem solving techniques that will be discussed next.

Numerical methods for solving optimal control problems are divided into three major methods: dynamic

programming, indirect methods and direct methods.

Dynamic programming relies on the Bellman optimality principle, which states that if a given state-action

sequence is optimal, and the �rst state and action were to be removed, the remaining sequence is also optimal

and the second state of the original sequence would now be the initial state [34]. Dynamic programming deter-

mines both the necessary and su�cient conditions of optimality through the Hamilton-Jacobi-Bellman partial
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Figure 3.2: Numerical techniques for solving optimal control problems [33].

di�erential equation. Its major drawback is "the curse of dimensionality", as Bellman [35] called it, which makes

achieving an acceptable accuracy only possible for small sized problems.

Table 3.1: Numerical methods and their major optimal control components [36].
Indirect Methods

Systems of Nonlinear Equations
Di�erential Equations

and
Integration of Functions

Nonlinear Optimization

Direct Methods

Regarding indirect and direct methods, Rao [36] explains that a well founded optimal control problem has

two of three major components at its core (Tab. 3.1). Solving di�erential equations and integrating functions is

required for both methods. The indirect methods make use of these solutions and couple them with the solu-

tion of a system of nonlinear equations, whereas direct methods combine it with the solution of the nonlinear

optimization.

3.2 Indirect Methods

In indirect methods, the control and state must ful�l a set of conditions to become an extremal, i.e. a candidate

for optimal solution. Those conditions are called necessary conditions of optimality and are obtained from the

calculus of variations and Pontryagin’s minimum principle. A brief review of this class of methods is done, but

for more mathematical detail, theorems enunciation and proof refer to Böhme and Frank [37] and Kirk [38].

For a problem that can be stated in a similar way as in Eq. (3.1), with the objective of minimizing a functionalJ (x) by �nding the optimal trajectory x∗, it can be said that one particular trajectory x minimizes the functionalJ (x) when all the neighbouring trajectories x + �x yield a larger functional value. In other words, for x∗ to be a

27



minimum of J , the variation �J , must be zero,

�J (x) = lim�→0 J (x + ��x) − J (x)� = dd� J (x + ��x)|||�=0. (3.2)

This is the basic principle of the calculus of variations used in the derivation of the necessary conditions of

optimality. To exemplify the derivation of the �rst order necessary conditions, let us consider a problem similar

to that stated in Eq. (3.1) with no static parameters. The �rst step of the derivation is to write the Lagrangian of

the objective function. To do so, the di�erential equation, the path and boundary constraints are appended to the

objective functional and multiplied by the costates vector, � and the Lagrange multipliers, � and � , respectively,

J = Φ(x(t0), x(tf )) + ∫ tft0 (x(t), u(t), t , p)dt + �T0 �(x(t0), t0) + �Tf �(x(tf ), tf ) + �TC(x(t), u(t), t)+
+ ∫ tft0 (�T (t)f (x(t), u(t)) − �T (t)ẋ(t))dt. (3.3)

Then, the term with ẋ is integrated by parts, leading to

J = Φ(x(t0), x(tf )) + ∫ tft0 (x(t), u(t), t)dt + �T0 �(x(t0), t0) + �Tf �(x(tf ), tf ) + �TC(x(t), u(t), t)−
− �T (tf )x(tf ) + �T (t0)x(t0) + ∫ tft0 (�T (t)f (x(t), u(t)) − �̇T (t)x(t))dt. (3.4)

The necessary conditions are usually expressed using the Hamiltonian, which is de�ned as

(x, u,�, t) = (x(t), u(t), t) + �T (t)f (x(t), u(t)) − �TC(x(t), u(t), t). (3.5)

Having this augmented functional and the Hamiltonian de�ned, the application of the principle from Eq. (3.2)

to Eq. (3.4), with respect to �x , �u and ��, should result in the vanishing of all terms for a stationary point to be

found. This is valid under the variational assumption that the control is unbounded, because when it is bounded

by an admissible control set  , the variation w.r.t �u is not required to be zero to be a minimum [37]. In this

case, the necessary conditions are ẋ∗(t) = ))� (x∗, u∗,�, t), (3.6a)

�̇(t) = −))x (x∗, u∗,�, t), (3.6b)

u∗(t) = arg minu(t)∈ (x∗, u∗,�, t), (3.6c)

�(t0) = − )Φ)x(t0) + �T )�)x(t0) , �(tf ) = )Φ)x(tf ) − �T )�)x(tf ) , (3.6d)

and

(t0) = )Φ)t0 − �T )�)t0 , (tf ) = − )Φ)tf + �T )�)tf . (3.6e)
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Applying these conditions to an optimal control problem results in multi-point boundary value problems.

These problems can be solved through indirect shooting or multiple shooting methods and indirect collocation

methods.

Indirect methods are highly accurate but their applicability is limited because they require analytical deriva-

tion of the �rst order necessary conditions for each new problem [37].

3.3 Direct Methods

Direct methods are less accurate than indirect methods. However, they can deal with large systems, are more

robust, �exible and not as di�cult to construct and solve, because they do not require the analytical derivation

of the necessary conditions [37].

While indirect methods reduce the optimal control problem to a boundary value problem, direct methods

reduce it to a nonlinear programming (NLP) problem. NLP is the name given to a problem when the objective

function is nonlinear and/or the feasible region is determined by nonlinear constraints.

The �rst step for obtaining the NLP is transcription. Direct transcription refers to the transformation of the

in�nite dimensional continuous part of the OCP into a �nite dimensional NLP [37], which is done through the

parameterization of the state and/or control. As ilustrated in Fig. 3.3, direct single shooting and direct multiple

shooting are the methods used for control parameterization, and direct collocation is the method used for state

and control parameterization.

Figure 3.3: Types of direct transcriptions. Adapted from [37].

3.3.1 Direct Shooting

In direct shooting methods, time is �rst broken into N intervals, such that ℎi = ti+1 − ti , (i = 0, … , N − 1) and

control is discretized. Then, the dynamics di�erential equation is integrated sequentially over each time step to

obtain the state si+1. The integration at time step ℎi can be performed using current or previous information

about the solution, so shooting methods employ a time marching approach [36]. Having integrated over every

time step, the last state constraint is evaluated and if it is violated or the solution is not optimal, the control vector

is updated.

Using the example of the one dimensional trajectory of a point mass, the elapsed time was the minimization

objective, with respect to the control variable F , subject to a �nal position x(tf ) = xf , �nal velocity ẋ = 0, state
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and control bounds. The resultant NLP can be stated as in (3.7), where all units are SI.

Minimize tfw.r.t F , t0, tfsubject toboundary constraints x(0) = 0, ẋ(0) = 0, x(tf ) = 300, ẋ(tf ) = 0 (3.7)state bounds −200 ≤ ẋ ≤ 200,control bounds −2 ≤ F ≤ 1
In this example, time was broken into N = 30 subintervals and the control F (t) was discretized into a vector

of size N = 30 with initial guess for all entries equal to the upper bound.

Due to the nature of the shooting methods, the NLP has no explicit dynamic constraint, which does not mean

the dynamics will not be satis�ed. It means that the optimizer will not take that constraint explicitly into account

when performing the optimization, even though it will eventually be satis�ed through sequential integration. The

dynamics of the system can be described in matrix form as

⎡⎢⎢⎣ẋ̈x
⎤⎥⎥⎦ =

⎡⎢⎢⎣0 10 0⎤⎥⎥⎦
⎡⎢⎢⎣ẋx
⎤⎥⎥⎦ +

⎡⎢⎢⎣01
⎤⎥⎥⎦ F . (3.8)

The second equation of the system establishes the relationship between control and acceleration. Because

control is the force, this is Newton’s second law, F = ma with mass m = 1Kg. The integration of this equation

over a time interval ℎi = ti+1 − ti is given by

∫ ℎi0 ẍdt = ∫ ℎi0 Fdt (3.9)

and its solution was obtained using forward Euler scheme,

ẋi+1 − ẋi = ℎiFi . (3.10)

From Eq. (3.10) results a velocity variation Δẋ that is then used to compute the state si+1 as

ẋi+1 = ẋi + Δẋ (3.11a)

xi+1 = xi + Δẋℎi (3.11b)

Figure 3.4 shows the optimization evolution to the 35th and last iteration, where it can be seen that the forceF (t) and �nal time tf were chosen and corrected at the end of each iteration until an optimal solution was found.

Shooting methods have the advantage that the problem can be posed in terms of a small number of variables,

since the state is not parameterized. The total number of variables is given by the sum of control and state

parameterized variables times the number of grid points: n = (ns + nc )N . In this case, there is only one control

and 30 grid points plus one time variable, making it a total of n = 31 variables. Additionally, there are 63

constraints, 4 for boundaries, 29 bounds for velocity and 30 for control.
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Figure 3.4: Results evolution with iterations of the 1D trajectory optimization problem solved through direct
single shooting method.

As Betts [32] pointed out, shooting methods face some di�culties associated to the sensitivity of the variables.

Because the state is integrated sequentially, the error of integration and the changes made early in the trajectory

will propagate to the end of it. This leads the constraints to behave very nonlinearly with respect to variables

and, as a consequence, makes the optimization problem di�cult to solve.

3.3.2 Direct Collocation

Direct collocation is a state and control parameterization method and can be divided in local and global

collocation. The main di�erence is that in local, the time domain is divided in segments where the state is

approximated by piecewise polynomials, while the latter uses a global polynomial for the entire time interval.

In local collocation, the number of collocation points in a given subinterval is �xed and the number of subin-

tervals is varied [39]. So time is broken into N subintervals,

ℎi = ti+1 − ti , (i = 0, … , N − 1) (3.12)

and the dynamics of the system, ruled by the di�erential equations,

ṡ(t) = f (s(t), u(t)), (3.13)

are not integrated sequentially to obtain the state si+1, like in shooting methods. Instead, it functions as a defect
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constraint, � = ṡ(t) − f (s(t), u(t)) = 0, (3.14)

imposed on each collocation point to ensure consistency between state and control values throughout the tra-

jectory. Equation (3.14) can be discretized using Runge-Kutta or orthogonal methods.

Pseudospectral (or global orthogonal) collocation methods are a class where the parameterization of the state

and control is done using global polynomials. The di�erential equations are also collocated at the collocation

points, which in this case are the roots of an orthogonal polynomial (or linear combinations of such polynomi-

als and their derivatives), usually Legendre or Chebyshev polynomials. Legendre-Gauss (LG), Legendre-Gauss-

Radau (LGR) and Legendre-Gauss-Lobatto (LGL) are examples of commonly used sets of collocation points ob-

tained from the roots of a Legendre polynomial and/or linear combinations of a Legendre polynomial and its

derivatives. The di�erence between them is that LG includes neither of the endpoints, wheres LGR includes one

of the endpoints, and LGL includes both of the endpoints [40].

One advantage to pseudospectral methods is that for smooth problems, they typically have faster convergence

rates than other methods and exhibit spectral accuracy. However, because they employ global polynomials, they

lack the local support that local collocation methods provide, i.e., the discretization points are placed so that they

support the local behavior of the dynamics [39].

Compared to shooting methods, collocation has the advantage that the computationally expensive numerical

integration of the di�erential equations can be avoided [41]. Since it does not integrate sequentially, the integra-

tion errors are not propagated and it is less sensitive to initial conditions. The resultant NLP is usually larger for

collocation methods, but it is sparse and it can be e�ciently solved with appropriate solvers.

For the point mass example, time was broken into N = 30 intervals, control F (t) and state variables x(t), ẋ(t)
were discretized into vectors of size N and N + 1, respectively. The resultant NLP is written as

Minimize tfw.r.t F , x, ẋ, tfsubject tocollocation constraints � = 0 (3.15)boundary constraints x(0) = 0, ẋ(0) = 0, x(tf ) = 300, ẋ(tf ) = 0state bounds −200 ≤ ẋ ≤ 200control bounds −2 ≤ F ≤ 1.
The vector values of control, position and velocity are all chosen at the beginning of each iteration and

updated based on the optimality conditions inherent to the algorithm in use. Regardless of the algorithm, all

constraints must be obeyed, including the additional defect constraints (3.16), (3.17), here discretized using the

forward Euler numerical scheme,

�1 = ẍ − F = 0 ⇔ ẋi+1 − ẋi − ℎiFi = 0 (3.16)

�2 = xi+1 − xi − ℎi ẋi = 0. (3.17)
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Figure 3.5 shows the optimal solution and the evolution of the optimization through iterations.

Figure 3.5: Results evolution with iterations of the 1D trajectory optimization problem solved through direct
collocation method.

Using this collocation method with the same grid size, the number of variables is the triple of the shooting

method and the constraints almost double. The number of variables is 93: 1 for time, 30 for control and 31 for

position and velocity each. The total number of constraints is 123: 4 boundaries, 29 and 30 bounds for velocity

and control, respectively, and the additional 60 defect constraints.

The most noticeable di�erence in the results of shooting and collocation methods is that, in the latter, the

boundary conditions are always satis�ed. This is because in shooting, the �nal state is dependent on values from

the beginning of the trajectory, which might not be correct or optimal, whereas in collocation, the �nal state is

a also design variable and as such, it is accessible to the optimizer, which can immediately choose a value that

satis�es the boundary constraints.

Collocation has the advantage of avoiding sequential integration. As a result, errors are not propagated and

computational costs are reduced. However, that is done by adding design variables and constraints, thus giving up

the simpler NLP and low number of variables of shooting methods. This may lead to more function evaluations,

more gradients to be computed and a signi�cant increase in memory needed for storing the Hessian matrix [37].
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3.4 Trajectory Design and Control

One of the objectives of this work is to perform trajectory optimization of 2D �ight. This is done using a

collocation method, in which the dynamics are represented by the equations of motion in the Earth frame, (2.7a)

and (2.7b), and are discretized with forward Euler method, yielding the following collocation constraints

�Fx = ∑FxE − mẍ = 0 ⇔ ∑FxE ,i − m ẋi+1 − ẋiΔt = 0 (3.18)

�Fz = ∑F zE − mz̈ = 0 ⇔ ∑FzE ,i − m żi+1 − żiΔt = 0 (3.19)

�x = ẋi − xi+1 − xiΔt = 0 (3.20)

�z = żi − zi+1 − ziΔt = 0. (3.21)

The collocation method was chosen for the advantages mentioned in Sec. 3.3.2 and because of its easier

integration into the OpenAeroStruct framework, as will be explained in Sec. 4.6.

The design variables of this problem are the trajectory variables x, ẋ , z, ż, �ight time tf and the throttle control�T . The optimization is performed with a �xed aircraft con�guration, with exception of the stabilator angle �t ,
which is necessary to trim the aircraft, together with the angle of attack � .

Besides the collocation constraints, are imposed: one equilibrium constraint to force the moments to zero, one

energy constraint to guarantee the consumed energy is less or equal to the battery’s, one aerodynamic constraint

on each panel to limit the lift coe�cient on 2D sections and one structural constraint to ensure the integrity of

each spar. The resultant NLP is given by

Minimize Eew.r.t. x, ẋ , z, ż, �, �t , �T , tfsubject tocollocation constraints �Fx = 0, �Fz = 0, �x = 0, �z = 0equilibrium constraint Cmy = 0energy constraint Espent ≤ Ebat (3.22)aerodynamic constraints Clw < ClwmaxClt < Cltmaxstructural constraints Failurew < 0Failuret < 0.
In this case, the aircraft con�guration is �xed, so there are no global design variables. Figure 3.6 depicts

a multipoint trajectory with sets of local variables that intend to represent the discretization of the control,

trimming and trajectory variables.
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Figure 3.6: Multipoint trajectory with local variables (x, ẋ , z, ż, �, �t , �T )
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Chapter 4

Coupled Design Framework

This chapter starts with the formulation of the coupled problem. Afterwards, an overview of Multidisci-

plinary Design Analysis and Optimization is made, where it is described how disciplines are coupled, solved and

implemented in an optimization architecture. This is followed by a brief survey of optimization methods and

�nally, the implemented framework is presented and discussed.

4.1 Problem Statement

The coupled Design and Trajectory problem (DTP) can be de�ned by the following NLP

Minimize Eew.r.t. x, ẋ , z, ż, tf , �T ,�, �t , �(y)w , Λw , Λt , ℸw , ℸt ,bw , bt , c(y)w , c(y)t , t(y)w , t(y)tsubject tocollocation constraints �Fx = 0, �Fz = 0, �x = 0, �z = 0equilibrium constraint Cmy = 0 (4.1)energy constraint Espent ≤ Ebataerodynamic constraints Clw < ClwmaxClt < Cltmaxstructural constraints Failurew < 0Failuret < 0geometric constraints Intersectw < 0Intersectt < 0.
The isolated Design and Trajectory problems, (DP) and (TP) respectively, are multidisciplinary problems

by themselves. In the former, the aircraft design is done through aerodynamic and structural variables for a
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prescribed trajectory. In the latter, the trajectory is designed and the aircraft con�guration is �xed. However,

aerodynamic and structural constraints have to be satis�ed during the entire �ight and the aerostructural system

is solved to obtain the forces necessary for the equations of motion. So both isolated problems already contain

one another, in some way. Merging them means that they are optimized simultaneously. Figure 4.1 depicts a

multipoint coupled problem, where local variables are discretized and geometric variables are global and constant

throughout the �ight.

Figure 4.1: Multipoint trajectory with global variables (�(y)w , Λw , Λt , ℸw , ℸt , bw , bt , c(y)w , c(y)t , t(y)w , t(y)t ) and
local variables (x, ẋ , z, ż, �, �t , �T )

4.2 Multidisciplinary Analysis

Solving an optimization problem that involves multiple disciplines requires a careful consideration on how

they are related and interact with each other. To understand this and how the system behaves for a set of design

variables, Multidisciplinary Analysis (MDA) is performed. Its purpose is to �nd a solution that satis�es the

systems of equations that represent the multidisciplinary system, which comprises the repeated evaluation of

the target and response states until they are equal. When that happens, it is said the MDA has converged.

There are several methods to solve the coupled system and they can be grouped in two main categories:

�xed-point and Newton approaches. Fixed-point solves one analysis individually while the others remain �xed.

On the other hand, Newton approaches solve the coupled system by processing all analysis simultaneously.

Jacobi method [42] is one example of an iterative �xed-point approach. It solves each of the n equations of a

linear system Ax = b with the outputs from the previous iteration. That is, the new xk values are obtained with

information solely from the previous iteration xk−1,
a11xk1 + a12xk−12 + … + a1nxk−1n = b1
a21xk−11 + a22xk2 + … + a2nxk−1n = b2 (4.2)

⋮ ⋮ ⋱ ⋮ ⋮
an1xk−11 + an2xk−12 + … + annxkn = bn ,

which can be generalized as x (k)i = bi − ∑j≠i aijxk−1jaii (4.3)
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or in matrix form xk = D−1(b − (L + U )xk−1), (4.4)

where D, L and U are the diagonal, lower and upper triangular parts of matrix A, respectively. Because only

information from previous iteration is used, it is possible to run the analysis in parallel, as shown in Fig. 4.2(a).

(a) Jacobi approach [43]. (b) Gauss-Seidel approach [43].

Figure 4.2: Two MDA �xed-point methods.

Gauss-Seidel [42] is another �xed-point approach. It di�ers from the Jacobi in that each analysis is run using

the most recent outputs from other analysis, as they become available. This is possible because analyses are run

in series, as seen in Fig. 4.2(b). As a result, the ith equation of the system Ax = b can be solved for xki using the

newly calculated xkm , (m < i), a11xk1 + a12xk−12 + … + a1nxk−1n = b1a21xk1 + a22xk2 + … + a2nxk−1n = b2 (4.5)

⋮ ⋮ ⋱ ⋮ ⋮
an1xk1 + an2xk2 + … + annxkn = bn .

⇔ x (k)i = bi − ∑j≤i aijxkj − ∑j>i aijxk−1jaii (4.6)

and in matrix form (L + D)xk + Uxk−1 = b (4.7)

⇔ xk = (L + D)−1(b − Uxk−1) (4.8)

where D, L and U are the diagonal, lower and upper triangular parts of matrix A.

Both Jacobi and Gauss-Seidel methods converge linearly when applied to linear systems, with Gauss-Seidel’s

convergence rate being twice as fast as Jacobi’s [42]. Newton’s method [44] converges quadratically when close

enough to the solution, but in some situations it might not converge as well or not at all.

Chauhan et al. [45] compare coupled Newton (CN) and nonlinear block Gauss-Seidel (NLBGS) with Aitken’s

relaxation for a scalable problem with tunable total number of variables, degree of nonlinearity, coupling strength,

and sparsity structure. They found that assembly time of the linear systems involved, linear solver e�ciency,

and strength of coupling play a major role in determining which approach is more e�cient, not reaching a �nal

conclusion on which is faster.
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It is hard to choose the most e�cient approach a priori. To address this problem, Chauhan et al. [46] propose

a heuristic algorithm that switches between NLBGS and CN approaches using convergence rate information and

iteration timings.

Figure 4.3: Comparison of solvers for the solutions of the coupled aerostructural system for level �ight (1 g) and
a pull-up maneuver (2.5 g) [4].

Coupling strength is a factor of great importance in MDA. In the aerostructural problem, it increases with load

factor and with the decrease of spar thickness. Figure 4.3 shows a comparison of solvers for the aerostructural

problem at several spar thickness values and two load factors. It can be seen that the strongly coupled problems

take longer to converge for all solvers, with exception of NLBGS without Aitken’s relaxation, which does not

converge at all. Newton approaches converge always but take longer than NLBGS with Aitken’s relaxation.

Therefore, NLBGS with Aitken’s relaxation is the solver used in this work.

4.3 Multidisciplinary Design Optimization

Multidisciplinary design optimization (MDO) refers to the use of numerical optimization for the design of sys-

tems that involve several disciplines or subsystems. In order to �nd the optimal design, it is necessary to carefully

consider how the MDO is implemented. That is, how the discipline-analysis models are organized, algorithms of

optimization and the problem formulation. This combination of problem formulation and organizational strategy

is referred to as MDO architecture [47].

The two main types of architectures are monolithic and distributed. In a monolithic approach, a single opti-

mization problem is solved, whereas in a distributed approach, the same problem is split into smaller subproblems.

Martins and Lambe [47] present an extensive survey on all known MDO architectures in a uni�ed notation, which

enables comparisons between architectures and provides a good understanding on how some architectures are

derived from others.

In this work, a variation of Multidisciplinary Feasible (MDF) architecture is implemented. Figure 4.4 depicts

the extended design structure matrix (XDSM) [48] of the typical MDF architecture. MDF [49] is one of the most

traditional and widely used MDO approaches. It is monolithic, so it consists in solving a single optimization

problem in which the MDA module (Gauss-Seidel, in this example) takes in the design variables from the op-

timizer and iterates over the discipline analyses until the coupling variables have converged. Then, design and
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coupling variables are used to compute the values of objective and constraint functions. Because the MDA is

converged at each design point, MDF ensures that each optimization iteration is multidisciplinary feasible. This

is desirable, because if the optimization is terminated prematurely, there is a physically realizable design point

[50]. This does not mean, however, that design constraints are necessarily satis�ed, as this depends on whether

the optimization algorithm maintains a feasible design point [47].

Figure 4.4: XDSM of MDF architecture with a Gauss–Seidel MDA [47].

4.4 Optimization Algorithms

The complexity of the optimization problem depends on the number of variables that compose the system,

whether it can be described through continuous or discrete functions, whether it is linear or non-linear, among

other factors. Based on the complexity of the problem and its characteristics, some optimization methods might

be more suitable than others. For example, in a problem with continuous di�erentiable functionals, gradient-

based methods deliver a solution e�ciently, whereas, for discrete functions, gradient-free or heuristic methods

are a better alternative. Figure 4.5 shows some optimization methods.

Deterministic and heuristic methods di�er in the level of randomness. Deterministic algorithms are built

upon mathematical models that make them rigid, meaning that for the same set of conditions they will not only

produce the same results, but the path taken towards the optimal solution will be the same every time. On

the other hand, heuristic methods will not necessarily follow the same path towards the solution due to the

randomness factor they have into account.

Gradient based algorithms are widely used for solving a variety of optimization problems in engineering be-

cause of its e�ciency in terms of the number of function evaluations required to �nd the optimum and the ability

to solve problems with large number of design variables [51]. This and the fact that trajectory optimization prob-

lems are described by continuous functionals is why gradient based methods are commonly used in trajectory

optimization. They typically obtain the optimum in a two-step process that comprises �nding a suitable search

direction dk and a step size �k that minimizes the solution vector xk at iteration k along that direction,xk+1 < xk + �kdk , , (4.9)

which is done through �rst and sometimes second order derivatives information.
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Figure 4.5: Optimization methods. Adapted from [43].

Unconstrained Optimization

In unconstrained gradient based optimization, there are no restrictions on the values design variables can

assume, so search direction and the step size can be chosen freely. The general optimality conditions can be

derived from the Taylor series expansion of f about the current design point xk , with g ≡ ∇f and H ≡ ∇2f ,

f (xk + qk ) ≈ f (xk ) + qTk gk + 12qTk Hkqk . (4.10)

For xk to be a local minimum, f (xk + qk ) ≥ f (xk ) must be true for any vector qk , which is equivalent tof (xk + qk ) − f (xk ) ≥ 0. For xk to be a stationary point, every component of the gradient vector g(xk ) must be zero

and the sign of the eigenvalues of the Hessian matrix H is what will determine whether xk is a saddle point or

a local minimum. If the eigenvalues are positive or zero, H is positive semi-de�nite and xk is a local minimum.

If all eigenvalues are strictly positive, then H is positive de�nite and xk is a strong local minimum. If the sign of

the eigenvalues is mixed, then xk is a saddle point.

Methods di�er in how much information they use to compute the search direction and to evaluate whether

a design point is optimal. An example of a �rst order method is Steepest Descent. It relies on the basic principle

that the gradient vector at one point gives the direction of a function’s maximum rate of increase at that point,

and the rate of increase is given by the norm. First, the gradient, the normalized search direction and the step

length are computed, then the convergence conditions are evaluated,

|g(xk )| ≤ �g (4.11)

|f (xk+1) − f (xk )| ≤ �f (4.12)

where � are arbitrary tolerances. If they are satis�ed for two successive iterations, the optimization stops.

An example of a second order method is Newton’s method. The function is approximated by the second order
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Taylor series expansion, as in Eq. (4.10), and then it is di�erentiated with respect to qk and set to zero, which

yields gk + Hkqk = 0. (4.13)

Solving Eq. (4.13) automatically gives the search direction dk = qk since the step size in the Newton’s method is� = 1. It may have some convergence problems if f is nonlinear or poorly approximated by a quadratic model.

Constrained Optimization

Engineering problems are almost always limited in some way, be it the maximum power output of an engine

or the maximum stress a structure can withstand. Constrained optimization is often nonlinear, either because of

variables or the constraints themselves are nonlinear. As seen before, NLP problems can be posed as

Minimize f (x)w.r.t x (4.14)subject to gi(x) ≤ 0, (i = 1, … , l)ℎj (x) = 0, (j = 1, … ,m).
The necessary optimality conditions for nonlinear constrained problems are given by the Karush-Kuhn-

Tucker (KKT) conditions [52]. Considering �rst just equality constraints, for a point to be stationary, the total

di�erential of f (x) must be zero, df = ∇f T dx = 0, (4.15)

and for it to be feasible,

dℎj = ∇ℎTj dx = 0, (j = 1, … ,m). (4.16)

If both are zero, each constraint variation can be multiplied by the scalar vector �j , called Lagrange multiplier,

and added to the objective function variation.

)f)xk + l∑j=1 �j )ℎj)xk = 0, (k = 1, … , n). (4.17)

De�ning the Lagrangian function as

(x, �) = f (x) + �Th(x), (4.18)

Eq. (4.17) is its derivative with respect to x and the optimality conditions can be expressed in terms of the

Lagrangian as

))xk = )f)xk + l∑j=1 �j )ℎj)xk = 0, (k = 1, … , n), (4.19a)

))�j = ℎj (x) = 0, (j = 1, … ,m). (4.19b)
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The problem originally with n variables and m constraints is transformed into an unconstrained one withn + m variables and can be solved by looking for the stationary points of the Lagrangian function. Another way

of looking at the optimality condition (4.19a) is that at the solution, there is a scalar �∗ that makes ∇ℎ(x∗) and∇f (x∗) parallel ∇f (x∗) = −�∗∇ℎ(x∗). (4.20)

If there is a vector d which ensures feasibility ∇ℎTj (xk )d = 0 and that the direction of optimization is a descent

one ∇f T (xk )d < 0, a solution is optimal only if neither has room for improvement, which happens when they are

parallel.

The same logic can be applied to inequality constraints. In this case, beside the descent direction, there is a

feasible one ∇gTi (xk )d < 0 for each active constraint gi(xk ) = 0. If x∗ lies within the region delimited by g(x) ≤ 0,
there are no active constraints and the necessary optimality condition is the same as in unconstrained problems∇f (x∗) = 0. If some constraints are active, then it is necessary that there is no vector d at the point x∗ whose

direction is both descent and feasible. This yields a result similar to Eq. (4.20), in this case with the Lagrange

multiplier �,

−∇f = ∑�i∇gi (�i ≥ 0). (4.21)

A scalar �i ≥ 0 is also assigned for inactive constraints and the condition �igi = 0 is imposed.

The necessary optimality conditions for a problem like (4.14) are given by

Optimality ∇x = 0 ⇒ ))xk = )f)xk + m∑i=1 �i )gi)xk + l∑j=1 �j )ℎj)xk = 0 (k = 1, … , n) (4.22a)

Non negativity �i ≥ 0 (i = 1, … , l) (4.22b)Complementary slackness �igi = 0 (i = 1, … , l) (4.22c)Feasibility gi ≤ 0 (i = 1, … , l) (4.22d)∇� = 0 ⇒ ))�j = ℎj (x) = 0 (j = 1, … ,m) (4.22e)

Conditions (4.22a)-(4.22e) only guarantee that the design point is stationary, thus requiring the analysis of

second order information. A point x∗ is a minimum if the Hessian matrix of the Lagrangian,

∇2 = ∇2f (x∗) + m∑i=1 �i∇2gi(x∗) + l∑j=1 �j∇2ℎj (x∗), (4.23)

is positive de�nite in the feasible space.

Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) methods are the state of the art in nonlinear programming methods.

Nonlinear constrained problems like Eq. (4.14) are solved by building a sequence of quadratic programming

subproblems where the constraints are linearized and the objective function is a quadratic approximation of the

Lagrangian function. New x∗k+1 are iteratively computed using merit functions that determine step sizes along
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the search directions obtained from solving these subproblems.

Boggs and Tolle [53] present a detailed review of SQP and Gould and Toint [54] present a survey of a number

of SQP methods and compare them. Lyu et al. [55] did a benchmark study where they tested several optimiza-

tion algorithms for a multi-dimensional Rosenbrock function, for a RANS-based aerodynamic twist optimization

problem and for an aerodynamic shape optimization problem. They concluded that gradient-free methods re-

quire two to three orders of magnitude more computational e�ort than gradient-based methods. In particular,

SNOPT and SLSQP algorithms stood out, both SQP algorithms.

SNOPT [56] is a commercial software that uses a smooth augmented Lagrangian merit function, whose Hes-

sian is approximated using a limited-memory quasi-Newton method. It also uses a reduced-Hessian semide�nite

QP solver for the QP subproblems. SLSQP [57] is an evolution of Lawson and Hanson [58] nonlinear least-squares

solver. It uses a quasi-Newton Hessian approximation and an L1-test function in the line search algorithm.

Given the advantage of gradient based methods and the good performance of the open source SLSQP, this is

the algorithm employed in this work.

Sensitivity analysis

Sensitivity analysis is an essential step of gradient based optimization. It refers to the evaluation of how

parameters in�uence the performance metrics, objective function, state and constraints. It is desired that the

computation of gradients is as precise and inexpensive as possible, which often involves a compromise between

the two. Methods to compute derivatives include �nite di�erences approximations, complex-step approximations

and analytical methods [43].

Finite di�erences are derived from the Taylor series expansion about x ,

f (x + ℎ) = f (x) + ℎf ′(x) + ℎ22! f ′′(x) + ℎ33! f ′′′(x) + ... (4.24)

where truncating for the �rst order derivative yields

f ′(x) = f (x + ℎ) − f (x)ℎ + O(ℎ) (4.25)

where ℎ is the step and O(ℎ) is the truncation error. This forward di�erence estimate converges linearly with

decreasing step size. However, there is a limit to how small the step size can be, as decreasing it too much leads

to subtractive cancellation errors. These occur when the step size is so small that the number of digits used in

computation is no longer su�cient to distinguish f (x + ℎ) from f (x), yielding a numerator equal to zero.

Complex-step approximations estimate the derivatives of real functions with complex calculus. They are also

derived from a Taylor series expansion, but with a pure imaginary step iℎ,

f (x + iℎ) = f (x) + iℎf ′(x) − ℎ22! f ′′(x) − iℎ33! f ′′′(x) + .... (4.26)

Taking only the imaginary parts and dividing it by ℎ, the complex-step derivative approximation is obtained

f ′(x) = [f (x + ℎ)]ℎ + O(ℎ2). (4.27)
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The main advantage of this approach is that it does not have the subtractive cancellation problems encountered

in �nite di�erences, as no subtraction is made at all.

Analytical methods are the most accurate and e�cient option for sensitivity analysis [43]. The total sensitivity

of a function of interest f is computed, which in general is dependent on the design and state variables, xn andyi , respectively. The state is related to the design variables through the governing equations,

(xn , yi(xn)) = 0. (4.28)

The total sensitivity of f is given by dfdxn = )f)xn + )f)yi dyidxn (4.29)

and the total derivative of the governing equation is

ddxn = ))xn + ))yi dyidxn = 0. (4.30)

The partial derivatives can be easily computed by varying the denominator and re-evaluating the numerator,

but the total derivatives require the solution of the multidisciplinary problem. Equation (4.30) can be rewritten

as dyidxn = −[))yi ]−1 ))xn (4.31)

and substituting in Eq. (4.29) yields

dfdxn = )f)xn − ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟−Ψk
)f)yi

−dy/dxn⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[))yi ]−1 ))xn . (4.32)

Two approaches to compute the analytical sensitivities arise: direct and adjoint methods. The di�erence

between them lies in the order used to calculate the last term of Eq. (4.32). Direct methods solve Eq. (4.31)

directly and substitutes the result, whereas adjoint methods solve the adjoint system

))yi Ψk = − )f)yi , (4.33)

where Ψk is the adjoint vector.

This procedural di�erence has a signi�cant impact in the cost of computing the total sensitivity, even though

partial derivative terms are the same for both methods. In the direct approach, dyidxn is valid for any function f ,

but must be computed for each design variable (nx times), whereas in the adjoint, Ψk does not depend on the

design variables and is computed once for each f , nf times. Therefore, the most e�cient approach is the direct

method if nx < nf , or adjoint if otherwise.
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4.5 Aerostructural Analysis and Optimization Tool

Multidisciplinary Analysis and Optimization (MDAO) is implemented through the OpenMDAO framework

[59]. It is an open source software framework written in Python that achieves high computational e�ciency

through new hierarchical strategies to exploit problem structure.

OpenMDAO also provides a framework for computing coupled derivatives e�ciently. The Modular Analysis

and Uni�ed Derivatives (MAUD) architecture [60] formulates the multidisciplinary model as a nonlinear system

of equations, leading to a linear equation that uni�es all methods for computing derivatives. It works by concate-

nating all design, state and coupled variables, as well as output functions, into one vector. Then, in a similar way,

all residual functions associated with each variable are assembled into one fundamental system that represents

an uni�ed formulation of the numerical model. Finally, the derivatives are obtained using the unifying derivative

equation, developed by Martins and Hwang [61]. Its main advantage is that it enables �ow-based frameworks

that use the MAUD architecture to provide a common interface for the chain rule, adjoint method, coupled ad-

joint method, and hybrid methods. Furthermore, it automatically uses the appropriate method for the problem

at hand [60].

This is a useful feature, specially for gradient-based optimization. Nevertheless, any kind of optimizer is

supported through the use of packages such as PyOptSparse [62] and SciPy [63]. OpenMDAO supports several

MDA solvers too, as for example linear Krylov, linear and nonlinear block Jacobi and Gauss-Seidel, Newton and

Broyden.

OpenMDAO’s modular environment allows an easy integration of discipline analyses into a larger multidis-

ciplinary model [59], which is the objective of this work. For the aerostructural disciplines in particular, the

OpenAeroStruct (OAS) framework [4] is employed. It is a low-�delity aerostructural analysis and optimization

tool, developed in the OpenMDAO framework, that uses the VLM and FEM methods described in sections 2.3

and 2.4 to model lifting surfaces. OAS is built with fuel burnt or range as the optimization objectives in mind,

which are calculated through the Breguet equation. This and all fuel related aspects of OAS are changed to

accommodate trajectory optimization and electric propulsion, as discussed in Sec. 2.5.

The �uid-structure interaction (FSI) requires that the aerodynamic loads and structural displacements be

transferred between the coupled analysis. The scheme used in OAS satis�es the requirements of being consistent

and conservative.

Figure 4.6: Transfer scheme used in OAS. Adapted from [4].

It can be seen in Fig. 4.6 that the edges of the panels are aligned with the structural nodes. This is a simpli�ca-

tion made in the transfer scheme used in OAS, that the spanwise discretization of the aerodynamic and structural

models are the same. Furthermore, the aerodynamic load is applied on the center of pressure (cp), located at the
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spanwise centerline, so half of the aerodynamic load is applied on each of the structural nodes. The equivalent

nodal force and moment on one of the structural nodes are given by

F s,i = ∫panel 12TdS = 12TS (4.34)

Ms,i = ∫panel r i × 12TdS = rcp,i × 12TS. (4.35)

These equations immediately satisfy the consistency requirement, as they are equivalent results of the aerody-

namic load distribution.

The conservative requirement is veri�ed through the virtual works of both meshes. The virtual work on the

structural mesh is given by �Ws = 2∑i=1 (F ⋅ �ds,i + M ⋅ �� s,i) (4.36)

and substituting force and moment by equations (4.34) and (4.35), yields

�Ws = 12 2∑i=1 (T ⋅ �ds,i + (rcp,i × T) ⋅ �� s,i). (4.37)

The virtual work on the aerodynamic mesh is written as

�Wa = ∫panel T�uadS (4.38)

where the displacements are given by

ua = 12 2∑i=1 (ds,i + � s,i × rs,i). (4.39)

Combining equations (4.38) and (4.39) leads to

�Wa = 12 2∑i=1 ∫ (T ⋅ �ds,i + T ⋅ (�� s,i × rs,i))dS (4.40)

where T , ds,i and � s,i are constant over the panel, so it can be rewritten as

�Wa = 12 2∑i=1 (T ⋅ �ds,i + T ⋅ (�� s,i × rcp,i))S. (4.41)

By vector algebra,

T ⋅ (�� s,i × rcp,i) = (�� s,i × rcp,i) ⋅ T = �� s,i ⋅ (rcp,i × T) = (rcp,i × T) ⋅ �� s,i (4.42)

which makes Eq. (4.5) equivalent to

�Wa = 12 2∑i=1 (T ⋅ �ds,i + (rcp,i × T) ⋅ �� s,i))S. (4.43)

With this, we arrive at the conclusion that �Wa = �Ws and the transfer scheme is conservative.
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4.6 Framework Implementation

The MDO architecture in this work is a variation of MDF. The usual MDF, as described in Sec. 4.3, handles

the task of computing each discipline’s states to the MDA, which does so by running a �xed point iterative solver.

Once it has converged, the objective function and constraints are computed to be evaluated by the optimizer.

In this case, the coupled analysis are structures and aerodynamics, coupled through the loads and mesh

displacements states, and subject, among other, to the �ow variables. These �ow variables, such as air density

and velocity, result from the trajectory (or are prescribed for the isolated design problem) and therefore may vary

from one �ight point to another. Hence, the �uid-structure interaction needs to be solved for every point of the

trajectory discretization.

OpenAeroStruct has a multipoint feature that allows optimizing the aircraft design for several �ight condi-

tions. However, is not done in a vectorized way. Instead, a new "mission point" is created for each set of �ight

conditions and a new MDA is called to solve the FSI.

Figure 4.7 shows the extended design structure matrix of the architecture.

0, 9 → 1:

Optimizer
x, z, ẋ , ż, tf Geometric variables, �t � �, �T �

1:

Preprocessing

V∞, 
 , �,Macℎ V∞, �, Δt V∞, 
 , �,Macℎ, Re
2, 5 → 3:

MDA
Mesh, Loads

Deformed Mesh
3:

Structures
Deformed Mesh

Structural Mass,

Surface Areas

Loads
4:

Aerodynamics
Loads

6:

Propulsion
Thrust Energy

Failure, CM , Cl
Intersect

7:

Point

Performance

∑Fx , ∑ Fz
Ee , �x , �z , �Fx , �Fz

Energy constraint

8:

Mission

Performance

Figure 4.7: Extended design structure matrix of the implemented architecture.

The trajectory variables are inputs to the Preprocessing component, where the �ow variables are computed

and then forwarded to Aerodynamics and Point Performance components. Each MDA receives a set of design

variables. The Structures component receives the geometric variables, which are the same for all MDAs, and the

correspondent entry of the stabilator angle vector. The Aerodynamics component receives the angle of attack.

The MDA is run until convergence is achieved and once it does, thrust and energy spent during the mission point

are calculated in the Propulsion component.

The thrust force, the �nal load distribution, the structural mass and surface areas are then passed to the

Point Performance component, where a series of functions are computed to obtain lift and drag coe�cients, total

weight, center of mass and moments. All these intermediate computations are necessary to calculate the values
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of failure, material intersection and moments coe�cient constraints, which are then evaluated by the optimizer.

They are also necessary to compute the sum of forces that are then passed to Mission Performance, in order to get

the value of the collocation constraints. The energies of all mission points, calculated in Propulsion, are summed

in Mission Performance to obtain the total energy spent and the energy constraint value.

MDAs are independent from each other and there is no data �ow between them. This is a consequence of

having chosen a collocation method. Since states and control are handled directly by the optimizer, variables

dependent on trajectory and control can be vectorized and only the correspondent entries are passed to each

MDA. Alternatively, a shooting method would require integrating the equations of motion within each mission

point and passing the result to next one. Since trajectory states are inputs to the aerostructural analyses, this

approach creates a stronger dependency between MDAs, which might not be bene�cial for convergence given

that errors and results obtained from bad initial guesses are propagated. The collocation approach not only

prevents this, but also allows a modular and much easier integration into the OAS framework.

This framework implementation results in two very distinct philosophies for FSI and trajectory. The FSI part

of the optimization is carried through a solver-based approach, in which the governing equations are solved,

whereas trajectory is handled directly by optimizer, where the states are design variables chosen so that the

associated constraints are satis�ed.

Figure 4.8 is the N2 diagram [59] of the complete model. The hierarchy tree of the model’s components is

seen on the left, where systems and subsystems can be subdivided down to variables. The dependencies between

components are depicted on the right, where the dark squares on the main diagonal stand for the subsystems

and the light squares represent the input/output relationship between subsystems. The outputs of a subsystem

are represented by the light squares on the same horizontal line and the inputs, by the light squares vertically

aligned. This way, squares above the main diagonal are feedforward and squares below are feedback.

Figure 4.8: Hierarchy tree of the overall model.
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The trajectory states are preprocessed in the �rst subsystem pre_comps, where preliminary computations such

as calculating the freestream velocity V∞ and the �ight path angle 
 are handled. It also computes atmospheric

quantities based on altitude, such as air density �, Mach number, speed of sound and Reynolds number.

The subsystem wing receives the wing’s geometric variables as inputs, which can be design variables or user

input values, and generates the mesh for the wing. Its geometry is constant throughout the entire mission, as

morphing is not being considered. For that reason, this subsystem sits outside of mission_points.

Themission_points subsystem contains all the �ight points (�ve in this example) where the coupled aerostruc-

tural interaction and point performance functions are evaluated. Figure 4.9 is the model zoomed in on a single

mission point.

Figure 4.9: Hierarchy tree zoomed on one mission point.

The subsystem tail is equivalent to the previously seen wing. It is responsible for generating a mesh for the

tail, which works as stabilator, as mentioned before. There is no morphing in this surface either, but since its

angle is a control variable used to trim the aircraft, its mesh is rotated during �ight and therefore varies from

point to point, reason why this subsystem lies within each mission point.

The wing and tail subsystems give the meshes (one global and the other local) necessary to start the coupled

analysis. As detailed for the wing in Fig. 4.10, an initial guess is made for each surface’s loads, which results in

structural displacements that are computed in struct_states using the FEM model described in Sec. 2.4. In turn,

the displacements are used to compute the deformed mesh (def_mesh).

The deformed mesh is then passed on to the aerodynamics analysis (aero_states), as shown in Fig. 4.11. In

this subsystem, circulations and panel forces are computed with the VLM panel method described in Sec. 2.3.

The matrix and the right hand side of the linear system are assembled in mtx_rhs, and the system itself is solved

in solve_matrix. Forces are calculated in panel_forces and from these, a new set of loads is computed and passed
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Figure 4.10: Hierarchy tree zoomed on the structural analysis of the coupled system.

Figure 4.11: Hierarchy tree zoomed on the aerodynamic analysis of the coupled system.

again to the structural analysis, thus closing the cycle.

Once the MDA has converged, the resultant set of aerodynamic forces and structural stresses are forwarded

to wing_perf and tail_perf, seen in Fig. 4.9, to obtain the lift and drag coe�cients, the intersection constraint

value (Eq. (2.64)), the Von Mises stress and the failure constraint value (Eq. (2.63)).

The subsystem propulsion_states receives the throttle control, angle of attack, freestream velocity and air
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density, and outputs the energy consumed during that mission point and the thrust force. The latter is an input

to total_perf, along with the total lift and drag of each surface. These are used in forces_eom to compute the sum

of forces for the equations of motion (2.7a) and (2.7b). Additionally, the center of gravity is calculated and the

panel forces passed on to moment in order to compute the moments.

This whole process is done for as many points as the trajectory is discretized into. Subsequently, the sum of

forces and the energy consumed at every point is forwarded to mission_perf. Here, the energies are summed to

obtain the total energy spent and the value of the energy constraint. The forces are assembled into vectors to

calculate the value of collocation constraints.
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Chapter 5

Sample Applications

In this chapter, optimization results are presented and discussed. The optimization is �rst performed for

the three problems previously de�ned (DP, TP and DTP) with the objective of minimizing energy. Then, it is

performed for minimum �ight time and maximum range. Before that, some considerations are made regarding

the problem setup and the desgin framework parameters.

5.1 Baseline Problem De�nition

In this section, the baseline parameters common to all optimizations are presented. The initial trajectory was

the same for all problems in climb optimization, with energy and time as objectives, but di�erent for maximum

distance, which are shown in the following sections.

5.1.1 Solver and Optimizer Parameters

As said before, the MDA employed in this work is NLBGS with Aitken’s relaxation. As for the optimizer, it

was concluded that gradient based methods performed better and that the best open source option was SLSQP.

For these reasons, it is the chosen algorithm.

The solver and optimizer tolerances are presented in Tab. 5.1.

Table 5.1: Gauss-Seidel and SLSQP optimizer tolerances.
Parameter Value

Solver absolute error tolerance 10−7
Solver relative error tolerance 10−30
Optimizer tolerance 10−3

5.1.2 Mesh Convergence Study

Generally, a very re�ned mesh tends to yield better and more accurate results, but at the expense of compu-

tational time and e�ort. Therefore, a compromise must be made, which is why a mesh convergence study was

performed.
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The mesh of each lifting surface is de�ned by the number of nodes in the chord and span directions, num_x

and num_y, respectively. One MDA was converged for several (num_x , num_y) pairs and the computation times

and resultant drag coe�cients CD of an arbitrary wing shape and �ow were compared. The number of nodes

was varied from 2 to 13 in the chord direction and from 5 to 41 in the span direction. The tail’s mesh was kept

�xed. Results are shown in Fig. 5.1.

Figure 5.1: Results of the mesh convergence study.

It can be seen that increasing the number of panels yields larger CD up to a certain point, where it starts to

stabilize. Ideally, the chosen number of panels should lie in that region. However, despite the oscillations, the

trend is to require more computational time. There is a considerable o�set between the (x = 2) curve and the

others, which means that this option has a lower accuracy. As for the others, they are very close, which makes

it hard to weigh the accuracy gain/loss.

To better understand this, the variation in CD relative to the previous result due to increasing num_x for a

�xed num_y is represented in Tab. 5.2. From this table, it can be concluded that the variation is marginal (below0.01%) after 7 longitudinal nodes, reason why that is the chosen value.

In a similar manner, Tab. 5.3 shows the variation ofCD relative to the previous result for increasing num_y and

num_x = 7. Although variations start to be negligible after 29 nodes, that is not the only criterion to determine

the number of nodes in this case. The ratio of panels should match the aspect ratio of the wing, so that panels are

squared and not too skewed. It not possible to predict the �nal aspect ratio of wing, but it can be expected to be

as high as possible due to the aerodynamic advantages it brings. For the 6 chord panels chosen, an aspect ratio

of 10 would mean 60 panels in the spanwise direction. As stated before, this is not possible due to computational

limitations, so a compromise in this regard must be made as well. Given this mesh convergence data, 31 nodes

not only produce an adequate panel ratio, increasing it yields negligible result changes.

Therefore, the number of panels for the wing is 6 × 30, whereas for the tail, a panel ratio of 3 is applied, given
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that the expected aspect ratio is also lower: 4 × 12.
Table 5.2: CD convergence with num_x for �xed num_y.

num_y
num_x

2 3 5 7 9 11 13

5 - 0.291% 0.031% 0.013% 0.007% 0.005% 0.003%
7 - 0.304% 0.032% 0.013% 0.007% 0.005% 0.003%
9 - 0.317% 0.034% 0.013% 0.007% 0.005% 0.003%
11 - 0.331% 0.036% 0.013% 0.007% 0.005% 0.003%
13 - 0.341% 0.039% 0.013% 0.007% 0.005% 0.003%
17 - 0.365% 0.044% 0.014% 0.007% 0.005% 0.003%
19 - 0.374% 0.047% 0.014% 0.007% 0.005% 0.003%
21 - 0.383% 0.050% 0.014% 0.007% 0.005% 0.003%
23 - 0.387% 0.052% 0.015% 0.007% 0.005% 0.003%
25 - 0.388% 0.055% 0.015% 0.008% 0.005% 0.003%
27 - 0.389% 0.057% 0.015% 0.008% 0.005% 0.003%
29 - 0.392% 0.060% 0.016% 0.008% 0.005% 0.003%
31 - 0.395% 0.062% 0.016% 0.008% 0.005% 0.003%
33 - 0.397% 0.064% 0.016% 0.008% 0.005% 0.003%
35 - 0.398% 0.065% 0.017% 0.008% 0.005% 0.003%
37 - 0.398% 0.067% 0.017% 0.008% 0.005% 0.003%
39 - 0.399% 0.068% 0.018% 0.008% 0.005% 0.003%
41 - 0.399% 0.069% 0.018% 0.008% 0.005% 0.003%

Table 5.3: CD convergence with
num_y for num_x = 7.

num_y ΔCD(%)
5 -
7 0.673%
9 0.331%
11 0.180%
13 0.109%
15 0.070%
17 0.046%
19 0.032%
21 0.023%
23 0.018%
25 0.014%
27 0.011%
29 0.008%
31 0.007%
33 0.006%
35 0.005%
37 0.004%
39 0.003%
41 0.003%

5.1.3 Aircraft Con�guration

The initial aircraft con�guration is based on the mini-UAV Tekever AR4 [64]. It is a �xed wing UAV used

primarily in surveillance and target acquisition missions. Due to limited available technical data on this aircraft,

many parameters were deduced from the available ones. The information on the AR4 serves only as a starting

point and assuming some of the values does not impact negatively the simulation, as the goal of this work is not

to improve a speci�c aircraft.

Figure 5.2: Tekever AR4 UAV [64].

The wing span is 2.1 m and the length of the UAV is 1.3 m. From these measurements, the remaining quantities

were deduced. The wing chord is considered to be 0.21 m at the root and 0.18 m at the tip, yielding an aspect

ratio a little over 10. The dihedral and sweep angles were assumed to be 4º and 1.5º. Parameters that have a

distribution along the span, such as chord, twist and spar thickness, are parameterized with B-splines, to avoid
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discontinuities and decrease the number of design variables. While twist and thickness have three control points

(cp), the chord has two, making its control points values correspond to the chord at the tip and root, thus keeping

the lifting surfaces trapezoidal. The complete list of design parameters and their bounds is presented in Tab. 5.4.

Table 5.4: UAV design parameters and bounds.

Parameter Wing Tail

Initial Value Bounds Initial Value Bounds Units

Span, b 2.1 1.2, 2.6 0.42 0.25, 0.6 m
Chord cp, c 0.18, 0.21 0.1, 0.3 0.14, 0.17 0.08, 0.21 m
Twist cp, � 1.5, 1.5, 1.5 -20, 20 0 0 degrees
Dihedral, ℸ 4 -20, 20 0 -20, 20 degrees
Sweep, Λ 1.5 -20, 20 0.5 -20, 20 degrees
Thickness cp, t 0.003, 0.003, 0.003 0.0015, 0.05 0.0025, 0.0025, 0.0025 0.0015, 0.04 m

Additionally, the control and trimming variables are discretized into vectors of size 10, the same number of

operating points. All entries are initialized with the same value, as listed in Tab. 5.5.

Table 5.5: UAV trimming and control parameters.
Parameter Initial Value Bounds Units

Throttle, �T 0.5 0, 1
Angle of attack, � 4 -15, 15 degrees
Stabilator angle, �t -0.2 -15, 15 degrees

It is assumed that the tail lies on the same xy plane as the wing, with a distance between trailing edges of

1.05 m. The center of mass of the aircraft without lifting surfaces, designated empty CG, is assumed to be placed

0.2 m before the wing’s trailing edge. Based on the information that the maximum take-o� weight of the AR4 is

4 kg, the empty mass is considered to be 1.2 kg and the battery mass, 1.5 kg. The speci�c energy of the battery

is 210 Wh/Kg and the loss factor is 50%.

NACA 2410 and NACA 0010 airfoils were considered for the wing and tail, respectively. Lift coe�cient at� = 0, CL0 and zero-lift drag coe�cient, CD0 were obtained from tables produced using Xfoil [65], for a Reynolds

number of 200000, which was estimated for sea level conditions, an air speed of 15 m/s and an average chord of

0.2 m Re = �V∞c� = 1.225 ⋅ 15 ⋅ 0.21.81206 × 10−5 = 202807.85 ≈ 200000. (5.1)

These and the propulsive parameters discussed in section 2.5 are shown in table 5.6.

The material composition of the AR4 is unknown. It is likely that some composite materials are used but

since there is no information, it is simpli�ed and considered that the spar tube is made of aluminum 6061, being

the mechanical properties listed in Tab. 5.7. A safety factor of 2 is applied to the yield strength. The spar is placed

at 30% of the chord in both surfaces, which is the point where thickness over chord ratio (ℎ/c) of the airfoil is

greatest.

This con�guration serves as the �xed design for TP and as starting point for DP and DTP.
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Table 5.6: UAV constant parameters
Parameter Wing Tail UnitsCL0 0.2434 0 -CD0 0.00860 0.00852 -
max (h/c) 10 10 %
max (h/c) position 30 30 %

Global

Empty CG -0.2, 0, 0 m
Empty mass, m0 1.2 kg
Battery mass, mbat 1.5 kg
Speci�c energy, e 210 Wh/kg
Loss factor, LF 50 %
Max motor power, Pm 180 W
Propeller radius, r 0.15 m
Induced-power loss factor, � 1.2 -

Table 5.7: Mechanical properties of aluminum 6061 [66].
Parameter Value Units

Young’s modulus, E 69 GPa
Yield strength, �yield 276 / 2 MPa
Density, � 2700 kg/m3
Poisson’s ratio, � 0.33 -
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5.2 Optimal Design for Minimum Energy Climb

In this application, aircraft design and trajectory are optimized individually (DP and TP) to better quantify

the bene�ts of the combined optimization (DTP). All three have the objective of minimizing the necessary energy

to climb to 1000 m of altitude and initiate cruise with an air speed of 16 m/s.

The initial trajectory is presented in the next section, which is �xed for the design optimization (DP) and

serves as starting point for the other two problems.

5.2.1 Baseline Trajectory

The trajectory was discretized into N = 10 intervals. The initial position is (x, z) = (0, 0), assuming that the

UAV is launched at ground level, and the initial speed is 14 m/s. From this point until the �nal altitude is reached,

the speed is kept at 15 m/s and the total �ight time is 570 seconds. The �ight path angle varies as shown in �gure

5.3, where a steady climb is made at a 
 = 8° angle after the third interval and thus de�ning every (x, z) coordinates

and velocity components. Horizontal and vertical displacement variables are both bounded by [0, 100000] m, so

there is no backwards progression nor crashing into the ground. Velocity’s horizontal component is bounded by[0, 18] m/s and the vertical by [−18, 18] m/s. These conditions result in a trajectory whose full discretization is

presented in Tab. 5.8.

Figure 5.3: Pro�le of the initial climb trajectory.

Table 5.8: Discretization of trajectory variables.

Parameter Collocation points

1 2 3 4 5 6 7 8 9 10 11
 [deg] 0.6 5 7 8 8 8 8 8 8 6.7 0x [m] 0 797.97 1649.72 2498.34 3345.02 4191.70 5038.38 5885.06 6731.74 7578.42 8427.56z [m] 0 8.96 83.48 187.68 306.67 425.67 544.66 663.65 782.65 901.64 1000ẋ [m/s] 13.99 14.94 14.89 14.85 14.85 14.85 14.85 14.85 14.85 14.90 16ż [m/s] 0.15 1.31 1.83 2.09 2.09 2.09 2.09 2.09 2.09 1.75 0V∞ [m/s] 14 15 15 15 15 15 15 15 15 15 16
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5.2.2 Results

All constraints were satis�ed within the tolerances established for the solver and optimizer, so it can be

concluded that local minima were found and all problems were successfully optimized. Figures 5.4, 5.5 and 5.6

shows convergence plots of the objective function and of the failure constraint, for each of the three problems.

(a) TP - Ee

(b) TP - failure wing

Figure 5.4: Convergence plots of the objective function and failure constraint for TP.

(a) DP - Ee

(b) DP - failure wing

Figure 5.5: Convergence plots of the objective function and failure constraint for DP.
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(a) DTP - Ee

(b) DTP - failure wing

Figure 5.6: Convergence plots of the objective function and failure constraint for DTP.

The computational costs of the three problems are compared in Tab. 5.9 and, to discuss and partially explain

their variation, problem sizes are presented in Tables 5.10 and 5.11.

Table 5.9: Optimization performance with an Intel® CoreTM i7-5500 @ 2.4 GHz Processor.
Parameter Trajectory Design Design + Trajectory

Iterations 17 20 74
Function evaluations 22 81 171
Computation time 2h23 2h41 11h28

Table 5.10: Number of design variables.
Variables Note Quantity Total

Trajectory x, ẋ , z, ż vectors of size N+1 44 45tf 1

Geometry
�w , tw , tt 3 control points 9

19cw , ct 2 control points 4bw , bt , Λw , Λt , ℸw , ℸt 6

Control �T , �, �t vectors of size N 30 30

Trajectory Problem (TP) 75
Design Problem (DP) 49
Design+Trajectory (DTP) 94
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Table 5.11: Number of constraints.
Constraints Note Quantity Total

Collocation �x , �z , �Fx , �Fz = 0 vectors of size N 40 50
and equilibrium CMy = 0 vector of size N 10

Aerodynamic Clw < Clwmax vector of size num_y−12 × N 150 210Clt < Cltmax vector of size num_y−12 × N 60

Structural
I ntersectw < 0 vector of size num_y−12 15

41I ntersectt < 0 vector of size num_y−12 6Failurew , Failuret < 0 N× KS function 20

Energy Ee ≤ Ebat 1 1

Trajectory Problem (TP) 281
Design Problem (DP) 282
Design+Trajectory (DTP) 302

Tables 5.10 and 5.11 list the number of variables and constraints by groups. DTP uses all 94 design variables

and 302 constraints. DP has prescribed trajectory, so trajectory variables and collocation constraints pertaining

to displacement �x , �z are not used, which gives 49 design variables and 282 constraints. Lastly, TP does not

include any geometric variables nor the intersection constraints, which amounts to 75 design variables and 281

constraints. The Hessian sizes are given by the square of the sum of design variables and constraints. They are

126736, 109561 and 156816, for TP, DP and DTP, respectively.

DTP is a considerably larger problem, so it is natural that its optimization took longer. Its Hessian is 43%

larger than DP’s, and 24% larger than TP’s. However, problem size alone does not explain the di�erences in

computational time, as DP is a smaller problem than TP, yet it took more function evaluations and time. One

possible explanation might be the handicap that a prescribed trajectory represents, and the di�culty of adapting a

design to it. Another possible explanation might lie in fact that DP has less variables for almost the same number

of constraints than TP. This results in a more rigid problem, as the optimizer has fewer variables to try to satisfy

approximately the same number of constraints, which makes it harder to �nd a solution. Moreover, DP and

DTP deal with optimization of the aerostructural component, which becomes increasingly harder to converge as

coupling strength increases. As a consequence, it takes more iterations, which we can see are strongly correlated

with computational time.

The �nal values of geometric design variables and a selection of performance metrics are listed in Tab. 5.12

and the distributions of twist, lift, spar thickness and stresses along the span are depicted in Figs. 5.7 and 5.8. The

control and trajectory variables are shown in Figures 5.9 and 5.10, respectively.
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Table 5.12: Final values of geometric design variables for TP, DP and DTP problems.
Parameter Trajectory Design Design + Trajectory Units

Electric energy, Ee 124.76 93.79 83.62 kJ
Flight time, tf 377.4 570 253.3 s
Total mass, m 3.91 2.99 2.933 kg

Wing

Span, bw 2.1 2.03 1.59 m
Chord cp, cw 0.18, 0.21 0.1, 0.1 0.1, 0.1 m
Twist cp, �w 1.5, 1.5, 1.5 3.31 4.42 4.51 1.99, 4.02, 3.79 degrees
Dihedral, ℸw 4 4.02 3.48 degrees
Sweep, Λw 1.5 1.06 0.83 degrees
Thickness cp, tw 0.003, 0.003, 0.003 0.0015, 0.0015, 0.0015 0.0015, 0.0015, 0.0015 m

Tail

Span, bt 0.42 0.26 0.25 m
Chord cp, ct 0.14, 0.17 0.08, 0.08 0.08, 0.08 m
Dihedral, ℸt 0 0 0 degrees
Sweep, Λt 0.5 0 0 degrees
Thickness cp, tt 0.0025, 0.0025, 0.0025 0.0015, 0.0015, 0.0015 0.0015, 0.0015, 0.0015 m

(a) TP (b) DP

Figure 5.7: Twist, lift, thickness and stresses distribution along span for TP and DP.
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Figure 5.8: Twist, lift, thickness and stresses distribution along span for DTP, with representation of the �nal
con�guration.

Figure 5.9: Results of control and trimming variables for climb energy optimization.
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Figure 5.10: Results of trajectory variables for climb energy optimization.

As seen in Tab. 5.12, DTP had the least amount of energy spent Ee , with a reduction of 33% relative to TP,

and 10.8% relative to DP. TP and DP are limited by the prescribed trajectory and con�guration, respectively,

whereas in DTP, the optimizer has access to both design and trajectory variables and therefore, produces the

best combined outcome of both. This result is a clear demonstration of how combining trajectory and design in

one optimization leads to great improvements.

Furthermore, we observe that less energy was spent in DP than in TP, which indicates that the initial con�g-

uration is more of a handicap to the objective of minimization than the prescribed trajectory. Let us now look at

the di�erences in design and trajectory results that led to this variation in energy spent.

We see in Tab. 5.12 that there was a considerable mass reduction in DP and DTP, relative to the �xed con�g-

uration (≈ 1 kg, which represents approximately 25 % less mass). This was achieved by decreasing the thickness

of the spars and the size of lifting surfaces. The spar wall thickness, in particular, was set to the lower bound

on both surfaces, 0.0015 m. This was done in an e�ort to decrease material as much as possible, provided that

stresses had a good margin to the failure limit, and so, meeting the failure constraint was not an issue, as can be

veri�ed in Figs. 5.7 and 5.8 in the plot labeled "Von Mises".

The position of the spar is coincidental with the fraction of chord of maximum (ℎ/c), which is 10% for both
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surfaces, as per Tab. 5.6. The diameter of the spar is thus also coincidental with the maximum height of the

wing’s section, which means that in the same way decreasing the span leads to a reduction of the length of the

spar, decreasing the chord reduces its radius. Also, obtaining the necessary area by increasing the span instead

of the chord leads to a wing with higher aspect ratio, which yields less induced drag for a given value of lift [67].

The span of the tail was set to the lower bound in both problems. Moreover, the stabilator, which has a

symmetric airfoil, had its angles set to values close to zero, as shown in the stabilator angle plot in Fig. 5.9. These

results indicate that the center of mass was brought closer to the aerodynamic center of the wing, reducing its

moment, and the distance of the stabilator to the center of gravity (the arm of the tail moment) might be oversized

and is the principal responsible for creating the balancing moment necessary to trim the aircraft.

The reduction of span in DTP was a 20 % greater than in DP. This can be explained by looking at the thrust

and lift plots shown in Fig. 5.9. Because trajectory is prescribed in DP, the throttle control was chosen just to

equilibrate the forces, rather than to propel the aircraft forward or increase the angle of climb. Because horizontal

velocity is kept almost constant, the horizontal component of forces has to be null, and since the �ight path angle

is not too high, a lower thrust force was required. This means that on the vertical component, weight had to

be balanced out mostly through lift. The higher lift (when compared to DTP) was achieved through a slightly

higher span and twist angle, which demonstrates how a �xed trajectory penalizes the aircraft design.

The twist angles were also chosen so that lift distribution along the span would match, as closely as possible,

that which corresponds to an elliptical distribution of circulation, as it minimizes CD for a given CL [67]. This

is seen in Figs. 5.7 and 5.8, where it can also be observed that TP’s lift distribution is similar to the other two

problems, despite having a �xed constant twist distribution. This is a result of having tapered wings, which is

another way of achieving elliptical distribution [67].

Dihedral and sweep angles were changed only slightly. Dihedral’s major contribution is to lateral stability,

which is not accounted in this model. Likewise, sweep’s main contribution is delaying divergence mach number,

which is not an issue since the operational mach number is below 0.1 in all problems. The only other factor that

these angles have in�uence in is the length of the spar. However, the angles are minimal and so this e�ect is of

little relevance as well.

Energy spent depends directly on electric power and time, as per Eq. (2.62). Therefore, in order to minimize

it, power or time have to be reduced. As we can see in Fig. 5.10, the trend was to decrease �ight time as much as

possible, which was achieved by shortening horizontal distance and �ying faster.

To shorten the horizontal distance, it is necessary to �y with higher �ight path angles, provided that vertical

distance is �xed. Bearing in mind that lift’s vertical component gets smaller for higher �ight path angles, the

burden of counteracting weight falls on thrust. To that end, throttle control was pushed to the maximum in DTP

and TP. It seems counter intuitive to have power set to its limit, but the energy saved by making �ights shorter

surpasses the added expense of having higher power, thus yielding a positive balance and minimizing energy

consumed.

The average air speed was decreased from the 15 m/s of the initial trajectory to 14.4 m/s, in TP. This can be

seen as way to compensate for the large wingspan and not generate more lift than the necessary to trim the UAV.

Since DTP also optimized the con�guration, the wingspan was reduced, thus allowing the speed to be increased

to 17.5 m/s, on average. Although �ying at higher speeds does decrease the time to cover the same distance, it
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also lowers thrust forces, as they are approximately inversely proportional. This limits the angle of climb and

as a consequence extends horizontal distance. Therefore, the chosen speeds are an optimal balance between

travelling fast and travelling less.

The trajectory in DTP had major improvements relative to that of TP, as the latter was heavily penalized by

the �xed con�guration. TP’s larger wingspan generated a much higher lift and consequently, a higher drag and

pitching moment. To comply with the zero moments constraint, the stabilator control angle was set to positive

values, since the larger structural mass pulled the center of mass more in the direction of the trailing edge.

The �ight path angle could not be increased as much in TP, because the aircraft design was �xed and therefore,

so was weight. This greater weight was balanced mostly through lift, which was naturally much higher than

in the other problems, given the larger wingspan. As described before, for greater climb angles, the vertical

component of lift decreases, but, in this case, it also becomes quite signi�cant that the horizontal component

grows. Inversely, the vertical component of thrust increases and the horizontal decreases, resulting in a two way

burden for thrust. The maximum power was the same for all problems and in TP it was clearly insu�cient to

trump weight and the horizontal component of lift at high 
 . Conversely, design was also optimized in DTP, so

a better trajectory was achieved through the con�guration modi�cations previously discussed, which ultimately

led to less energy spent.

This shows how the �xed design negatively impacted the trajectory optimization potential, or the other way

around, how having both design and trajectory be part of the optimization led to better results.

The e�ciency results are shown in Fig. 5.10. E�ciency is capped at 50% because that is the loss factor

considered between battery and motor. The remaining losses can be attributed to drag resistance and to the

propulsive system, which performed with an e�ciency of between 80% and 85%. Using Eq. (2.67) for DTP, for

example, �prop = TV∞Pm ≈ 8.7 × 17.5180 ≈ 85.0%. (5.2)

E�ciency plots basically show how e�ectively electrical energy was converted into gravitational potential

energy, given that variations in velocity were much smaller than those of vertical displacement. DTP had higher

e�ciency than the other problems, which is another evidence of how advantageous it is to have all disciplines

being optimized simultaneously.

Results from Fig. 5.10 highlight some limitations of the discretization method employed. It is a forward Euler

scheme, so the ith state and control values are used in the interval delimited by points i and i + 1. Initial and

�nal states are pre de�ned, so the �rst interval uses the boundary condition value. This is not a problem in itself,

but since the trajectory is parameterized by 10 intervals only, each segment lasts 10 % of the entire �ight time,

which is still a considerable amount of time to �y at non optimal conditions. This could be mitigated through a

more re�ned discretization, however, not only would it increase the number of variables, it would also incur in

more mission points and �uid structure calculations, which drives up the computational cost. A more e�cient

alternative would be using B-Splines to parameterize state and control. This would result in continuous and

smooth function at the cost of few control points and therefore, fewer mission points as well.
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5.3 Optimal Design for Minimum Time Climb

To further explore the design space, the DTP climb optimization was performed with the objective of mini-

mizing the �ight time. The baseline con�guration and trajectory are the same as in Sec. 5.2. Convergence plots

of the objective and one collocation constraint are shown in Fig. 5.11.

(a) Flight time, tf

(b) Collocation constraint �Fx
Figure 5.11: Convergence plots of the objective and collocation constraint for time minimization.

The �nal values of geometric variables and performance metrics are presented in Tab. 5.13 with results

previously obtained for energy optimization as reference. Figures 5.12 and 5.13 show results of control and

trajectory related variables, respectively, also with minimum energy results for comparison.

The optimal solution found in time minimization is very close to the one obtained for energy minimization.

From Tab. 5.13, we see that the di�erence in �ight times was 0.26 s and the energy di�erence was 160 J, which

constitutes variations of approximately 0.1% and 0.2%. The minimal variations might have been a result of the

not so tight tolerance, and the fact that the solution was so similar shows how strongly linked energy and �ight

time are.

The �nal aircraft design was almost the same, with chord and spar wall thickness values at minimums for both

surfaces, once again. Results varied more in the trajectory discipline, with a di�erent balance between distance

and speed being achieved in this problem. As seen in Fig. 5.13, freestream velocity was considerably higher

in time minimization, mainly due to an increase in the horizontal component. With the same vertical velocity

component but a higher horizontal one, the �ight path angle decreased, relative to the energy minimization, thus

extending horizontal distance in approximately 120 m.

As already described, higher speed yields lower thrust for the same power. That is what happened in the time

minimization problem, where in spite of having power at the maximum, thrust was slightly lower compared to

the energy minimization result (Fig. 5.12).
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Table 5.13: Comparison of �nal geometric design variable values for DTP with minimum time and minimum
energy as optimization objectives.

Parameter Min time Min energy Units

Electric energy, Ee 83.78 83.62 kJ
Flight time, tf 253.56 253.3 s
Total mass, m 2.93 2.933 kg

Wing

Span, bw 1.56 1.59 m
Chord cp, cw 0.1, 0.1 0.1, 0.1 m
Twist cp, �w 2.61, 3.23, 3.27 1.99, 4.02, 3.79 degrees
Dihedral, ℸw 3.77 3.48 degrees
Sweep, Λw 0.69 0.83 degrees
Thickness cp, tw 0.0015, 0.0015, 0.0015 0.0015, 0.0015, 0.0015 m

Tail

Span, bt 0.26 0.25 m
Chord cp, ct 0.08, 0.08 0.08, 0.08 m
Dihedral, ℸt 0 0 degrees
Sweep, Λt 0 0 degrees
Thickness cp, tt 0.0015, 0.0015, 0.0015 0.0015, 0.0015, 0.0015 m

Figure 5.12: Results of control variables for minimum time to climb to 1000m.

Lift absolute value was almost the same in both problems, given the similarity in weight, but it was achieved

di�erently. Since lift increases with speed and angle of attack up to stall condition, twist tended to lower values

in the time minimization problem, yielding a lower e�ective angle of attack as a way to compensate for the
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Figure 5.13: Results of trajectory variables for minimum time to climb to 1000m.

higher speed. Span was also reduced in 3 cm, relatively to the energy minimization problem. This change led to

a marginal mass reduction, which indicates that the span decrease was most likely another form of compensating

for the higher speed. Since lift was almost the same, the stabilator angles necessary to trim the aircraft were also

similar, as seen in Fig. 5.12.

Figure 5.14: Comparison of propulsive e�ciencies, thrust and propulsive e�ciency relationship with speed.

It is worth noting that the e�ciencies are practically the same, but the propulsive e�ciency, de�ned in Eq.
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(2.67) and shown in Fig. 5.14, was slightly higher for time minimization. Because the approximate slope of the

thrust-speed curve is between -1 and 0, increasing speed in 1 m/s reduces thrust in less than 1 N. As a result,

e�ciency increases with speed, which explains why it was higher in the time minimization problem.

5.4 Optimal Design for Maximum Range

With the same intent of Sec. 5.3, the optimization was performed for the maximization of range, that is,

horizontal distance. The starting point was a cruise �ight stage. As such, the trajectory was initialized with

a linearly spaced vector for horizontal displacement, starting at 0 and ending at 200 km, and with a constant

altitude of 850 m. The horizontal bounds were 700 km, and the vertical’s were 0 and 1500 m. The horizontal

speeds, bounded by [0, 18] m/s, were initiated at 12 m/s, where the initial and �nal entries were �xed to the same

value. The initial vertical speeds were set to zero and bounded by [-18, 18] m/s. The baseline con�guration was

the same as the one described in Sec. 5.1.3.

The optimal solution found is presented in Tab. 5.14 and Figures 5.15, 5.16 and 5.17.

Table 5.14: Final geometric design variable values for DTP with maximum distance as optimization objective.
Parameter Units

Horizontal distance, x 504.5 km
Electric energy, Ee 1134.0 kJ
Flight time, tf 11.95 h
Total mass, m 3.08 kg

Wing

Span, bw 2.6 m
Chord cp, cw 0.1, 0.1 m
Twist cp, �w 2.11, 10.46, 7.59 degrees
Dihedral, ℸw 2.53 degrees
Sweep, Λw 1.45 degrees
Thickness cp, tw 0.0015, 0.0015, 0.0015 m

Tail

Span, bt 0.25 m
Chord cp, ct 0.08, 0.08 m
Dihedral, ℸt 0 degrees
Sweep, Λt 0 degrees
Thickness cp, tt 0.0015, 0.0015, 0.0015 m

We can see in Tab. 5.14 that the �nal distance was 504.5 km. A di�erent philosophy in design and trajectory

was adopted to achieve this result, compared to the previous problems. It is natural considering that this objective

of optimization is diametrically opposite to the previous cases presented, in that the distance and �ight duration

are being extended to the maximum, whereas before they were being reduced as much as possible. Therefore,

di�erent solutions were obtained to satisfy the mission’s objective.

To extend horizontal distance, the energy resource was naturally used to travel horizontally rather than

vertically, being more e�cient. This meant �ying at very small �ight path angles, as seen in the trajectory plot
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Figure 5.15: Twist, lift, thickness and stresses distribution along span for maximum distance optimization.

Figure 5.16: Results of control variables for maximum distance optimization.

in Fig. 5.17, being −0.3° the largest angle of descent. As explained before, for low 
 , lift is almost vertical and the

vertical component of thrust is very small, so conditions were very close to cruise, where L ≈ W and T ≈ D.

Given this �ight condition, the �nal design aimed at generating a surface area capable of producing high

lift and a wing with high aspect ratio. We can see that the major change was in wingspan, being set to the

upper bound, but chord and spar thickness, on the other hand, were set to the lower bounds, like in the other

optimizations. The minimum chord and spar thickness result in minimal structural weight, which requires less
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Figure 5.17: Results of trajectory variables for maximum distance optimization.

lift. This span and chord combination result in the largest aspect ratio possible, which yields lower induced drag,

thus maximizing lift to drag ratio [67]. In spite of the large aspect ratio, stresses had good margin to the failure

limit, as seen in Fig. 5.15. This is evidence that the material chosen far exceeds the demands of this mission.

We also see in Tab. 5.14 that twist control points tended to larger values, yielding a real twist distribution

with angles as high as 8°, as observed in Fig. 5.15. Once again, the distribution was made so that lift would match

that which corresponds to an elliptical distribution of circulation.

As for the tail, its size was minimized once again, in spite of the larger wing. The stabilator angle had minor

changes throughout the �ight, varying from −0.45° to −0.87°. The stabilator angle is relatively small, indicating

that the distance between tail and center of gravity is doing most of the work in balancing the pitching moments.

As said before, most of the energy was used in horizontal travel rather than vertical. The intent was to

extend near horizontal �ight as much as possible, but, because energy is �nite, inevitably it would have to start

descending. We see that the �rst half of the �ight was almost horizontal, with �ight path angles lower than −0.1°.
During this phase, speed had a slight reduction from 12 m/s to 11.5 m/s, which was compensated with a small

increase in the angle of attack from 4.9° to 5.4°, thus maintaining the value of lift. With most of the lift generation
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ensured by the large wingspan and angle of attack, the throttle control was chosen so that the output thrust

would help achieve equilibrium of forces for as long as possible and to spend energy at a slow rate. We see in

Fig. 5.16 that power was almost constant during the �rst half of the �ight and then dropped, from approximately

14.4 W to 11.5 W, which led to the decrease in thrust too. This drop coincides with the beginning of the steeper

descent phase, as the output thrust was no longer enough to maintain equilibrium of forces. In this descent phase,

the optimizer chose not to descend at zero power, as drag resistance would very rapidly decelerate the aircraft.

Instead, some energy was used to help trim the UAV and extend descent time.

This made it possible to spend energy at such a slow rate that �ight lasted almost 12 hours. Nevertheless, it

can be observed in Tab. 5.14 that this mission required fully depleting the battery energy,

Ebat = mbate = 1.5 × 210 × 3600 = 1134 kJ, (5.3)

where it is multiplied by 3600 seconds because e = 210 is in Wh/kg units. This is an expected result, as long there

is energy to propel the aircraft, the �ight can be maintained. Bearing this in mind, battery’s capacity is one of

the limiting factors of this problem.

Finally, we can see in Fig. 5.17 that propulsive e�ciency was close to 95 %. This was a result of the low power

and high angle of attack, as for a �xed velocity, lower power increases e�ciency, and, likewise, higher angles of

attack reduce perpendicular velocity, thus increasing thrust and e�ciency.

5.5 Summary

The framework was tested through the coupled design and trajectory optimization of di�erent objectives.

We were able to see that the optimizer produced di�erent solutions according to the objective. In energy min-

imization, the trend was to shorten distance and �y faster, in the attempt of reducing �ight time. To do so, the

optimizer chose to apply maximum power and �y at high �ight path angles. Energy and �ight time parame-

ters were strongly correlated, with both minimizations yielding very similar results. In range maximization, the

optimizer chose a con�guration that maximized aspect ratio, while keeping mass low. Power was distributed

throughout the �ight to better trim the aircraft for a longer period, thus extending range.

We could verify that optimizing design and trajectory simultaneously constitutes a great improvement in

performance relative to the isolated problems. The improvements obtained by the coupled problem came at a

higher computational cost, given that all variables and constraints of both components are used by the optimizer.
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Chapter 6

Conclusions

6.1 Achievements

In this work, the OpenAeroStruct framework was upgraded. Modi�cations were made to accommodate an

electric propulsive system and compute performance metrics relevant to such a system. Furthermore, the frame-

work was expanded to include trajectory optimization, which was performed through the implementation of a

collocation method.

Aircraft design, trajectory and coupled design and trajectory optimizations were performed for the same

mission with the objective of minimizing energy. It was concluded that optimizing design and trajectory simul-

taneously had a great impact in achieving better results, as the isolated problems were greatly limited by the

initial guesses for con�guration and trajectory. The coupled optimization was able to further minimize energy

in 33% and 10.8%, relative to the isolated trajectory and aircraft design optimizations. The coupled optimization

was computationally more expensive, and it was also veri�ed that the cost did not scale linearly with problem

size.

The coupled design and trajectory were also optimized for other objectives, namely �ight time and �nal

distance. It was observed that time minimization yielded very similar results to those of energy minimization,

proof of the tight dependence between both parameters. The maximization of �nal distance showed di�erent

results, where the battery was fully depleted and the wing was design to maximize aspect ratio.

6.2 Future Work

In this work, only equilibrium considerations were taken into account when designing the aircraft. An inter-

esting development would be also accounting with stability.

Only 2D �ight is considered in this thesis. A possible expansion of the framework would be developing a

model that contemplates 3D �ight and wind pro�les. It could be interesting to test this expansion in missions

like travelling to a target point and hovering around it or use a topographic map and plan trajectory to avoid

collision.

We saw that the low order discretization method used had an impact in results. Another way the framework
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could be improved is to use higher order discretization methods that guarantee continuity and smoothness of

trajectory and control. The higher order discretization would also tackle the computational cost problem, as less

aerostructural interactions would need to be computed.
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