Coupled Preliminary Design and Trajectory Optimization of
Rockets using a Multidisciplinary Approach

Fabio Miguel Pereira Morgado
fabio.p.morgado@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

June 2019

Abstract

A tool was developed to perform a rocket preliminary design by finding the optimal design and
trajectory parameters for a specific mission, using a multidisciplinary coupled approach. The design
optimization is performed using a developed continuous genetic algorithm, able to perform parallel
optimization. The mass and sizing models required to estimate the rocket structure are created using
historical data regression or taken from literature. The trajectory optimization is done using the
Pontryagin’s Minimum Principle. The optimality equations are deduced and the optimal values are
found using a particle swarm optimization. The tool is tested by optimizing the design of a small
launch vehicle and comparing it to the state-of-the-art rocket. The tool shows promising results in
both trajectory and design optimization. It handles the imposed constraints and is able to successfully
perform a launch vehicle conceptual design and trajectory calculation in a reasonable time.
Keywords: Coupled approach, Launch vehicle, Trajectory optimization, Genetic algorithm, Particle

swarm optimization

1. Introduction

Space companies design new launchers while seek-
ing the minimum cost configuration able to perform
a set of reference missions, such as sending a satel-
lite of some mass to orbit. Current technology allied
to continuous development of Multidisciplinary De-
sign Optimization (MDO) algorithms is a powerful
tool to build cheaper and better rockets.

The design of a rocket is a very challenging activ-
ity when safety, reliability and performance are con-
sidered. A substantial part of the overall launcher
development is committed at the conceptual design
phases, and at least 80% of the life-cycle costs are
comprised by the chosen design concept [1]. To
reduce the complexity and life-cycle cost of space
launchers, there is the need to significantly improve
early systems analysis capability in the conceptual
and preliminary design phase

The design optimization involves the interaction
of diverse engineering disciplines which often have
conflicting objectives and demand a vast search
space to find the global optimum. This requires
adapted design multidisciplinary tools which allow
to integrate the constraints inherent to each disci-
pline and to ease the compromise search. Tradition-
ally, the Multidisciplinary Feasible (MDF) method
is used for rocket optimization, splitting the design
problem according to the different disciplines and

associating a global optimizer at the system level,
while complying with all discipline constraints [2].

The main objective of this work is the creation of
an algorithm capable of designing and/or optimiz-
ing rockets using evolutionary algorithms, accord-
ing to the given mission specifications and design
variables. This task led to the development of aero-
dynamic and mass models, as well as a trajectory
optimization algorithm. Due the the high computa-
tion cost involving the optimization process, the al-
gorithm allows computational parallelization to en-
hance the process speed.

2. Rocket Fundamentals
2.1. Rocket performance

A mission requires the rocket to achieve a specified
velocity to deliver the payload into the desired orbit.
Disregarding external forces, the velocity change is
determined by the Tsiolkovsky rocket equation

AV =V}~ Vo =v.ln 2,

my

where AV is the maximum change of velocity, v,

the effective exhaust velocity, mg the initial rocket
mass and m¢ the final rocket mass.

In reality, the rocket is subjected to external
forces, the most important being drag and gravity,
causing energy losses throughout the mission pro-
file. The energy losses may be expressed in terms

(1)



of velocity losses, transforming the required mission
velocity change into

AV = A‘/O'r'bit+AVd7'ag+A‘/g7'avity+AV;h7'usta (2)

where AV, is the ideal velocity required for the
rocket to achieve in order to reach the desired orbit,
and AVgrqg and AVyrquity are the velocity losses
due to drag and gravity, respectively. The term
AViprust 18 the wasted velocity due to steering, so
the vehicle can correct its trajectory. By definition,
the gravity loss is

ty
AVyravity :/ gsin~y dt, (3)

to

where ¢ represents the gravitational acceleration
and v the flight path angle. The initial time ¢g and
final time ¢ are the boundaries of the time interval
to calculate the velocity loss, usually comprising the
entire flight duration. The drag loss is given by

ty D
Avd’r'ag :/ Edt,

to

(4)

where D is the drag force, and m the rocket mass.
The velocity loss induced by steering is

tryT T
Av;fhrust = / (* — — COS X) dt, (5)
to

m - m

where x is the angle between the velocity vector
and thrust vector, and T is the rocket thrust at the
given time. A reasonable preliminary estimation
is considering the losses typically between 1.5 to 2
km/s, predominantly due to gravity.

Rocket thrust is a result of the change of the gas
momentum due to the transformation of heat into
kinetic energy, defined as

T:mve+Ae(Pe*Pu)7 (6)
where m is the mass flow rate through the nozzle,
V. the exhaust velocity, A, the exit nozzle area, and
P. and P, the exit nozzle pressure and atmospheric
pressure, respectively.

To compare different propellants and engines, the
specific impulse parameter is used. It has units of
second, describing the total impulsed delivered per
unit weight of propellant, given by

T Ve

Ip=——==,
° mgo 90

(7)

where go = 9.80665 m/s? is the acceleration of grav-
ity at the Earth’s surface.

2.2. Staging
Staging allows the vehicle not to transport all the
structure to orbit, thus saving propellant and reduc-
ing the rocket mass. In serial staging, the stages are
stacked upon each other and the thrust is provided
by one stage at a time. When the propellant de-
pletes, the engines are turned off and the stage dis-
carded from the rocket, reducing the dead weight.
For a N-stage rocket, the kth stage mass is given

as
(8)

where m, represents the structural mass and m,
the propellant mass.

To ease the rocket analysis, it is common the use
of dimensionless mass ratios. The structural ratio is
a dimensionless measure of how much of the stage
mass is structural. The stage structural mass com-
prises only the dry mass, and the structural ratio of
the kth stage is defined as

Ms Lk

mE = Mpk + Ms,k,

(9)

For a multi-stage rocket with a total of N stages,
the ideal velocity increments is the sum of the indi-
vidual stage contribution. The Tsiolkovskys rocket
equation (1) can be rewritten as

O = .
my

mo,k
)

(10)

N
AV = Ve i In

where my  is the sum of the ky, stage mass and
payload mass, and my j, is the sum of the k;;, stage
structural mass and payload mass.

2.3. Trajectory

Space launchers have to reach a specific orbit to de-
liver the desired payload, which is done by following
an ascent trajectory path, typically following the
steps in figure 1. The trajectory path has a ma-
jor influence in the design and performance of the
launch vehicle, and if not optimized, it may have
significant effects on the maximum payload mass
allowed to orbit.

The majority of space launch vehicles take off
from the ground launch pad and tries to leave at-
mosphere as soon as possible to reduce drag losses.
However, a steep ascent leads to more gravity losses
as more energy is required to overcome gravity.
Hence, the vehicle performs a pitch over maneu-
ver after tower clearance, starting the gravity turn
maneuver.

The use of a gravity turn allows the vehicle to
maintain a practically null angle of attack through-
out the atmosphere, while it accelerates through the
maximum dynamic pressure zone, minimizing the
transverse aerodynamic stress.

The gravity turn maneuver ends when dynamic
pressure becomes negligible, the shroud protecting
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Figure 1: Typical flight sequence of a space launch
vehicle.

the payload is dropped off and the rocket starts cor-
recting trajectory, starting the free-flight phase.

Typically, during this phase, the rocket tries to
gain enough velocity to perform a coast to the fi-
nal orbital altitude by reducing the flight path an-
gle, decreasing the gravity losses, and by consuming
the propellant as fast as possible, to reduce mass.
Afterwards, the rocket is injected into the specified
orbit by restarting the engine, which will provide a
small impulse, ideally as short as possible.

3. Rocket Design and Optimization
Designing a launch vehicle involves several engineer-
ing disciplines, namely, aerodynamics, propulsion,
structure, weight and sizing, costs and trajectory.
The use of MDO methods allows the combination
of the design variables and trajectory optimization,
making it suitable for space launchers design.

3.1. MDO Application to Launch Vehicle

The most used MDO method for general design op-
timization is the MDF method, illustrated in fig-
ure 2. The MDF uses a single-level optimization
formulation, requiring only one optimizer at the
system-level and a Multidisciplinary Design Anal-
ysis (MDA) to solve the interdisciplinary coupling
equations at each iteration of the optimization pro-
cess, typically using the Fixed Point Iteration (FPI)
method.

The disciplines are analyzed sequentially due to
the coupling between downstream and upstream
disciplines. At the end of each iteration, the opti-
mizer evaluates the design performance and verifies
if the design complies with the given constraints. A
feasible solution is produced at each iteration.

3.2. Optimization Algorithms

Over the last two decades, there has been an in-
creasing interest in heuristic approaches, which are
typically inspired by natural phenomena and are
well suited for discrete optimization problems. The
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Discipline
2
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Figure 2: Scheme of the Multidisciplinary Design
Feasible method [3].

Genetic Algorithm (GA) and Particle Swarm Op-
timization (PSO) have been widely used in space
industry for both design and trajectory optimiza-
tion.

The GA is inspired in Darwins theory of evolu-
tion, by the inclusion of selection, crossover and
mutation techniques. They are useful to solve en-
gineering design problems, presenting the ability to
combine discrete, integer and continuous variables,
no requirement for an initial design, and the ability
to address non-convex, multi-modal and discontin-
uous functions. A continuous GA was developed to
optimize the rocket design, allowing an easy imple-
mentation and parallel optimization.

The PSO algorithm models the social behavior
of animal groups, using information obtained from
each individual and from the swarm to reach the
optimum solution. It was chosen to optimize the
rocket trajectory, as it allows to accurately calculate
the required trajectory path using indirect methods
[4], while minimizing the propellant consumption
and the rocket total mass.

3.3. Trajectory Optimal Control

To find the rocket optimal control, direct and indi-
rect methods can be used. In general, direct meth-
ods are more robust, but provide less accurate re-
sults, critical for aerospace application. The indi-
rect methods are harder to initialize, but a PSO
can be implemented to search the optimal trajec-
tory parameters.

Indirect methods use the theory of optimal con-
trol to transform the optimization problem into a
Two Point Boundary Value Problem (TPBVP) by
introducing adjoint variables. The adjoint vari-
ables, the control equation and the boundary condi-
tions (transversality conditions) have to be analyt-
ically deduced and solved, in compliance with the
Pontryagins Maximum Principle (PMP).

These equations are deduced from the Hamilto-



nian function given as

H=)\T"f+1I, (11)

where AT f is the adjoint variables conjugate to the
state equations, and L is the Lagrangian of the sys-
tem. The adjoint differential equations are deduced

using

ax <8H )T

dt  \ox /)’
where x represent the state variables.

The optimal control is determined by minimizing
the Hamiltonian with respect to the control vari-

(12)

ables u,
OHN\T
— =0, 13
( Ju ) (13)
and by assuring the Legendre-Clebsch condition
2
(%u’;’ has to be positive semidefinite).

Finally, the transversality conditions can be de-
duced by solving

(@, + H)|1—i, =0, (14)

where ® is the boundary condition function, given
by

O =J+v10(zy), (15)

being .J the objective function, and v” ¥ is the time-
independent adjoint variable conjugate to the im-
posed boundary conditions.

The method tries to minimize the objective func-
tion, while complying with the optimality con-
straints. Common objectives are the time of flight
and the propellant consumption.

4. Optimal Rocket Design Procedure

The construction of the models integrated in the al-
gorithm, together with the algorithm itself, are ex-
plained in this section. The disciplines are divided
in modules, that can be replaced by higher-fidelity
models in the future, improving the accuracy of the
solution.

4.1. Dry Mass Estimation and Sizing
For a liquid engine, the mass is the sum of the sys-
tem components as [5]

MLE = Mic + Mianko + Miankr + M,  (16)

where myc, Mianko, Miankr and mg; are the masses
of the the thrust chamber, oxidizer tank, fuel tank,
and support structure, respectively.

The thrust chamber is composed by the propel-
lant injectors, igniter, a combustion chamber, an
exhaust nozzle and a cooling system. The mass can
be estimated by

T
~ g0(25.21og(T) — 80.7)°

(17)

Mic

To calculate the support structure mass, an em-
pirical equation is used,

me = 0.88 x 1073 x (0.225T")*0687, (18)

The tanks were assumed to be cylindrical tanks
with semi-spherical ends. The mass of the tank is
calculated by

Mtank = (Ac X the + Ag x ths) X Pmat; (19)
where pp,q: is the material density, A, and A, are
the surface area of the cylindrical and spherical sec-
tions, respectively, and th., ths the wall thickness.
The thickness is calculated relatively to the burst
pressure, given as

Pb — 7’]5Ab(107010688(10g (Vt,,,,,,k)fo.2588)) X 106’ (20)

where Vigni is the tank volume required to store
the propellant. A safety factor n, equal to 2, and
a ratio between the maximum expected operating
pressure and the tank pressure A, equal to 1.2 are
used, as recommended in [5].

The stage inert mass has to account the outer-
shell, given as

MStage =MLE + pmathtage

D? D
st stage
><7T|: stage ( stage

B th) 2} ’ (21)
4 2
where mp g is the liquid engine mass, th is the thick-
ness of the wall and Lg;qge and Dgyqqe are the stage
length and diameter, respectively.
The length of the liquid stage is calculated as the
sum of the tanks and thrust chamber lengths [5],

LLS = Ltc + LtankO + LtankF7 (22)

where L;. is the thrust chamber length and Lgnio,
Lionir are the oxidizer and fuel tank lengths, re-
spectively. The thrust chamber length is calculated
using

Ly = 3.042 x 107°T + 327.7. (23)
The tank length is determined by
VL‘L’I’L _ é Dtank 3
Ltank = Dtank tank 371-( = ) (24)

7T(Dtgm )2 ’

4.2. Trajectory Model

The trajectory was divided in different flight phases
comprising of vertical ascent, pitch over, gravity
turn and free flight phase. The pitch over maneuver
will simply be represented as a small discontinuity
step in the flight path angle. After the gravity turn,
the trajectory optimization is solved by defining an
Hamiltonian function and applying the PMP, using
a PSO algorithm to explore the search space for the
optimal solution of the problem.
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Figure 3: Rocket state variables and forces during
flight [6].

The rocket is assumed to be a variable-mass rigid
body flying in a 2-D plane model, as illustrated in
figure 3. The forces acting in the rocket are applied
at the center of mass during flight.

The rocket’s active stage produces a thrust T
with an angle y in respect to the velocity vector V.
In the context of trajectory analysis and optimiza-
tion, the thrust direction can be assumed as always
aligned to the vehicle longitudinal axis (x = «).

The force of gravity applied on the vehicle is mg,
where m is the vehicle mass and g the local gravi-
tational acceleration, which points to the center of
the Earth at all times.

The aerodynamic drag force D is given as func-
tion of the vehicle flight speed V', the mass density
p and a characteristic surface area .S, as

1 2
D:CpipSV , (25)
where Cp is the drag coefficient.

The lift force L is neglected as it is held closely to
zero during the powered ascent through the atmo-
sphere. The Coriolis and centripetal acceleration
due to the Earth rotation are also neglected dur-
ing trajectory simulation. The contribution due to
Earth rotation is taken into consideration before the
start of the simulation. A reference system that ro-
tates with the Earth and has the origin in its center,
is used to better describe the rocket motion.

The equations of motion for the tangential and
normal direction, respectively, are

T

: D
V=—cosa—— —gsiny (26)
m m

and

2

Re+h

T
Vy=-— (g — )cos'y + —sina, (27)
m
where R, = 6.371 x 10% m is the radius of the earth
and h is the vehicle altitude.

The equations for downrange distance x and al-
titude h are

€

Re+h

j/':

V cosy (28)

and
h =V sin~y. (29)

To avoid transversal aerodynamic loads, « is held
null until the termination of the gravity turn. Afer-
wards, better trajectories are enabled by deflecting
the thrust, starting the free-flight phase. The free
flight phase can be treated as a TPBVP, in which
the vehicle initial position corresponds to the end of
gravity turn and the final position to the insertion
in the specified orbit.

The optimal controls for the optimized trajectory
are found by applying the PMP and the boundary
value problem is then solved by using a shooting
method to find the Lagrangian multipliers. The
proposed method is an extension of the work per-
formed in [4].

The problem objective is to reduce the propellant
consumption, which is equivalent to minimize the
thrusting time. The proposed objective function is
to reduce the final impulse time to reach circular
orbit, expressed as

J=tp—tey, (30)
where t; and t.; are the final flight time and the
final coast time, respectively.

The flight arcs are divided by the discontinuities
in mass and thrust through the flight. The terminal
boundary constraints are

U, hy — I
U= |U,| = |V,-V'| =0, (31)
Us =

where A/, V’, and +/ are the final state values, for
the vehicle to reach the desired orbit. The final time
ty and final downrange x; are unknown.

The Hamiltonian for each flight arc is set as

H=L+ATf =i+ h+AV+A75 (32

and the boundary condition function as
=T 10 W(ap) = (b~ tep) +0 7)), (33)

where X is the adjoint or costate variable conjugate
to the state equations and v is the time-independent
adjoint variable conjugate to the boundary condi-
tions. Due to the Weierstrass-Erdmann corner con-
ditions, the adjoint variables are continuous across
successive flight arcs.



To minimize the Hamiltonian, the set of condi-
tions that need to be satisfied are

Ae =0, (34a)

: 1
= — — 2 1
An (Re - )2 VA, cos(v) ( LAy Sin vy
2pe Ay COS Y 1
+ ) (

Vv Rp + h)3’

(34b)

_
Rg+h

T 1
)—fWSIHCY}
m

Ay = —)\hsin'y—)\,y[cosy(
HE
—_— 34
T Ra 022 (34c)
. cosy
Ay ==V Ay —————
v hCOSY + UE V(RE+h)2
HE
(Rg + h)2V

+/\7sm7( . ) (34d)

(Re +h)

Recognizing the costate equations (equation (34))
as homogeneous in A, the costate initial values can
be sought in the interval —1 < A < 1, reducing the
search space.

For the optimization problem, the control vari-
able used is the thrust deflection y, which can be
written in terms of the adjoint and state variables
through the Pontryagin’s Minimum Principle,

o = argmin H, (35)
which is the equivalent to solve
Ay .
7 sine + Ay cosa =0, (36)

A

with sina = —35% [()‘7”)24—)\%,} and cosa =

v/ [(3#)" + 3] to verify the PMP.

The coast time and the burn time of the last stage
are unspecified. Hence, the transversality condition
is given by

Hlast stage + H;oast o H(l)ast stage _ O7

L (37)

with H " %78 <

The use of the penalty function allows to deal
with trajectory contraints, by building a single ob-
jective function, able to be minimized by the PSO
algorithm. The new objective function is expressed
as

3
J =T+ s|zes—zl||+
; |zc.f | (38)

84‘ |H}ast stage + HJCcoaSt _ H(l)ast stage| |7
where s. denotes the constraint weighting factor, z s

the final state vector and 2’ the required state vec-
tor. The original objective function J is penalized

if the rocket does not reach the required altitude,
velocity or flight path angle and if the transversality
condition is not verified.

4.3. Algorithm Development

A continuous GA was built to handle the optimiza-
tion process with a parallelization option based on
the master-slave architecture, shown in figure 4.
The master node scatters the population individ-
uals throughout the slave nodes, which perform the
individual evaluation to assess the fitness and re-
turn the information to the master node to create
a new generation.

Create Initial
Scatter Mutation Wait for
individuals (Gaussian) individuals
N T l
/ Genetic | Crossaver
enet C T
gorithm | (Unifarm)
\ Algorith :| Ui Evaluation
\ /
S~ T l
. - Send
Wait for Collect | | Selection -
Slaves Evaluation (Taumament} Evapi;'aa;:;: o

Figure 4: Genetic Algorithm implementation using
master-slave architecture.

The benchmark of the GA was performed by us-
ing DEAP’s GA as comparison, showing reason-
able results. The population initialization is per-
formed using a maximin latin hypercube method,
maximizing the smallest distance between any two
design points, spreading them evenly over the en-
tire design region. The parents are selected through
tournament, followed by an uniform crossover and
a Gaussian mutation, creating the children for the
next generation. After testing, the chosen crossover
rate and mutation rate were p. = 0.75 and p,, =
0.5¢~0-0259¢nk where geny, is the generation num-
ber. The chosen step-size for the Gaussian mutation
is A = 1.0e~0-0759ens

The evaluation module can be divided in two
blocks: rocket construction block, where the mass
and sizing of the rocket is calculated, and the tra-
jectory optimization block, where the optimal tra-
jectory is calculated using the PyGMO PSO algo-
rithm. After each block, the algorithm verifies the
constraints, penalizing the objective function if they
are violated.

Firstly, the algorithm proceeds to calculate the
mass and dimensions of the rocket using the mass
model. The mass model calculates the stages pro-
pellant and inert masses and dimensions sequen-
tially, starting by the last stage. This is an itera-



tive process, as adding structural mass requires an
increase of propellant mass to achieve the desired
AV. The loop ends when the structural factor con-
verges, progressing to the next stage.

Before starting the trajectory optimization, the
design constraints are checked for violations. If
any constraint is violated, the rocket mass suffers
a penalty and the individual evaluation ends with-
out performing the trajectory simulation. The de-
sign constraints implemented are 1.2< TW R <2 at
lift-off, with TW R representing Thrust-to-Weight
ratio, and 8500 m/s < AV < 10000 m/s. Both
constraints allow to diminish the search space, thus
facilitating the search for feasible designs.

The trajectory model uses a fourth order explicit
Runge-Kutta method (RK4) to generate the nu-
merical trajectory solution. The PSO algorithm
provides the trajectory parameters needed to find
the optimal path. A trajectory simulation is per-
formed for each particle created by the PSO, un-
til the rocket reaches orbit or when the maximum
number of iterations is reached. Each particle is
initiated with a parameter set represented by the
unknown initial costate values (Aopn, Aov, Aoy), the
coast duration At. and initialization time ¢;., last
stage duration Atr and the pitch angle v, for the
pitch maneuver.

During the gravity turn and free flight, the stages
burn time and acceleration are monitored. The al-
gorithm limits the rocket acceleration when using
liquid stages (a < 5gg) to protect the payload by
throttling down the engines. When the propellant
tank is depleted, staging occurs. The condition cho-
sen to end the gravity turn was the aerothermal flux
to reach a value below 1135 W/m?, where the fair-
ing can be jettisoned without warming the payload.
The aerothermal flux is evaluated using

6= oV (39)

Afterwards, the optimal control, given by the
costate variables, is initiated. The rocket continues
to thrust until the start of the coast phase, which
only occurs during the last stage thrusting. The
stage then proceeds to burn until the burn time
Atr is reached.

Finished the trajectory optimization, the algo-
rithm verifies if the rocket has successfully reached
orbit. Thus, the algorithm verifies if buckling is
on eminence, using a safety factor of 1.5, and if
the maximum dynamic pressure affecting the rocket
surpasses the maximum admissible value (¢ <
55000 N/m?), penalizing the mass if the constraints
are violated.

For a thin elastic cylindrical shell of radius R,
thickness th, and Young modulus F, the linearized

buckling equations, the critical stress is given by [7]

FE th
T (w)

where v is the material Poisson’s ratio.
aluminum-alloy, v = 0.32.

(40)

Ocrit =

For an

5. Preliminary Design of a Small Launch Ve-
hicle

In the remark of testing how well the tool designs a

rocket, a small-LV optimization design is conducted

using an Electron’s reference mission [8], allowing to

compare the characteristics of the obtained rocket

and the Electron rocket.

5.1. Algorithm Setup

The optimization will focus only on two-stage and
three-stage rockets. The considered mission is
shown in table 1.

Payload Mass [kg] 150
Altitude [m] 500000
Velocity [m/s] 7612
Flight Path Angle [rad] 0.0

Table 1: Mission specification.

The trajectory optimization parameters are
shown in table 2. To prevent lack of propellant due
to engine malfunction, the maximum value for the
last stage duration is 95%, leaving 5% of propellant
as reserve.

PSO Boundary

Range
Coast Time [s] 500 - 4000
Pitch Angle [rad] 1.55 - 1.57
Adjoint Variables -1-1
Last Stage Duration [%)] 70 - 95
Coast Initialization [%)] 0 - 100

Table 2: Trajectory parameters for optimization.

The propulsive parameters are specified in table
3. For a better comparison between the optimized
rockets and the Electron, the propellant used and
the specific impulse are unchanged. Each stage will
only have one propulsive engine, reducing the design
space.

The design parameters are shown in table 4. The
diameter and wall thickness will be equal for all
stages. The material chosen for both tank walls
and for the rocket walls was the aluminum alloy,
with ppa:=2700 kg/m?3.



First Remaining
Stage Stages

TWR 1.2-2.0 0.8-1.5
Isp [s] 303 333
Nozzle Diameter [m] 0.6Dgtage 0.9Dgtage
Fuel Density [kg/m3) 810 810
Oxidizer Density [kg/m?] 1142 1142
O/F Ratio 2.61 2.61

Table 3: Propulsive and propellant parameters.

Two Three

Stage Stage
Rocket Type liquid liquid
AV /Stage [m/s] 3000 - 6000 2000 - 4000
Diameter [m] 1.0-1.5 1.0-1.5
Wall thickness [mm] 2.0-5.0 2.0-5.0
Engines per Stage 1 1

Table 4: Design Parameters.

The parameters of both GA and PSO optimiza-
tion algorithms illustrated in table 5 and table 6,
respectively. The step-size is normalized with the
boundary width.

Maximum Generation 35
Number of Individuals 50
Crossover Rate 0.75
Mutation Rate 0.5¢~0-025g¢emny
Step-Size 1.0e~0:0759¢enk

Table 5: Genetic algorithm parameters.

Maximum Generation 250
Number of Particles 100
Cognitive Parameter 2.05
Social Parameter 2.05
Inertia Weight 0.7298

Table 6: Particle swarm optimization parameters.

5.2. Results

The algorithm took 9641 seconds to find the op-
timal two-stage rocket design and 7370 seconds to
find the optimal three-stage rocket design. The task
was parallelized using a cluster with 13 Intel Xeon
E312xx (Sandy Bridge) processors, 4 cores each.
Each core has a frequency value of 2000 MHz.

The algorithm convergence is illustrated in figure
5. The algorithm was able to converge within the
maximum number of generations.

Figure 5: Rockets best total mass evolution.

The optimal design parameters of the two-stage
and three-stage rockets are shown in table 7 and
table 8, respectively.

15t Stage 2”4 Stage

Delta-V [m/s] 4152 5334
TWR 1.68 1.07
Thickness [mm)] 2.01 2.01
Diameter [m] 1.05 1.05
Propellant Mass [kg] 14271 2515
Inert Mass [kg] 1574 383
Fairing Mass [kg] 73

Total Mass [kg] 18971

Table 7: Two-stage rocket optimal design parame-
ters
15t Stage 2”4 Stage 3" Stage

Delta-V [m/s] 3123 3255 2861
TWR 1.80 1.02 0.82
Thickness [mm] 2.01 2.01 2.01
Diameter [m] 1.00 1.00 1.00
Propellant Mass [kg] 8938 2272 554
Inert Mass [kg] 1205 379 177
Fairing Mass [kg] 70

Total Mass [kg] 13744

Table 8: Three-stage rocket optimal design param-
eters

The algorithm was able to handle the design con-
straints. As expected, the three-stage rocket is a
better alternative to the two-stage rocket, drasti-
cally reducing the total mass by 5 tonnes. The
wall thickness and diameter tend to the minimum
boundary value.

Two Stage Three Stage

Coast Time [s] 2734 2977
Pitch Angle [rad] 1.566 1.560
Adjoint Variable Ap -9.95e-04 -9.97e-04
Adjoint Variable Ay -7.79e-01 -1.89e-01
Adjoint Variable X, -8.88e-01 -8.35e-01
Last Stage Duration [%)] 95.0 95.0
Coast initialization [%] 98.8 98.3

Table 9: Rocket optimal trajectory parameters

The optimal trajectory parameters are shown in



table 9. The last rocket stage burns until it con-
sumes 95% of the available propellant, leaving the
remaining 5% as reserve. The coast phase is initial-
ized near the last stage ending time for both rockets.
Thus, the last stage provides an optimal impulse to
reach circular orbit by using between 1% to 2% of
the last stage burn time at the end of the flight.

The rocket altitude evolution with time is il-
lustrated in figure 6. Both rocket configurations
reached the required altitude with a time difference
of 510 seconds. Before the coast phase, the rockets
turn horizontally for a brief moment to increase ve-
locity and reduce gravity losses, observable in figure
8.
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Figure 6: Rocket altitude evolution.

The rocket velocity history is illustrated in figure
7. Once again, both rockets are able to achieve the
required velocity for the circular orbit. Before coast
phase, both rockets achieve a minimum velocity of
7900 m/s to reach orbit. The two-stage rocket has a
faster increase in velocity due to performing staging
later.
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Figure 7: Rocket velocity evolution.

Both rockets have a similar flight path angle evo-
lution in figure 8, that is maintained slightly above
zero during the entire coast phase to allow the
rocket ascension.
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Figure 8: Rocket flight path angle evolution.

The thrust vectoring angle evolution is shown in
figure 9. Both rockets have a thrust vectoring angle
below 0.2 rad. The control only starts after the fair-
ing jettison, which happens at 188 seconds for the
two-stage rocket and at 230 seconds for the three-
stage rocket.
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Figure 9: Rocket thrust vectoring evolution.

The constraints, shown in table 10, were success-
fully handled by the optimizer. The dynamic pres-
sure is below the admissible limit of 55 kPa. Thus
algorithm constrains the two-stage rocket accelera-
tion, keeping it below 5gg. The axial load for the
two-stage rocket and three-stage rocket are below
the safety load of 710 kN, suggesting the wall thick-
ness could be further reduced.

. Two Three

Constraint Stage Stage

Acceleration [m/s?] <5.00 5.00 4.72
Dynamic Pressure [kPa] < 55.0 50.5 51.2
Axial Load [kN] <710 475 390

Table 10: Constrained parameters maximum value.

A comparison between the optimized rockets and
the Electron is made in table 11 providing the de-
sign. Thus, a simple rocket illustration in figure 10



allows to visualize the dimensions.

Two Three

Electron
Stage Stage Rocket

Rocket Rocket
Number of Stages 2 3 2
Total Mass [kg] 18971 13744 12500
Diameter [m] 1.05 1.00 1.2
Length [m] 22.09 19.12 14.5
Number of Engines /1 1/1/1 9/1

Table 11: Comparison of design characteristics be-
tween optimized and Electron rocket.
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Figure 10: Optimized rockets and Electron rocket
dimensions.

The two-stage optimized rocket presents a 52%
increase in total mass and length relatively to the
Electron rocket, while the three-stage optimized
rocket presents only a 10% increase in total mass
and a 32% increase in length. The increase in length
is not only due to requiring more space for the pro-
pellant mass but also because of the smaller diam-
eter.

The larger mass value is not only due to the sim-
plifications made in the dry mass models, but also
due to the structural and propulsive assumptions.
Regardless of the simplifications made, the tool has
proven to be able to successfully optimize rocket de-
sign and trajectories using a coupled approach and
computational parallelization.

6. Conclusions
In this work a tool capable to perform a rocket pre-
liminary design using a coupled multi-disciplinary
optimization approach was developed. Within this
framework, a trajectory and staging optimization
code were developed separately.

A trajectory model was successfully developed.
It is able to find an optimal rocket Pontryagin’s
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Minimum Principle to calculate the optimal control
and the PyGMO PSO algorithm to find the optimal
trajectory parameters.

The staging optimizer was also able to success-
fully perform design optimization using the devel-
oped GA algorithm, in spite of reducing the total
rocket mass. It allowed to perform parallel opti-
mization and was able to converge before the gener-
ation limit while successfully handling the imposed
design constraints.

The tool is finally tested by performing a two- and
three-stage small rocket conceptual design. Both
designed rockets are able to perform the mission.
Comparatively to the Electron, the three-stage op-
timized rocket has 10% more mass. The mass and
sizing errors are due to the assumptions made, in-
accuracy of the mass and sizing models and the use
of gravity turn in trajectory.

Nevertheless, the tool is able to perform concep-
tual rocket design and trajectory optimization, par-
allelizing the task using a master-slave architecture.
The models used by the tool can be replaced inde-
pendently from the other models to improve the
tool in the future.
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