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Abstract

The emerging market of the aviation sector begins to request the need for tools to study the aeroser-

voelastic behaviour of an aircraft. There are mathematical models for this kind of study, but its

interpretation is not easy and many of them use the frequency domain.

In this thesis the aeroservoelastic equations of motion of a general aircraft for equilibrium conditions

in time domain were developed. A program was also developed, produced in C++R©, which integrates

these same equations, and that in the future may be included in other projects as an interconnection tool

between different fields of aeronautics, such as aerodynamics, structural dynamics and flight control. To

develop this tool, various integration methods were inspected and consequently the utility of each one

was found. Aeroelasticity consequences were also discussed and used to introduce the optimal control.

It was also carried out a flight simulator in MATLABR© using optimal control. The optimal control

behaviour, more specifically the linear quadratic regulator, in the flight dynamics was also studied. This

flight simulator allows the simulation of the motion for a general aircraft, adopting a set of aerodynamics

derivatives of general aircraft from the literature, on turbulent air flows and in engine failure cases in

aircraft up to five engines. The simulation study in this thesis had more in mind to ensure that the

aircraft maintains its equilibrium and course in critical situations, as referred above.
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1. Introduction
With the increasing growth of high-performance
and cheap aircraft, the need for more realistic flight
simulators also grows. One of the crucial aspects
on making the flight simulator more realistic is the
consideration of aircraft’s elastic properties (aeroe-
lasticity).

Figure 1: Aeroelasticity (adapted from [4])

As seen in Figure 1, aeroelasticity has been de-
fined as a science which studies mutual interactions
between aerodynamic forces and elastic forces, and
the influence of these interactions on airplane de-

sign. Some of the most rough phenomena on air-
craft’s structure happen because of the aircraft’s
elastic properties. These physical phenomena, as
they will be described later, can be, for example,
flutter, control reversal and others.[3]. That is why
aeroservoelasticity plays an important role on con-
trolling and preventing these harmful effects from
happening.

The goal of the dynamics integration tool is to
guarantee future integration with aerodynamics,
structures and flight control programs to simulate
a generic aircraft dynamics during a time interval
(∆t). The grey highlighted boxes in Figure 2 are the
modules done and described throughout this thesis.

2. Theoretical Background

Several key disciplines such as flight simulators,
aeroelasticity, aeroservoelasticity and mathematical
methods used to simulate unsteady aerodynamics
and structural dynamics are briefly covered in this
section.
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Figure 2: Interactions between modules

2.1. Flight Simulators
Flight simulation is basically a way to recreate the
conditions of a real flight. Several aeronautical ar-
eas such as flight dynamics, navigation and aeroe-
lasticity behavior can be studied in an artificial
computational environment. As seen in Figure 3,

Figure 3: General structure from a flight simulator

a flight simulator is composed by several modules.
The crucial module of a simulator is the dynamics
module and in a general way, all the other modules
are inputs or outputs of this major module. This
dissertation has the objective of creating this signif-
icant module, containing the structural dynamics of
the aircraft. Then it may be used, when paired with
a flight controller, to control the harmful aeroelastic
effects that may occur (aeroservoelasticity).

2.2. Aeroelasticity
Stability and control; structural dynamics and
static aeroelasticity - each one of these major dis-
ciplines are a product from two of three types of
force. When all the three types of force are in-
teracting, dynamic aeroelastic phenomena occur.
Harmful aeroelastic phenomena grow when struc-
ture deformation causes additional aerodynamic
forces. Eventually, these additional forces may pro-
duce more structural deformation, resulting in even
greater aerodynamic forces. These adverse phe-

nomena usually occur when there is an interaction
between the three forces (dynamic aeroelastic phe-
nomena), and an interaction between aerodynamic
and elastic forces (static aeroelastic) [3]. Some of
the most catastrophic phenomena are:

• Flutter: Flutter is an aeroelastic self-excited
unstable vibration in which the airstream en-
ergy is absorbed by the lifting surface. The mo-
tion involves both bending and torsional com-
ponents which are basically simple harmonic
oscillations with an unique flutter frequency;

• Divergence: A static instability of a lifting
surface of an aircraft in flight, at a speed called
the divergence speed, where the elasticity of
the lifting surface plays an essential role in the
instability.

2.3. Aeroservoelasticity
Aeroservoelasticity (ASE) is the discipline of the
aeronautical science that deals with the interaction
of aircraft structural, aerodynamic, and control sys-
tems. Though there were early sucesses in creating
active flutter suppression systems and load allevia-
tion systems, ASE still remains a vast experimental
area and has still not reached operational status on
any aircraft [9]. A possible block diagram for the
aeroservoelasticy is seen in Figure 4.

Figure 4: General aeroservoelastic block diagram
(adapted from [9])

Deformation happens or is usually increased
when there are gusts (disturbance input) or control
surface deflection, as seen in the aeroelasticity plant
from Figure 4. Deformation induces changes on
the aerodynamic forces acting on the aircraft, hence
the aerodynamic feedback loop. Therefore this cy-
cle needs to be controlled, or in extreme cases, it
may lead to one of many catastrophic phenomena
as explained in the Section 2.2. Knowing these de-
formation rates and the aeroelastic phenomena, it
is possible to generate a control model to prevent
these phenomena from happening. The flutter dy-
namic pressure (pdF ) has an associated speed called
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flutter velocity

pdF =
1

2
ρVFlutter . (1)

The goal of an aeroservoelastic model, is to close
the loop in order to increase the open-loop flutter
velocity [9].

3. Dynamics Model
In this Section the equations of motion (EOM) of a
generic elastic aircraft will be defined.

3.1. Reference Frames and Angles
When working with a flight dynamics’ problem it
is crucial to choose a proper reference frame that
specifies the needs of the problem.

Figure 5: Fixed reference frame, FE , and aircraft
reference frame, FB [8]

Before advancing to the definition of the equa-
tions of motion, two reference frames, as seen in
the Figure 5, need to be chosen. The local NED
(North-East-Down) coordinate system was chosen
for fixed frame (FE) and the RPY (Roll-Pitch-Yaw)
was picked for the body axis system (FB). Through
Euler angles (φ,ψ,θ) the transformation from the
NED frame to the RPY frame is intuitive [8].

3.2. Rigid Body Flight Dynamics
The equations of motion are a result from the ap-
plication of Newton-Euler formulation in classic me-
chanics to the flight vehicle, in the fixed reference
frame (subscript E). Applying these, and con-
sidering for now constant mass and constant iner-
tia throughout time, two crucial equations emerge.
One for linear moment

F =
d

dt
[mvE ] , (2)

where F represents the resultant of all external
forces applied on the aircraft, m is the aircraft’s
mass, vE the vehicle linear motion vector relative
to the fixed reference frame.

And finally the angular moment equation

M =
d

dt
[H]E =

d

dt
[Iw]E =

d

dt
IwE , (3)

whereM represents the resultant external moment,
H is the total moment relative to the aircraft’s cen-
ter of mass. H is equal to the product of w, the
angular velocity vector, with I being the inertia ten-
sor matrix. The small disturbance theory when, ap-
plied to the rigid body flight dynamics in a steady
state, as rectilinear flight, is a powerful tool that de-
couples the motion into variables responsible for the
longitudinal and lateral motion. Considering single
engine contribution for forces and moments, (2) and
(3) expand into two decoupled set of equations, one
for longitudinal motion
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i=1 ZδT i
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q̇ = M̃uu+ M̃ww + M̃qq + M̃θθ + M̃δEδE

+
∑Neng

i=1 δT i(ziXδT i
− xiZδT i

)

θ̇ = q

,

(4)
and other for lateral motion
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β̇ = Yββ + p(
Yp

u0

+ α0) + r(Yr
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− 1) + gcos(θ0)
u0

φ

+
YδA

u0

δA +
YδR

u0

δR
ṗ = L′

ββ + L′
pp+ L′

rr + L′
δA
δA + L′

δR
δR−

∑Neng

i=1 yiZδT i
δT i

ṙ = N ′
ββ +N ′

pp+N ′
rr +N ′

δA
δA +N ′

δR
δR

+
∑Neng

i=1 yiXδT i
δT i

φ̇ = p+ tan(θ0)r

ψ̇ = r
cos(θ0)

,

(5)
where Xi, Yi and Zi represent ith state variable in-
duced force on the x, y and z axis respectively. The
Li, Mi and Ni represent ith state variable induced
moment on the x, y and z axis, respectively.

3.3. Elastic Aircraft Consideration
When aeroelastic effects are taken into account, new
state variables and their respective equations, repre-
senting a set of generalized coordinates associated
with the bending modes need to be added to the
flight dynamics equations system, (4) and (5). The
vibration (bending, torsion, mixed, among others)
modes can be represented using generalized coordi-
nates

c1iq̈i + c2iq̇i + c3iqi = Fi (6)

where Fi is a generalized force, c1i, c2i and c3i are
coefficients of the ith generalized coordinate (qi)
and of its rates. [5] Although it is possible to rep-
resent the vibration mode by two first order, linear,
differential equations

x1 = qi , x2 = q̇i , (7)
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where

ẋ1 = x2

ẋ2 =
−c2i
c1i

x2 −
c3i

c1i
x1 +

1

c1i
Fi . (8)

This pair of first order differential equations repre-
senting the vibration mode can be used to augment
the rigid body dynamics. Usually, the convention
for enumerating vibration modes, is such that mode
1 corresponds to the mode with lowest vibration
frequency. So as the mode number increases, its
associated frequency increases.

Assuming the conditions of the flight dynamics
system (4) and (5) and the state vectors for longi-
tudinal and lateral motions represented in equations
(9) and (10)

xlong =
[

u w q θ λ1 σ1 ... λn σn
]T

, (9)

xlat =
[

β p r φ ψ τ1 χ1 ... τn χn

]T
,

(10)
the flexibility effects of a general aircraft, for n vi-
bration modes, can be represented as
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u̇ = Xuu− w0q +Xww − gcos(θ0)θ +XδEδE

+
∑Neng

i=1 XδT i
δT i +Xλ1

λ1 +Xσ1
σ1 + ...+

Xλn
λn +Xσn

σn
ẇ = Zuu+ u0q + Zww − gsin(θ0)θ + ZδEδE+

∑Neng

i=1 ZδT i
δT i + Zλ1

λ1 + Zσ1
σ1 + ...+

Zλn
λn + Zσn

σn
q̇ = M̃uu+ M̃ww + M̃qq + M̃θθ + M̃δEδE+

∑Neng

i=1 δT i(ziXδT i
− xiZδT i

) +Mλ1
λ1+

Mσ1
σ1 + ...+Mλn

λn +Mσn
σn

θ̇ = q

λ̇1 = σ1
σ̇1 = −(2ξ1ω1 + η1σ1

)σ1 + (−ω1
2 + η1λ1

)λ1+
η1uu+ η1ww + η1qq + η1δE δE+
∑Neng

i=1 η1δT i
δT i + ...+ η1σn

σn + η1λn
λn

...

λ̇n = σn
σ̇n = −(2ξnωn + ηnσn

)σn + (−ωn
2 + ηnλn

)λn
+ηnu

u+ ηnw
w + ηnq

q + ηnδE
δE+

∑Neng

i=1 ηnδT i
δT i + ηnσ1

σ1 + ηnλ1
λ1 + ...+

ηnσn−1
σn−1 + ηnλn−1

λn−1

,

(11)
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φ
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δR + Yτ1τ1 + Yχ1
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Yτnτn + Yχn
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ṗ = L′
ββ + L′

pp+ L′
rr + L′

δA
δA + L′

δR
δR−

∑Neng

i=1 yiZδT i
δT i + Lτ1τ1 + Lχ1

χ1 + ...+
Lτnτn + Lχn

χn

ṙ = N ′
ββ +N ′

pp+N ′
rr +N ′

δA
δA +N ′

δR
δR+

∑Neng

i=1 yiXδT i
δT i +Nτ1τ1 +Nχ1

χ1 + ...

+Nτnτn +Nχn
χn

φ̇ = p+ tan(θ0)r

ψ̇ = r
cos(θ0)

τ̇1 = χ1

χ̇1 = −2ξAωAχ1 +−ωA
2τ1 + µ1ββ + µ1pp+

µ1rr + µ1δA
δA + µ1δR

δR + ...+ µ1χn
χn

+µ1τn
τn

...

τ̇n = χn

χ̇n = −2ξZωZχn +−ωZ
2τn + µnβ

β + µnp
p+

µnr
r + µnδA

δA + µnδR
δR + µnχ1

χ1 + µnτ1
τ1

+...+ µnχn−1
χn−1 + µnτn−1

τn−1

,

(12)
where λ and τ represent the displacement of sym-
metrical and asymmetrical bending mode, µnτ

and
ηnλ

correspond to the structural derivatives with
respect to the nλ and nτ bending modes. Vari-
ables χ and σ are used to facilitate interpretation
and maintain the system as a first order differential
equations system. The variables ξ and ω correlate
to the damping ratio and natural frequency.

4. Dynamics Model Implementation
One of the goals of this thesis, besides the flight
controller, is the implementation of a standalone
aircraft dynamics client. The dynamics equations
for this C++ R© program were equations (11) and
(12).
The center piece of this developed program is

its integration function. This integration function
comes from the Boost c© C++ R© library, an open-
source extensive used library that provides a wide
range of platform agnostic functionality that STL
(Standard Template Library) missed [1].
The integration function was integrate adaptive.

It performs the time evolution, for each time step
dt, of the ordinary differential system from some
starting time t0 to a given end time t1, a starting
state x0 and the stepper, that is nothing more than
the mathematical method used during the integra-
tion. This function also has the benefit of calling
the observer at equidistant times separated by dt.

4.1. Inputs and Outputs
This client will receive information from several
modules such as: aerodynamics, structural dynam-
ics, flight controller and propulsion model. Then,
it will be possible to simulate the dynamics dur-
ing a time interval (∆t). The objective is to sup-
ply the other modules with the aircraft’s trajec-
tory (xE ,yE ,zE), velocities (uB ,vB ,wB), accelera-
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tions (axB
,ayB

,azB ), euler angles (φ,ψ,θ) and angu-
lar rates (p,q,r) during that time interval.

4.2. Type of Steppers
The stepper is the mathematical model used during
the step integration. There are plenty of steppers
and each one has its purpose and use. For this type
of ODE problem there are three kinds of steppers:

• Basic steppers: As the name enunciates,
these are the normal steppers. Some of them
are euler and runge kutta cash karp54;

• Error steppers: Steppers that provide an er-
ror estimation. Besides also being a basic step-
per, runge kutta cash karp54 provides also an
error estimation;

• Controlled steppers: Built on error step-
pers, this kind of stepper may decide to mod-
ify the integration time step if an error criteria
finds the suggested time step inadequate. The
controlled runge kutta will be the considered
controlled stepper.

4.3. Stepper Comparison
For the stepper comparison test, the trim condition
stability derivatives data from the three engined
Dassault Falcon 7X, was used. The standard inte-
gration solver used in SIMULINK R©, the Dormand-
Price, which is a controlled stepper, will be used as
a reference.

Figure 6: Dynamic response of the Dassault Falcon
7X (v,p,w,q)

In Figure 6, it is exposed the integration results
of the Dassault Falcon 7X in a certain flight condi-
tion ( Dassault Falcon 7X δA = 5◦, δR = 0◦, δE =

5◦, no engine throttle and null initial state condi-
tions). The time of the integration is ten seconds
and the time step (dt) for Euler and Runge-Kutta
is 0.2 seconds. The plan is to spot the differences
between integration steppers and eventually choose
one for the dynamics integration problem.
The Euler method possesses significant accuracy

problems as it only corresponds to the two first
terms in the Taylor series, these accuracy problems
are visible in the w plot. As its error propagation
grows with the number of time steps and their size,
it can become divergent in some cases as in the v
plot.
The 4th order Runge-Kutta integration scheme

shows suitable results for the dynamics of this flight
condition. Although if the system has certain initial
condition or states for the control variables, it can
overshoot.
The controlled Kutta stepper internally varies the

time step size. However, it has a considerable set-
back which is that the user has no power in the
choice of the controlled stepper time step. As the
dynamics integrator goal is to interconnect to other
software infrastructures, it needs to have a well de-
fined time step in order to synchronize correctly.
In the light of these results, the dynamics inte-

grator default stepper is the Runge-Kutta stepper
of 4th order. Nevertheless with the usage of the
integrate adaptive function, the option of using a
controlled stepper or another basic stepper is open
to the user. The need for controlled stepper might
appear, especially, for aircraft that have overshoot-
ing responses.

5. Flight Control
In this Section the requirements for flight control
and the final model state forms will be presented.

5.1. Simulation Domain
The flight controller of this project will be repre-
sented in state-space form,

{

ẋ = Ax+Bu

y = Cx+Du
. (13)

The first equation in (13) is the state equation. This
equation is a first order, vector differential equation,
where the x represents the state vector, u the con-
trol vector, A the state coefficient matrix and B

the driving matrix. The second equation in (13) is
the output equation, which is merely an algebraic
equation that solely depends upon the state vector.
Where y is the output vector, and the matrices C

andD the output and direct matrix respectively [5].
The stability of the system is verified by looking at
the eigenvalues of the state coefficient matrix A. If
these eigenvalues have negative real part, then it is
safe to say that the system, ẋ = Ax(t) is asymp-
totically stable.
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5.2. Longitudinal Control
For the lateral mode the control will be done in the
flight path angle (γ) and longitudinal speed (u).
The flight path angle (γ) needs to be added as a
state, and keeping in mind that the vertical velocity
(w) can be approximated, for small perturbations,
as a function of the angle of attack (α)

γ = θ − α→ θ = γ +
w

u0
. (14)

When transforming the system (4) into state-space
and substituting , the pitch angle (θ) for flight path
(γ), the longitudinal state-space emerges

ẋLongγ
= ALongγ

xLongγ
+BLongγ

uLong =












Xu Xw − gcos(θ0)
u0

−w0 −gcos(θ0)

Zu Zw − gsin(θ0)
u0

u0 −gsin(θ0)

M̃u M̃w + M̃θ

u0

M̃q M̃θ

−Zu

u0

−Zw

u0

+ gsin(θ0)
u2

0

0 gsin(θ0)
u0





















u

w

q

γ









+











XδE XδT 1
... XδT Neng

ZδE ZδT 1
... ZδT Neng

M̃δE (ziXδT 1
− xiZδT 1

) ... (zNeng
XδT Neng

− xNeng
ZδT Neng

)
−ZδE

u0

−ZδT 1

u0

...
−ZδT Neng

u0











uLong ,

(15)

where

uLong =
[

δE δT 1 ... δTNeng

]T
. (16)

Two additional states (xu and xγ) were added to
prevent static error on the longitudinal controllable
states, consequently increasing the size of system’s
(15) A, B and x.

5.3. Lateral Control
Only one variable will be controlled in the lateral
mode, the heading angle (λ). It can be defined as
the sum of slide slip angle (β), with the yaw angle
(ψ)

λ = β + ψ . (17)

This will be the fifth lateral state substituting the
yaw angle (ψ). The lateral equations (5) are then
transformed into the state-space

ẋLatλ = ALatλxLatλ +BLatλuLat =














Yβ
Yp

u0

+ α0
Yr

u0

− 1 gcos(θ0)
u0

0

L′
v L′

p L′
r 0 0

N ′
v N ′

p N ′
r 0 0

0 1 tan(θ0) 0 0

Yβ
Yp

u0

+ α0
1

cos(θ0)
+ Yr

u0

− 1 gcos(θ0)
u0

0
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


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







β

p

r

φ

λ


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







+















YδA

u0

0 ... 0
YδR

u0

L′
δA

−y1ZδT 1
... −yNeng

ZδT Neng
L′
δR

N ′
δA

y1XδT 1
... yNeng

XδT Neng
N ′

δR

0 0 ... 0 0
YδA

u0

0 ... 0
YδR

u0















uLat . (18)

where

uLat =
[

δA δT 1 ... δTNeng
δR

]T
. (19)

An additional state (xλ) was added to prevent static
error on the heading angle (λ), consequently in-
creasing the size of system’s (18) A, B and x.

5.4. Flying and Handling Qualities
Aircraft flying qualities are defined by a number of
parameters in the complex frequency domain. In
equation (20) there are two of these important pa-
rameters, damping ratio (ξ) and undamped natural
frequency (ωn).

ωn = |κ|

ξ = −cos(∠κ)
(20)

In this dissertation project it is needed to ensure
that for a certain mission, the aircraft has the best
flying qualities. The specification used is the MIL-
F-8785, Military Specification - Flying Qualities of
Piloted Airplanes published in 1980. The level of
flying qualities on this specification depends upon
the aircraft class and flight phase [6].

5.5. Disturbances State-space Form
To include the disturbances, a new matrix is added
into the aircraft dynamics state-space form (13)

ẋ = Ax+Bu+Ed , (21)

where d represents the disturbance states

dcoupled =
[

dLong dLat

]T
(22)

=
[

ug wg qg vg pg rg
]T

. (23)

and E the associated disturbance influence matrix.

5.6. SIMULINK R© State-Space model
The common state-space SIMULINK R© model could
not be used for this project because it does not in-
clude the associated disturbance influence matrix,
E. The model in Figure 7, satisfies the state-space
equation (21) where the A and the B matrices are

Figure 7: State-Space model implemented in
SIMULINK R©

formed by the matrices of equations (15) and (18).

6. Optimal Control
The goal is to examine the optimal control tech-
nique used for the flight controller. An example of
flutter suppression on a two-dimensional aeroelastic
airfoil will be used to demonstrate the utility of the
linear quadratic regulator.

6



6.1. Aeroservoelastic Optimal Control

To introduce the linear quadratic regulator (LQR),
a flutter suppression controller of a two-dimensional
aeroelastic airfoil represented in Figure 8, will be
demonstrated.

Figure 8: The 2-D cross-section of an airfoil [7]

This is a typical aeroservoelastic problem, when
the airspeed increases the elastic airfoil starts de-
flecting and therefore increasing the aerodynamic
forces acting on it, leading to bigger deflections and,
as a result, bigger oscillations. There is an airspeed
limit, called flutter velocity, for marginally stable
oscillations. The results of [7] were reproduced us-
ing MATLAB R© and SIMULINK R©.

6.2. Open Loop Aeroservoelastic Problem

In this example the flutter velocity (VFlutter) for
this airfoil is 297.4 m/s. In order to begin the sim-
ulation, it is considered that there is an initial con-
dition for the state variables (x0).
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Figure 9: Pitch and flap angle variation over time
considering flutter velocity (V = Vflutter = 297.4
m/s) on open-loop

As seen in Figure 9, if the airspeed is exactly
the flutter velocity (V = VFlutter = 297.4 m/s),
the system remains marginally stable throughout
all simulation. Marginally stable means that the
matrix A has at least one eigenvalue with zero real
part. The objective is now to implement a control
law to suppress flutter.

6.3. Linear Quadratic Regulator
There are two great advantages when solving a lin-
ear quadratic problem. Firstly, the control is a full
state linear feedback law

u = −Kx , (24)

and secondly, this resulting feedback control law
will ensure that the system in closed-loop is stable
and robust, but only if the system is controllable
and stabilizable [5]. This method is based in the
optimization and minimization of the system’s per-
formance index J

J =
1

2

∫ ∞

0

(xTQx+ ǫuTRu)dt . (25)

Equation (25) represents a trade-off between, x, u
and two matrices Q and R. The state vector x

behaves as a constrain to the minimization of the
performance index, J. The ǫ is a parameter that
determines the relative weights.

6.4. Closed Loop Aeroservoelastic Problem
In this particular aeroservoelastic case, LQR was
applied as a control method in the pursuance of
finding a control function u(t) to stabilize the sys-
tem. This control function will have the form pre-
sented in equation (24)

u(t) = −KLQRx(t) , (26)

and the closed loop system

ẋ(t) = Ax(t)+Bu(t) →

ẋ(t) = (A−BKLQR)x(t) →

ẋ(t) = A∗x(t) ,

(27)

where A∗ is the the augmented plant matrix.
Matrices Q and R are square and symmetric ma-

trices and they can be time-dependent. The state
weighting matrix Q, is a positive definite matrix
and the control cost matrix, R is a positive semi-
definite matrix. The objective of these matrices is
to regulate the importance of states and inputs vari-
ables in the considered problem.

After choosing the Q and R and considering the
flutter velocity (Vflutter) as 297.4 m/s, the closed
loop dynamic response is given in Figure 10.
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Figure 10: Pitch and flap angle variation over time
considering flutter velocity (V = Vflutter = 297.4
m/s) on closed-loop
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Closing the loop stabilized the system. This sys-
tem that once was marginally stable on the open-
loop, now is completely stable having it’s oscilla-
tions ending after about one and a half seconds.
The full state feedback gain made the zero real part
eigenvalues of open-loop translate to real negative
part eigenvalues in the closed loop.

6.5. Bryson’s Method
Since the definition of matrices Q and R can be ar-
bitrary, there is a method called Bryson’s method
in which it suggests that each term of the diago-
nal matrices, Q and R, is the inverse square of the
maximum value expected for the variable on the
simulation time. As it follows

Q = diag(Qi) ⇒ Qi =
1

x2imax

, R = diag(Ri) ⇒ Ri =
1

u2imax

.

(28)
In the flight control system, u2imax

and x2imax
are the

values indicating the extreme of the perturbations
wanted for ui or xi for the closed loop during a
maneuver. This method is a good starting point to
define these matrices and will be used in the flight
control problem. [2]

6.6. Schematic of the Flight Controller Model
The desired control states are longitudinal speed,
flight path angle and heading angle. The flight con-
troller or the pilot inserts references for these states
and the model follows them, aided by the linear
quadratic regulator feedback gains. Controllable
states feedback will then be

u = −
[

Ku Kγ Kλ

]





u− uref
γ − γref
λ− λref



−KLQRother

















w

q

β

p

r

φ

















(29)

6.7. SIMULINK R© Flight Controller Model
The SIMULINK R© flight controller model is in Fig-
ure 11. It gathers the concepts developed in previ-
ous sections, to create a ready-to-use SIMULINK R©

flight controller model.

Figure 11: Flight controller model created in
SIMULINK R©

The dynamics block, named as Space-State Sys-
tem, is defined in Figure 7 and it includes a turbu-
lence model. This turbulence model can be toggled
off by simply unchecking the ’Turbulence on’ box,
and thus having a non-turbulent simulation. The
control part of the model was built based in equa-
tion (29). It is assumed a flight with no side slip,
hence the reference for β being zero.

6.8. Linear Quadratic Regulator Script

The first step of the flight controller is to assure the
aircraft dynamic modes have level 1 flying qualities.
In order to reach that goal, several scripts and func-
tions were created in MATLAB R© applying the con-
cepts explained. The objective is to use the linear
quadratic regulator as a stability augmentation sys-
tem. However, as this flight controller is designed
for a general aircraft, Bryson’s method was imple-
mented for an appropriate pole placement.

7. Flight Simulation

Initially, open-loop dynamics of the flight conditions
for the Airbus A400M are analysed. Then, the goal
is to use the flight controller to follow a reference in
the case of engine failure.

7.1. Open-Loop Dynamics

The aircraft used for the engine failure test is the
four engine Airbus A400M. From observing Table

Airbus A400M

Longitudinal
motion

Phugoid
κphu

1
= -0.066 +0.0883i

κphu
2
= -0.066 - 0.0883i

Short period
κsp

1
= -7.47 + 3.23i

κsp
1
= -7.47 - 3.23i

Lateral
motion

Spiral κspi = 0.0840
Roll κroll = -1.26

Dutch Roll
κdr1 = -0.141 + 1.82i
κdr2 = -0.141 - 1.82i

Heading mode κλ = 0

Table 1: Open-loop dynamic modes eigenvalues

7.1, it is possible to conclude that the phugoid has
level three and the short period has level two. In
the lateral motion, the spiral mode is stable and
thus level one, roll is also level one and dutch roll is
categorized as level two. Overall, the longitudinal
and lateral motions of the aircraft do not have the
level one flying qualities requirement. The LQR
script must place the poles of these dynamic modes,
in such a way that the level one flying qualities of
the aircraft are satisfied.

7.2. Engine Failure

In this section, it is assumed that the left engines
of the four engine Airbus A400M (δT1

and δT2
) are

malfunctioning and therefore providing no thrust to
the aircraft

δT1
= 0 , δT2

= 0 . (30)
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The control surfaces available for the aircraft are
then δT3

, δT4
, δE , δA and δR. The goal is to perform

a climb (γref = 1◦) while maintaining heading (λref
= 0◦). The reference for longitudinal velocity is
maintained at the trim velocity (uref = u0).

The script is then called and proceeds to find level
one flying qualities for a control penalty parame-
ter of ǫ = 10. Table 7.2 contains the closed loop
eigenvalues for ǫ = 10 and also for two additional ǫ
values.

Control penalty parameter (ǫ) 10 40 80

Longitudinal
motion

Phugoid
(κphu1,2

)
-0.597 ± 0.252i -0.414 ± 0.36i -0.369 ± 0.36i

Short period
(κsp1,2

)
-11.3 ± 4.37i -6.86 ± 5.23i -5.39 ± 4.92i

Lateral
motion

Spiral
(κspi)

-0.631 -0.603 -0.569

Roll
(κroll)

-3.36 -2.54 -2.28

Dutch roll
(κdr1,2)

-1.98 ± 2.65i -1.33 ± 2.41i -1.08 ± 2.26i

Table 2: Closed loop poles for ǫ = 10, ǫ = 40 and ǫ
= 80

The model’s dynamic responses of a thirty five
seconds simulation on SIMULINK R© are presented
in Figures 12, 13 and 14. The position of the aircraft
in the ENU frame is defined in Figure 15. Three dif-
ferent control penalty parameters (ǫ) were tested,
in order to see its influence on the flight dynam-
ics. Therefore, for each plot there are three sets of
curves and the markers for each curve are only to
help identification. In Figures 12 and 13, the ef-
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Figure 12: Dynamic responses of the control in-
put variables (δE ,δA,δR) for three different control
penalty parameters

fects of the control penalty parameter on the control
surfaces dynamics response is evident. Dynamic re-
sponses of engines 1 and 2 (δT1

and δT2
) are not

represented as their response is zero over the whole
simulation. When the system has reached an equi-
librium state, the constant negative deflections in
the rudder and ailerons generate a positive yaw and
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Figure 13: Dynamic responses of the non-
malfunctioning engines (δT3

,δT4
) for three different

control penalty parameters

clockwise roll moments used to stabilize the aircraft
due to the loss of the two left engines. As the air-
craft also needs to climb (γref = 1◦), after the initial
variations, the elevator deflection finds its equilib-
rium state at a negative value. As the function-
ing engines have influence in the longitudinal and
lateral motion, outer engine throttle (δT4

) tends to
decrease because of its higher influence on the yaw
moment, and the inner engine (δT3

) increases its
thrust in such a way that both three reference states
are achievable and an equilibrium state is found.

Increasing the control penalty parameter makes
the system utilize less the control surfaces, there-
fore reaching the desirable state in a higher time.
However, higher values also attenuates the over-
shooting deflections when requested to follow a ref-
erence, making the system more realistic, because
high overshooting deflections in control surfaces in
short periods of time may have rough effects in the
aircraft structural dynamics.
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Figure 14: Dynamic responses of the controllable
states (u,γ,λ)
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In Figure 14, the desirable states dynamic re-
sponses are represented. These dynamic responses
are the consequence of the control surfaces deflec-
tions seen in Figures 12 and 13. When the system
allows for higher control deflections (ǫ = 10), the
reference state is reached faster than when the con-
trol action is more limited (ǫ = 80). However, for
reasonable values of ǫ and assuming the system is
stable, this final reference state is always reached as
seen in Figure 14.
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Figure 15: Flight trajectory seen in XYENU and
Y ZENU planes (γref = 1◦, λref = 0◦ and uref =
u0)

The representation of the states transformed into
positions on the XYENU and Y ZENU planes are
shown in 15. The aircraft’s trajectory is repre-
sented in the ENU reference frame, to facilitate vi-
sual interpretation of the results. Initially the lack
of thrust in the left engines make the aircraft de-
viate to the left (negative YENU ) but eventually
through the control surfaces deflections the head-
ing is stabilized.

8. Conclusions
This dissertation not only developed a crucial piece
for a future aeroservoelastic tool but also a flight
controller that can possibly be embedded into it.
The integrator results depend highly on the step-

per used. For aircraft with low and medium ma-
noeuvrability, an error stepper is recommended,
although for high manoeuvrability aircraft a con-
trolled stepper is the one to use as a result of over-
shooting responses and high variations in short pe-
riods of time.
The defined trim condition aeroservoelastic

mathematical equations of motion are also left in
a general state, as it is difficult to define the num-
ber of bending modes required. This number of
vibration modes rely upon not only on the approxi-
mation needed to define the structural influence on
flight dynamics, but also on the aircraft to be stud-
ied.
The flight controller and mathematical model re-

sults were as expected, obtaining realistic results
on its simulations. However, the linear quadratic
regulator as the control law is not always practi-
cal, serving nevertheless good use when designing
a control tool for a general aircraft as in this dis-
sertation. The flight simulator realizes the simula-
tion based on the first control penalty parameter
(ǫ) found that has level one flying qualities.
One interesting concept of future work is to cre-

ate general structural dynamics and aerodynamics
models and through the integrator test new aircraft
designs and possibilities, in such a way that the
aeroservoelastic simulator would work as a research
simulator.
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