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Abstract

Uncertainty quantification in the structural design of wing elements is the main objective of this
thesis. Uncertainties could be from materials, loads and sizing. A literature review was done related
to different studies in this field, as well as the existing methods of quantification. For the study, three
different methods were used: Monte Carlo simulation method, Latin hypercube sampling method and
perturbation method. First, the methods were implemented and validated using a simple truss as test
case. Then, they were applied to a simple case of a wing spar. For this case, the methods implemented
were used in an analytic analysis and later in a finite elements method analysis, thus validating the
application of the numerical analysis. Finally, an analysis was made of a structure of a wing with several
variables with uncertainty. The results reveal the importance of this approach, since there are significant
differences between the deterministic calculus and the results with uncertainty quantification.
Keywords: uncertainty quantification, Monte Carlo simulation, Latin hypercube sampling, perturba-
tion method, finite elements, robust design.

1. Introduction

”The uncertainty is as important a part of the
result as the estimate itself ... . An estimate

without a standard error is practically
meaningless.” H. Jeffreys (1967) [1].

During the last two decades, an extensive study
has been developed in non-deterministic analyses,
to provide certification of the performance of single
components or entire systems. Probability theory
has taken an important role on these researches for
many different areas, as well as stochastic analysis
techniques. These have been applied to model and
propagate the uncertainty through the problem in
study [2].

Uncertainty Quantification (UQ) is taking an im-
portant role in computational science because it al-
lows to evaluate the quality of computational re-
sults and apply confidence bounds to output met-
rics. Its importance in computational modeling has
been growing, by enabling the design and analysis
of complex engineering systems, particularly when
obtaining experimental data is difficult or impossi-
ble and the associated costs are high. Using this
methodology, it is possible to achieve the results
pretended with lower costs and in less time.

The desired accuracy of the results determine the

time needed or the approach to be used in UQ.
The accuracy of the results are strictly related to
the model, simplifications and all assumptions, so
some studies were developed to observe how accu-
rate the models are [3]. The necessity to quantify
the accuracy of the results has contributed to the
development of many methodologies but some of
those imply a strong computational effort. At the
same time, there were many researches aiming to
reduce the computational effort or to develop new
and more efficient methodologies [4]. This thematic
is in constant development together with the evolu-
tion in technology and optimization methods.

There were other studies with the goal of model-
ing uncertainty and the field in which it has been
applied. The environment is an important issue be-
cause it affects how the model need to be idealized
and discretized [5]. Uncertainty can appear from
different sources, for example a lack of information
from the operator or the problem, simplifications,
uncertainty in the model or in the inputs [6]. Uncer-
tainty in the input parameters has been the topic
that had experienced many developments, specifi-
cally with models in Robust Design Optimization
(RDO) and Reliability-Based Design Optimization
(RBDO).

The application of the UQ methods to a particu-
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lar structure needs a previous hard work on model
interpretation. It is also necessary to characterize
and identify possible sources of uncertainty or er-
rors. By doing it, the objective of quantifying their
influence on the results accuracy is reached [7].

2. Uncertainty Quantification

All systems have, intrinsically, many uncertainties,
which can be of different natures.

There are different ways to classify uncertainty
and they result from many researches. The classifi-
cation varies significantly with its application. Un-
certainty occurs in many forms but, in simple terms,
it can be divided into two classes [6] and [8]:

• Epistemic vs. Aleatory;

• Reducible vs. Irreducible;

• Parameter vs. Model.

Epistemic uncertainty results from a lack of in-
formation or knowledge about some aspects of the
modeling process. It can also be denominated as
reducible because additional information about the
system can reduce its impact in final response.

On the other hand, aleatory uncertainty can only
be quantified using statistics because it belongs to a
random chance. Irreducible uncertainty is another
classification for this kind of uncertainty since, even
with more information, the uncertainty can not be
reduced.

There is another popular classification of uncer-
tainty: parameter uncertainty and model uncer-
tainty. The first one is also known as natural uncer-
tainty or data uncertainty, and it results from a lack
of information in inputs parameters. Model uncer-
tainty also results from a lack of information but, in
this case, it is due to not understanding the variable
behavior or from some simplifications introduced in
the model.

There are other UQ classifications because some-
times, depending on the application, these pre-
sented above are not applicable to some problems.
Some analysts do not agree with this classification
since it is not possible to include all the systems in
it.

The process to quantify the uncertainty can be di-
vided in four steps [6]: 1). Identification, 2). Char-
acterization, 3). Propagation and 4). Analysis.

Identification is essential to determine the sources
of uncertainty, either from the system or its envi-
ronment. After that, characterization is a difficult
task since it needs experimental tests to obtain sub-
stantial data. Without it, not only the quantifica-
tion of uncertainty but also the system analysis will
be complromised. With the variable correctly iden-
tified and characterized, it is possible to propagate

the uncertainty through the system and understand
how it reacts. This phase is critical because the
operator needs to take some decisions in terms of
approaches of uncertainty propagation. More pre-
cisely, he needs to select the most appropriate meth-
ods for the system. Finally, it is necessary to an-
alyze the results, where a critic analysis is impera-
tive. In this phase, risk analysis is performed and
the integrity of the system defined.

3. Uncertainty Quantification Methods

Technology development has allowed the study of
complex engineering models without experimental
tests, which have been decreasing because of their
high costs. The numerical methods developed take
an important role in the analysis of real complex
problems because the analyses are quick and inex-
pensive. This progress has its barriers since the
complexity of the models brings with it the problem
of results validation. All these complex studies have
uncertainties from different sources, consequently,
to deal with these uncertainties, different methods
were developed and validated.

The first approach to uncertainty propagation
was a conventional sample-based. In this category
are included methods like Monte Carlo Simulation
(MCS) and Quasi Monte Carlo Simulation (QMCS)
with different sequences. There are also the Latin
Hypercube Sampling (LHS) and Latin Supercube
Sampling (LSS) . The last one, it is a combination of
two methods, QMCS and LHS. Although this cate-
gory of methods is relatively easy to implement, it
implies a strong computationally effort and a large
simulation time for complex studies. Besides, that
computational effort grows even further if a good
accuracy in the results is desired.

Another kind of approach is based on sensitiv-
ity analysis. In this methodology, the equations
have the propagation of uncertainty built in and
the sensitivities are evaluated during the simula-
tion. These methods can provide accurate results
with a reduced computational time. Examples of
these methods are the Perturbation Method (PM)
and the Fast Probability Integrator (FPI). These
approaches have a complex implementation, but the
time of simulation is faster than the sample-based
methods.

3.1. Monte Carlo Simulation

MCS is a probabilistic analysis method because it
works with random and pseudo-random numbers.
This technique is, nowadays, applied to solve many
stochastic problems in engineering situations. It is
used as a first approach since its application is sim-
ple, easy and adaptable for many problems. How-
ever, this simplicity implies some problems in com-
putational efforts and simulation time. MCS is
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a sampling-based methodology, it is necessary to
solve the problem many times to reach the desired
accuracy.

Figure 1: Monte Carlo simulation method.

Figure 1 illustrates how MCS woks. First, it is
necessary to define correctly the problem, its vari-
ables and number of samples needed to reach the
desired accuracy. As it works based on samples, it
is essential to choose the number of samples care-
fully because a high number of samples implies a
strong computational effort, while a reduced num-
ber might not obtain accurate results.

The analysis begins with the sampling of each
variable and it is necessary to know their mean
value and standard deviation. Each one has one
kind of probability distribution which depends on
its nature but, for some variables, it is difficult to
know exactly the probability distribution.

When sets of inputs are randomly or pseudo-
randomly defined, the analysis runs and the results
are computed for each set.

After repeating this process the specified number
of samples, all the results obtained are gathered to
determine the mean value and the standard devia-
tion from each output. In the same way as the in-
puts, the outputs correspond to distributions with
a respective mean value and standard deviation. In
case the input variables have different probability
distributions, determining output distribution is a
difficult task. However, for the case when all input
variables have a normal distribution, the output dis-
tribution will also be a normal distribution.

Having processed the output results, it is possible

to plot the Probability Density Function (PDF) and
Cumulative Density Function (CDF) for each out-
put. These illustrations provide insight in problem
analysis and model behavior study.

3.2. Latin Hypercube Sampling

LHS is another approach to MCS and it was pro-
posed to deal with problems when a large num-
ber of parameters exist [9]. MCS has difficulties
with situations when a large number of inputs exist
because the computational effort increases signifi-
cantly. Consequently, the accuracy of the results
might not be possible to meet. LHS method was
first applied in a computational example and com-
pared with MCS in 1979 [10].

This approach is based on a different method-
ology of sampling as it uses a stratified sampling
for a probability distribution [11]. With a strati-
fied sampling, it is possible to achieve accurate re-
sults with less iterations, consequently lowering the
computational effort. This kind of stratified sam-
pling is known has Latin hypercube sampling and
it was developed by McKay, Conover and Beckman
(1979) [12]. It splits the range of the variable in n
non-overlapping intervals, each one having the same
probability. When the sampling is done, the ran-
dom values were ”forced” to represent each interval
according to the input probability distribution, in-
creasing the efficiency of the sample.

Figure 2: Latin hypercube sampling method.

Figure 2 illustrates how LHS works. Input pa-
rameters are represented by a ”cube”, where the
number of faces is equal to the number of initial pa-
rameters. As it also happens in MCS, in the LHS
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method, the input variables can have different kinds
of probability distributions.

In each sample, the input variables sets, from
Latin hypercube sampling, are introduced in the
system. After the analysis, the results from each
sample are stored, as in MCS. When the system is
analyzed the number of samples defined, all the re-
sults are gathered to calculate the mean value and
the standard deviation for each output. These val-
ues characterize the system behavior in the presence
of uncertainties.

Output characteristics allow to build outputs
probability distributions. If all the input variables
have the same probability distribution, the output
distribution will have that distribution. In case the
input variables have different probability distribu-
tions, the determination of the output distribution
will be a difficult task to do, similarly to MCS.

3.3. Perturbation Method

PM is one approach based on sensitivity analysis. It
is a popular technique for solving stochastic partial
differential equations and it has a large application
in stochastic finite elements simulations where the
equations describe the system model.

This method has gained more popularity due to
the evolution of computational methods to find ap-
proximate solutions of differential equations, such
as asymptotic approximations, asymptotic expan-
sions, multiple scales and method of homogeniza-
tion [13].

Usually, it uses asymptotic expansions with par-
tial differential equations obtained from Taylor ex-
pansion [14]. The higher the order of equations is,
the better the accuracy of results will be. However,
higher orders imply more difficulty to obtain the
system equations and more computational effort.
Commonly, the first and the second-order deriva-
tives with respect to the primitive random variables
are used, but it is necessary to ensure that the co-
variance of the random variables is small [15].

Results from first-order perturbation method are
an estimative of the response so its implementation
has a low computational effort and it is applicable
for a large range of problems. For the second-order,
more accurate results are expected, but with a little
increase in computational effort compared to the
first-order. In second-order, it is necessary that the
variance coefficient is less than 20% [16].

Figure 3 presents a flowchart which explains how
PM works. After defining the problem correctly,
the system is analyzed using the variables with a
perturbation. Finally, the results are computed us-
ing the methodology and the mean value and the
standard deviation for each output is obtained.

This methodology has its disadvantages though.
It needs the derivatives of the system equations and

Figure 3: Perturbation method.

these equations take into account the random vari-
ables. For complex structures, it is a very difficult
task to obtain their derivatives.

For the input variables, it is necessary to know
their mean value and covariance. In this method,
the input variables are composed by two compo-
nents, a deterministic part µx and a random part
qx, where the index x represents a generic variable.
A normalized variable could be defined as

qx =
x− µx

µx
, (1)

where its mean value µqx, variance σ2
qx

and covari-

ance γijq x
are obtained using the expectation oper-

ator (E[..]).

µqx = E[qx] =
µx − µx

µx
= 0, (2)

σ2
qx

= E[(qx − µqx)] =
σ2
x

µ2
x

(3)

and

γij
q x

= E
[(
qxi − µqxi

)(
qxj − µqxj

) ]
=

γij
x

µxiµxj

. (4)

To use the Taylor series expansion, it is necessary
to assume that the variance of primitive variables
is much smaller than the square of its mean. The
Taylor expansion for a generic output variable X is
defined as

{X} =
{
X
}

+
(
{q}T L{X}

)
(5)

+
1

2

(
{q}T L{X}LT {q}

)
+ higher order term
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where (
{q}T L{•}

)
=
∑
i

qi
∂ (•)
∂qi

∣∣∣∣
{q}={0}

and(
{q}T L{•}LT {q}

)
=
∑
ij

qiqj
∂2 (•)
∂qi∂qj

∣∣∣∣
{q}={0}

.

Consequently, the first-order approximation for a
generic variable can be reproduced by

{X} =
{
X
}

+

N∑
i=1

{X,i} qi, (6)

where X,i ≡ ∂X
∂qi

. The mean value µX
I and covari-

ance matrix γI are obtained from Eq.(6). The mean
value is obtained from

µX
I = EI [{X}] = E

[{
X
}

+

N∑
i=1

{X,i} qi

]
=
{
X
}
.

(7)

In Eq.(7), it is possible to observe that the mean
value for the first-order approximation corresponds
to the mean value obtained from a deterministic
analysis. The covariance matrix is also important
to characterize the output response. It is calculated
as

γI
(
{X} , {X}T

)
=

N∑
i=1

N∑
j=1

{X,i} {X,j}T γij
q . (8)

Having the covariance matrix, it is easy to obtain
the standard deviation of the system since it is equal
to the square root of principal diagonal of covari-
ance matrix.

Looking back to the Taylor expansion, the
second-order approximation for a generic variable
can be represented by

{X} =
{
X
}

+

N∑
i=1

{X,i} qi +
1

2

N∑
i=1

N∑
j=1

{X,ij} qiqj , (9)

where X,ij ≡ ∂2X
∂qi∂qj

. The mean value µX
II and co-

variance matrix γII for second-order approximation
are obtained using the same process used to obtain
the first-order values, leading to

µX
II = EII [{X}] =

{
X
}

+
1

2

N∑
i=1

N∑
j=1

{X,ij} γij
q (10)

and

γII
(
{X} , {X}T

)
=

N∑
i=1

N∑
j=1

{X,i} {X,j}T γij
q . (11)

Comparing the equations for first (Eq. (7),
Eq. (8)) and second-order (Eq. (10), Eq. (11)), it is

possible to see that the mean value for second-order
has an additional term. In terms of covariance, this
quantity is equal for the two approximations.

After the implementation of the three different
methods, they were applied to a truss structure al-
ready studied with these methods [15]. From the
comparison with the results published in the liter-
ature, it was possible to verify that the methods
implemented are working correctly.

4. Finite Elements Method and Uncertainty
Quantification

The implementation of the Finite Elements
Method(FEM) with UQ is the main objective. The
use of a FEM software allows the study of complex
structures without the worry to know the system
equations. However, it is necessary that the struc-
ture it is correctly defined.

For the study, it was used ANSYS R© [17],for the
structural analysis and it was used MATLAB R© [18]
to treat the results. Figure 4 represents the
generic flowchart which explain how the method-
ology works.

Figure 4: Methodology explanation.

This flowchart represents all the methods, but
in each method it is necessary to do some specific
modifications. First, MATLAB R© is responsible to
create files with the required data to describe the
structure. These files are the structural analysis and
the input values with uncertainty. Then, ANSYS R©

reads the files and use them to build and analyze the
model. The results are written in a file created in
ANSYS R© script. Finally, MATLAB R© reads these
results, treats them and plots the final results.

In MCS and LHS, the way the methods works are
similar, the only difference is in the sampling and in
the number of samples required to ensure accurate
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results. In these methods, the phases where the
sampling data is written and structural analysis is
done are repeated the number of samples defined at
the beginning.

PM does not work with samples, consequently
it implies some differences compared to other two
methods. Although, it requires an extra treatment
of the results after the structural analysis. As this
method works with first and second order deriva-
tives, it is necessary to apply finite differences to es-
timate them. However, these derivative values are
a little bit different from the derivatives obtained
using the methodology presented above.

Considering a generic system, which its behavior
is described by

Z = x2y, (12)

where x and y are generic variables. Differentiating
the Eq. (12), the results obtained are

dZ

dx
= 2xy (13)

and
dZ

dx2
= 2y, (14)

where the variables x and y correspond to their
mean value, µx and µy, respectively.

On the other hand, using the PM methodology,
the variables are equal to

x = µx (1 + qx)

and

y = µy (1 + qy).

Substituting the variables in Eq.(12) and apply-
ing the methodology presented, the derivatives are

dZ

dx
= 2µx

2µy (15)

and
dZ

dx2
= 2µx

2µy. (16)

Comparing the equations for the first derivative
(Eq. (13) and Eq. (15)), it is possible to observe
that they are different. The difference appears be-
cause in PM it is the perturbation term which is
differentiated and not the mean value, like in com-
mon differentiation. The difference is a constant
term, which is equal to the mean value of the vari-
able that was differentiated. For the second-order
derivative, the process is the same, but the result
from finite differences needs to be multiplied by the
constant twice.

5. Wing Structure

The methodology implemented was applied to an
airplane wing structure. The model used is as close
to the reality as possible, in terms of geometry, loads
and material properties.

5.1. Model Description

The model in study is a half wing, clamped at the
root (Fig. 5). This structure is composed by a wing
box and a shell.

Figure 5: Wing structure.

Table 1 exhibits some wing characteristics which
were taken into account for the deterministic anal-
ysis.

Parameter Value

Span [m] 5

Root Chord [m] 1

Tip Chord [m] 0.6

Shell thickness [m] 2.5×10−3

Wing Box thickness [m] 1×10−3

Mach number 0.3

Velocity [m/s] 103

Angle of Attack [◦] 5

Air density [kg/m3] 1.225

Airfoil NACA 0018
Material Al-7050-T7651

Table 1: Wing characteristics.

The model that will be analyzed has a load dis-
tribution as close as possible to the reality. In
the study, it was monitored the maximum displace-
ment, the maximum stress, the minimum stress and
the maximum stress using the Von Mises criterion.

5.2. Deterministic Analysis

Before the analysis, it was done a convergence
study, where it was selected the model with about
20,000 elements. In this case, the number of ele-
ments is very important to ensure the convergence
of the results and a reasonably computational ef-
fort. This is very important for this kind of study,
mainly for MCS, because it needs a large number
of samples to ensure the convergence.

The results from the deterministic analysis are
presented in Tab. 2 and illustrated in Fig. 6.
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Parameter Value

Max. Disp. [m] 0.249

Max. Stress [N/m2] 2.768×108

Min. Stress [N/m2] -2.812×108

Max. Eqv. Stress [N/m2] 2.495×108

Table 2: Deterministic results.

(a) Displacement

(b) Stress distribution

(c) Von Mises equivalent stress distribution

Figure 6: Deterministic results.

5.3. Stochastic Analysis

This structure is an academic study so it has some
simplifications. Each variable has the same value of
uncertainty probability and the probability distri-
bution used is the normal distribution. In reality,
there are some variables that can be expressed with
different kinds of distributions and percentage of
uncertainty.

There are three main groups of variables, the di-
mensions group, the mechanical properties group
and the loads group. The group of dimensions is
constituted by the wing span (L), the root chord
(cr), the shell thickness (ts), the flange thickness
(tf ) and the web thickness (tw). The material prop-
erties group is composed by the Young modulus (E)

and the Poison coefficient (Poi). In this case, the
material selected is equal for wing box and shell. Fi-
nally, the loads group has only one variable, which is
the pressure (P) to apply on the wing surfaces. It is
considered that each variable from these groups has
3% of uncertainty. This value was chosen because in
the aeronautical industry the allowable tolerances
need to be extremely small. The aeronautical field
works with high levels of safety, consequently the
studies in this area need to know all variables and
how they influence the response of the structure.
Table 3 presents the mean values, standard devia-
tion and covariance for each variable.

µ σ γ

L 5 m 0.15 m 2.25×10−2

cr 1 m 0.03 m 9×10−4

ts 2.5×10−3 m 7.5×10−5 m 5.625×10−9

tf 1×10−3 m 3×10−5 m 9×10−10

tw 1×10−3 m 3×10−5 m 9×10−10

E 71.7×109 Pa 2.15×109 Pa 4.62×1018

Poi 0.33 9.9×10−3 9.8×10−5

P 10×103 N 300 9×104 N

Table 3: Variables with uncertainty

6. Discussion of Results

The results from MCS, LHS and PM using the con-
ditions presented before are presented in Tab. 4.

Analyzing the results, it is possible to conclude
that both methods have very close results between
them. In general, the results are very close, but
MCS does not present the same accuracy of the
other two methods. This difference can be reduced
by doing, again, the analysis with more samples. In
these analyses, 21,000 samples were used for MCS
and 2,500 for LHS. The choice of the number of
samples is a trade-off between computational effort
and results accuracy. Observing the computational
time, MCS presents the largest computational time
comparing with the other methods and PM has the
fastest simulation time.

Comparing the deterministic values and the re-
sults with uncertainty, it is observable that the UQ
values suffered an increment motivated by the un-
certainty in the input parameters. For the maxi-
mum displacement, it increased less than 1.5% and
for maximum stress, minimum stress and maximum
equivalent stress, it increased less than 1%. In this
case, as the inputs have a small value of uncertainty,
its influence in the final results is also small. How-
ever, for higher values of uncertainties and more
variables with uncertainty, it is expected that the
difference in the output results grow.

Using the mean values and the standard devi-
ation, it is possible to graph the respective PDF
and CDF. These graphs allow to verify the prox-
imity between the results. The PDF graph shows
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Parameter
MCS LHS PM

Mean Value Std. dev. Mean Value Std. dev. Mean Value Std. dev.

Displacement [m] 0.253 0.037 0.252 0.034 0.252 0.033

Max. Stress [N/m2] 2.780×108 1.830×107 2.776×108 1.888×107 2.776×108 1.848×107

Min. Stress [N/m2] -2.841×108 1.793×107 -2.830×108 1.869×107 -2.830×108 1.830×107

Max. Equiv. Stress [N/m2] 2.525×108 1.595×107 2.502×108 1.655×107 2.503×108 1.645×107

Normalized Time 598 58 1

Table 4: Stochastic finite element method analysis.

the normal distribution of the results and the CDF
illustrates the response of the system in terms of
reliability. Figure 7 presents the PDF graphs for
each output in study.

(a) Max. displacement (b) Max. stress

(c) Min. stress (d) Max. equv. stress

Figure 7: Probability density functions for outputs.

Comparing the PDF for each method, it is pos-
sible to verify that the results from the different
methods are very close. As LHS and PM results
are very close, the LHS graph line is not possible to
observe because it is under the PM graph line.

Figure 8 shows the CDF graphs for each output.
With them, it is also possible to see that the re-
sults are very close for each output. The CDF is
a strong tool because it enables to obtain output
results in terms of reliability. Mean values corre-
spond to 50% of reliability. Designers use these
graphics to collect relevant informations about the
structure behavior and use them to improve it. Ob-
serving these graphs, it is possible to conclude that
the system resists without damage because, even in
extreme situations, the maximum stress does not
exceed the maximum stress allowable of the mate-
rial [19]. This kind of analysis is very important
since it allows to observe the response of many pa-
rameters for extreme situations of the system.

Using the CDF graph, it is possible for the de-

(a) Max. displacement (b) Max. stress

(c) Min. stress (d) Max. equv. stress

Figure 8: Cumulative density functions for outputs.

signer to define one value of reliability and study
the different solutions to satisfy the requirements
of the project. For example, considering that the
designer selects the maximum stress as the param-
eter of reference and determines that the reliability
of the maximum stress is 70%. This value of relia-
bility implies that the maximum stress is equal to
2.95× 108[N/m2], but for this value there are some
options which the designer can choose to satisfy its
requirements in terms of total cost, maintenance
and other factor in the project. Table 5 presents
some solutions for the design which satisfy the reli-
ability for the maximum stress.

After all analyses, it was verified that the use of
FEM with UQ methods is a strong tool for study
complex structures. This methodology can be ap-
plied to different kind of problems using FEM since
its implementation is generic. Furthermore, the re-
sults obtained prove that the method implemented
is working correctly.

7. Comparison of Computational Cost

As the wing structure has some complexity, it
is convenient to do an analysis about the com-
putational cost. In this case, ANSYS R© was
used to deterministically analyze the structure and
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Solution #1 #2 #3 #4 #5

Wing span [m] 5.07 4.91 4.94 4.87 5.15

Root chord [m] 0.96 0.95 0.97 0.94 0.99

Shell thickness [m] 2.6×10−3 2.5×10−3 2.4×10−3 2.6×10−3 2.4×10−3

Flange thickness [m] 0.95×10−3 0.97×10−3 1×10−3 0.97×10−3 0.99×10−3

Web thickness [m] 1×10−3 1×10−3 1×10−3 0.98×10−3 0.97×10−3

Young Modulus [GPa] 70.47 72.37 70.35 70.76 72.97

Poisson coefficient 0.32 0.33 0.33 0.32 0.34

Pressure [kN] -10.02 -9.99 -9.99 -9.98 -9-98

Table 5: Different design solutions for a 70% of reliability.

MATLAB R© to compute the UQ results.

Figure 9: Computational cost.

Figure 9 shows a comparison in terms of compu-
tational effort between the three different methods.
Normalized time, relative to the deterministic time,
is the term of comparison that will be used in this
study. The time taken in PM corresponds, approxi-
mately, to 34 times the deterministic analysis. Lok-
ing at Tab. 4, comparing the time required to run
the PM, it is about 600 times less then MCS and 60
times less than LHS. These results express the effi-
ciency of PM to study complex problems with UQ.
These results were obtained using a laptop com-
puter, with an Intel Pentium 4.0 GHz processor and
4 GB of RAM. Again, this benefit comes at the ex-
pense of a more complex implementation compared
to any of the sampling methods MCS and LHS.

8. Conclusions

The aim of this thesis was to develop knowledge in
the field of Uncertainty Quantification (UQ) applied
to aircraft structures, more exactly, wing structural
components.

From the many different methods available to
quantify uncertainty, MCS, LHS and PM were se-

lected in this study. As the structure analysis was
done in a laptop computer, the structure complexity
was conditioned in terms of simulation time. From
all the methods implemented, PM was the fastest
method and MCS was the slowest. MCS took much
time since it needed the high number of samples to
reach a converged result. MCS and LHS had a sim-
ple implemantation, in contrast, PM had a more
complicated implementation because it implies the
estimation of first and second derivatives. Com-
paring the deterministic to the stochastic methods
results, it was possible to show that the uncertainty
in inputs influences the outputs, being their average
values increased motivated by the uncertainty.

The results obtained in the wing structure anal-
ysis evidence that the thesis objective was accom-
plished. Overall, the knowledge acquired in the field
of UQ with this thesis can be used in future struc-
tural design projects, leading to better, more robust
and reliable solutions.

9. Future Work

UQ is still under development and more studies are
expected in this field. Allied with the evolution of
computational capabilities new uncertainty quan-
tification methods could be developed that need less
computational time and allow to analyze more com-
plex structures.

Other future application of the methodology im-
plemented is in the optimization field, more pre-
cisely RDO or RBDO. If possible, include these two
in the same tool and apply it in a Multidisciplinary
Design Optimization (MDO) framework.
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