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Abstract

Every aircraft currently crossing the sky are using fossil fuels in order to generate the propulsion
required to fly, which leads to the production of carbon dioxide and other greenhouse gases that
warm the environment. Having this in mind, the main drive for the next generation of aircraft is fuel
efficiency. One of the solutions that is being tested to increase the fuel efficiency is the introduction
of high aspect ratio wings. A high aspect ratio wing leads to many structural problems, and to solve
them one needs to have a considerably stiff wing box. The given solution increases the weight of the
wing and reduces the advantages brought by the introduction of a high aspect ratio (AR) wing, thus
making the design of the wing box a fundamental aspect. In order to have the stiffest possible structure
having the minimum possible weight, one can do a topology optimization to find the optimal design
for the given constraints. The main goal of this thesis is to find the optimal design of the wing box
by performing a topology optimization using Ant Colony Optimization (ACO) algorithm. ACO is a
meta-heuristic biologically influenced algorithm that has been proven to be useful to solve NP-hard
combinatorial optimization problems in an expedite way. Its application to solve topology optimization
has been introduced recently. Conclusions on the close to optimal topology of a wing box from a high
aspect ratio wing are presented. In this thesis, a MATLABR© code integrated with ANSYSR© for the
structural analysis, is developed, in order to do a topology optimization. One will start by solving a
literature case. Afterwards, the wing box of the NOVEMOR project of the EU 7th framework wing
was optimized.
Keywords: ACO algorithm, Stochastic Search Method, Structural Topology Optimization, High
Aspect Ratio Wings.

1. Introduction

In every action that one takes, one tries to find the
optimal way to do it, from the quickest route to
work, in order to avoid traffic, to a given mathe-
matical application in which one is trying to find an
optimum of a function. This concept is extremely
important in our life, mainly due to every resource
being finite, limited in some sort of sense.

The increase in number of flights, resulting from
an ever increasing demand, has led to an estimate
of 2.3 billion passengers and 38 million tonnes of
freight on scheduled services, making a total of 531
billion tonne kilometre crossed by aircraft in 2010.
These numbers are also translated in the economic
impact that aviation has, generating roughly e220
billion and providing 4.5 million jobs [1]. It is ex-
pected that the number of passengers will increase
at rate of 4.8% per year through the years until
2036 [2]. However, due to the restrictions imposed
in CO2 emissions, and other greenhouse gases and
knowing that liquid fuels availability is finite, the

development of the new generation of aircraft has
as the main drive fuel efficiency and how one can
one decrease the harm done by aviation to the en-
vironment.

One of the trends in aircraft development in or-
der to increase fuel efficiency is the introduction of
high Aspect Ratio (AR) wings. The introduction
of a high AR wing it is not always easy to accom-
plish, leading to some problems, such as, structural,
aeroelastic and control related ones.

Bearing this in mind, this thesis has as the main
goal the implementation of a Topology Optimiza-
tion using Ant Colony Optimization (ACO) algo-
rithm to optimize a high AR wing. The ACO algo-
rithm will be introduced along with the Topology
Optimization with the most common approaches to
solve this problem. The implementation of a Topol-
ogy Optimization using the ACO algorithm and a
literature case will be conducted. A high AR wing
will be modelled, retrieving the aerodynamic loads
for the given flight condition to apply to the struc-
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tural model. Ultimately, the wing box will be opti-
mized, being firstly the cross-section and afterwards
a 3D optimization performed.

2. Background
Before performing the implementation of a Topol-
ogy Optimization using ACO algorithm, a review
of the given algorithm along side with the Topol-
ogy Optimization was made.

2.1. Ant Colony Optimization algorithm
In recent years a lot of metaheuristic search tech-
niques have been developed, being some of them
nature-inspired algorithm, for instance, Genetic Al-
gorithm, Simulated Annealing and Flower pollina-
tion. This trend of developing algorithms which try
to recreate the natural processes is mainly due to
the assumption that these processes are optimal,
being this optimal state reached with a evolution-
ary process. This claim is hard to prove, because
there are a lot of constraints in nature, from lim-
ited resources to the competition between all the
species.

From these nature-inspired algorithms that have
been developed in the recent years, one of the ap-
proaches used to solve the problems was to use the
social behaviour of animal, such as insects, recreat-
ing the way they interact. This approach to prob-
lem solving is called Swarm Intelligence [3].

Ant Colony Optimization (ACO) is an algorithm
that is inspired in the foraging behaviour of ants.
Ants, when exploring the surrounding in order to
find food, leave behind a trail of pheromone on the
ground in order to mark the most favourable path
for the other ants to follow. Ant Colony Optimiza-
tion is inspired in this mechanism used by ants.

Marco Dorigo and colleagues in 1991 developed
the ACO as a novel nature-inspired metaheuristic
algorithm to solve hard combinatorial optimization
problems (NP hard problems). From the initial
work that Dorigo developed, many different vari-
ants from this algorithm were developed, such as,
MAX − MIN Ant System, Elitist Ant System,
Rank-based Ant System. The one that will be de-
scribed in this section is the Ant System [4], be-
ing the first ACO algorithm developed. The prob-
lem used to describe the implementation will be the
Travelling Salesman Problem [5].

The combinatorial problems which the ACO can
be applied to are in following form:

• S, search space, being discretized over a finite
decision variables Xi, i = 1, ..., n;

• Xi takes values in Di = v1i , ...., v
|Di|
i

• Ω, set of constraints for the variables

• f , objective function, f : S → IR+
0

• s is a feasible solution if the assignment of val-
ues to all variables satisfies the constraints. s∗

is a global optimum if and only if: f(s∗) ≤
f(s) ∀ s ∈ S

In order to solve the Travelling Salesman Prob-
lem (TSP) one will simulate na (dimension of the
colony) ants moving around the graph. Each ant is
an agent which has the following characteristics [6]:

• able to choose one city at a time in order to
find a solution. Each city will be chosen ac-
cording to a probability, being this probability
function of the town distance and the amount
of pheromones in the edge that connects the
towns;

• in order to have a Hamiltonian tour the towns
that have been already visited cannot be vis-
ited again (tabu list);

• when a tour is completed, the agent will de-
posit pheromones in the edges (i, j) of its path
accordingly to the pheromone update rule.

The steps that the algorithm will perform to find
the optimal solution are described in Algorithm 1,
which corresponds to the Ant System ACO [4].

Algorithm 1 Ant System ACO

1: Initialize AS

• Generate, na = colony dimension, ants

• Distribute randomly ants across the towns;

• Assign an initial value of pheromones, τij ,
in the edges;

2: for n = 1, ..., N ; N = number of cycles do
3: for k = 1, ..., na do
4: while Not Hamiltonian tour do
5: Choose next town, using the Transi-

tion Probability Rule
6: end while
7: end for
8: Distribute the pheromone, τij , across the

edges;
9: end for

2.2. Topology Optimization
Topology Optimization (TO) tries to find where one
should place material in order to have the optimum
topology for the given problem. The problem of
finding the optimum configuration and spatial se-
quence of members and joints of a skeletal structure
also belongs to the given optimization problem.

Bendsøe and Kikuchi [7] developed the first finite
element based topology optimization for higher vol-
ume fraction, where the Homogenization approach
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to solve the topology optimization problem was in-
troduced. Almost at the same time, the SIMP ap-
proach was developed by Bendsøe [8]

The given problem of shape topology is trans-
formed into a material distribution problem using a
composite material. The composite material is con-
stituted by substance and void, being the optimal
microscopic void distribution the problem solved.
This approach ”is applied to determine macroscopic
constitutive equations for the material with micro-
scopic material distribution” [7].

The topology problem can be transformed into a
sizing problem with the introduction of a material
function density distribution in which one consid-
ers a composite consisting of an infinite number of
small holes periodically distributed, being the on-
off nature of the problem in a microscopic scale and
not in the macroscopic one.

One will start by choosing the design domain and
the finite element discretization that wants to use,
consisting each element of a cellular material with a
specific microstructure. The microstructure chosen
should allow the density of the material to cover
the whole range of values, from 0 (void) to 1 (solid).
One option for a microstructure is a square cell with
a centred rectangular hole. The square cell with
a rectangular hole microstructure can be seen in
Figure 1.

Figure 1: Unit cell with rectangular centered hole
[9].

One of the approaches introduced after the Ho-
mogenization approach was the SIMP or power-
law approach, where one uses Solid Isotropic Mi-
crostructures with Penalization for intermediate
densities. SIMP was introduced by Bendsøe [8],
with the goal of removing the discrete nature of the
topology optimization by introducing the density
variable, a continuous variable.

SIMP uses a pseudo-density as a design variable,
being the relation between the density variable and
the effective material stiffness given by the power
law,

E(ρi) = g(ρi)E0, (1)

where ρi is the density of the element i, E0 is the
Young’s Modulus of the material and g is a penaliza-
tion function, responsible to make the density vari-
able tend towards 0 or 1. The penalization function
proposed by Bendsøe [8] is represented by

g(ρi) = ρpi , (2)

where p represents the penalization parameter.
When p = 1, for the compliance objective func-
tion, the problem solved is a convex problem with
a unique solution.

3. Topology Optimization using ACO
Ant Colony Optimization being a metaheuristic al-
gorithm displays some advantages when solving a
TO problem. One of the advantages that ACO
presents when compared to a gradient-based algo-
rithm is that it allows the use of a wider variety
of objective functions. With a metaheuristic algo-
rithm one just needs a function that describes the
performance of the solution, using a gradient-based
algorithm one needs a differentiable objective func-
tions, due to the search process being based on the
gradient of the objective function. In a metaheuris-
tic algorithm the search process will be done using
a stochastic process.

In order to use the ACO Ant System to per-
form Topology Optimization, one needs to do some
changes to the original algorithm. The implemen-
tation of a topology optimization of a 2D beam
subjected to a point load in its extremity and con-
strained in two points will be used as benchmark
of the developed code. The implementation of the
ACO in a TO problem will be done using the work
of Kaveh and colleagues [10] as a reference.

The optimization problem that one will solve can
be stated as

minimize: U(u)

subject to:
Vf (u)

Vf
≤ 1, and physical constraints,

where u represents the field displacement, Vf (u)
corresponds to the volume fraction of the given so-
lution, and Vf is the maximum volume fraction al-
lowed. The physical constraints require that the
element where the load is applied and the support
elements must be present in the final design, and
that the structure must be a connected structure,
meaning that one must be able to find a continu-
ous path that connects all the elements with the
physical constraints.

In the current work, the objective function se-
lected to optimize the structure will be the strain
energy, which one wants to minimize. One needs to
discretize the objective function, to have its repre-
sentation across the discrete domain. The objective
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function discretized across the domain is given by

U(u) =
1

2

N∑
e=1

∫
V e

εT (u)Deε(u)dV, (3)

where Ve is the volume of the element in the domain,
where the integral represents the strain energy of
which, being the total strain energy of the domain
equal to the sum of the strain energies from which
element (N). ε represents the strains and De is the
constitutive matrix of the element.

Initialization

Generate solution
for all ants

FEM analysis

Update
pheromone matrix

Stopping criteria

Show best solution

yes

no

Figure 2: Flowchart for ACO applied for a topology
optimization.

The optimization process for ACO applied for a
TO is described in Figure 2.

In the given implementation the solution search
will end when the given solutions have achieved the
maximum volume fraction defined and the bound-
ary conditions are met. One imposes the solution
search until the maximum volume fraction has been
reached, in fact the minimum strain energy will be
found for the full design domain. So, the given prob-
lems that one has to solve is the distribution of that
amount of material.

3.1. Element Transition Rule
Instead of having a Transition Probability, one will
have an Element Transition rule. The Element
Transition rule corresponds to the probability that
a given element has to be selected as the next move
for an ant, being given by [10]

Pi =
(τi(t))

α

N∑
j=1

(τj(t))
α

. (4)

The probability of an ant choosing the element i is
equal to the intensity of pheromone trail present in

the element i to the power α, dividing by the sum
of the intensity of pheromone trail to the power α
of all the elements which are valid to as a next step.
τi(t) represents the pheromone trail in element i in
the t iteration of the optimization process. The pa-
rameter α is used to control the relative weight of
the pheromone trail, one should be careful when do-
ing the tuning of this parameter, because it can lead
to premature convergence to non-optimal solutions.

3.2. Pheromone Update
The pheromone intensity (∆τki ) laid by ant k in the
element i, will be given by

∆τki =
(Uki )λ

N∑
j=1

(Ukj )λ
, (5)

where Uki is the strain energy of element i of the
solution obtained by ant k, λ is a parameter used
to tune the influence of the strain energy in the
algorithm, helping with its convergence.

After having the increment in pheromones for ev-
ery element from all the solutions found by the ants,
one can do the update of the Pheromone Matrix.
The update of the pheromone matrix will be up-
dated accordingly to the Pheromone Update Rule
[11],

τij(t+ n) = ρ · τij(t) +

na∑
k=1

∆τij , (6)

where ρ is the evaporation rate and na is the di-
mension of the colony.

3.3. Noise Cleaning Filter
In order to improve the results generated by ACO
for a TO problem, a noise cleaning filter during the
pheromone update was introduced [10] to prevent
the formation of tiny members in the structures ob-
tained.

The noise cleaning filter will change the strain en-
ergy of the element, modifying the strain energy of
an element with the strain energy of the neighbour
ones. The modified strain energy will be given by

Ûi =

ni∑
e=1

HeUe

ni∑
e=1

He

, (7)

where He is the filter being given by

He = Ve [rmin − r(i, e)] , e ∈
{

1, 2, ..., ni
}
, (8)

where Ve is the volume (or area in a 2D problem)
of the element e, rmin is the minimum size allowed
for the structure members, r(i, e) is the distance be-
tween element i, which strain energy is being mod-
ified, and element e, a neighbour of element i that
satisfies r(i, e) ≤ rmin, ni is the number of elements
that satisfy the last condition.
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3.4. Results
Having the code developed, one needs to solve a
simple case in order to validate its performance and
be sure that the outcome of the optimization is
valid. In Kaveh et al.[10], two 2D problems were
solved, being one of these cases selected to com-
pare the output of the code developed. The one
selected is the cantilever beam with a point load at
its extremity. The modulus of elasticity (Young’s
modulus) and the Poisson’s ratio used are equal to
7.9 · 109 Pa and 0.30, respectively, being the same
values used in Kaveh et al. [10].

Force [N] 104

Strain energy [J ] 4.89
Max. Displacement [m] 9.78 · 10−4

Full Domain/Optimum [%] 65.44

Table 1: Strain energy for the optimum solution
found in Kaveh et al. [10].

The strain energy of the full domain and the op-
timum solution found by Kaveh et al. [10] is shown
in Table 1. Using the parameters summarized in
Table 2, the cantilever beam problem was solved.

colony dim 15
n ite 30
evap (ρ) 0.3
alpha p (α) 1
lambda (λ) 2.2
rmin 1.2

Table 2: ACO parameters used to obtain the best
solution.

Figure 3: Solutins found at iteration 30

The parameters value were defined using the in-
formation obtained from the parametric study con-

ducted.
The best solution, highlighted in Figure 3, dis-

played a strain energy equal to 4.875 J, match-
ing the strain energy of the best solution found by
Kaveh et. al. [10] (4.887 J). The solution displays
some resemblances with the literature one, such as
the overall shape and the central member which in-
creases the stiffness of the structure. On the other
hand, the solution obtained does not display sym-
metry as the one from the literature. The lack of
symmetry is due to the random nature of the ACO
metaheuristic algorithm.

4. High Aspect Ratio Wing Box Model
The wing used for the topology optimization prob-
lem that will be solved is based on the NOVEMOR
project of the EU 7th framework reference wing.
This wing was designed to present an high aspect
ratio, AR = 12, while keeping the wing area, sweep,
dihedral angle and the MTOW constants and equal
to the reference wing [12].

Planform Dimensions
b [m] 36.33
br b [m] 7.13
bb t [m] 11.03
cr [m] 5.71
cb [m] 3.01
ct [m] 1.3
MAC [m] 3.02
Λ [◦] 25
Γ [◦] 4.5

Table 3: Planform dimensions of the NOVEMOR
7th framework reference wing with AR = 12.

(a) ANSYSR© mesh.

(b) Imported pressure from CFXR© .

Figure 4: Wing box NOVEMOR 3D model.

Using the information from Table 3, one devel-
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oped a 3D model in Solidworks R© of the wing. Dur-
ing the development of the 3D model some simpli-
fications were made when comparerd to the model
used in Spada [12].

The whole wing was modelled in Solidworks R©

with the skin, ribs and a solid wing box, but to
simplify the ANSYS R© model, the only component
used during the optimization process was the wing
box, represented in Figure 4.

5. Cross-section 2D Optimization
One will start by the optimization of the wing box
cross section. This problem will also correspond to
a 2D optimization being the analysis of structure’s
performance conducted in 3D.

In order to optimize the wing box cross-section
of the high aspect ratio wing, some modifications
to the code were required.

Firstly, for the optimizer the problem solved will
be two-dimensional, meaning that the optimizer
will remain almost unaltered, requiring only the
modification of the boundary conditions that the
solutions need to satisfy. One has a pressure dis-
tribution, which will demand that all the elements
of the upper and lower surfaces must be present
in the solutions generated in order to be possible
to perform a FEM analysis of the structure. The
connectivity between the upper and lower surfaces
must also be ensured, being this assured if the ele-
ments from the upper and lower surface are present
in the solution.

Secondly, the structural problem solved is three-
dimensional, having in mind that the optimization
problem is 2D, one will need to relate the 3D struc-
tural elements with the 2D elements which repre-
sent the wing box cross-section. The ”strain en-
ergy” (ui2D ) of the 2D elements will be equal to the
sum of the strain energy (uij3D ) of the set of 3D
elements which are arranged longitudinally. The
relation is given by

ui2D =

Nlong∑
j=1

uij3D , (9)

where Nlong is the number of longitudinal divisions
of the wing box ANSYS R© model.

5.1. Results
The optimization of the wing box cross-section was
performed using the model shown in section 4 and
the value of the parameters with which one obtained
the best solution for the literature case, given in
Table 2. Two optimizations were performed, with
a volume fraction (vol f) equal to 0.35 and 0.45.

As seen in Figure 5, the solutions found at the
end of the optimization process, a major part of the
solutions display a connection between the upper
and lower skin in both sides of the wing box.

One can also notice that the upper left and lower
right corners of the wing box display a higher con-
centration of elements. The presence of the ele-
ments in these regions will increase the stiffness of
the structure, when subjected to torsion. Being the
angle of twist inversely proportional to the torsional
constant of a Section, the torsional constant of a
cross-section will increase if one has a higher con-
centration of material close to the boundaries of the
cross-section.

The minimum strain energy obtained for vol f

equal to 0.35 and 0.45 at iteration 30, was equal to
14.783 J and 11.617 J, respectively. As expected,
the solutions obtained at iteration 30 displayed a
lower strain energy as the one obtained for a vol-
ume fraction equal to 0.35, being equal to 11.617 J.
When comparing the results for both values of vol-
ume fraction, there is a relative decrease of 21.42 %
when the volume fraction is increased from 0.35 to
0.45.

(a) vol f = 0.35.

(b) vol f = 0.45.

Figure 5: Wing box cross-section for iteration 30.
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As seen in Figure 6(a), the minimum strain en-
ergy for vol f equal to 0.35 after the first iterations
displays a fluctuation around the value of 15 J, be-
ing the minimum strain energy equal to 14.783 J
for the last iteration. The solution which displayed
the minimum strain energy across the iterations dis-
played a strain energy equal to 14.329 J, being ob-
tained at iteration number 26.

The maximum change in module of the strain en-
ergy will be equal to 0.696 J between iteration 26
and 27, corresponding to a relative change of 4.86
%. These small fluctuations can be explained with
the stochastic behaviour of the algorithm and the
small volume fraction used. During the solution
generation, the ants will be placed in a random el-
ement of the domain in order to start the path’s
construction. Having a small volume fraction con-
strain, if the first element assigned does not belong
to the optimum solution and is placed in a region
which is not usual to have active elements the solu-
tion, some elements might be ’wasted’ when trying
to find the optimal solution, leading to the genera-
tion of a cross-section with a higher strain energy.

(a) vol f = 0.35.

(b) vol f = 0.45.

Figure 6: Minimum strain energy obtained through-
out the optimization process.

With the increase of the volume fraction, vol f

equal to 0.45, one can notice also that the fluctua-
tions of the minimum strain energy throughout the
optimization process will have a lower magnitude,
close to 0.1 J between iterations, as illustrated in
Figure 6(b). This fact can be explained with the
higher number of elements that the ants can select,
meaning that the the absence of some elements from
the solution will have a lower impact in the overall
performance of the cross-section obtained.

To complete the optimization processes it was
required 7 hours 11 minutes and 36 seconds for a
volume fraction equal to 0.35 and 8 hours 11 min-
utes and 47 seconds for a volume fraction equal to
0.45, corresponding to 450 FEM analyses for each
run, 15 per iteration for 30 iterations. The CPU
used to perform the optimization was the Intel(R)
Core(TM) i5-3350P CPU @ 3.10Ghz.

6. Full Span 3D Optimization

Having performed the optimization of the wing box
cross-section using ACO, one extended the imple-
mentation in order to obtain the optimal 3D distri-
bution of material for the wing box.

When compared with the cross-section optimiza-
tion described in Section 5, the given optimization
will have more freedom than if the topology opti-
mization is restricted to the cross-section design.

The wing box structural model is composed of
29952 elements, corresponding to 1152 elements in
the wing box cross-section, 18 in the y (vertical) di-
rection and 64 in the x direction (chordwise direc-
tion), and 26 elements in the z direction (spanwise
direction). If one used all the elements of the struc-
tural model as design variables, the computation
time could increase drastically, so one decided to
group elements, forming blocks with the structural
elements using these blocks as design variables.

In the first instance, each block was formed by 4
elements in the z (vertical) and x (chordwise) di-
rection and 1 element in the y (spanwise) direc-
tion, the given referential corresponds to the one
used during the structural model generation, form-
ing a 4 by 4 by 1 block composed of 16 elements
of the structural mesh, represented in Figure 7.
For the cross-section optimization, one gives em-
phasis to the cross-section discretization, meaning
that the discretization of the cross-section would
be finer than the mesh required for the FEM anal-
yses. In order to have as much freedom as possi-
ble for the optimization having at the same time
the minimum computation time possible, the re-
sulting structural mesh had a finer discretization of
the cross-section than in the longitudinal direction,
therefore the blocks were constituted only by one
element in the y direction.

Figure 7: Structural mesh vs optimization mesh for
blocks 4 · 4 · 1.
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For the last run, each block was formed by 2 el-
ements in the z and x direction and 1 element in
the y direction, resulting in a 2 by 2 by 1 block
composed of 4 elements of the structural mesh.

The elements that compose the upper and lower
surface of the wing box, in which the pressure distri-
bution was applied, must be present. One decided
that these elements would not be a part of the op-
timization process, being always present from the
start in the solutions generation.

The connectivity between blocks during the op-
timization process will be identical to the one that
one had during the 2D optimizations. Instead of de-
manding that the elements must share at least one
edge, the corresponding of the edge in 3D would be
the surface of the element. This demand resulted
in a 6-elements neighbourhood during the element
selection for the ant’s path.

The resulting elements for each direction and for
the structural mesh (st), 4 · 4 · 1 blocks and 2 · 2 · 1
blocks are given in Table 4.

st 4 · 4 · 1 2 · 2 · 1
nelx 64 16 32
nely 18 4 8
nelz 26 26 26
nelem 29952 1664 6656

Table 4: Number of elements for each direction and
different set of blocks.

6.1. Results
For the given problem, 3 runs were performed, two
with 1664 and one with 6656 optimization blocks,
referred as coarse and fine mesh, respectively. The
two runs with the Coarse mesh were performed with
a volume fraction vol f equal to 0.35 and vol f

equal to 0.45, in order to compare with the results
obtained for the cross-section optimization. The
run with the fine mesh was performed with vol f

equal to 0.35.
The value of the ACO parameters used during

the given runs will be equal to the ones used in the
cross-section optimization, shown in Table 2.

6.1.1 Coarse Mesh

For vol f equal to 0.35 the minimum strain energy
obtained at iteration 30 was equal to 11.583 J, be-
ing the best solution represented in Figure 8, being
equal to 9.830 J for vol f equal to 0.45, represented
in Figure 9 the best solution.

The strain energy obtained for vol f equal to
0.45 is smaller than the one for vol f equal to 0.35,
as was expected.

A higher concentration of elements can be seen
close to the wing root, the elements concentration

(a) Left half.

(b) Right half.

(c) Wing box with skin.

Figure 8: Wing box cross solution vol f = 0.35.

decreases in the spanwise direction. Close to the
tip few elements are present, being connected to the
rest of the structure by one member. As it can be
seen in the pressure distribution across the surface
of the wing box (Figure 4(b)), in the region close to
the tip the magnitude of the pressure will be lower
than the one close to the root, meaning that fewer
elements will be necessary in that region to support
the loads.

To complete the optimization processes it was re-
quired 7 hours 11 minutes and 36 seconds for a vol-
ume fraction equal to 0.35 and 8 hours 11 minutes
and 47 seconds for a volume fraction equal to 0.45,
corresponding to 450 FEM analyses for each run, 15
per iteration for 30 iterations, using the same ma-
chine where the cross-section 2D optimization was
solved.
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(a) Left half.

(b) Right half.

(c) Wing box with skin.

Figure 9: Wing box cross solution vol f = 0.45.

6.1.2 Fine Mesh

Using 2 · 2 · 1 blocks, one performed the given 3D
optimization. The best solution at the end of the
optimization process is represented in Figure 10.
The strain energy of the given structure is equal
to 11.129 J.

The solution obtained when compared with the
one obtained for the 4·4·1 blocks displays a different
topology. One can notice lines of blocks along the
spanwise direction, which will connect to each other
at the middle of the wing. These lines of blocks can
be seen close to the upper and lower surfaces of the
wing box, being formed usually by two blocks side
by side.

With the increase of blocks during the 3D opti-
mization, one can notice a slight decrease in strain
energy from 11.583 J for the coarse mesh to 11.129
J for the fine mesh. This decrease can be explained
with the increase of freedom that the algorithm will
have due to the increase of blocks available to se-

(a) Left half.

(b) Right half.

(c) Wing box with skin.

Figure 10: Wing box solution for vol f = 0.35.

lect during the solution generation. Nonetheless,
one should note that the given algorithm is meta-
heuristic relying in a stochastic process to select the
elements using at the same time some rules, mean-
ing that for different runs with the same parame-
ters, one can have different results.

To complete the optimization process it was re-
quired 102 hours 49 minutes and 54 seconds, cor-
responding to 450 FEM analyses, 15 per iteration
for 30 iterations, using the same machine where the
cross-section 2D optimization was solved.

6.2. 2D vs 3D Results

In Table 5, the values of strain energy for the cross-
section and 3D optimization are shown, for the 3D
optimization with vol f equal to 0.35 the table en-
try displays the values for the coarse mesh and fine
mesh, respectively. When the strain energy for the
best solutions found in the cross-section and the 3D
optimization is compared, one can notice that for
both values of volume fraction one has a lower strain
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energy value for the 3D optimization. Although, for
both cases the volume fraction is the same, one will
have more structural elements for the 3D optimiza-
tion, because the elements that form the upper and
lower skin of the wing box do not belong to the op-
timization problem, being always present. So for
the same volume fraction, one always has more el-
ements for the 3D optimization case. Nevertheless,
the difference in strain energy is quite large and part
of that difference may be due to the higher freedom
in selecting the elements for the solution.

vol f 0.35 0.45
Cross-section [J ] 14.783 11.617
3D [J ] 11.583/11.129 9.830
CPU time [s] 257439/370194 277070

Table 5: Minimum strain energy for the cross-
section and 3D optimization.

From the cross-section optimization for the 2D
optimization, one can also notice a drastic increase
in the running time. This fact can be explained with
the numbering of the elements. The structural ele-
ments are numbered in a crescent way in the span-
wise direction, so one is performing the cross section
optimization the elements which are removed from
the matrices that the ANSYS R© needs to solve will
be sequential, taking less time to re-arrange the ma-
trices. For the 3D optimization, the re-arrange of
the matrices takes more time because the elements
that need to be removed from the matrices are more
dispersed.

7. Conclusions
The main objective of this work was to implement a
topology optimization using the Ant Colony Opti-
mization algorithm to perform a topology optimiza-
tion of a high aspect ratio wing.

ACO has some advantages to implement in a
topology optimization, such as its simplicity to ap-
ply to a discrete problem as the topology optimiza-
tion, whereas most of the deterministic approaches
usually require continuous design variables needing
additional strategies to overcome this problem. An-
other advantage that the ACO brings is the flexi-
bility to use any given objective function not being
restricted to the differentiable ones.

On the other hand, ACO displays some draw-
backs, making it not the most adequate algorithm
to solve a topology optimization. Being a meta-
heuristic algorithm requires that the performance
of the solutions generated to be accessed at each
iteration, which for the given problem, even having
its complexity reduced, leads to high computational
time. The increase of the number of design variable
is also strictly related with the computation time.

In conclusion, ACO does not correspond to the
most efficient algorithm to solve the minimum com-
pliance problem (minimization of the strain en-
ergy).
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