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Abstract

This thesis focuses on analysing the advantages and disadvantages of using stochastic optimization,
especially in aircraft design problems. First, a literature review served as a starting point to choosing
some of the most common and promising methods of robust design optimization, reliability based design
optimization and robust and reliability based design optimization. The chosen methods were Monte
Carlo, method of moments, Sigma point, reliability index approach, performance measure approach,
sequential optimization and reliability assessment, and reliable design space. After implementing these
methods, they were tested for two analytic functions and their performances compared. Four of these
methods were then chosen based on their performances to be implemented in a multidisciplinary
optimization tool specially tailored to solve aircraft optimization problems. To evaluate the chosen
methods in a more realistic environment, two new reliability based test cases related to aircraft
design were developed. In these test cases, surrogate models were employed instead of the more
computationally expensive disciplinary analysis, with the main objective being the study of how the
efficiency of each method changed with the number of uncertainty parameters. The obtained results
revealed that the efficiency of each method is closely related to the type of problem solved. While in the
analytic cases, for high levels of uncertainty, the robust optimization method showed some difficulties
in achieving the target reliability, in the aircraft design cases, it proved to be the best method in terms
of the relation between accuracy and computational cost.

Keywords: Uncertainty Propagation, Robust Design Optimization, Reliability-Based Design Opti-

mization, Multidisciplinary optimization, Benchmark methods

1. Introduction

As competitiveness in the aerospace industry in-
creases, so does the need to come up with novel con-
figurations of aircraft that are more robust, in that
they are still able to perform well in off design condi-
tions, as well as reliable in the sense that they have a
low probability of failure. This is where both uncer-
tainty quantification (UQ) and uncertainty-based
optimization comes into play. Even though deter-
ministic optimization methods have proven useful
during nearly six decades of design, they have sev-
eral shortcomings, especially when it comes to ac-
counting for uncertainty by means of a combina-
tion of safety factors and knockdown factors (whose
values have been obtained through years of expe-
rience for standard configurations and materials).
Furthermore, since the measures of both robustness
and reliability are not provided in the determinis-
tic design process, it is impossible to both deter-
mine the relative importance that the design op-
tions have in these measures, and maintain consis-
tency in terms of reliability throughout the whole
vehicle [15].

Since uncertainty is present in everything, it is of
the utmost importance to take it into account when
studying any phenomenon, for this might lead to
some unexpected results. Since aircraft design is
no exception, it is important to take uncertainty
into account as well when performing optimization.
Before that, it is first necessary to characterize and
quantify uncertainty. Since research started in this
field, a lot of methods have been developed to quan-
tify uncertainty. Depending on the way they ap-
proach it, these can be divided in three main cate-
gories: the ones that specify uncertainties by means
of interval bounds (should only be used when little
information is known about a certain system); ones
that use membership functions that represent the
degree of membership of the fuzzy variable within
the fuzzy set (provide an intermediate level of detail
and are mainly used when data necessary to quan-
tify parameter uncertainties is limited); and ones
that are based on the probability density function
(PDF) (these are the most detailed methods and
should only be used when there is enough sam-
ple data in order to make generalizations about



the populations from which the samples were ob-
tained) [15]. Because during most of the aircraft
design phases, accurate results are required, it is
only natural that the probabilistic methods are the
most used. Throughout this work, the same meth-
ods based on PDF are used as well, turning the
uncertainty-based optimization into stochastic op-
timization.

There are two major classes of uncertainty-based
optimization methods, robust design optimization
(RDO) and reliability based design optimization
(RBDO). While robust optimization seeks a design
insensitive to small changes in the uncertain quanti-
ties, the design sought by reliability optimization is
one that has a probability of failure that is less than
some acceptable value. In order to achieve these dif-
ferent designs, not only their mathematical formu-
lation is different, but also their domains of applica-
bility. While RDO focus primarily on the event dis-
tribution near the mean value of the PDF, RBDO
is more concerned with the event distribution in the
tails of the PDF. Besides these two classes, a formu-
lation called Robust and Reliability Based Design
Optimization (R2BDO), which focuses on obtain-
ing designs that are both robust and reliable [10],
is also taken into account in this study.

This paper describes some of the different meth-
ods that were proposed for each of the stochastic
optimization formulations and presents their results
for different test cases. These results are then com-
pared and conclusions are drawn as to which are
the best methods and what benefits does stochastic
optimization has over deterministic optimization.

2. Robust and Reliable Design

Accounting for uncertainty in design optimization
implies solving a slightly modified version of the
deterministic optimization problem. These modifi-
cations are made according to the stochastic opti-

mization formulation that is being employed, be it
RDO, RBDO or R?BDO.

2.1. Statistical Concepts

In order for the reader to better understand some
of the methods that are introduced throughout this
work, here follows a brief introduction to some
important definitions of probability and statistical
background.

2.1.1 Random variables and Probability
density functions

A random variable X is a variable that, instead
of having a single fixed value, can take on a set
of possible = values, each associated with a given
probability. The mathematical function describing
the distribution of the possible values x of X and
their respective probabilities, is called the Probabil-

ity Density Function (PDF), fx(X). This function
assigns a certain probability density to each value
of the random variable, which means that the total
probability of a variable X lying inside the interval
[xl, $2] is
Z2
Pz < X <uxy) = / fx(t)dt (1)
1

where P stands for probability. There are some
commonly used distributions in engineering, like
the Laplace distribution or the Log Normal distri-
bution, though the one that is going to be used
throughout this work is the Normal distribution,
also known as Gaussian distribution and character-
ized by its density function,

PRX) = e <1<XUXMX)>’ 2

where 1, and ox are respectively the mean and the
standard deviation of the random variable X.

2.1.2 Expected value and variance

The mathematical expectation, E(X) or mean
value px of a random variable, defines the center of
its distribution and is given by

B(X) = jix =/

— 00

+oo
t fx(t)dt (3)
for a continuous random variable.
The variance or second central moment is a mea-
sure of dispersion of a distribution and is denoted
by

V(X) = 0% = B[(X — puy)]?
- / (t - px)? fx(t) dt

The positive square root of the variance is called
the standard deviation of X (o).

The ratio between the variance and the mean is
called the coefficient of variance,

(5)

For the case of discrete variables, both the mean
and variance are obtained through

1 n
= Ux = gz;tz
1=

C.0.V. = —

E(X) (6)

V(X)=0% = E[(X — ux)? lz ti — pux)?,
) (7)

respectively, where n is the number of samples
taken.
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2.1.3 Normal Distribution and Sigma Lev-
els

While optimizing with uncertainty, sometimes one
has to make sure that the probability of violating
the constraints lies within certain prescribed values.
Assuming that both objective and constraint func-
tions have normal distributions, these probabilities
are associated with different Sigma levels (as can be
seen in Fig.1 and Tab.1). By taking advantage of
this, it is possible to achieve certain probabilities of
failure by making sure that a design lies in a region
that is characterized by a certain sigma level.
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Figure 1: Normal distribution, 30 design [4]

Table 1: Sigma level as percent variation
Sigma Level Percent variation

+lo 68.26
+20 95.46
+30 99.73
+4o0 99.9937
+50 99.999943
+60 99.9999998

2.2. Optimization formulations
2.2.1 Deterministic Optimization

In a deterministic design optimization, the designer
seeks the optimum set of design variable values for
which the objective function is the minimum and
the deterministic constraints are satisfied [1]. A
common way to formulate such a problem is [5]

f(z)
gi(r) <0, i=1,2,... Ny,

(®)

min
xr

s.t.

where f is the objective function, x is the vector of
design variables, which can or cannot be restricted

to a certain interval by means of x%B <z < a:lk]B,

k=1,2,...,Npy where LB and UB are the lower
and upper bounds of the design space respectively.

2.2.2 Robust Design Optimization

The robust attribute of the design is achieved
by simultaneously minimizing the variance (0?)
and expected value (1f) of the objective function,

while ensuring probabilistic satisfaction of the con-
straints. Probabilistic bounds can also be set for
the independent variables [9]. The final result is
the following statement:

F(/Lf(l‘,?“), Uf(mﬂn))

Gi(pg; (z,7),04,(x,7)) <0, 1 =1,2,..., N,
Pag? < mp < a2i”) (9)
> Pboundsa k= 132a "'7NDV7

min
xr

s.t.

where p and o represent the mean and standard
deviation of either the objective function or the
constraint functions (depending on their subscript),
and r is a vector of parameters that may or may not
be deterministic. The robust objective and con-
straints are now designated by capital letters (F
and G respectively), since in RDO they depend on
their mean and standard deviation, which in turn
depend on the probabilistic distribution of the vari-
ables. In Eq.(9), P stands for the probability of the
input variables residing within their bounds.

2.2.3 Reliability Based Design Optimiza-
tion

A typical RBDO formulation involves the minimiza-
tion of an objective function subject to reliability
constraints and deterministic constraints. Its equiv-
alent to Eq.(9) can be mathematically represented
by [7] [3]

min
xT

fla,r)

9r(z,r) <0, i =1,2,..., Ny
gi(x,1) <0, j=1,2,..., Ny

alB < g, <aUBk=1,2,...,Npy,

s.t. (10)

where g/ ¢ and gf are respectively the reliability and
deterministic constraints. The reliability constraint
is defined as

g;c = Pfl - Pallowi = P(gi(x,r) > 0) - Pallow-; 5
(11)
where Py, is the probability of failure and Pyjiow, is
the allowable value for the probability of failure.

2.2.4 Robust and Reliability Based Design
Optimization

This formulation was proposed to overcome some
of the RDO and RBDO shortcomings. In an at-
tempt to bring together the best of both formu-
lations, R2BDO comprises RDO objective function
treatment and RBDO constraint treatment in a sin-



gle problem statement, resulting in

min
u

s.t.

Fug(@,r),op(x,7))

gr(z,7) <0, i=1,2,..., Ny
gz, r) <0, j=1,2,..., Ny

alB < g, <aUBk=1,2.. Npy.

(12)

3. Stochastic Optimization Methods

Because the different formulations focus on different
zones of the PDF, the methods they use are also dif-
ferent. While in RDO the methods try to approxi-
mate the probabilistic measures of the objective and
constraint functions (p and o), in the RBDO meth-
ods the objective is to compute the probabilities of
failure.

3.1. RDO methods
3.1.1 Monte Carlo Method (MC)

In RDO, the MC Method can be used to generate N
random samples, for each of the random variables,
and compute both the mean and standard deviation
of the objective and constraint functions, by using
Egs.(6) and (7). The accuracy of this method is tied
to the number of samples N that are generated.
The higher this number is, the better the results
and the more costly the method becomes.

3.1.2 Taylor Based Method of Moments
(MM)

The idea behind MM is to approximate the distribu-
tion of a given function in terms of its derivatives
by using Taylor approximations of the statistical
moments [6]. By taking the Taylor expansion of a
function about its mean, applying the expectation
operator to it and assuming that all design variables
are independent and have symmetric distributions,
the mean of this function becomes

1&g
g :g(ﬂm)‘i‘aZWUﬂfi e (13)
i=1 i

By squaring Eq.(13) and subtracting it from the
squared Taylor approximation of the same function,
the variance of the function can also be obtained.

3.1.3 Sigma Point Method (SP)

This method is based on the idea that it is eas-
ier to approximate the probabilistic distribution of
the input variables, rather than that of the tar-
get function [8]. Assuming both symmetric and
independent input variables, the Sigma points are
located symmetrically about the mean of each of
the inputs depending on the input covariance ma-
trix, as follows: xo = fpz; Xi+ = Mo + hoe;; and

Xi— = po —hoe;, where h = /K (x), which for nor-
mally distributed inputs equals /3, o is the covari-
ance matrix and e; is the i*” column of the identity
matrix of size Ngy X Ngy.

The probabilistic parameters of the objective and
constraint functions are then computed by

Nrv
fiy = Wo f(xo) + Z Wilf(xie) + fOxi-)] - (14)
i=1
and
—~ 1 Nryv
of =5 2 AWilfxie) = FOu-)” + (Wi — 2W7)
=1
[F(xit) + FOxa=) — 2f (xo)I*}
(15)
where the weights are Wy = h2ch;va and W; = #

3.2. RBDO methods
3.2.1 Monte Carlo Method (MC)

In RBDO, the MC method can be used to gener-
ate random numbers with a certain distribution, in
order to evaluate probabilities of failure. After gen-
erating N samples of each of the random variables,
they are substituted into the function of interest to
evaluate its response. To evaluate the probability
of it being, for example, higher than zero (OZ), the
following equation is used:

Nsamplesoz

P(OZ) = (16)

Nsamples
where Nggmples, 15 the number of samples for
which the function was higher than zero.

3.2.2 First Order
(FORM)

Reliability Method

FORM basically consists of linearly approximating
the limit state surface g(h) = 0, where h is a vector
of random variables and /or parameters, by means of
a first order Taylor expansion at the Most Probable
Point (MPP) of failure (this is the point where g(h)
has the highest probability of being zero) [1]. After
that, the corresponding probability of failure can be
approximated by

Py, = P(g(h) 2 0) = ®(=) = 1 - @(f),

where & is the cumulative distribution function
of the standard normal distribution and S is the
so called reliability index. The reliability index
is the distance between the MPP and the origin
of the standard normal space u, and is given by
8= (uTu)%. It can be found by solving the follow-
ing optimization sub-problem,

(17)

min (uTu)%
u (18)
s.t.:



where wu is the vector of random variables h, trans-
formed into the standard normal space. Since in the
optimization sub-problem of Eq.(18), what is being
used is h and not u, the required transformation ,
for variables with a normal distribution is:

hy = T_l(uk) = U+ oug (19)

At this point, the reliability constraints of the
RBDO problem can be formulated in terms of
their reliability indexes instead of their probabili-
ties. The mathematical expression for the reliabil-
ity constraints should now be transformed into the
equivalent,

g:c = ﬂreqd - Bz y

where Beqq is the required reliability index (that
corresponds to a given Pyoy) and §; is the relia-
bility index of the current iterate. This approach
to the RBDO problem is called the Reliability In-
dex Approach (RIA). By changing the optimization
sub-problem of Eq.(18) to its inverse [14]:

— g(h(u))

s.t. (uTu)% — Breqa =0

(20)

min
u

(21)

one obtains the Performance Measure Approach
(PMA) instead, also called inverse MPP.

Another way to formulate the PMA problem is
to confine the values of the vector uw to a hyper-
spherical surface of radius fB,cqq, thus eliminating
the necessity for the equality constraint (uTu)% —
Breqa = 0 in Eq.(21) and reducing the dimension of
the sub problem to Ngy — 1 [10]. This results in
the following statement:

min — g(h(u(@))) )

where ¢ is the set of hyper-spherical angular coor-
dinates ¢ = {¢1, d2, ..., dNpy—1}- Considering the
lack of a constraint, plus the lower problem dimen-
sion, the alternative formulation of the PMA ought
to allow for faster convergence.

3.2.3 Sequential Optimization and Reliabil-
ity Assessment (SORA)

SORA is an improved RBDO method that belongs
to a category called decoupled approaches. Instead
of doing the reliability assessment of Egs.(21) and
(18) for every iterate, it uses serial single loops to ef-
ficiently optimize the objective function and assess
its reliability, thus reducing the computational cost
associated with RBDO [2]. As can be seen in Fig.2,
SORA sequentially performs a series of determin-
istic optimizations and reliability assessments. By
computing a shifting vector s at each cycle, SORA

Starting point

0
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d

Z = = =’ x

Optimization
min f(d.p,)
St.g, (A, =5, Pypp) 20
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Reliability Assessment
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Find Papp and Xape

f Converges?
gs are feasible?

Figure 2: Flowchart of the SORA method [2]

rapidly approximates the deterministic constraint
to the probabilistic one. In the end, by ensuring
the design point satisfies all the deterministic con-
straints, SORA also ensures that the probabilistic
constraints are satisfied.

3.2.4 Reliable Design Space (RDS)

RDS [12] is also an improved RBDO method in that
it tries to reduce the computational costs associ-
ated to it. By first converting its constraint into a
probabilistic one, it only needs to solve a single de-
terministic optimization loop. Much like in SORA,
deterministic constraints are rewritten as a func-
tion of the calculated MPP values, thus converting
them into theoretical probabilistic constraints g;'.
The difference now is that to find the MPP, instead
of solving an optimization subproblem, the follow-
ing approximation is used:

2 agi/ﬁuk

NG SR CIIEIE

This way, it is possible to directly calculate the in-
verse MPP z} at any design point p, .

(23)

*N
L ~ Moy, —

4. Analytical Test Case

All the presented methods were tested using an an-
alytical test case. Results from both different meth-
ods and formulations were obtained and compared
to each other. The errors presented throughout
these were computed with post optimal analysis us-
ing MC simulations with 6 x 10% samples.

The main goal is to provide information about the
efficiency of each method, in terms of required func-
tion evaluations. In this test case, a rather simple
objective function is used in conjunction with three



nonlinear constraints,

min fur, p2) = pn + pio
K142
s.t. P(gi(X)>0)>R;, i=1,2,3

91(X) = X7 X/20 — 1,

g2(X) = (X1 + X2 —5)%/30 +
(X — Xy —12)%/120 — 1,

93(X) = 80/(X7 +8X2 +5) — 1,
0<p; <10, j=1,2
c1=09=03p3,=3i=1,2,3,

(24)

where p1, po, 01 and oo are the mean values and
standard deviations of the two random design vari-
ables X; and X, respectively, and R; is a the re-
quired reliability, which is the same for every con-
straint. Since the RBDO methods presented use
reliability indexes instead of reliabilities, the con-
straints were adapted according to each method’s
own formulation. A target reliability index (Breqa =
3) and a standard deviation of the random variables
(o = 0.3) were chosen. Because this test case had a
target reliability, the RDO constraints were adapted
to mimic probabilistic constraints.

The results of this test case can be seen in Tab.2.
In terms of the reliability error, it can be seen that,
while the RDO methods struggled to achieve the
target reliability, both the RBDO and R?BDO were
able to achieve it, apparently without any major
problems. While all RBDO and R?BDO methods
reached the same solution, the RDO methods ob-
tained different ones (worse), for their reliability er-
ror was higher. In terms of the number of required
function evaluations, it can be seen that both RDO
methods are among the ones that have the low-
est number of function evaluations, as they do not
have reliability assessment cycles. As for RBDO,
the classic approaches PMA and RIA are the meth-
ods that have the highest number of evaluations.
After them, comes the alternative PMA, that is in-
deed able to reduce the number of constraint eval-
uations. Both SORA and SORA _alt have even less
function evaluations, and finally comes RDS. It can
be seen that compared to the classic approached,
both SORA, SORA _alt and RDS greatly reduce the
number of required function evaluation, apparently
at no cost, since the reliability errors remain low.

5. Numerical Test Cases

In order to be able to assess the performance of
stochastic optimization in an aircraft MDO envi-
ronment, some of the previously introduced meth-
ods were implemented in an MDO Framework (cur-
rently under development at IST [13]) and two test
cases were devised. In the two test cases use sur-
rogate models [11], so that many optimizations can
be performed for different levels of uncertainty. The

choice of the methods to be implemented was based
on both their implementation complexity and per-
formance in the analytical test case. SP was chosen
to perform RDO, PMA and SORA for RBDO and
for R2BDO SP+SORA. The aircraft model to be
optimized was the EMBIMOR (with and without
winglets), as illustrated in Fig.3.

Figure 3: EMBIMOR - Baseline model

5.1. Test Case 1

This test cases consists of maximizing the range of
the baseline model of the aircraft EMBIMOR, for
the cruise flight phase and under certain conditions.
The problem can be formulated as

max Kgln%
@ D Wy
s.t. L =W, — Tsin(a)
Tcos(a) = D (25)
M <0.8,

where x are the design variables, V' is the airspeed,
¢; is the specific fuel consumption, L is the lift force,
W1 and Wy are respectively the total initial and
final weights of the aircraft before and after cruise,
T is the thrust generated by the aircraft’s engines,
D is the drag force, « is the angle of attack and
M is the number of Mach at which the aircraft is
flying. To simplify this problem, it was assumed
that 100% of the fuel is available when the cruise
phase starts, and 20% when it ends. Among all the
inputs of the available discipline surrogates, some
were chosen as design variables for this problem.
As can be seen in Tab.3, these are all operational

Table 3: Test case 1 - Design Variables

Design
Variables Lower Bound Upper Bound
a (%) 0 1.9
V (m/s) 100 300
Altitude (m) 5000 11000
Throttle 0 1

conditions and they are bounded according to the



Table 2: Comparison between different stochastic optimization methods

RBDO RDO RZBDO
Method RIA°  PMA PMA.alt SORA SORA.alt RDS MM SP SP + PMA _alt
Design Variables
n1 3.4391  3.4391 3.4391 3.4391 3.4391 3.4406 | 3.6333  3.6291 3.4391
12 3.2866  3.2866 3.2866 3.2866 3.2866 3.2800 | 3.4442 3.4164 3.2866
Objective function 6.7257  6.7257 6.7257 6.7257 6.7257 6.7205 | 7.5017 7.46987 7.1499
Constraint Reliability
s, %] el <2 |el<2 el <2 Jef <2 le] <2 lel] <2 | 2541  24.50 le] <2
€8, %) el <2 Je]l <2  |gl<2 gl <2 le] <2 le] <2 | 11.01 8.39 le] <2
£, %] 00 00 00 00 00 00 00 00 00
#0bj. func. eval 18 18 21 51 51 18 15* 5% 105**
#Const. func. eval 1137 1956 688 367 234 54* 45* 225 688
#Total. func. eval 1155 1974 709 418 285 72* 60* 300** 709**

* the number of function evaluations required to determine partial derivatives, were not accounted for
+% the number of necessary function calls within the main function evaluations, were taken into account

domain of the surrogate models that were employed.
The variables that are in bold were the ones that
had uncertainty during the tests.

To be able to compare all of the implemented
methods, the devised problem had target reliabil-
ities, which means the RDO constraint was once
again converted into a probabilistic one. Each opti-
mization case is characterized by their unique com-
bination of three parameters, namely the level of
uncertainty (defined by c.o.v. = o/u), the number
of variables that have uncertainty (either only air-
speed or airspeed plus altitude) and the target reli-
ability of the optimization. For each case, the four
different methods of stochastic optimization were
used, thus making the complete test case be com-
prised of 72 optimizations. After the optimization
had concluded, the averages of both the number of
required function evaluations and reliability error
were computed for each of the methods and shown
in Figs.4 and 5, respectively. These averages were
calculated without taking into account the high-
est and lowest values for each of the methods, as
a means to avoid being misled by any numerical er-
ror that may have occurred. Figure 4 shows that

2825

2324 = SP+SORA

SORA
uPMA
mSP

33762

1595

0 5000 10000 15000

Number of calls

20000 25000 30000 35000 40000

Figure 4: Test case 1 - Average number of function
calls

the required number of function calls are all in ac-

cordance to what has been seen in Tab.2. PMA
is still the method that requires the highest num-
ber of calls. After comes SP+SORA and SORA,
which clearly solves the problems with the reliabil-
ity assessment cycle by decoupling it from the main
optimization cycle and finally comes SP. In terms

2.66 %

1.69%

m SP+SORA

SORA
HPMA
LN

0.04 %

0.07 %

0 05 1 15 2 25 3

Reliability error (%)

Figure 5: Test case 1 - Average reliability error

of the reliability error, Fig.5 shows that the aver-
age error produced by these methods is low, with
SORA and SP+SORA having slightly higher error
than PMA and SP. The reason why this happens
for SORA and SORA+SP is because in a few cases,
their algorithm was not able to achieve the target
reliability and that was accounted for in the aver-
age. As for PMA and SP, they are mostly on target
for the whole test case, producing really low errors.
This was expected from PMA, but not necessarily
from SP. Even at higher levels of uncertainty the
SP method maintains consistency, which is some-
thing really interesting considering the low number
of function evaluations it requires, compared to the
other stochastic methods.

5.2. Test Case 2

In this test case, the aircraft model consisted of the
baseline+winglet instead of just baseline like in test
case 1. While the focus of this test case was still
mainly on assessing the advantages and shortcom-



ings of the four implemented methods, it also al-
lowed the evaluation of the benefits that stochas-
tic optimization has over deterministic optimiza-
tion. The problem that was solved is described in
Eq.(26) and the design variables that were used are
presented in Tab.4.

max ﬁln%
= Cp W (26)
s.t. o < Zmaxr

SF

The objective equation consists of the range equa-

Table 4: Test case 2 - Design and Geometric Vari-
ables

Design
Variables Lower Bound Upper Bound
tw/c 5.00E-04 1.00E-02
ts/tmaz 5.00E-04 1.00E-02
Toe (°) -10 5
Cant (°) -80 80
Sweep (°) 20 60

tion without the CK part, since neither of the design
variables actually influence it, and the constraint
has to do with the maximum allowable stress. SF
stands for the safety factor, which is only used
in deterministic optimization. As for the design
variables, the first two are relative thicknesses of
the aerodynamic surfaces and the other three are
winglet angles, as illustrated in Figs.6 and 7.

-l tmax
J wB

Ms

Chord (c)

Figure 6: Airfoil thickness parameters

7 s o
Sweep angle J s .~

Cant parameter

Figure 7: Winglet parameterization

The optimizations were performed in a similar
way to the previous test case, in that they used sev-
eral combinations of uncertainty parameters, with
the difference that in this test case the number of
random variables would either be two (both rela-
tive thicknesses) or five (all random variables). The
average results (computed like in test case 1) of
both the number of calls and reliability error can
be seen in Figs.8 and 9, respectively. Because the
SP+SORA method was not able to converge for the
higher levels of uncertainty, two averages had to be
computed, one without the values of those cases
(top average) and one with those values (bottom
average).

m SP+SORA
= SORA
HPMA
msp

21442

0 5000 10000 15000 20000 25000

Total calls

Figure 8: Test case 2 - Average number of function
calls

In terms of function evaluations, Fig.8 shows that
for this specific problem, everything is still in accor-
dance with the previous test cases, with PMA be-
ing the method that requires the most evaluations,
then SP+SORA, after that SORA and finally SP.
As for reliability, things got a little bit different. All

M SP+SORA
= SORA
HPMA
msp

3.06%

0 0.5 1 15 2 25 3 35 4
Reliability error (%)

Figure 9: Test case 2 - Average reliability error

the methods but PMA seem to have their errors in-
creased in a similar fashion. That is normal con-
sidering the higher number of uncertainty variables
present in this problem, compared to the previous.
The only thing that is not normal is the fact that
PMA just became the method with the highest reli-



ability error. This can only be explained by the fact
that PMA solely relies on the MPP problem to find
the target reliability. Because some of the stochastic
variables do not necessarily influence the reliability
of the aircraft (they are not responsible for failures),
but are still used for the reliability assessment of the
PMA method, an error can be induced. PMA is
usually able to deal with these problems, but since
surrogate models were employed and some of the
variables are usually close to their bounds, numer-
ical errors occur, which sometimes lead to incor-
rect data regarding the influence of these variables.
While both SORA and SP+SORA suffer from the
same problem, they do not rely as much in this re-
liability assessment as PMA does, which results in
a lower error.

In this test case another study was conducted.
Nine configurations of winglets (with different spans
and tip chords) were optimized, both deterministi-
cally and stochastically and and their results were
compared. In this optimization the objective func-
tion and constraints were the same of Eq.(26) but
the design variables were only the thicknesses (the
winglet angles were fixed for maximum Cp/Cp).
The most relevant results concern configurations 5
and 6 and can be seen in Tab.5. The first thing

Table 5: Winglet comparison

Config 5 Config 6

obj 5.9476 5.9479

DET tw/c | 5.40E-04 | 5.40E-04
ts/t | 8.747E-03 | 8.850E-03

weight | 7.297E405 | 7.300E4-05

PMA obj 5.9967 5.9954
tw/c | 5.40E-04 | 5.40E-04

ts/t | 6.379E-03 | 6.565E-03

c.ov. 5%  weight | 7.244E+05 | 7.248E+05
B 3.0036 3.0032

PMA obj 5.9809 5.9792
tw/c | 5.40BE-04 | 5.40E-04

ts/t | 7.135B-03 | 7.341E-03

c.ov. 8% weight | 7.261E+05 | 7.266E-+05
B 2.9818 2.976

that can be noticed is the fact that the determin-
istic optimization has lower values of the objective
function. This is because it uses a safety factor to
account for uncertainties. Even though the differ-
ence may not always be this big if all the uncer-
tainties are properly quantified (which was not the
case), this just proves that deterministic optimiza-
tion is often more conservative than stochastic op-
timization. Another thing that is really important
to note is the fact that as the shift from determinis-
tic to stochastic optimization is made, not only the
results get better, but also the best configuration
changes. In the deterministic optimization, it was

found that configuration 6 was the best, but as un-
certainty is introduced and further increased, con-
figuration 5 becomes better. This shows just how
much potential stochastic optimization has, when it
comes to analyzing new aircraft configurations that
may not have the best results if only deterministic
optimization is used.

6. Conclusions

The efficiency of each method is tied to the problem
being solved. There is no such thing as the best
method or best formulation, since every method
and formulation performed poorly in at least one
test case. Despite all that, the method that stood
out the most was SP, by being able to accurately
achieve the reliability target, at reasonable cost. Its
robust formulation did not allow it to be the best
method in the analytical test case but in the end,
it proved to be more than capable to solve simpler
problem, thus confirming why robust optimization
is still widely used when uncertainties are taken into
account.

It was also seen that stochastic optimization has
some advantages over deterministic optimization.
Not only stochastic optimization proved to be less
conservative (while still having the target reliabil-
ities), but it also demonstrated its potential when
it comes to finding new and more efficient aircraft
configurations. It should be noticed that, because
the uncertainties were not properly quantified, the
comparisons were only qualitative.

Despite all the work that has been done in this
thesis, there are still a few things that are worth be-
ing further studied. Since the numerical test cases
only considered target reliabilities, a study that fo-
cus more on the actual robustness of the design
points obtained with RDO and R?BDO needs to
be conducted. Also, either more complex surro-
gates should be created or the actual disciplinary
modules should be used, so that these methods can
be applied to even more complex problems so that
one can assess how the methods perform when there
are more constraints and more complicated objec-
tive functions. For example, morphing problems
including several flight phases could be studied, as
a means to find out the different configurations that
stochastic optimization would produce and compare
them to the deterministic optimal solution.
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