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Resumo

O desenvolvimento de pequenas Aeronaves Remotamente Pilotadas para aplicações civis tem aumentado

nos ultimos anos. Uma das desvantagens na sua integração em espaço aéreo civil é a falta de sistemas de

prevenção de colisões. Enquanto que aeronaves remotamente pilotadas mais sofisticadas, nomeadamente

militares, têm sensores e sistemas aviónicos topo de gama, drones de baixo peso e custo não têm qualquer

tipo de segurança. Dado o aumento exponencial do número deste tipo de exemplares dispońıveis no mer-

cado, tipicamente operados por operadores sem certificação, há uma necessidade urgente de desenvolver

sistemas de prevenção de colisão que possam ser facilmente integrados neste tipo de plataformas.

Dentro do vasto tópico de sistemas de prevenção de colisoẽs, esta dissertação foca-se no problema de

gerar caminhos óptimos para Aeronaves Remotamente Pilotadas sujeitas a restrições de manobrabilidade

e segurança, e fazer o seu replaneamento quando em risco de colisão. Para atingir este objectivo é proposta

uma solução dividida em duas fases. Na primeira fase técnicas clássicas de planeamento de trajectória são

implementadas para gerar caminhos num ambiente estático conhecido. Algoritmos de procura em grelha,

nomeadamente o algoritmo A* e a Colónia de Formigas, são usados para encontrar uma sequencia óptima

de pontos num ambiente discreto. Para ter a certeza que o caminho respeita restrições de curvatura e

segurança, uma optimização de curvas racionais de Bezier é implementada.

Enquanto a primeira fase é feita antes da execução da missão, a segunda fase, responsável por evitar

obstáculos dinâmicos e estáticos que não eram previamente conhecidos, é desenvolvida com as limitações

de implementação em tempo real em mente. O método dos campos potenciais é usado para evitar colisões

em tempo real. É assumido que o veiculo está equipado com piloto automático e unidade de controlo de

trajectória.

Casos de planeamento de trajectória entre um conjunto de pontos num ambiente bimensional e tridi-

mensional com obstáculos estáticos, usando os algoritmos desenvolvidos na primeira fase, são apresenta-

dos. Vários casos de replaneamento de trajectória, usando os campos potenciais, na presença de obstáculos

dinâmicos são testados.

Na primeira fase de planeamento, os melhores resultados são obtidos usando uma combinação do

algoritmo A* e a Colónia de Formigas para optimizar a ordem dos pontos a visitar. Os campos potenciais

são um algoritmo rápido e computacionalmente leve, sendo uma solução adequada para implementação

em tempo real. É mostrado que os algoritmos têm uma performance razoável em vários cenários.

Palavras-chave: Aeronaves Remotamente Pilotadas, Prevenção de Colisões, Planeamento de

Trajectória, Procura Heuristica, Optimizacao com Colónia de Formigas, Campos Potenciais, Curvas de

Bezier.
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Abstract

The development of Remotely Piloted Aerial Systems (RPAS) for civil applications has been rapidly

growing over the past years. One of the main drawbacks in their integration into the National Airspace

System (NAS) is the lack of a reliable collision avoidance systems. While sophisticated large RPAS, often

military, have sensing technology and avionics on-par or even more advanced than manned aircrafts, on

the other end of the spectrum of RPAS, the low-cost light-weight off-the-shelf drones, are deprived of

almost any safety system. Given the exponential rise in the number of the latter platform types, typically

operated by uncertified operators, there is an urgent need to develop low-cost collision avoidance systems

that can be easily embedded in such platforms.

Among the vast topic of Sense and Avoid (S&A), this thesis addresses the problem of generating

optimal paths for RPAS subject to maneuverability and collision avoidance constraints, and replanning

them when in risk of collision. To achieve this task, a two-steps approach is proposed. In the first

stage, classical path planning techniques are implemented to generate flyable paths in a known static

environment. Grid based search algorithms, particularly the A* algorithm and Ant Colony Optimization

(ACO), are used to find an optimal sequence of waypoints in a discrete environment. To ensure that the

path is flyable and complies with curvature and safety constraints, an optimization of Rational Bezier

curves is implemented.

While the first stage is performed before the mission execution, the second planning module, respon-

sible for avoiding dynamic and static obstacles that were not previously known, is developed with the

limitations of real-time implementation in mind. Potential Fields methods are used to adapt the initial

path to avoid unexpected obstacles in real-time. It is assumed that the vehicle is equipped with an

autopilot and a trajectory control unit.

Examples of path planning between a set of waypoints in a bidimensional and tridimensional envi-

ronment with static obstacles, using the algorithms developed in the first stage, are presented. Several

cases of path replanning, using the potential fields method, when encountering moving obstacles are also

tested.

For the first path planning stage, the best results were obtained using a combination of the A* algo-

rithm and ACO to optimize waypoint sequence. The Potential Fields method is fast and computationally

inexpensive, being a feasible solution for real-time implementation. It is shown that the algorithms per-

form reasonably well in several scenarios.

Keywords: Remotely Piloted Aerial Systems, Obstacle Avoidance, Trajectory Planning, Heuris-

tic Search, Ant Colony Optimization, Potential Fields, Bezier Curves.
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Chapter 1

Introduction

As it happens with many technologies, the development of Unmanned Aerial Vehicles (UAVs), also

referred to as drones, was potentiated by the military field and can be dated back to World War I. As the

utility of unnamed aircraft for ”dull, dirty and dangerous” missions became apparent, the use of UAVs

has extended from the military field to the civil realm. Compared to manned aircraft, UAVs provide

many benefits in terms of cost and safety. They allow for longer operation times, are easily adjustable

to any type of terrain, some of the platforms are cheaper to operate, require less maintenance and have

no need for an on-board human pilot. Nowadays, there is a wide range of available platforms which can

go from vehicles heavier than some manned aircraft, as in Fig. 1.1, to miniature platforms that can be

carried by an individual, as seen in Fig. 1.2.

Figure 1.1: EuroHawk at ILA Berlin Air Show[1].

For UAVs to be integrated into non-segregated airspace, appropriate airworthiness standards must be

defined. With that in mind, the classification of these vehicles is important from the regulatory point of

view since the rules defined for drone operations will likely be different for distinct categories. To this

day there are no consensus in the classification of UAVs for certification purposes. Their categorization

generally follows a combination of parameters such as maximum take-off weight, range, endurance and

altitude.

A Remotely Piloted Aircraft (RPA) is a subset of the UAV class, that refers to an aircraft that while

it does not carry a human operator on-board is flown by a remote pilot. The pilot monitors the aircraft
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Figure 1.2: Bayraktar Mini UAV of the Turkish Land Forces[2].

constantly and has direct responsibility for the safe conduct during flight. A Remotely Piloted Aircraft

System (RPAS), besides the RPA, also includes the remote pilot station, the necessary communication

links and any other elements needed for the flight operation, such as a launch platform. The RPA may

possess some form of autopilot technology but is not a fully autonomous system, even though that today

there are RPAS that can fly autonomously, not all of its systems are certified and can ensure the necessary

safety standards, so supervision is always required. The majority of UAVs today belong to this category.

Current civil applications for RPAS include infrastructures and traffic monitoring, search and res-

cue operations, geographical surveys, environmental and meteorological observation, aerial photography,

communication services, entertainment and cargo transport operations among many other. Many of these

tasks can be achieved with low-cost light-weight and off-the-shelf drones, that usually have no significant

security system and many of them are operated by uncertified operators. Given the exponential rise in

the use of such platforms and considering that they share the same airspace with manned aviation, there

is an urgent need to guarantee that such platforms have appropriate means of ensuring a safe flight.

1.1 Motivation

To allow the safe emergence of RPAS operations in today’s airspace the current safety requirements for

aircraft operations must not be compromised. In order to ensure a safe flight, the pilot in command is

required to maintain vigilance, or be provided with sufficient information, to see and avoid any conflicting

traffic while complying with the rules of the air. To this day there are no rules that relieve the pilot

from this task, thus for RPAS to gain access to the National Airspace System (NAS), they will need to

be equipped with an equivalent form of Sense and Avoid (S&A) technology[3]. When flying in controlled

airspace, RPAS must comply to the rules of the air and respond to Air Traffic Control (ATC) instructions.

Nowadays regulations on the use of small drones vary among countries, however the majority allows

only for Visual Line of Sigh (VLOS) operations. To achieve its full potential, RPAS are expected to

operate in increasingly complex environments and be able to conduct Beyond Visual Line Of Sight

(BVLOS) operations.
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In Portugal the RPA can only perform flights during the day in VLOS and up to 120 meters, except

in restricted areas, such as airports and military installations The RPA must also fly with identification

lights, and the pilot is responsible for maintaining a secure distance from people and property, ant it

must always give way to manned aircraft. Platforms with a weight bellow 250 grams cannot exceed a

flight height of 30 meters[4].

Most commercial applications today occur in uncontrolled airspace which goes from the ground up to

around 400m. With the growing demand for vehicles that can operate BVLOS, new air traffic systems

must be developed. Amazon has proposed a segregated airspace model for operations bellow 500 ft[5], as

seen in Fig. 1.3. In this model four main zones are defined: a low speed area for terminal operations and

vehicles without sophisticated S&A functions, a high speed transit zone for certified vehicles, a no-fly-zone

and a predefined low risk locations established by aviation authorities.

Figure 1.3: Proposed airspace model for RPAS operations[5].

NASA is also conducting research on a Unmanned Aerial Vehicle Traffic Management (UTM) system

that could provide integration requirements for enabling safe, efficient low-altitude operations[6]. They

propose two subsystems for the UTM system. The first would be portable and adaptable to different areas

to provide support for agricultural operations and emergency scenarios. The other would be a persistent

system for low altitude operations. This system relies on frequent communication and surveillance to

track and monitor traffic.

The European Aviation Safety Agency (EASA) also published its concept of operation for drones[7].

It follows a risk based approach to propose three categories of operations. The OPEN category, which

does not require authorization by the aviation authorities would allow the operation of vehicles up to

150 meters, under VLOS and outside reserved areas. The SPECIFIC category would encompass riskier

operations and need approval of the national aviation authorities. To operate in this category some sort

of S&A is required. Finally the CERTIFIED category, where the aircraft involved would be treated in

the same manner as manned aviation.

The development of a reliable low-cost path planning and S&A systems that can encompass the

wide range of operations that RPAS can conduct, and the diversity of existing platforms remains one

of the major challenges in the research community. Even though several efficient planning and collision
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avoidance solutions have already been proposed, their application to the characteristics of unmanned

vehicles is still a challenge. This thesis addresses the current challenge of the development of a reliable

S&A systems that can be integrated in small low-cost platforms.

1.2 Problem Scope

To this day there are no certification standards for the use of unmanned aircraft but, in order to achieve

its full potential, RPAS will have to be able to autonomously maintain a minimum safety level. Autonomy

applies to many levels, as seen in Fig. 1.4, and refers to the vehicle ability of sensing, perceiving, analyzing,

planning and acting to achieve the goals assigned by a human operator[8]. Among the several autonomy

functions, the focus of this work will be on the path planning and collision avoidance functions.

RPAS
Aircraft

Regulations

Autonomy

Ground Control Station

Communication links

Autonomy
Sensor Fusion

Path Planning

Collision Avoidance

Vehicle Control

Vehicle Cooperation

Figure 1.4: Some of the main RPAS subsystems and functions.

Sense and Avoid is a layered solution. First the Sense stage is responsible for the acquisition of the

necessary information to detect threatening situations. Once this information is available, the avoidance

stage follows, where when in risk of collision, an appropriate evasive maneuver is determined. It is

assumed that exists a functioning sensing module that provides the necessary information. Even though

cooperative systems for UAVs traffic management are being developed[6], not all platforms will be able

to carry the necessary equipment to maintain communication so a solution for uncooperative vehicles will

be considered.

The collision avoidance problem itself can be formulated in two ways: as a path planning problem

or as a collision avoidance maneuvering problem [9]. In the first case, the problem is to plan a feasible

path between two points while avoiding obstacles present in the way, while the latter addresses the issue

of performing avoidance maneuvers as obstacles are detected. This can also be seen as a problem of

replanning a given path. As many missions will take place in a known environment, the mission to

execute can be planned previously to the flight execution, eliminating the need to recalculate the entire

path and only performing local variations. This reduces the computational load of the operations to be

performed in real-time (online), which is critical for small platforms with limited processing power.
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1.3 Objectives

The goal of this work is to develop path planning and replanning algorithms that can be applied to small

RPAS. The problem is split into several sub-goals to achieve:

• Develop a path planning algorithm to be implemented as an offline solution to find a safe and

optimal path in a static environment;

• Develop a collision avoidance algorithm that can be implemented in real-time and avoid dynamic

obstacles by replanning the reference path;

• Evaluate the performance of the proposed algorithms in representative case scenarios to determine

the feasibility and drawbacks of the proposed methods.

The developed solution is expected to be as generic as possible so that it can be applied to plat-

forms with different dynamics without major modifications. The two main types of small RPA platforms

considered are multirotors and fixed-wings, moving in an urban or orographic environment. Two main

situations are addressed: planning between a set of waypoints in a two or three-dimensional static environ-

ment considering the optimization of a given cost function and some platform constraints, and replanning

the initial path when an uncooperative moving obstacle, or an unknown static obstacle, is detected.

1.4 Thesis Outline

This thesis consists of six chapters, organized as follows:

• Chapter 1 introduces the study topic, provides the motivation for the research and defines the

research goals of the work;

• Chapter 2 presents an overview of S&A systems and current implementations. The proposed sys-

tem framework is presented and the main techniques used in path planning and collision avoidance

are reviewed;

• Chapter 3 addresses the RPA path planning problem. Two graph search algorithms, A* and ACO,

are used to generate a collision free path as a set of waypoints. Once the optimal path has been

determined, Bezier curves are used to produce a smooth flyable path that accounts for the vehicle

turning radius and safety constraints;

• Chapter 4 addresses the collision avoidance problem during the mission execution stage. A collision

avoidance strategy is devised based on the potential fields method while considering the Rules of

the Air;

• Chapter 5 evaluates the algorithms performance in several scenarios;

• Chapter 6 presents the conclusions taken from the obtained results, an analysis of the algorithms

limitations and provides recommendations for future work.
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Chapter 2

Background

In this chapter, a background on the scope of S&A systems is provided, as well as a review of some of

the literature on the topic.

2.1 Problem Overview

Path planning and obstacle avoidance are crucial tasks of mission management and flight planning for

RPAS. The developed solution is expected to account for both static and dynamic obstacles. Some of

these obstacles are generally known a priori, so the proposed solution will follow a classic two layered

architecture. In the first stage, the global planning module, which assumes a known static environment,

determines a collision free path from a given start to goal configurations. This task is performed prior to

the flight execution. The RPA then follows this path and as new threats are detected by the on-board

sensors, the local planning module must replan the path while avoiding the new obstacles. Figure 2.1

represents a flight scenario where the global trajectory must be adjusted to avoid a collision with an

unexpected intruder.

Figure 2.1: Flight mission with global and local trajectories[10].

The two-stage planning architecture allows the global and local solutions to compensate each other

in terms of planning horizon, considered obstacles, vehicle and mission constraints. The generated path

consists of a series of waypoints, which are uploaded to the Flight Control System (FCS) providing the
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reference for the tracking system, where the low-level control modules deal with the task of moving the

RPA to a specific position. The reference path can be tracked using either path following or path tracking

techniques. The objective of path following is to minimize the position error, forcing the control output

to follow a path with no time dependence. Path tracking requires the vehicle to follow a time and space

reference trajectory, not being as flexible as the path following approach.

When in-flight, the issue of avoiding new obstacles can be handled in different manners. The pre-

computed reference path can be replanned when the obstacle is detected and a new collision free path

is provided to the path tracking/following module. Instead of replaning the path, collision avoidance

can be included in the lower level control module and, as an alternative to defining reference positions,

the avoidance is made by providing directly control inputs, or velocity and attitude (pitch, roll, yaw)

commands to the autopilot.

This work will focus on the high-level planning modules assuming that lower level controllers are

available to handle vehicle dynamics and guide the vehicle to the reference waypoints. The scheme in

Fig. 2.2 illustrates the proposed collision avoidance system framework.

RPA
Pre-Flight 

Path Planning
Conflict 

Detection
Path Replan

Path 
tracking/following

Navigation

Obstacle 
Detection

Pref Pav
Control 
inputs

PRPA

VRPA

Obstacle data

Figure 2.2: Hierarchical planning architeture.

The pre-flight path planning module receives a set of waypoints during the mission planning stage,

a known obstacle database and a terrain map. If obstacles are found in the segments that connect the

given waypoints, a free path Pref , that satisfies certain optimization criteria, such as minimum distance,

is provided in the form of a waypoint matrix.

During mission execution the path tracking/following is responsible for following the reference

path. While the path is executed, the navigation system provides the current RPA position (Prpa)

and velocity (Vrpa) to the conflict detection module, which also receives information from the obstacle

detection system. In this work, the type of sensors used will not be specified, but it is assumed that

there is a working method of sensor fusion to obtain the necessary information about the environment. To

develop the collision avoidance algorithms, this information will be provided in the form of a table. For the

purpose of collision avoidance, a safety volume is defined around the obstacles. Due to its simplicity and

ability to encompass a wide variety of obstacle types, a cylindrical model is used to represent obstacles.
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Obstacles X Y Z Robstacle Hobstacle ‖do‖
1 . . . . . .
...

...
...

...
...

...
...

n
...

...
...

...
...

...

Table 2.1: Information provided by obstacle detection module for static obstacles.

In Tab. 2.1, the information provided for known static obstacles is presented. This information in-

cludes the obstacle base position (X,Y,Z), the protection volume defined by a radius Robstacle, and height

Hobstacle. From these values, and knowing the RPAS position from the navigation module, the distance

to the obstacle, do, is determined. This distance will be used to rank the table to prioritize closest

obstacles. This ranking is not necessary for the offline planning stage but it will be important during

real-time implementation. For moving obstacles, that will be detected during the mission execution, the

same information is provided and the intruder velocity is also included. For this type of threats, the

relative distance is not enough to evaluate the urgency with which the threat must be addressed hence

the time to collision will also have to be considered. When new obstacles are detected in the sense table,

the conflict detection algorithm will determine if there is a collision risk. If a collision is eminent, the

data from the navigation and obstacle detection modules is passed to the path replan segment and a

new avoidance path Pav, is computed.

The effectiveness of the collision avoidance system will depend on how fast and accurately the aircraft

can detect obstacles. The information the RPAS needs about the environment to do so can be obtained

from on-board sensors, transmitted from ground control stations, other aircrafts or can also be given by

a pre-loaded map or data set. Depending on the way the information is obtained, the sensing process

will be either cooperative or non-cooperative. The cooperative category requires a communication link

between agents. Using devices such as transponders, aircrafts can exchange information like heading,

speed, position and assigned waypoints. Currently, Traffic Collision Avoidance System II (TCAS) is

the available and required implementation of Airborne Collision Avoidance System (ACAS) for manned

aircrafts that complies with ICAO standards[11]. This system works by interrogating the transponders

of surrounding aircrafts and from their reply the aircraft tracks the intruders range, bearing and altitude.

This system provides two types of alerts: traffic advisories and resolution advisories. Traffic advisories are

used to indicate a possible threat to the pilot. Resolution advisories are recommendations of maneuvers to

provide separation from other aircrafts and avoid possible collisions. Advisories such as climb or descent

are presented on a display and accompanied by an auditory warning. TCAS II requires two antennas

(one on top and other on the bottom of the vehicle) and is able to identify traffic 14 miles to the front

of the aircraft. When considering small platforms with strict payload limitations, this system cannot be

applied.

Automatic Dependent Surveillance-Broadcast (ADS-B) is another widely used cooperative surveillance

technology. Unlike TCAS, ADS-B does not require an interrogation signal to transmit its information.

The aircraft obtains its position from a Global Navigation Satellite System (GNSS) constellation and then
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simultaneously broadcasts it to ground stations and properly equipped aircrafts. This system allows a

greater precision in the position determination. Besides its position information of velocity, identification

and intent is also broadcasted. This system is an attractive solution for RPAS use since it provides reliable

information and is an element of the NextGen Air Transportation system and the Single European Sky

ATM Research meant to replace TCAS[12]. This system however is not effective when considering ground

obstacles, such as terrain or buildings.

Aircraft not equipped with any of these devices rely on non-cooperative sensing to detect obstacles.

Among the non-cooperative technologies, the sensing principle can be active or passive. Active sensors,

such as radars and lasers, emit a signal that is reflected by the obstacle allowing its detection. Passive

sensors depend on the reception of signals emitted by the obstacle itself. They include electro-optical,

infra-red and acoustic technologies.

There are many design factors to be considered during the development of a collision avoidance and

path planning system. This work will address path planning between several waypoints at constant and

varying height, considering a Digital Elevation Model (DEM) to provide terrain data and cylindrical

obstacles. The replanning stage will take into account non-cooperative moving obstacles, while main-

taining maximum proximity to the reference path and considering the Rules of the Air, which define the

guidelines for the procedures to be followed in air navigation.

2.2 Algorithms Overview

In this section an overview of the main contributions to the collision avoidance and path planning problems

is presented and the benefits and drawbacks of each method are highlighted.

2.2.1 Graph Search Algorithms

Graph search algorithms are one of the most popular methods used in robot path planning. In this

solution the search space is represented by a set of cells on a weighted graph. The robot configuration

is represented by the graph nodes while the edges connecting the graph represent the cost of moving

between nodes. High weight values on cell edges can be used to represent obstacles. Most of the graph

search algorithms are based on the Dijkstra algorithm [13]. This algorithm works by evaluating the cost

of moving from one node to its neighbors and connecting the nodes with the lowest moving cost. Best-

first-search[14] is another algorithm which works in a similar way to Dijkstra’s, but it uses an estimate of

the distance from the current node to the goal, choosing the node that is closer to the final position, thus

reducing the search time. The A* algorithm[15] builds on the latter two by combining the moving cost

between nodes and the cost to reach the goal to drive the search. The problem with these algorithms, due

to its graph structure, is that they usually calculate paths with unnecessary heading changes. Generally

post-processing techniques must be applied to obtain a flyable path. Dynamic A* improves on the A*

algorithm making it applicable to dynamic environments by allowing the edges cost to be dynamically

increased or decreased. It has proven to be applicable to real-time scenarios[16]. Theta*[17] is meant to

deal with the problems of heading constraints in a graph structure by considering different connections
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between graph nodes. Paths obtained by T* are smoother than those determined by A*. Both algorithms

were successfully applied to the UAV path planning problem[18]. A major downfall when applying typical

graph search algorithms to path planning problems is lack of inclusion of the vehicle kinematics. In [19]

node connection rules are defined to include the vehicle kinematics. A small fixed wing UAV is considered,

and the grid size in the x and y directions is defined by the minimum turning radius, while the size in z is

defined by the maximum climb angle. In [20] a new algorithm, Kinematic A* is presented for UAV path

planning. KA* includes a simple kinematic model of the vehicle to evaluate the moving cost between

cells in a 3D environment. Vehicle movements are limited by the minimum turning radius and maximum

rate of climb. These algorithms are attractive because they are easy to implement and can be adapted to

different case scenarios by allowing distinct heuristics to guide the search. However, the main drawback

is the lack of correlation between aircraft dynamics and the planned path. Depending on the search space

size, the computational load can be heavy.

Rapidly Exploring Random Tree (RRT)[21] is a popular search algorithm when dealing with high

dimensional spaces. Like the Probabilistic Roadmap (PRM), is a sampling based motion planning al-

gorithm. The general idea is to connect points sampled randomly from the search space. In PRM, a

roadmap is computed a-priori, i.e. a graph that represents a set of collision free paths, and then the short-

est path that connects initial and final states is calculated. This algorithm is probabilistically complete

which means that the probability of failure decays to zero exponentially with the number of samples used

in the construction of the roadmap. RRT is also probabilistically complete. The algorithm is initialized

with a graph that contains only the initial state as a single vertex. At each step, a random sample from

the search space is generated and an attempt is made to connect this new sample to the nearest vertex

on the tree. This connection is limited by a growth factor (generally distance). If the connection is

successful the new sampled point is added to the graph. By increasing the probability of sampling states

in a specific area, the search is guided towards the goal state. The higher this probability the greedier

the algorithm. In [22] a greedy version of closed-loop RRT is used to plan collision free paths. The

method is cooperative and collision with other aircrafts is predicted based on the RPAS current flight

route and the intruders ADS-B data. A path planned through the RRT algorithm is presented in Fig. 2.3.

2.2.2 Ant Colony Optimization

The ACO algorithm is a metaheuristic approach inspired by the foraging behaviour of ants in the real

world[23]. Ants are known to find the shortest path from their nest to the food source. They accomplish

this by leaving a pheromone trail along their path. This trail is detected by other ants which will tend

to follow the trail with higher pheromone levels, as seen in Fig. 2.4. This solution has been applied to

solve several problems, such as network routing in telecommunications networks, the Travelling Salesman

Problem, Job Scheduling and robot path planning [24] [25] [26] [27] [28]. The ACO formulation has also

been applied to the UAV path planning problem [29] [30]. These solutions, however, are only applied to

two-dimensional environments which is not suitable for many applications of flying vehicles. ACO has

shown good results in planning paths but the computation time is prohibitive for online applications.
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Figure 2.3: Example of path planned by RRT[22].

Figure 2.4: Ant Colony Optimization[23].

2.2.3 Model Predictive Control

Model Predictive Control (MPC), also known as Receding Horizon Control (RHC), is a method in which

the trajectory optimization problem is solved at each time step through feedback control[31]. This solution

was initially devised for systems with slow dynamics like chemical processes. MPC techniques allow the

inclusion of vehicle kinematics and dynamics on the optimization problem to produce feasible trajectories.

Recently, this method has been used to solve multiagent control problems[32]. MPC strategies are based

on a finite-horizon optimization of a given model. At each time step, the model state is sampled and

a numerical optimization process is used to compute the control input that minimizes some given cost.

The method requires a dynamic model of the system, information on past control inputs and a cost

function to be optimized over a defined prediction horizon. In [33] predictive control is used for the

control of decentralized cooperative UAVs in a three-dimensional environment. A set of optimal points

are calculated to ensure that the vehicle arrives at the required position without colliding with static

and moving obstacles. The computation time was proved acceptable for real-time implementation. In
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[34] MPC was used for collision free formation flight. Obstacle avoidance is achieved by defining a

cost function based on the UAVs velocity orientation and relative distance between the vehicle and the

obstacle, associated with a priority strategy.

2.2.4 Mixed Integer Linear Programming

MILP is an evolution of MPC algorithms. MILP is a technique that addresses the collision avoidance

problem using linear programing[35]. A MILP standard problem has the following form:

min f(x) = cTx

subject to : bL ≤ Ax ≤ bU
xL ≤ x ≤ xU

where A ∈ IRm×n; c, x, xL, xU ∈ IRn; bL,bU ∈ IRm. A subset of variables xI ⊂ x are restricted

to be integer values, xI ∈ ZnI . To solve the MILP problem, a set of constraints to model the UAV

dynamics must be specified. Additionally constraints related to collision avoidance, such as separation

distance, must be provided. Once the problem is formulated several commercial solvers are available

to determine the solution. This approach however is computationally expensive and generally used for

offline planning, but some attempts to decrease solution time have showed this method reliability as an

online path planner[36]. It also scales poorly with the problem size. This formulation has been widely

applied to the collision avoidance problem of UAVs [37] [38]. MILP works on the planning level not on

the control level.

2.2.5 Potential Fields

The Artificial Potential Field methods[39] are an approach inspired by physical potential fields. These

methods are generally used for reactive collision avoidance systems [40]. In this approach, the robot is

treated as a charged particle moving through a field induced by attractive and repulsive forces. Waypoints

to visit are associated with attractive forces and repulsive forces are placed around obstacles. The

magnitude of the repulsive force will depend on the distance between UAV and the obstacle. The sum of

the attractive and repulsive forces yields a global potential field which leads the robot towards the goal

by following the lowest potential value. An example of a potential field representation and the originated

path can be seen in Fig. 2.5 and Fig. 2.6. These algorithms give smooth flyable paths avoiding both static

and dynamic obstacles. When compared to other approaches, using this method is not computationally

expensive, so it can be used in real-time. It is also a common approach for formation flights with collision

avoidance capabilities[42].

2.2.6 Markov Decisison Processes

In this approach, the collision avoidance problem is formulated as the optimal control of a stochastic

system. A MDP is a discrete dynamic programing process where the state of the system changes according

to the current state and the chosen action[43]. A MDP is defined by a tuple (S,A, P ass′ , Rass′ , γ) where S

represents the state space, A is the action space, P ass′ indicates the probability of transiting from state s
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Figure 2.5: Potential field representation[41].

Figure 2.6: Path planned through the potential field method[41].

to s’ haven taken action a and receiving the reward Rass′ , and γ ∈ [0, 1] is the discount factor used to favor

early rewards against future ones. The problem is solved through dynamic programing by evaluating the

expected reward for each combination of states and actions. When considering uncertainties that may

arise from the available sensors and intruder behavior, a Partially Observable MDP (POMDP) can be

used[43].

The MDP approach allows to account for all possible encounter scenarios and their likelihood when

solving the model, so it is an attractive approach because it allows the automatic generation of the collision

avoidance logic by defining the system goal and operating environment. If a proper MDP model has been

developed, it can also be adapted to different RPAS models and sensor arrangements. For a collision

avoidance system, the state must contain at least the 3D positions and velocities of at least two aircrafts

and, in order to build an optimal policy, all possible combinations of actions-state must be considered.

Large state spaces are the main issue when solving MDPs, as some formulations would require too

much computational complexity to solve the problem. Examples of POMDPs applied to RPAS collision

avoidance problem can be found in [44], where a two-dimensional formulation assuming a discrete state

space is presented for offline planning. In [45] the problem is extended to three-dimensional continuous-

state models. To this day, this approach is only suited for offline planning. This optimization process
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is also the solution being considered for the Next-Gen Airborne Collision Avoidance System (ACAS-X)

being developed by the FAA that is meant to eventually replace the Traffic Collision Avoidance System

(TCAS). Several variants of this system are being considered to extend collision avoidance protection to

users and aircraft classes that currently not benefit from TCAS. The version ACAS-Xu will be specifically

designed for RPAS [46].

2.2.7 Velocity Obstacle

Velocity Obstacles are a successful approach to collision avoidance in a dynamic environment. Velocity

Obstacles represent the set of robot velocities that would result in a collision with an intruder moving

at a given velocity at some future point in time. If the obstacle is static, the set of velocities is referred

to as collision cone. A representation of the collision cone can be seen in Fig. 2.7(a), where the collision

cone CCA,B induced by an agent B traveling at VB , in an agent A traveling at VA, is constructed by

setting a safety distance λAB around the intruder and constructing a cone by defining two lines, λr and

λf , that touch the safety circle at a single point point. A geometric representation of a velocity obstacle

V OB can be seen in Fig. 2.7(b), where the apex of the collision cone is at VB . The idea to generate an

avoidance maneuver is to choose an avoidance velocity vector that is out of the velocity obstacle. To

make sure that the resulting avoidance maneuver is dynamically feasible, the set of avoidance velocities is

intersected with the admissible velocities, defined by the robot’s acceleration constraints. The trajectory

is then chosen by searching a tree of feasible velocities at each time step [47]. This method was initially

developed for ground vehicles but have since been applied to flying robots[48]. In [49], a tridimensional

extension of the Velocity Obstacle method is presented to reactively generate an avoidance maneuver for

UAVs, by changing the vehicle velocity vector based on the encounter geometry. In [50] these solution is

applied to solve conflicts between UAVs by determining a reference velocity which results in a maneuver

compliant with the Rules of the Air. Velocity Obstacles are also used to generate cooperative maneuvers

to solve conflicts between UAVs [51]. This approach is made to deal with dynamic environments and is

computationally inexpensive, being used to solve conflicts in real-time.

(a) (b)

Figure 2.7: (a) Collision cone, (b) Velocity obstacle[47].
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2.3 Final Remarks

Path planning in a dynamic tridimensional environment is a challenging task. A generic path planning and

collision avoidance strategy should be able to encompass many different scenarios and types of platforms.

The A* algorithm is regarded as one of the most practical an efficient path planning algorithms. It

is easy to implement and can be adapted to different scenarios by allowing different heuristics. Some

kinematic constraints of the vehicle can also be taken into account and its real-time implementation has

been proven, so this method is considered as a first approach to our path planning problem. As it will be

seen, this method has some limitations namely when wanting to optimize the order of a set of waypoints.

A better choice for this sort of problems would be ACO, so this solution will also be considered. For the

second stage, regarding collision avoidance in real-time, the concept of Potential Fields is investigated

as its low computational requirements make it an attractive choice for implementation in platforms with

limited processing capabilities.

16



Chapter 3

Pre-Flight Path Planning

In this chapter, the problem of planning an optimal path for a given RPAS platform in a static environment

is addressed. As the focus is on the higher level of the planning process, two simple models for the RPAS

platforms will be considered and it is assumed that low-level controllers are available to handle vehicle

dynamics. The two types of RPAS platforms considered are multirotor and fixed-wing. The cost of the

path will be evaluated according to two criteria: distance and energy. First, the configuration space is

represented as a weighted graph and two graph search algorithms are studied: A* and ACO. Since a path

planned in a discrete environment is of no practical interest for a vehicle that moves in a continuous one,

Bezier curves are used to produce a smooth path.

3.1 Problem Statement

The fundamental problem of path planning consists of finding a sequence of actions for an agent that

can take it from one location to another while avoiding any obstacles on the way. This work addresses

the problem of generating an optimal path for a single vehicle operating in a static environment that can

easily be tracked by low level controllers. It is generally also required that the planned path achieves the

goal while optimizing a given cost.

The waypoints given to the path planner which are the reference points of obligatory passage are

denoted as WPi ∈ Rn for i ∈ {1, . . . N} where N is the total number of waypoints, and n = 2/3

defines the problem dimension. The points generated by the coarse path planner between initial and final

waypoints that will later be used to the path smoothing process are denoted as control points, CPi ∈ Rn

for i ∈ {1, . . .M} where M is the total number of path points.

The minimum safety distance between RPAS and obstacles is defined as Rsafe ∈ R and accounts

for the vehicle dimensions and an extra safety distance for perturbations that may occur during path

execution. The obstacles are defined as represented in Tab. 2.1, Oj ∈ Rn for j ∈ {1, . . . P} where P is

the total number of obstacles.

The inputs and outputs of the pre-flight path planning module are depicted in Fig. 3.1. Path planning

involves three main sub-problems: environment modeling, path search and path execution.
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Pre-flight Path Planning
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Configuration Space

RPA Model
Cost Function

Environment model
Collison-Free Path

Figure 3.1: Pre-flight path planning module.

3.1.1 Configuration Space

A key concept of path planning is the representation of the physical world where the RPAS will operate.

The environment model includes several natural conditions such as terrain, weather and obstacles. The

configuration space is a data structure that allows the specification of the possible robot positions (location

and orientation) and obstacles location. Many representations of configuration spaces can be used, the

main ones being Voronoi diagrams, regular grids and quadtrees[39]. In this work, the configuration space

will be defined as a regular grid. This is a conceptually simple representation, easy to construct and by

properly defining the grid resolution it is possible to find kinematically feasible paths. This representation

is also convenient as an action space can be independently built and a set of common actions can be

applied to any of the states in the configuration space (which does not happen for instance in a direct

graph structure). The physical features of the terrain can be easily obtained through Digital Elevation

Model(DEM). A DEM is a regularly spaced matrix of elevation points. The spacing of latitude and

longitude points is defined by the map resolution. When deciding on the grid size some limitations of the

RPAS must be considered. Looking at Fig. 3.2 is possible to deduce for the grid resolution,

∆x = ∆y = Rcurv√
2
, (3.1)

where Rcurv is the minimum curvature radius.

Rcurv

Figure 3.2: Grid Resolution

Fixed-wing platforms are not allowed to climb at an angle superior to the maximum climb angle,

γmax, hence the resolution along the vertical plane is defined according to this limit

∆z = ∆x× arctan(γmax). (3.2)
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According to the minimum and maximum allowed flight heights, the number of steps along the vertical

plane are given by

H = hmax − hmin
∆z . (3.3)

3.1.2 Constraints

Some of the kinematic constraints of the vehicle, minimum turning radius and maximum climb angle, were

already included in the definition of the search space. Other constraints in the vehicle maneuverability

can be included in the process of node expansion during the search process through the graph. Distinct

expansion rules are defined for multirotor and fixed-wing platforms. For a non-holonomic vehicle, or

multirotor platforms, any of the 26 neighboring nodes in a regular grid can be reached, as illustrated in

Fig. 3.3.

Figure 3.3: Expansion rules for multirotor platforms.

Fixed-wing platforms have a forward only motion and cannot make sharp turns or climbs. To incor-

porate maneuverability restriction, a set of expansion rules is defined, as illustrated in Fig. 3.4.

Figure 3.4: Expansion rules for fixed-wing platforms.

Other constraints are the minimum safety distance. Given the relative distance between the RPA

position and the obstacle center do = ||Prpas − Pobs||, the collision avoidance constraints is

do ≥ Rs = Robstacle + dmin, (3.4)

where Rs is the obstacle radius plus the minimum allowed distance between vehicle and obstacles. The

minimum distance, dmin, is defined by considering the RPA size and and extra distance for possible

deviations that may occur during the execution of the path.

The mission constraints are the waypoints given to the path planner which the RPAS must visit,

WP = {P1, . . . ,Pn}, Pi = [xi, yi, zi]. (3.5)
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3.1.3 Cost Functions

Depending on the mission objectives, different cost functions can be considered. RPAS have limited range

and endurance so when planning paths a broadly used criteria is the minimum distance. Looking at the

problem of limited on-board energy, another important objective would be to plan for least energy cost

paths.

Minimum Distance

For the minimum distance paths, the cost function is simply given by the sum of Euclidean distance

between all points. Considering a path P = {P1 . . .PN} of N waypoints the cost is given by

Fd =
N−1∑
i=1
‖Pi+1 −Pi‖ . (3.6)

Minimum Energy

To formulate the energy minimization problem an energy balance is considered. Considering a point

mass model for the RPA, its motion can be analyzed using the work and energy method[52]. The method

of work and energy allows the simplification of problems involving forces, displacements and velocity of

a particle. The integration of forces with respect to displacement result in the work energy equations.

During a finite movement of the point of application of a force F, the work done by the force along a

displacement s, from point 1 to point 2 is given by

U1→2 =
∫ 2

1
F · ds. (3.7)

During its displacement between two points, the RPA is subject to four forces: weight, lift, drag and

thrust. The free body diagram is depicted on Fig. 3.5.

T
L

D

W

Figure 3.5: Free body diagram.

Weight The work done by the RPA weight, is dependent on height variations between points. The

work done is negative as gravity acts in the downward direction. As the RPA is descending, positive work
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is being done by gravity, and when it is climbing the work is negative.

W1→2 =
∫ h2

h1
mg · ds = −mg∆h (3.8)

Lift Lift is perpendicular to the direction of motion. Any force perpendicular to the flight direction

does no work, hence

L1→2 =
∫ 2

1
L · ds = 0. (3.9)

Drag As the RPA moves through the air the resistance force that opposes its motion is called drag.

The work done by drag is negative as its direction is always along and opposing to the flight path,

D1→2 =
∫ 2

1
D · ds = −D∆s = −CD

1
2ρairv

2S (3.10)

Its value is calculated according to eq. (3.10), where CD is the drag coefficient, v the RPA velocity, S the

platform wing area and ρair the air density.

Thrust Thrust is the force created by the engine that opposes drag. It corresponds to the supplied

energy.

T1→2 =
∫ 2

1
T · ds = T∆s = Esupplied1→2 (3.11)

According to the work and energy method if a force acts on an object causing its kinetic energy to

vary then the mechanical work is given by

U1→2 = Ek2 − Ek1 = 1
2m(v2

2 − v2
1). (3.12)

If several forces act on the body, U represents the work done by the resultant force: U = W+L+D+T .

Considering the forces acting on the RPA previously described, the equation for the supplied energy is

Esupplied1→2 = 1
2m(v2

2 − v2
1) +D∆s+mg∆h. (3.13)

The energy balance given by Eq. 3.13 is a statement about how energy is spent. This simplified model

can be applied to either fixed-wing platforms or multirotors. In the latter case, the drag component tends

to be negligible.

To determine the consumed energy of the vehicle between points, the velocity must be determined.

To this point wind effects have not been considered, however in practical operations the presence of wind

is generally the rule. Wind can have a strong influence on small RPA performance. The effect can be

either adverse or beneficial. A headwind will reduce the RPA ground velocity and the covered distance

while increasing the time required to reach the goal. A tail wind will have the opposite effect. In Eq. 3.13

v corresponds to ground velocity, Vground , and ∆s to the air displacement, which is dependent on Vair

and Vground, as
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∆s = Vair∆t = Vair
||AB||
Vground

, (3.14)

where ||AB|| is the travelled ground distance. To calculate the cost of transition between nodes, the

absolute value of Vair and Vground needs to be determined. Using the wind triangle,

Vground = Vair + Vwind. (3.15)

To ensure that the RPA follows the desired ground track, the component of Vground transversal to the

ground path must be zero,

Vground · T̂ = 0 ≡ (Vair + Vwind) · T̂ = 0, (3.16)

where T̂ is the unit vector of the transversal component. If the wind field is known a priori, and the

desired ground track is also known, T̂ can be determined through

T̂ =
ˆVground ×Vwind

|| ˆVground ×Vwind||
. (3.17)

Once the vehicles flies at constant speed, the absolute value of Vair is known and its in-track component

is calculated from

Vairt =
√
V 2
air − V 2

airc
. (3.18)

Once the transversal component is known, Vair is given by the sum of its cross-track (c) and its

in-track (t) components,

Vair = Vairc
.n̂c + Vairt

.n̂t, (3.19)

where n̂c and n̂t are respectively the unit vectors of cross-track and in-track components. The value of

Vground is then determined by

Vground = (Vair + Vwind) · V̂ . (3.20)

Finally the cost function for minimum energy paths is given by

Fe =
N−1∑
i=1

Esuppliedi→i+1 . (3.21)

This is a simplified way to calculate the energy cost, but if other models are available to compute the

energy required to move between two points they can be easily included. In [53] a more accurate model

is developed which considers the consumption of the propulsion system, avionics and mechanical energy.

The work also covers the case of a hovering multirotor.
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3.2 Path Search

A path planning problem in a discrete environment is defined by the following elements [39]:

• A state space X, which is a finite or countable finite set of states;

• A set of available actions, u ∈ U(x) for each state x ∈ X;

• a state transition function f that produces a state f(x, u) ∈ X for every x ∈ X and u ∈ U(x);

• An initial state xI ∈ X;

• A goal state xG ∈ X.

General graph search algorithm work by systematically searching the graph by applying the transition

function and choosing the states that minimize the cost function while keeping track of the visited nodes

so that no redundant exploration occurs.

3.2.1 A* Algorithm

The A* algorithm was initially described in 1968 by Peter Hart, Nils Nilsson and Bertram Raphael[15].

It is one of the most widely known and used algorithms in path finding and graph transversal. A* search

is an informed method that improves on classic graph search methods by combining aspects of both

uniform cost search and greedy best first search. Uniform cost search methods work by expanding the

nodes with the lowest path cost first. The path cost g(n) represents the cost of reaching node n from the

initial state. This type of methods is called uniformed search strategy as the algorithm has no additional

information about the problem, like the goal position for instance. A greedy best first method tries to

find a solution as quickly as possible by expanding nodes that are closer to the goal state. This is done by

evaluating nodes using the heuristic function, f(n) = h(n), which gives an estimate of the cost to reach

the goal. The A* algorithm works by evaluating nodes according to the cost function

f(n) = g(n) + h(n). (3.22)

Since g(n) denotes the cost to reach the node and h(n) represents the cost of getting from the node to

the goal, the cost function f(n) represents the estimated cost of the cheapest solution going through n.

This method is known to be complete (it always finds a solution if one exists) and optimal (the

solution found is the optimal one) if the heuristic function satisfies certain conditions. The first condition

for optimality requires that h(n) be a admissible heuristic. An heuristic function is said to be admissible

if it never overestimates the cost of reaching the goal. Admissible heuristics are generally optimistic as

they assume the cost of solving the problem to be less than it actually is. The most used example of an

admissible heuristic is the straight line distance, as it is the shortest path between two points. The second

condition implies that h(n) must be consistent. This means that for every node n and every successor n′

the estimated cost of reaching the goal from n is less than the step cost of getting form n to n′ plus the
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estimated cost of reaching the goal from n′ [14],

hn→goal <= gn→n′ + hn′→goal. (3.23)

During the search process, each node in the search space is in one of the following states:

• Unvisited: states which have not been explored yet. Initially all states are unvisited, except for the

first one;

• Closed: states that have already been visited and each possible next state has also been visited;

• Open: states that have already been encountered but there is still adjacent states that have not

been visited.

Once the search space, transition and cost functions and initial and final configurations are defined, the

A* algorithm works as follows: two list are created, OPEN and CLOSED. The start node is added to the

OPEN list and the search cycle begins. The node with lowest f cost is chosen from the OPEN list and

checked to see if it is the goal node, if so the cycle is stopped and the search is over. If the goal is not

reached yet the chosen node is expanded. Each neighbor node is then evaluated. If this node is already

on the CLOSED list, the node is ignored. If the node is already on the OPEN list, it can be possible

that the newly found path is better, so the cost of reaching the node is compared and if the node exists

in the OPEN queue with a lowest cost the node is ignored. If the new node is not in OPEN or CLOSED,

it is added to the OPEN list. This process continues until the goal is reached or there is no more nodes

to evaluate and a path cannot be found. Each state also contains a pointer for the parent node, so that

once the search is over the path can be reconstructed from goal to start.

An example of A*, with its pseudo-code represented in Algorithm1, can be seen in Fig. 3.6, where the

cost function used is the number of traveled nodes. The obtained path that minimizes the cost function

is: S-4-7-11-10-9-G. As it can be seen, this is only one of the shortest paths that can be obtained. Other

possible solution would be: S-4-7-11-15-14-G. So the A* algorithm is guaranteed to find one of several

possible optimal solutions.

Start

Goal

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 3.6: Bi-dimensional grid with start and goal states. Obstacles are represented by blue cells.
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Algorithm 1: A* algorithm
Result: Optimal path from start to goal, P = {Pi, . . . , Pn}
initialize OPEN and CLOSED lists;
Put initial node on OPEN list;
while goal state is not reached or OPEN list is not empty do

best node←− minf(n)(OPEN);
if best node is goal then

P ←− Reconstruct Path;
return P;

else
remove best node from OPEN list;
add best node from CLOSED list;

end
Sucessors←− Expand best node;
foreach next ∈ Sucessors do

f(next)←− g(best node) + g(best node, next) + h(next, goal);
if next ∈ CLOSED then

if f(next) ≥ f(curent) then
ignore this node

end
else if next ∈ OPEN then

if f(next) ≥ f(curent) then
ignore this node

end
Set parent of next to best node;
OPEN ←− next;

end
end

3.2.1.1 Weighted A*

In the example given previously, the algorithm could quickly converge to the right solution. However when

considering a higher dimension planning graph, the number of nodes to explore increases exponentially.

As such, for more complex problems, A* may take too long to find a feasible solution. In this case,

an approximate solution that can be found faster may be more useful. To improve the algorithms

performance, there is an approach called Weighted A*[54]. The WA* version makes use of a weighted

sum of cost and heuristic to speed up the search process by reducing the number of explored nodes,

f(n) = w × h(n) + g(n), (3.24)

where w is a chose weight. For w > 1 there is a bias towards states that are closer to the goal. This

weighted function improves the algorithms performance but optimality is no longer guaranteed as the

heuristic is no longer admissible. The cost of the solution found is in the worst case w times greater than

the optimal solution,

Cost(Solution) <= w × Cost(OptimalSolution). (3.25)

To evaluate the influence of w on the quality of the obtained solution, a set of tests were run over a

large search space. The search space characteristics for this test are given in Tab. 3.1.
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Map Size Start Goal ∆x = ∆y ∆z Rsafe

463× 350× 60 [51,439,200] [324,258,200] 30 10 100

Table 3.1: Map characteristics.

The values attributed to ∆x and ∆y correspond to a platform with minimum turning radius of 20m

and the vertical spacing of 10m corresponds to a maximum climb angle of approximately 18o. A minimum

safety distance of 100m from any obstacles or terrain is defined. Minimum vertical separation is simply

evaluated by checking the terrain height in the DEM file as the nodes are evaluated. The horizontal

separation is checked by evaluating the height of the surrounding nodes up to the defined distance. In

these tests, the cost function for the search was simply the distance traveled from the start state to the

current state and the heuristic used was the straight line Euclidean distance from the current node to the

goal. The tests were run considering both fixed-wing and multirotor platforms. The average results for

30 simulations are presented in Tab. 3.2, for fixed-wing platforms and Tab. 3.3 for multirotor vehicles.

The planned paths can be seen in Fig. 3.7.

w OPEN CLOSED Distance [m] Time[s]
1 769422 49567 1.0446× 104 9621
1.1 1872 275 1.0460× 104 0.4036
1.2 1871 275 1.0460× 104 0.3993
1.3 1871 275 1.0460× 104 0.3828
1.4 1871 275 1.0460× 104 0.3839
1.5 1871 275 1.0460× 104 0.3836
1.6 1871 275 1.0460× 104 0.3827
1.7 1871 275 1.0460× 104 0.3884
2 1868 275 1.0460× 104 0.3885
3 1868 275 1.0481× 104 0.3563
4 1557 275 1.0501× 104 0.3501
5 1469 275 1.0512× 104 0.3457
10 1439 275 1.0517× 104 0.3175
15 1435 275 1.0517× 104 0.3172
20 1434 275 1.0517× 104 0.3163
25 1432 275 1.0539× 104 0.3160
30 1432 275 1.0539× 104 0.3161
50 1429 275 1.0539× 104 0.3160

Table 3.2: WA* results for fixed-wing platform.

From the obtained results it can be seen that WA* provides a faster execution time and suboptimal

paths. The process of searching through the list is implemented with a for loop which explains the

amount of time necessary to find an optimal path. With more efficient data structures better results can

be achieved. Also when comparing the results obtained for fixed-wing platforms and multirotors, the

effect of having more possible neighboring nodes to explore is notable by the running time and number of

nodes present in the OPEN list. It is clear that even the smallest increase in value of w greatly reduces

the number of explored nodes, biasing the search towards the goal. For a fixed-wing platform and w = 20,
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w OPEN CLOSED Distance [m] Time[s]
1 942071 170338 1.0446× 104 1916.9
1.1 3094 275 1.0460× 104 1.1062
1.2 3079 275 1.0460× 104 1.0598
1.3 3078 275 1.0460× 104 1.0580
1.4 3078 275 1.0460× 104 1.0585
1.5 3078 275 1.0460× 104 1.0588
1.6 3078 275 1.0460× 104 1.0530
1.7 3078 275 1.0460× 104 1.0573
2 3088 275 1.0460× 104 1.0621
3 2878 275 1.0484× 104 1.0213
4 2721 275 1.0506× 104 0.9552
5 2625 275 1.0520× 104 0.9532
10 2581 275 1.0522× 104 0.9048
15 2566 275 1.0523× 104 0.9005
20 2567 275 1.0525× 104 0.9081
25 2558 275 1.0543× 104 0.8851
30 2554 275 1.0543× 104 0.8860
50 2553 275 1.0543× 104 0.8850

Table 3.3: WA* results for multirotor.

;

Figure 3.7: WA* path for w=1 and w=10.

the path cost is about 1.29% higher than the optimal path. Even though the increase in distance is not

much higher, the path becomes less ”flyable” as it includes numerous height changes along the path.

During the offline computation stage we are not concerned with time issues, but for an online im-
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plementation the processing speed is key, so in those cases a compromise between path optimality and

processing requirements may be necessary. A well informed heuristic is also key in the quality of the path

obtained.

To this point paths have been planned only between two points. If more waypoints are to visited the

planned path may not be optimal anymore. A* only allows to ”stitch” paths together in a predefined

order.

3.2.2 Ant Colony Optimization

Ant Colony Optimization is a metaheuristic method derived from the observation of real ants’ behavior

when searching for food [23]. A metaheuristic is a higher level problem independent framework that

provides some general guidelines on how to solve the problem at hand. This type of algorithms try to

find the best solution out of all possible solutions. An important trait of ants’ behavior is the way they

communicate among each other. They use a trail of pheromones to mark paths on the ground from the

nest to the food source. By sensing this trail other ants can follow the path. Higher concentration of

pheromones in a given path will lead to a higher probability of other ants to follow that path. If an

ant finds a path that does not lead to the desired source or if the path found is longer, pheromones

will evaporate with time and the path is “forgotten”. The laying and following of pheromones is the

main inspiration for ACO, where a set of artificial ants is used to find solutions for a given optimization

problem. Using probabilistic rules to model the ants’ behavior, a set of artificial ants is designed to move

on a graph and find the optimal path between two nodes. The stochastic solution process is biased by

the pheromones deposited along the path. The ACO metaheuristic, described in Algorithm2, consists of

four main steps: initialization, where all the algorithms parameters are defined, solution construction,

pheromone deposit and pheromone evaporation. This process is repeated until a termination criteria is

met. Generally this criteria is a maximum number of iterations or CPU time.

Algorithm 2: ACO metaheuristic

Set initial parameters;

while not termination do

Solution Construction;

Pheromone Deposit;

Pheromone Evaporation;

Taking as an example the well-known traveling salesman problem, the objective is to guide a salesman

from its home to a set of costumer cities, visiting each city once and returning home while covering the

shortest distance. The problem is represented as a weighted graph where each node represents the city

and the weights connecting the nodes are equivalent to the traveled distance. The constraint to the

problem is that every city must be visited one time. This is enforced by making each ant keep track of

the cities they have visited in a tabu list. The ants cannot visit again any city in this list. The pheromone

trail is the desirability to follow a good path. To obtain the shortest distance path, the distance between
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cities is used as heuristic information. A solution to the problem is constructed by putting all ants on the

initial city and keep them adding cities to their tabu list until all cities have been visited. Pheromones

are then updated, given more emphasis to the solution which provides a better cost. To this day, several

variation of the ACO algorithm have been proposed, the main ones being: the ant system, ant colony

system and MIN-MAX ant system [23].

3.2.2.1 Ant System

The ant system was the first ACO algorithm to be proposed by Dorigo in 1992 [23]. The two main

steps of the ant system algorithm are the ants’ solution construction and pheromone update. While ants

construct their solution, the transition probability of the k ant move from node i to node j is given by a

random proportional rule

pkij = [τij ]α.[ηij ]β∑
[τij ]α.[ηij ]β

, (3.26)

where ηij is the heuristic value and α and β determine the influence of the pheromone trail and the

heuristic information. After all ants have constructed their tour, the pheromone trail is updated. First

the pheromone evaporation is implemented according to

τij ← (1− ρ).τij , (3.27)

where ρ is the pheromone evaporation rate. This evaporation stage avoids the unlimited accumulation of

pheromones on the arc edges and allows the algorithm to forget previous bad choices. Then a pheromone

value is added on the nodes that the m ants have visited during their tours,

τij = τij +
m∑
k=1

∆τkij , (3.28)

where ∆τkij is the amount of pheromone deposited on each arc. This value is related to the cost of

the k ant tour and is defined by

∆τkij =


1
Ck
, if ant k travels on edge ij

0, otherwise,
(3.29)

where Ck is the cost of the tour built by ant k. This allows ants with lower cost tours to deposit a larger

amount of pheromones on its path.

3.2.2.2 Ant Colony System

The Ant Colony System (ACS) [23] was the first major improvement to be proposed over the original ant

system. There are three main differences between both algorithms. The first change is the decision rule

that ants use during the solution construction. The ACS uses the called pseudo-random proportional
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rule, where ants choose the node to visit according to

j =

argmax{τ
α
ij .η

β
ij}, if q ≤ q0

S, otherwise,
(3.30)

where q is a random number uniformly distributed in [0 . . . 1], S is a random variable selected according

to the probability distribution given by eq.(3.26) and q0 ∈ [0, 1] is a parameter that determines the

importance of exploration versus exploitation. A high value of q0 will concentrate the search around the

best solution found so far will and a lower value will encourage the search of new paths. The second

improvement is the addition of a local pheromone update rule. This means that pheromones are updated

as ants move between nodes according to

τij ← (1− ξ)τij + ξτ0, (3.31)

where ξ is the local evaporation coefficient and τ0 is the initial pheromone value. The local updating

of pheromones is used to avoid a stagnation behavior of the algorithm. As an ant makes its tour the

pheromone value on the arcs is reduced encouraging the following ants to choose new paths. The third

difference is in the global update of pheromones once all ants have completed their solutions. In ACS,

only the ant with the best tour so far contributes to the laying of pheromones.

3.2.2.3 Min-Max Ant System

The Min-Max Ant System (MMX) [23] differs from the original ant system in the following aspects:

• Like in ACS only the best ant adds pheromones to the trail;

• The range of pheromones values in the trail is limited to an interval [τmin, τmax];

• The pheromone trail is initialized to the upper pheromone trail limit, τmax;

• The pheromone trail is reinitialized each time the system reaches a stagnation point, when no

improved tour is produced for a certain number of iterations.

3.2.2.4 ACO for the path planning problem

In this work, both variants of the ACO algorithm, ACS and MMX, are applied to the RPAS path plan-

ning problem.

Graph Construction: the graph is constructed as a weighted three-dimensional grid. Each node

represents the RPAS position and orientation in a Cartesian coordinate system (x, y, z, γ, ψ), where γ

is the flight path angle and ψ the heading, as depicted in Fig. 3.8. The spacing between the nodes is

proportional to the distance between them.

Constraints: they correspond to the possible moves the ants can make. Depending on the type of

platform being considered different movements are allowed as defined in Sec. 3.1.2.
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Figure 3.8: Kinematic model representation(adapted from[55]).

Pheromone trail:: the pheromone trail represents the desirability of visiting one node after the

other. Generally, pheromones are deposited in the edges connecting the graph nodes, however when

planning in a large three-dimensional grid it is infeasible to define each possible edge connecting nodes

so in this implementation pheromones will be deposited in nodes instead of the edges.

Heuristic information: to ensure that ants reach the target point, the heuristic value is defined

as the inverse of the distance between each node and the target. One of the purposes of the proposed

path planning system is to find a path that can minimize energy expenditure. To do so the heuristic

information must include information about energy expenditure between nodes. The heuristic information

is computed according to

ηij =
(

1
dij

)c( 1
eij

)1−c
, (3.32)

where dij represents the Euclidean distance between node i and node j and eij represents the energy

spend in the transition between nodes. The energy is calculated using Eq. 3.13 derived in Sec. 3.1.3. The

value of constant c is set to 1 or 0 depending if the objective is to optimize distance or energy respectively.

In Fig. 3.15 the flow chart for the ACO algorithm is presented. The process begins by setting the initial

parameters. All ants are then placed in the initial waypoint and each ant chooses the next node according

to Eq.(3.30) until the goal is reached. Each ant maintains a tabu list of all visited nodes so that no node

is visited twice. Once all ants have completed their tours, the cost of each one is evaluated. Depending

on the mission objective, this cost is a either measure of expended energy to complete the path or a

measure of covered distance. The best path found so far is stored and pheromones are updated using

either the ACS or the MMX rules. If the iterative condition is satisfied (maximum number of iterations),

the iteration ends and the best solution is given.
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3.2.2.5 ACO parameters

The ACO algorithm involves a number of parameters that need to be set appropriately in order to obtain

optimal solutions.

The initial pheromone value τ0 has a significant influence in the algorithms convergence speed. If the

initial pheromone values are too low, the search is quickly driven to the first tours found by the ants.

However, if the value is too high, the algorithm takes too much time to converge to the right solution

as many iterations are lost until the evaporation of pheromones is enough for the added pheromones

by the ants start driving the search. The value for the initial pheromones depends on the particular

implementation of the algorithm. For minimum length paths, a suggested estimation [23] is τ0 = m/C,

where m is the number of ants and C the length of a tour generated by the nearest neighbor heuristic.

The evaporation rate ρ, regulates the evaporation rate of the pheromone trail. A value too low results

in the persistence of the pheromone information and can overshadow the pheromones deposited by ants.

If the value is too high, the algorithm has a tendency to forget previous paths and concentrate on new

information added to the pheromone matrix. A value given for ρ is generally 0.9.

The values of α and β are used to influence the relative importance of pheromone and heuristic

information. The role of these parameters is biasing the search of the ants. Values for this parameters

are generally given between 1-5.

Another parameter is the number of ants used. If a larger number of ants is chosen the algorithm will

need less iterations to converge to the optimal solution. Good solutions are generally found for m=10.

Finding the appropriate parameters is not an easy task. Good parameter values for specific problems

generally come from experimental research. As such, a study of parameter variation was conducted. The

following parameters were evaluated: α, β, N of ants, q0, ρ and τ . In each experiment, one parameter

was varied while the others were set to the default values in Tab. 3.5. The results are presented for the

case scenario in Tab. 3.4, the cost function used was the minimum distance and the curves are the result

of the average of 20 runs for each parameter.

Map Size ∆x = ∆y NoObstacles Rsafe

50× 50 10 10 20

Table 3.4: Map characteristics.

α β q0 ρ τ τmin τmax
1 1 0.9 0.9 1 0.1 10

Table 3.5: ACO default values.

For the parameter α, Fig. 3.9, there is not much difference in the convergence time between values but

the worst results are obtained for the smallest and the largest values (0.1 and 10). They have a greater

influence in the MMX algorithm preventing it from reaching the optimal cost.

The variation of β, Fig. 3.10, for values between 0.1 and 2, has no noticeable effects in the convergence

time. In both the ACS and MMX algorithms values above 5 lead to a poorer performance.
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Figure 3.9: Variation of α for ACS(left) and MMX(right). The doted line represents the optimal cost.
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Figure 3.10: Variation of β for ACS(left) and MMX(right). The doted line represents the optimal cost.
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Figure 3.11: Variation of number of ants for ACS(left) and MMX(right). The doted line represents the
optimal cost.

Varying number of ants, Fig. 3.11, greatly influences both algorithms performance. For smaller values

the convergence time is much slower and in some cases is not even guaranteed. The larger the number of

ants the fastest the optimal solution is reached.

The parameter q0, Fig. 3.12, is important in the convergence time. A bigger value leads to a more

frequent choice of the best path so the optimal solution is found faster. Small values have little guarantee

of finding the optimal solution in time.

For the parameter ρ, Fig. 3.13, small values give worst solutions. The solution quality shows little
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Figure 3.12: Variation of q0 for ACS(left) and MMX(right). The doted line represents the optimal cost.
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Figure 3.13: Variation of ρ for ACS(left) and MMX(right). The doted line represents the optimal cost.

difference for values above 0.1.
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Figure 3.14: Variation of τ/τmin/τmax for ACS(left) and MMX(right). The doted line represents the
optimal cost.

Small values of τ , Fig. 3.14, prevent the algorithms of converging to the optimal solution. Largest

values show little difference between them.

The values selected for the ACO algorithms, presented in Tab. 3.6, were chosen considering the

convergence to the optimal solution and the convergence time. The parameter α was maintained in its

default value, as it gave the best compromise for both the ACS and MMX variants. The value of β

was set to 2, as it provided the fastest convergence for both algorithms. The number of ants was set to
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10 because it gave the best compromise between the number of iterations needed to reach the optimal

solution, and the computational load placed in each iteration. The parameter of q0 was chosen closer to

one to ensure convergence and prioritize the following of optimal solutions instead of exploring new ones.

The chosen values of ρ, τ , τmin and τmax were the ones that provided the fastest convergence for both

ACS and MMX.

α β q0 ρ τ τmin τmax Nants
1 2 0.9 0.9 1 0.1 10 10

Table 3.6: ACO selected parameters.

Start

Initialize
pheromone

levels

Place all ants
on initial
waypoint

for each ant

Move ants
according to
Eq. (3.26)

add next node
to tabu list

is goal? Compute
path cost

Update
pheromones

It > N End

It = It+ 1

yes

no

yes
no

Figure 3.15: ACO flow chart.
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3.3 Path Smoothing

The paths obtained with A* and ACO consist of straight line segments between waypoints. These paths

cannot be exactly followed by RPAS with dynamic and kinematic constraints. Discontinuities in the

curvature profile translate in instantaneous change in the bank and heading angle for a flying platform.

These instantaneous changes require infinite control force. A continuous curvature path must be obtained

for practical applications. If the velocity goes bellow the stall speed a fixed wing platform will stall. Also

it cannot stop or suddenly change its heading. Rotary platforms can hover but cannot make sharp turns

or stop immediately at command.

To provide a feasible path and minimize the errors in tracking performance, the geometry of the

path must be modified. Spline based methods are widely used to compute feasible trajectories for

UAVs[56][57][58][59][60]. Bezier curves are a type of parametric curves designed to provide a smooth

path that passes exactly through the initial and final waypoints and is influenced by the other waypoints

on the way. Bezier curves are defined by

P (t) =
n∑
i=0

Bni (t)Pi, t ∈ [0, 1], (3.33)

where Pi are the control points and Bni (t) is the Bernstein polynomial given by

Bni (t) =
(
n

i

)
(1− t)n−iti, i ∈ {0, 1, . . . , n}. (3.34)

This type of curves have the following properties[61]:

Property 1 (End point interpolation). The curve always goes through the first and last control points,

P0 and Pn and it generally does not pass on the other points.

Property 2 (Convex hull property). The curve lies integrally inside the convex hull of the polygon formed

by the control points.

Property 3. A Bezier curve with n+1 control points has order n.

Higher degree Bezier curves give more design freedom and provide a higher degree of continuity.

Rational Bezier curves are a special case of NURBS curves. These curves are generate by attributing an

weight wB to each control point, pulling or pushing the curve away from the point,

PR(t) =
∑n
i=0 B

n
i (t).wBi .Pi∑n

i=0 B
n
i (t).wBi

, t ∈ [0, 1], (3.35)

they allow a better control over the curve shape. In Fig. 3.16 the effect of varying the weight value of the

second control point on the shape of the curve can be observed.

The curvature of a parametric curve P (t) can be calculated through

κ(t) = |P
′(t)× P ′′(t)|
|P ′(t)|3 . (3.36)
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Figure 3.16: Rational Bezier curves.

The curvature depends on the first and second derivatives of the curve P (t). A Bezier curve is given

by a polynomial function which has continuous derivatives, hence Bezier curves always have continuous

curvature[62]. The first derivative P ′(t) is obtained as[63]

P ′(t) = a′(t)− b′(t)P (t)
b(t) , (3.37)

where

a′(t) = n

n−1∑
i=0

Bn−1
i (t)(wi+1Pi+1 − wiPi), (3.38)

b′(t) = n

n−1∑
i=0

Bn−1
i (t)(wi+1 − wi), (3.39)

and

b(t) =
n∑
i=0

Bni (t)wi. (3.40)

The second derivative is obtained in the same manner,

P ′′(t) = a′′(t)− 2b′(t)P ′(t)− b′′(t)P (t)
b(t) , (3.41)

where

a′′(t) = n(n− 1)
n−2∑
i=0

Bn−2
i (t)(wi+2Pi+2 − 2wi+1Pi+1 + wiPi), (3.42)

and

b′′(t) = n(n− 1)
n−2∑
i=0

Bn−2
i (t)(wi+2 − 2wi+1 + wi). (3.43)

The properties of Bezier curves make them an attractive solution to generate flyable paths that go

through the required waypoints. Using the waypoints generated by the global planner as control points

a Bezier curve of continuous curvature is obtained. This curve, however, does not pass through all the

points and it can lead to the violation of curvature and safety constraints. To overcome this problem,

rational Bezier curves are used and the corresponding weights are optimized to originate a path within

the required bounds. The problem optimizing the curve weights is formulated as
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minimize Fc (3.44)

subject to do ≥ Rs (3.45)

PR(t) = f(w) (3.46)

|k| ≤ kmax (3.47)

wBmin
≤ wBi

≤ wBmax
(3.48)

The cost function Fc to be minimized is given either by Eq. (3.6) or Eq. (3.13). If only the constraints

are to be satisfied, Fc is set to zero. The constraint defined by Eq.(3.45) imposes a minimum distance

between the robot and the obstacle. Eq.(3.47) ensures that, given the RPAS curvature limits, the path

is flyable. The safety distance and curvature are calculated for each point on the Bezier curve, and the

number of points on the curve differ from the number of optimization variables, so a constraints lumping

method is performed to attribute to each optimization variable a constraint value for curvature and safety

distance. The used method is the maximum constraint approach [64], where to each variable is attributed

the maximum constraint value of the closest point.

A generic constrained optimization solver, fmincon, provided by MATLAB is used to solve the prob-

lem.

The reference waypoints given to the path planner are of obligatory passage for the platform. If more

than two waypoints have to be visited, and due to Property 1, separate Bezier curves have to be created

for each segment connecting the reference waypoints. When connecting the curves care must be taken

to ensure that the joining point has no discontinuities. Two distinct Bezier curves are said to be Ck

continuous at t0 if

P (t0) = Q(t0), P ′(t0) = Q′(t0), . . . , P (k)(t0) = Q(k)(t0). (3.49)

If two segments of control points are to be joined in a smooth way, they must be tangent in the last

and first sections. High degree curves are generally not efficient to process and situations where a solution

cannot be found can easily arise when planning a long range mission on an area densely populated with

obstacles.

In Fig. 3.17 it can be seen an example of the minimum distance path planned by the A* algorithm for

a fixed wing platform and the respective initial Bezier curve with unitary weights. In this situation, the

solver is unable to find a feasible solution. To solve this problem, the curve is successively divided and

each segment is optimized until the constraints are satisfied. The points of division, anchor points, must

be placed in a position that guarantees curve continuity, this means that the preceding and following

points must be in line with the anchor point. The results are presented in Tab. 3.7. It is noted that a

significant amount of computational time is needed to optimize the several curve segments.

The flowchart for the overall pre-flight path planning Algorithm3 is shown in Fig. 3.18, where the

input data corresponds to the reference waypoints, the configuration space, the cost function and the

vehicle constraints.
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Figure 3.17: Path generated by optimized Bezier curve division.

Distance[m] Time[s]
A∗ 647.132 0.138

Initial Bezier curve 387.698 0.051
Optimal Bezier curve 529.891 535.034

Table 3.7: Results for minimum distance paths.

Algorithm 3: Pre-flight Path Planning.
Input: Constraints (sec. 3.1.2), cost function( 3.6, 3.13), waypoints( 3.5), obstacles( 2.1) and
departure heading and flight path angle;
Output: Optimal path from star to goal, Pop;
Find control points CPs = {P1, . . . , PN}, using A* 1 or ACO 2;
Initialize weights and calculate initial Bezier curve, PRi, using eq. (3.35);
Current curve ←− PRi;
while Solution is not found do

Find optimal weights, wo, for the current Bezier curve;
Current curve ←− PR(wo);
if constraints are satisfied then

Pop ←− Current curve;
return Pop

else
Divide current curve
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Figure 3.18: Flowchart for the pre-flight path planning algorithm.
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Chapter 4

Real-Time Path Planning

In this chapter the problem of replanning a reference path when new obstacles are detected is addressed

and solved using the potential fields method. The new path is generated with considering the Rules of

the Air during encounters with moving obstacles.

4.1 Safety Zones

The developed method to replan the original path, when a collision risk is detected, is based on previous

works [65][66][67][68], with the deconfliction maneuver being dictated by the Rules of the Air. To develop

the module for real-time path planning, some safety distances are defined. A collision is said to occur

when the obstacle breaches the collision radius Rc, the collision radius is defined as equivalent to the

vehicle dimensions. The safety radius Rs, defines the required safety distance that must be maintained,

that distance should account for possible unpredicted deviations that occur during flight and be in the

same order of the RPA size. Another zone to be defined is the action radius Ra, that is the distance

from which the replanned path begins to depart from the original path given by the global planner. This

distance should be proportional to the sum of the safety and collision radii, as the RPA will need to take

action sooner to avoid bigger obstacles than smaller ones. The detection radius Rd, is dependent on the

types of sensors available on the platform, this is the distance at which the object is considered by the

path replanning system and should be equivalent to the detection range of the sensors.

4.2 Rules of Air

The Rules of the Air are a set of rules and procedures concerning the flight and maneuvering of aircraft

in civil airspace. Regarding the avoidance of collisions for manned flight four main points are stated[69]:

1. On a head-on encounter, both aircraft should deviate to the right(Fig. 4.2(a));

2. On a converging scenario, the aircraft with the other on its right-hand side (starboard side) has to

give way(Fig. 4.2(b));
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Figure 4.1: Safety zones defined around the obstacle.

3. In an overtaking event, the faster aircraft must overcome on the right hand side of the slower

one(Fig. 4.2(c));

4. An aircraft should avoid passing over, under or in front of other.

(a) (b) (c)

Figure 4.2: Rules of the Air: (a)Head-on encounter, (b) Converging encounter, (c) Overtaking.

To share the same airspace as manned aircraft, RPAS must consider this set rules. However they

can only be fully applied when cooperative avoidance is considered. If the RPA has the right of way,

it should maintain its course expecting that the other vehicle performs the avoidance maneuver. It is

expected that RPA, especially the small platforms, must always give way to larger aircrafts. In this work

uncooperative collision avoidance is addressed, so the RPA must always take action to avoid the collision

with the safety sphere, while considering the Rules of the Air. It is assumed that the intruder aircraft

will take no action and maintain its course.

4.2.1 Avoidance Logic

To comply with the Rules of the Air, when a moving obstacle is detected the type of encounter must be

evaluated. Depending on the type of encounter different resolutions are adopted:
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• When the intruder is found to be in a head-on collision course, or to the right of the RPA, the

avoidance should be made by turning right;

• If the intruder is approaching from the left, and the RPA is on leveled flight, turning right will put

the RPA in front of the intruder, to avoid this scenario the avoidance maneuver is made by turning

left and going behind it;

• If the RPA is climbing, the avoidance is made by leveling the flight until the intruder is overcome;

• If the RPA is descending, the aircraft could be leveled off, but due to inertia this would be riskier

than increasing the descent rate (unless the value is at its maximum).

If a static obstacle appears in the way, diferent paths are achieved depending on the direction of the

avoidance. In this situation there are no rules commanding the vehicle to behave a certain way, so the

following strategy is adopted:

• If any side of the obstcale is blocked, the rotation is set to the oposite direction;

• Considering the line joining the RPA position and the obstacle center, if the goal point in the path

is to the left the rotation is made conterclockwise and vise versa, as depicted in Fig. 4.3. If the

point or path direction is along the line the swirl direction can be arbitrarly chosen.

Figure 4.3: Resolution for avoidance of static obstacles.

4.3 Collision Detection

To detect possible collisions with moving obstacles, the concept of the Closest Point of Approach (CPA)

is used[70].

This is the point at which the RPA is closest to the intruder.

If the closest distance is smaller than the safety distance then the RPA is in risk of collision and its

path must be updated. To determine the CPA, it is assumed that the moving intruder will maintain its

course of motion.

Considering two vehicles A and B, as depicted in Fig. 4.4, moving in a tridimensional space, according
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to A(t) = A0 + vAt and B(t) = B0 + vBt, the distance between them at time t is d(t) = ‖A(t)−B(t)‖.
By calculating the minimum of d(t), the time to closest point of approach is given by

tCPA = −d0 · (vA − vB)
|vA − vB |2

, (4.1)

where d0 = A0 −B0. Once the time to CPA is known the closest distance can be calculated through

dCPA = ‖A(tCPA)−B(tCPA)‖. (4.2)

Figure 4.4: CPA representation.

When a conflict with multiple intruders occurs threats must be prioritized. As intruders will have

different speeds and bearings using the distances to the collision point is not enough, so the time to

collision is used instead. Higher priority will be given to intruders with the smallest tCPA and the

conflicts are resolved in a sequential manner.

4.4 Potential Fields

Potential Fields are one of the most used approaches to the local path planning problem[40]. In this

approach, the obstacles and the goal position are treated as charged particles. A repulsive force is

attributed to the obstacles and an attractive force to the goal point. The sum of those forces is used to

generate the direction of motion. The attractive and repulsive potential fields are developed in a similar

way to [65][66].

Attractive Potential

The attractive potential is responsible for the directing of the RPAS towards the desired destination. If

the objective is to direct the vehicle to a single goal waypoint, the potential function Fat is simply given

by the direction from the current position, Prpas, to the desired waypoint, WP. Its representation can

be seen in Fig. 4.5.

Fat = WP−Prpas

‖WP−Prpas‖
(4.3)

When the mission consists on following a pre-planned path, the potential function must take into

account two terms: one that brings the RPA close to the given path and other that makes the vehicle

follow the path direction. To obtain the first term the closest point on the path, Pclose, to the current
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Figure 4.5: Attractive potential field for a waypoint.

position, Prpas, is found and the direction between both is taken. The path following term is obtained

from the direction from the closest point on path to the next point on the path, Pnext.

Fat = αPF
Pclose −P
‖Pclose −P‖ + (1− αPF ) Pnext −Pclose

‖Pnext −Pclose‖
(4.4)

By selecting the values of αPF more importance can be given to the path following or the path approaching

direction. In Fig. 4.6 the potential function for a path can be seen.

Figure 4.6: Attractive potential field for a path (α = 0.5).

Repulsive Potential

To keep the RPAS safe a repulsive potential is placed upon the obstacles. The simplest form of a repulsive

potential induced by an obstacle, Pobs, is given by:

Frep =


0, if do ≤ Ra

Prpas−Pobs

‖Prpas−Pobs‖ , if Rc ≥ do ≤ Ra

∞, if do ≤ Rc

(4.5)

If the distance to the obstacle is greater than the action radius, the obstacle has no influence and the

potential is zero. Between the action and collision radius, the potential is dependent on the distance

to the obstacle. For distances inferior to the collision radius, the potential is infinite and points in the

opposite direction of the vector connecting the current point to the obstacle center. The representation

of this potential is seen in Fig. 4.7, where an obstacle is depicted with its safety and action radius.
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Figure 4.7: Simple repulsive potential flow.

This type of potential keeps the RPA at a distance, but leads to sudden changes in direction. To

avoid this type of behavior, where the RPA abruptly changes its heading, the field strength is made

proportional to the distance from the obstacle center, do = Prpas −Pobs. The field is given by

Frep =


0, if do ≤ Ra

do

‖do‖

∣∣∣Rt−‖do‖
Rt

∣∣∣ , if Rc ≥ do ≤ Ra

∞, if do ≤ Rc

(4.6)

where Rt = Rc +Rs +Ra, and is represented in Fig. 4.8.
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Figure 4.8: Fading repulsive potential flow.

This potential keeps the distance from the obstacle but leads to an irregular and intermittent motion

when in the proximities of the obstacle. To provide a smoother movement, a swirling motion must be

added to the potential function.

If the swirling direction is static the RPA will always perform the same maneuver so, to comply with

the avoidance logic defined in Sec. 4.2.1, the swirling direction must depend on the type of encounter. A

repulsive field with an imposed swirl is plotted in Fig. 4.9, where the swirl direction is given by

Sdir = Sz × do
‖do‖

, (4.7)

where Sz is the unit vector in the z direction. This will originate a counterclockwise movement. If the
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order of the cross product in Eq.(4.7) is switched the field will rotate in the clockwise direction.
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Figure 4.9: Swirling potential flow.

The imposed swirling however can lead to the vehicle being trapped around the obstacle or even

enter in a collision course. To avoid this situation, the effect of the swirl is neglected once the obstacle

is overcome. To do so, the angle between the desired direction of motion, D, and the relative position

between RPA and obstacle is evaluated,

ang = acos(D · do)
‖D‖‖do‖

. (4.8)

When this angle is bigger than a predefined cut-off angle, θcut−off , the repulsive potential is ignored and

only the attractive term is considered. The total repulsive force is then given by Eq. 4.9, which is the

combination of the previous terms,

Frep =


0, if do ≤ Ra or ang ≥ θcut−off

− do

‖do‖

∣∣∣Rt−‖do‖
Rt

∣∣∣Sdir, if Rc ≥ do ≤ Ra

∞, if do ≤ Rc

(4.9)

Total Potential Function

The total potential flow force, which determines the movement direction, is given by

Ftot = Fat +
∑

Frep. (4.10)

From the total field vector the required heading and flight path angles to avoid the obstacle are

obtained, from which, knowing the current direction of motion, a series of waypoints are generated until

the obstacle has been cleared. However, the combination of both the attractive and repulsive potential

can lead to heading changes that are not feasible by the RPA, so the angle between the platform current

heading and Ftot is taken. If this angle is greater than the maximum turning angle, the angle is scaled

to the maximum allowable value. The same applies to the climb angle.

Outside the detection region, the tracking module is responsible for following the reference path.

Inside that area, the reference trajectory is updated to avoid any possible collisions. Once the collision
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risk is overcome, the closest point on the reference path is found and the navigation system returns to

following the original path.

One issue may arise when an intruder obstructs one of the required waypoints defined during the

mission planning stage. This can be seen in Fig. 4.10, where the blue line represents the global trajectory

to be followed and the red dot is a waypoint of required passage.
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5

x[m]
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]

Figure 4.10: Example of obstructed waypoint.

If the obstacle is static, there is no way to go through the required waypoint without violating the

safety distance, however if the obstacle is moving, it is possible to return to the required waypoint once the

collision has been avoided. To do so, instead of returning to the global path once the threat is overcome,

the attractive potential function for a waypoint is activated and a path that directs the RPA towards the

missed waypoint is computed. When the waypoint has been passed over, or within a predefined distance,

the RPA returns to the global path.

The overall algorithm flowchart for the path replanning stage is presented in Fig. 4.11. The path

replan module receives information about the RPA state (position and velocity), the path to follow and

the obstacles position and velocity. A check is made to see if there is risk of collision and the CPA

is determined. If several conflicts are detected, the threats are prioritized with respect to the time to

collision. Depending on the direction of approach, the type of maneuver is determined (turn right/left,

climb/descent). With the type of maneuver defined, the potential fields method is applied to generate

and avoidance path until the conflict point has been avoided. Once the situation is clear, and if any

key waypoint has been missed and it is not blocked by a static obstacle, the potential fields approach is

applied, with waypoint guidance, as in Eq. 4.5, until the waypoint has been reached. Once the conflict

has been avoided and the waypoint has been visited, the path is updated.
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Figure 4.11: Path replan flow chart.
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Chapter 5

Results

In this chapter the developed algorithms are tested in several case scenarios to evaluate their strengths

and drawbacks. All examples are obtained with MATLAB R2016a running on a Intel Core i5 with a

CPU of 2.4 GHz, 4Gb RAM and Windows 7.

Pre-flight
path planning Path replan Waypoint

tracker Vehicle model

Obstacle data

Figure 5.1: Block diagram of tested system.

Fig. 5.1 shows the system used to test the algorithms. The vehicle flies at constant speed, and a

simple agent model is used to describe it,

xt+1 = xt + vcos(ψt)cos(γt)∆t

yt+1 = yt + vsin(ψt)cos(γt)∆t

zt+1 = zt + vsin(γt)∆t

(5.1)

where the RPA position is denoted as (x, y, z), v is the airspeed, ψ the heading angle and γ the flight

path angle, as represented in Fig. 3.8.

The pre-flight path planning module determines an optimal path between the given reference way-

points in a known static environment. The path replan module receives the reference path, the RPA

position and velocity and the obstacle data as depicted in Tab. 2.1. If a conflict is detected, the reference

path is updated. The waypoint tracker receives the planned path waypoints and determines the required

heading, ψ, and flight path angle, γ, that are used as input to eq. 5.1. It is assumed that the values are

tracked perfectly.

51



5.1 Pre-Flight Path Planning

In this first examples planning between a set of waypoints in the presence of several static obstacles is

addressed. The presented results consider a fixed-wing and multirotor platforms with the parameters

described in Tab. 5.1.

Variable Value Description
Fixed-wing Multirotor

v 16 16 Airspeed[m/s]
m 2 1 Mass[kg]
S 1.5 - Wing span[m2]
g 9.81 9.81 Gravitational acceleration[m/s2]
Cd 0.02 0.01 Drag coefficient
Rcurv 10 5 Minimum turning radius[m]
γmax 30 90 Maximum flight path angle[o]

Table 5.1: RPAS parameters.

The parameters used in the ACO algorithm are given in Tab. 5.2.

α β Noofants q0 τ0 ρ ξ Iterations τmin τmax

1 2 10 0.9 1 0.9 0.9 500 0.1 10

Table 5.2: ACO parameters.

To compare the developed methods, the results are presented for the path given by the A* and ACO

algorithms, Pi; the initial rational Bezier curve determined from the given path with unitary weights, Bi;

the rational Bezier curve with adjusted weights to only satisfy the constraints (the cost function is set to

zero in the optimization problem defined in Sec. 3.3), Bc; and the Bezier curve optimized for the given

cost function, Bo.

5.1.1 Minimum Distance Paths between Two Waypoints

The environment considered in this case has the characteristics presented in Tab. 5.3, and two distinct

departure headings are tested for the fixed-wing platform. Results are presented for minimum distance

paths. In this first example, the potential fields method is also used to compare it with the global

methods, the used parameters are presented in Tab. 5.4. The planned paths can be seen in Figs. 5.2

and 5.3.

Map size ∆x[m] Rs[m]
400 30 20

Table 5.3: Map characteristics.

Rd Ra Rs αPF θcut−off [deg]
100 10 20 0.5 30

Table 5.4: Potential fields parameters.
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Figure 5.2: Minimum distance paths for the A* and ACO algorithms.
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Figure 5.3: Planned paths for the Potential Fields algorithm.

The potential fields algorithm is clearly not fitted for global planning as the obtained path is not

optimal. For the global planning methods, except in the case of Fig. 5.2(c) where the obtained results are

the same, the optimal path is obtained with the optimized Bezier curve from the A* path. Both the ACS

and MMX algorithms result in longer paths. It is also noted that the departure heading for a fixed-wing

platform will influence the resulting path. In this situation the cost function for minimum distance was

used, but the same results are obtained if minimum energy paths are computed. The results comparing

computational time and path cost are presented in Figs. 5.4 and 5.5.
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Figure 5.4: (a) Processing time of the several algorithms and (b) path cost(distance) for the fixed-wing
case represented in Figs. 5.2(a) and (b) and Fig. 5.3(a).

Figure 5.4 shows the computational time and path cost for the paths obtained for the fixed-wing

platform, with the first departure heading, using A*, both ACO variants and potential fields. In the

potential fields method, there was no significant difference between the fixed-wing and multirotor results.

For the planning of the coarse path Pi, A* was the fastest. Both ACO algorithms have a longer

computational time, and the addition of the pheromone limitation step in the MMX algorithm makes it

slower than ACS, however the same path geometry is obtained in both cases.

The initial Bezier curve, Bi, is of fast computing and provides a significant improvement over the

solution cost of the initial path. The constrained Bezier curve, Bc, which is calculated to only satisfy the

constraints, takes longer to compute and leads to a longer path than the initial curve to avoid violating

safety constraints. The optimized Bezier curve has the longest computation time but it results in the

minimum cost path.

Both ACO algorithms are slower than A*, and due to its random nature, they result in a path longer

than the A* algorithm, however the optimization of the Bezier curve is able to find a path which is only

1 meter longer than the optimized curve obtained from the A* path.

The potential field method was the fastest to compute the final path but, being a local method, it

leads to the worst results in terms of path cost.
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Figure 5.5: (a) Processing time of the several algorithms for the multirotor platform and (b) path cost
(distance) for the fixed-wing and multirotor cases represented in Figs. 5.2(c) and Fig. 5.3(b).

Figure 5.5(a) sows the computational time for the multirotor platform. Figure 5.5(b) shows the

path cost for the paths obtained for the fixed-wing platform with the second departure heading and the

multirotor.

In this situation, the same results are obtained using A*, ACS and MMX in terms of path cost. A*

was the fastest to compute the initial path, and again MMX was slower that the ACS. The computational

time was significantly higher than in the previous case due to the increase in number of node expansion

for the multirotor platform when compared to the fixed-wing.

Both the initial and constrained Bezier curve are the same, as no constraints were initially violated.

The optimized curve took longer to compute but resulted in the minimum cost path.

Again, the potential fields method was the fastest, but it resulted in the worst path in terms of cost.
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5.1.2 Minimum Energy Paths between Two Waypoints

In this example, the previous environment is used but the algorithms are now evaluated for the minimum

energy paths in the presence of a wind field. Its intensity varies up to 5m/s and the field direction was

generated to favor a specific route. The planned paths are depicted in Fig. 5.6. Different departure

headings are tested for the fixed-wing platform.
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Figure 5.6: Minimum energy paths for the A* and ACO algorithms, for both fixed-wing and multirotor
platforms.

The obtained paths differ from the minimum energy paths without wind (which are equivalent to

minimum distance paths of Sec. 5.1.1). In this situation the best results are given by the optimized

Bezier curve obtained from the waypoints generated by the A* algorithm. Like in the previous example

the same path is given by the ACS and MMX algorithms. In Fig. 5.6(a) the initial Bezier curve violates

the safety distance, but both the optimized and the constrained curves are able to respect the safety

distance.
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Figure 5.7: (a) Processing time of the several algorithms and (b) path cost (energy) for the case repre-
sented in Figs. 5.6(a) and(d).

Figure 5.7, shows the processing time and path cost obtained using A* and ACO, for the fixed-wing

platform with the first departure heading.

The A* algorithm is the fastest to find the initial path while the MMX takes the longest time. The

constrained Bezier curve for the A* algorithm results in a path of higher cost when in comparison to the

initial curve Bi, this is to maintain the safety distance.

The path of minimum energy is found by the optimized Bezier curve using the original A* path. For

the paths obtained with ACS and MMX both the initial and constrained Bezier curves have the same

cost because the constraints where met.
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Figure 5.8: (a) Processing time of the several algorithms and (b) path cost, evaluated according to
distance for the case represented in Figs. 5.6(b) and(e).

Figure 5.8, shows the processing time and path cost obtained using A* and ACO, for the fixed-wing

platform with the second departure heading.

A* was the fastest algorithm followed by ACS and MMX. In terms of path cost the best results, for

initial path and the resulting Bezier curves, are given once more by the A* algorithm.

For both A* and ACO the constrained and initial curves have the same cost and only a small im-

provement is achieved through the optimization of the Bezier curve.
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Figure 5.9: (a) Processing time of the several algorithms and (b) path cost, evaluated according to
distance for the case represented in Figs. 5.6(c) and(f).

Figure 5.9, shows the processing time and path cost obtained using A* and ACO, for the multirotor

platform. Similar conclusions to the ones in the previous case of Fig. 5.8 can be drawn. The only

noticeable difference is the increase in computational time, mainly in the ACO algorithms, in comparison

with the fixed-wing case. This shows the influence of the search space dimension in the processing time

of the algorithms.

Again, the best results are obtained through the optimized Bezier curve of the A* path. However,

the increase in computational time versus the decrease in the cost function value when compared with

the constrained curve Bc, shows that the optimization may have no practical interest.
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5.1.3 Minimum Distance Paths with Three Waypoints

In this example, the previous case is expanded and three waypoints are considered.
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Figure 5.10: Minimum distance paths. (a),(b): A* with random waypoint order;(c),(d): ACS and MMX
with random waypoint order; (e),(f): A* with optimal waypoint order given by ACO.
.
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The reference waypoints to visit are given in a random order to both the A* and the ACO algorithms

separately. The optimal order obtained from ACO is then feed to the A* algorithm. The planned paths

are depicted in Fig. 5.10.

It is concluded that the best results are obtained by using ACO to optimize the reference waypoint

order and A* to plan the path between those waypoints. In Fig. 5.10(b) it is noted that the expansion

rules defined for the multirotor lead to a planned path that cannot be followed at constant speed, requiring

the platform to stop and reverse its direction to follow the path. Again, in Fig. 5.10(a) the optimized

and constrained paths are longer than the initial one because a deviation has to be made to avoid the

safety radius of the obstacles. Also slightly shorter paths are obtained for the multirotor platform due to

its smaller turning radius.
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Figure 5.11: (a) Processing time of the several algorithms and (b) path cost(distance) for Figs. 5.10 (a),
(c) and (e).

Figure 5.11 shows the results for computational time and path cost for the fixed-wing platform in

three situations: A* and ACO with random waypoint order and A* with the order given by ACO.

The A* algorithm is only able to find the optimal path between waypoints and cannot optimize its

order, as it can be seen in the difference in path cost between A* and the ACO variants.

As the environment complexity increases the computation time also grows.

When combining A* and ACO, the ACS version is used as it is faster and provides the same results

as MMX. By combining A* and ACO a compromise is achieved in terms of computational time, as the

ACO is only used to find the optimal sequence of waypoints and A* to connect them.

62



It is also noted that even though for the coarse path Pi, the best cost is given by the combination of

A* and ACO, the Bezier curves are shorter for the control points given by any of the ACO algorithms.
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Figure 5.12: (a) Processing time of the several algorithms and (b) path cost(distance) for Figs. 5.10 (b),
(d) and (f).

Figure 5.12 shows the results for the multirotor example in the same instances as previously.

When giving to the A* algorithm the same waypoint order as to the fixed-wing example a different

path is obtained as seen in Fig. 5.10(b). This is due to the expansion rules defined for this type of vehicles.

The immediate inversion of direction at the second waypoint makes it impossible to meet the turning

radius constraint, however the multirotor ability to hover enables turning but requires a speed change.

Even though A* finds a shorter coarse path, like in the previous case, the position of the path points

given by ACO allows the generation of a shorter Bezier curve.
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5.1.4 Path Planning in a Digital Elevation Model

In this example, a tridimensional environment is considered with three waypoints to visit. The ACO

algorithm is used to optimize the waypoint order and the A* to plan the path between waypoints. If

no constraints are violated by the initial Bezier curve, no optimization is made. A DEM is used to

simulate the environment. Both minimum distance and minimum energy paths for a fixed-wing platform

are tested.

The minimum distance paths are depicted in Fig. 5.14 and the minimum energy paths are shown in

Fig. 5.13. The results for both cases are presented in Tab. 5.5.
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Figure 5.13: Minimum energy path planned for a fixed-wing platform: (a) 3D view, (b) 2D view.

Cost function Time[s] Distance[m] Energy[J ]
Dmin 5.560 1.3513e+03 8.5813e+04
Emin 472.470 1.4863e+03 8.6145e+04

Table 5.5: Computational time and cost function values for the resulting Bezier curve.

In this case, it can be seen that when using as heuristic the minimum energy cost function, the optimal

path is not found. Even though that without wind the minimum energy path should be equivalent to the

minimum distance path, as it happens in the example presented in Sec. 5.1.1, such does not happen here.

This could be due to the fact that this a more complex configuration space and the energy cost function

does not satisfy the requirements of admissibility and consistency required for the optimal path to be

found by A*. The results are presented for a fixed-wing platform but the same paths are obtained for a

multirotor, the computational time however is larger as the number of states to be explored increases.
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Figure 5.14: Minimum distance path planned for a fixed-wing platform: (a) 3D view, (b) 2D view.
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5.2 Path Replanning

In this section, the Potential Fields algorithm is tested in several cases where the original path must

be updated to avoid collisions with moving and unforeseen static obstacles. The parameters used for a

fixed-wing platform in the following tests are presented in Tab. 5.6.

Rdetection αPF θcutoff [o] ∆ψmax[o] ∆θmax[o]
50 0.5 30 40 30

Table 5.6: Potential fields and vehicle parameters.

The path replanning module receives the path planned in the pre-flight module, the global path, and

information about the obstacles present in the environment. If a new obstacle, that was not previously

known, is detected the planning of a local segment to avoid it is activated and a new path is planned

until the obstacle has been cleared. Instead of fully replanning the original path, only a local segment is

calculated.

5.2.1 Head-on Scenario

In this example, several head-on conflict scenarios, where the RPA and the moving obstacle move in

the same line but oposite directions, are tested. The parameters used for the three cases represented in

Fig. 5.15 are presented in Tab. 5.7.

For case a, a fixed-wing RPA with a 1.5m wing span is considered, hence a collision radius around

the CPA is defined with the same value. The purpose is to avoid a collision while maintaining a small

deviation from the original path, so the safety radius is set to be at least equivalent to the collision radius.

In case b the same situation is tested, but with a smaller safety radius. In case c the radii of example a

are maintained but the speeds are increased.

Case Rc[m] Rs[m] vRPAS [m/s] vobs[m/s]
a 1.5 1.5 1 2
b 1.5 0.5 1 2
c 1.5 1.5 12 10

Table 5.7: Replaning scenario parameters.

Case Minimum distance
to obstacle[m]

Safety
distance[m]

Computation
time[s]

Figure 5.15(a) 3.1010 3 0.0147
Figure 5.15(b) 1.9713 2 0.0123
Figure 5.15(c) 3.4334 3 0.0098

Table 5.8: Head-on scenario results.

In Tab. 5.8 it can be seen that the RPA successfully avoids the intruder by deviating to the right

without the occurrence of any collision. In the case of Fig. 5.15(b), where a smaller safety radius is

defined, it is noted that the safety distance is compromised by a slight margin.
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Figure 5.15: Head-on encounters. The obstacle is depicted with the safety (green) and collision (red)
radius.

5.2.2 Converging Scenarios

In this section, different scenarios of converging encounters are tested.

Right Approach

Figure 5.16 shows several converging conflict scenarios, with an intruder approaching from the right. The

same values as referred in Tab. 5.7 are used for the collision and safety radius and velocities.
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Figure 5.16: Right approach converging conflicts.

67



Case Minimum distance
to obstacle[m]

Safety
distance[m]

Computation
time[s]

Figure 5.16(a) 2.9996 3 0.0158
Figure 5.16(b) 1.8492 2 0.0175
Figure 5.16(c) 4.1691 3 0.0104

Table 5.9: Right approach scenario results.

As the intruder approaches from the left, the collision is avoided by planning a new path that makes

the RPA turning right to avoid the intruder. In Fig. 5.16(a) a collision is successfully avoided and the

RPA comes to the limit of the safety distance. In Fig. 5.16(b), even though at the CPA point the vehicle

is beyond the safety range, the safety distance is not respected throughout the entirety of the replanned

segment. Like in the previous case, the situation where the vehicles move at a faster speed is the one

where the largest distance to the obstacle is maintained.

Left Approach

Figure 5.17 shows a set of converging conflict scenarios with a left approaching intruder and safety and

velocity values as presented in Tab. 5.7.
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Figure 5.17: Left approach encounters. The obstacle is depicted with the safety (green) and collision
(red) radius.

Case Minimum distance
to obstacle[m]

Safety
distance[m]

Computation
time[s]

Figure 5.17(a) 3.5216 3 0.0084
Figure 5.17(b) 2.4788 2 0.0082
Figure 5.17(c) 3.3681 3 0.0106

Table 5.10: Left approach scenario results.

In this example, the intruder is approaching from the left. To avoid passing on front of the obstacle,

the new path is replanned according to the avoidance logic to deviate to the left and avoid the collision

by going behind the intruder. From Tab. 5.10 it is seen that no collision occurs, and the safety distance
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is maintained in all situations.

Climb

Figure 5.18 shows conflict scenarios with the RPA in a climbing route and an intruder approaching in

leveled flight. The parameters presented in Tab. 5.7 are used.
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Figure 5.18: Climb encounters. The obstacle is depicted with the safety and collision spheres.

Case Minimum distance
to obstacle[m]

Safety
distance[m]

Computation
time[s]

Figure 5.18(a) 2.7230 3 0.0198
Figure 5.18(b) 1.7985 2 0.0206
Figure 5.18(c) 2.3759 3 0.0220

Table 5.11: Climb scenario results.

In this example as the RPA is climbing, the avoidance path is determined by leveling off the aircraft

to avoid the collision point, and then climbing again to return to the original path. In Tab. 5.11 it can

be seen that in all cases no collision occurs, but the safety distance is not maintained. In this situation

a larger action radius must be set, so that the RPA begins its action sooner and keeps a bigger distance

from the obstacle.
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5.2.3 Missed Waypoint Scenario

In this example the RPA is following the reference path when a moving obstacle appears in a colliding

course blocking one of the waypoints of mandatory passage. In this example a larger vehicle is considered

and the following radius are defined: Rc = 3m and Rs = 3m. The RPA moves at 2m/s and the intruder

at 3m/s. The global and local paths are shown in Fig. 5.19.
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Figure 5.19: Converging encounter with missed waypoint. The obstacle is depicted with the safety (green)
and collision (red) radius.

Minimum distance
to obstacle[m]

Safety
distance[m]

Computation
time[s]

7.9852 6 0.015270

Table 5.12: Missed waypoint scenario results.

The conflict case is resolved by following the right of way rules, and replanning the path to deviate to

the right. Looking at Tab. 5.12 it is seen that the safety distance is not compromised Once the obstacle is

overcome, the RPA is directed to the missed waypoint. Once the waypoint has been reached the vehicle

successfully returns to the reference path.
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5.2.4 Replanning with Static and Moving Obstacles

In this example a reference path that goes through the required waypoints has been planned by the

pre-flight path planner. During the execution of this path the RPA encounters two moving intruders,

one of them blocking a pre-defined waypoint, and a static obstacle. The global and replanned path is

depicted in Figs. 5.20 and 5.21. In this case th RPA moves at 1m/s and both moving obstacles travel at

1.5m/s.

20 30 40 50 60 70 80 90

x[m]

20

30

40

50

60

70

y[
m

]

WPi WPf Global Path Local Path Intruder Path CPA RPAS at CPA

Figure 5.20: 2D view of path.

Obstacle Minimum distance
to obstacle[m]

Safety
distance[m]

1 2.32 2
2 2.89 3
3 6.19 6

Table 5.13: Replan with static and dynamic obstacles results.

The first encounter is resolved by turning the vehicle to the right. In the second encounter with a

moving obstacle, the path is replanned to deviate to the left and a waypoint is missed. The path is

then conducted to the missed waypoint. Due to the defined turning radius the path only passes near the

waypoint and not exactly on it. In Tab. 5.13 it is noted that in the encounter with the second intruder,

even though a collision does not occur, the RPA enters the obstacle safety radius. The third obstacle is

a static obstacle and the avoidance is made in the direction that leads to the minimum deviation from

the original path.
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Figure 5.21: 3D view of path.

5.3 Final remarks

From the presented results some conclusions can be drawn. The offline planner provides the best results

when A* is used to plan between waypoints and ACO used to optimize waypoint order. There is no

guarantee of optimality when using the energy cost function. The optimization of the Bezier curve results

in the minimum cost paths, but it provides litle improvement over the curve that is only computed to

satisfy constraints at a cost of increased computational time.

In the online stage the algorithm can successfully avoid uncooperative moving and static obstacles.

In some situations the safety distance is not maintained because th relative velocity between RPAS and

intruder is only considered during the computation of the CPA, and during the maneuver execution the

safety distance may be breached. This issue can be solved by either altering the RPAS velocity, increasing

it to its maximum or reducing it to the minimum, during the replanned path segment, or increasing the

safety radius. When returning to a missed waypoint, the turning radius can prevent the RPAS from

exactly passing on the waypoint. The computation time of the online stage is fast enough to be suited for

real-time implementation. The algorithm does not require expensive computations and the only data that

needs to be stored is the path computed during the pre-flight stage, the obstacles information and the

replanned segment. There are many choices of on-board computers that can be used in small platforms.

Considering the results obtained for the processing time with a 2.5 GHz machine, using for instance a 800

MHz processor would approximately triple the computation time, this would still result in a processing

time in the order of the centiseconds.

However, to determine the processing speed and load of the algorithm for real-time use, the algorithm

must be implemented and tested on the hardware platform.
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Chapter 6

Conclusions

This work was developed with the aim of investigating and implementing methods that can provide

autonomous flight capabilities to RPAS. The focus of this thesis was the development of path planning

algorithms with collision avoidance capabilities, that could be applied to both fixed-wing and multirotor

platforms to generate safe and optimal paths. The developed system requires the vehicle to have the

ability of following a reference path. The task was divided into a global and a local layer, so that when

executing the planned mission new obstacles can be avoided without integrally re-designing the initial

path.

A pre-flight path planning algorithm was developed using the A* and ACO algorithms. For the

planning of the initial coarse path, a set of reference waypoints which the RPA must visit are defined.

The planner also has available an obstacle map of the environment, so that the online path only has

to be replanned if new obstacles appear, reducing its computational burden, as well as some kinematic

constraints of the platform. With this information, a path is planned through a graph like structure with

respect to a given cost function, that attempts to minimize either distance or energy expenditure. The

resulting path is then used to produce a Bezier curve which is optimized to comply with the vehicle safety

and curvature constraints. From the two considered graph search methods, A* proved to be superior to

ACO when planning a path between two waypoints, however if a series of reference waypoints are given

with no specific order ACO is able to find the optimal sequence. For the global path planning stage, when

given a set of unordered waypoints to visit, the best results were obtained by using ACO to optimize the

waypoint order and A* to find a path between them when obstacles are present in the way. The global

planner can resolve a series of different scenarios, and new optimization criteria can be easily added to

expand the range of problems to solve.

For the online stage, Potential Fields are used to generate a local trajectory when unknown obstacles

are detected. The replanning of the path is made considering an uncooperative situation between the

vehicles, and a sequential resolution of encounters, prioritized according to time to collision. This method

balances the following of the reference path and the avoidance of the obstacles. The avoidance maneuver

is determined considering the Rules of the Air when dealing with moving obstacles. This is done by eval-

uating the type of encounter with the intruder to determine if it is a head-on, converging or climb/descent
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scenario. Depending on the situation, the type of maneuver is set by imposing a distinct swirling direction

for each case. If the new local path leads to the avoidance of any of the reference waypoints given during

the mission planning stage, the potential flow is adjusted to go to the reference waypoint before returning

to the global path. The algorithm was developed to provide a path to a waypoint manager that guides

the RPA through the given list, but it can easily be adapted to be integrated with the lower level control

modules serving as a navigation system for a reference motion. The online solution performed well on

relatively simple scenarios but, to ensure that a secure distance is always maintained, the safety radius

must be appropriately defined. The potential fields method is fast and computationally inexpensive,

being a feasible solution for real-time implementation.

Overall the developed system provided a satisfactory solution to the path planning problem of small

RPAS.

6.1 Achievements

A new approach is presented to solve a constrained optimization problem based on adjusting the weights

attributed to the fixed control points of a rational Bezier curve. Two techniques were tested: adjusting the

weights to minimize a given cost function subject to bounds and constraints, and adjusting the weights to

only meet the imposed constraints on safety distance and curvature radius. As expected, the minimum

cost paths are obtained when the cost function is minimized, but the improvements over the latter case

were not relevant when considering the significant increase in computational time and the small reduction

in the cost function value.

6.2 Future Work

To tackle increasingly complex scenarios some issues need to be addressed. A better integration of the

vehicle dynamics is important to improve the system reliability and performance. A complete solution

should consider a cooperative scenario where the vehicles exchange flight plans among each other. The

type of sensors used must also be taken into account, as they are a crucial part of the real-world imple-

mentation, that can significantly affect the performance of the system. Different obstacle configurations

must be incorporated to encompass the diversity found in the real word.

The developed solution was created with the intention of increasing the vehicle autonomy, but the

interaction with the human operator should be considered, and the pilot’s experience should be accounted

for the development of better decision systems.
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