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Abstract

In the last years, the unmanned aerial vehicles (UAV) market has expanded and diversified substan-
tially. This work presents a solution for the enhancement of safety during the flight of small fixed-wing
UAVs, regarding the detection of obstacles during flight. This task was achieved by making a market
study on available sensors to find the most suitable to equip a UAV and by modeling them, so that these
models could be integrated into collision detection and avoidance simulations. A study was also made on
different tracking filters and sensor fusion techniques, where the Converted Measurement Kalman Filter
and the Weighted Filter technique were found to be the best options to implement. In the performed
simulations, the used avoidance method was the Potential Fields for being computationally inexpensive
and for providing feasible solutions in real time. Several parametric studies were conducted to test
the performance of the studied sensors and to see how different sensor parameters affect the success
of the obstacle avoidance. In these tests, the characteristics of the sensors were deemed adequate for
avoiding obstacles when integrated into small UAVs. An optimization study was also conducted, using
a genetic algorithm, to find the orientation of sensors, for different sets of sensors, that results in the
best performance in a collection of random generated scenarios. It is shown that, overall, the developed
system provided a satisfactory solution.
Keywords: Potential Fields, Genetic Algorithm, Kalman Filter, Unbiased Conversion, Sensor Fusion

1. Introduction

Like many other technologies, Unmanned Aircraft
Vehicles (UAVs) were initially developed for mili-
tary purposes and have since made their way into
the civil domain. Nowadays, UAV applications in-
clude but are not limited to commercial photogra-
phy and video, precision agriculture, border control
and delivery of goods. The market is still growing
and projections show that non-military UAV pro-
duction will total 14.3 billion dollars in 2028, while
totaling 4.9 billion dollars in 2019 [1].

UAV classification is important to differentiate
existing systems, since each category has different
legal regulations, and also commercial and opera-
tional purposes. Considering the classification of
UAVs proposed in reference [2], our work is specif-
ically aimed at fixed-wing mini UAVs (maximum
take-off weight < 25 kg, range < 10 km, endurance
< 2h and flight altitude < 120 m), due to the big
share of the market that this category occupies and
due to their versatility and low-cost. An example of
a representative UAV, to which this work is aimed,
is the AR4 (Figure 1), an autonomous, fixed-wing
and mini UAV designed and manufactured by the
Portuguese company Tekever. This aircraft has a

maximum take-off weight of 4 kg, an endurance of
2 hours, a maximum speed of 15 m/s and it is hand
launched for take-off [3].

Figure 1: Tekever AR4 UAV [3]

For the UAVs to perform the functions previously
described efficiently, autonomous and Beyond Vi-
sual Line of Sight (BVLOS) flight is essential, which
is already foreseen by the Portuguese law. Further-
more, for an autonomous and BVLOS flight to be
safe and effective, a reliable Sense and Avoidance
(S&A) system is needed. There are already numer-
ous proposals for avoidance algorithms and sensor
layouts, but adapting these systems to certain UAV
characteristics and keeping the cost low continues
to be a challenge. Therefore, the main goal of this
work is to improve the safety on low-cost fixed-wing
mini UAVs regarding the detection of obstacles dur-
ing their flight. It is part of an extensive obstacle
detection and collision avoidance system, represent-
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ing a two-stage ”sense” and ”avoid” problem, being
this work focused solely on the former.

2. Benchmark of Sensors

A thorough study was conducted on the various
types of sensors available on the market that could
be integrated into our UAV. After this analysis,
one of each sensor type was picked to be com-
pared to the others, regarding their range and
field of view (FOV), so that their attributes and
flaws could be better showcased. The picked sen-
sors for this comparison were the uAvionix pingRX

ADS-B [4], the Lightware LW20/C laser rangefinder
[5], the Aerotenna µSharp Patch RADAR [6], the
Intel D435 stereo camera [7] and the MaxBotix
MB1242 sonar [8]. All these sensors’ sensed areas
on the horizontal plane are represented in Figure
2, except for the ADS-B sensor, due to its omni-
directionality and the fact that its range depends
on the power of the other aircraft’s emitted signal.
The sonar’s FOV is almost invisible as a result of
its small range (two orders of magnitude below the
RADAR’s range).

Figure 2: Comparison of several sensors’ ranges and
FOVs

It is important to note that the LIDAR, due
to its multidirectionality, can scan with different
angular apertures and its area is only limited by
the used scanning servo. In Figure 2, an arbi-
trary 70◦horizontal FOV was chosen and, because
of this, the limits of the sensed area were dotted.
The LW20/C’s area, when the scanning mode is
not activated, is represented in dark blue, where its
0.3◦beam divergence can be observed.

The camera’s sensed area is associated with its
depth image sensors. The infra-red and color cam-
eras have their own range and FOV but these are
more applicable to complement other sensors as
they do not provide depth data.

Based on this comparison, the ultrasound and
stereo vision sensors were not modeled in section

3 due to their small range, as identifying obstacles
when they are only at a distance of 10 m or 0.765
m, when the UAV is traveling at a maximum cruise
speed of 15 m/s, generally, does not result in suc-
cessful avoidance maneuvers. The ADS-B was also
excluded for being a cooperative sensor, meaning
it would require other vehicles to be equipped with
similar equipment to allow the UAV to detect them,
which is outside the scope of this work.

3. Sensor Models

A sensor model is an abstraction of the actual sens-
ing process that describes the information a sensor
can provide, how this information is limited by the
environment and how it can be enhanced by data
obtained from other sensors.

For the developed simulations, different sensors
need to be modeled in order to compare their behav-
ior and find the combination of sensors that achieve
the best results. The sensors are characterized by
their range, FOV, accuracy and data acquisition fre-
quency. The values used for these parameters are
from the sensors presented in section 2, which were
obtained from their technical manuals or inferred
from available data. The considered parameters are
presented in Table 1.

Table 1: Characteristics of the different sensors
used in simulations

LIDAR Laser rangefinder RADAR

Range (m) 100 100 120

Horizontal FOV (◦) variable 0.3 50

Accuracy (m) 0.2 0.2 0.22

Maximum Frequency (Hz) 388 388 90

3.1. LIDAR/Laser Rangefinder Model

Fayad and Cherfaoui [9] presented an approach to
solve the problem of tracking partially hidden ob-
jects by a single layer laser scanner to be used in
driving situations. In the proposed method, if an
object is totally visible, it is considered that its half
was detected and the remaining of the obstacle is
reconstructed assuming symmetry, where the cen-
ter of symmetry is the medium point of the segment
connecting the first and last point of the cluster. In
our simulations, the obstacles were modeled as cir-
cles, so this distance corresponds to the diameter of
the obstacle.

This reference also provides a solution to the er-
rors caused by the higher distance between consec-
utive points in farther obstacles which results in
smaller detected dimensions, as seen in Figure 3,
where the modeled obstacle is considerably smaller
than the real obstacle.
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Figure 3: Obstacle reconstruction using a LIDAR

To solve this problem, the measured diameter is
passed through the time filter

Dk = Dk−1 +G(Dmeas −Dk−1) , (1)

where G (0 < G < 1) is the filter gain, Dk is the
filtered diameter at instant tk, Dk−1 is the filtered
diameter at instant tk−1, and Dmeas is the mea-
sured dimension at instant tk.

The gain needs to be carefully selected as it im-
pacts the speed of the variation of the dimensions.
A small gain corresponds to a slow variation and
it is preferable for noisy environments but not suit-
able for high relative speed objects. The gain can
be determined by

G = 1− n
√

1− p , (2)

where p corresponds to a fraction that represents
the desired accuracy of the dimensions and n cor-
responds to the number of filter cycles required to
get an accuracy of p.

Regarding the tracking phase, classical Kalman
filters [10] were used, where the motion of detected
obstacles is considered to be two-dimensional, linear
and constant between consecutive scans. This sim-
plification describes the state of the targets with an
acceptable error, considering a high scanning fre-
quency. This model assumes a LIDAR that only
scans horizontally, but if the rangefinder was to be
attached to a gimbal with two degrees of freedom,
it would have to be extended to include the third
dimension.

3.2. RADAR model

To evaluate the system performance, the RADAR
sensor was modeled in the context of the Sense and
Avoid system. So, this model addresses the angular
accuracy, update rate, range and field of view of the
RADAR, rather than being a lower-level model that
would deal with signal and environment modeling.

Assuming the RADAR sensor outputs the range,
bearing and elevation of the detected obstacles, the
state estimation becomes more complicated than
the estimations used in the previous model, as these
outputs are polar, whereas the intruder dynam-
ics are best expressed in rectangular coordinates.

Therefore, the chosen radar model was the con-
verted measurement Kalman filter (CMKF) due to
its easier implementation [11]. Once again, for sim-
plicity’s sake, all the following equations reflect a
two-dimensional model that can easily be extended
to 3-D.

The unbiased conversion [12] was used, as the
standard conversion method gives biased inconsis-
tent estimates for certain levels of cross-range mea-
surement error owing to the nonlinear transfor-
mation of the noisy bearing. Using the unbiased
conversion, considering the measurement errors are
modeled as Gaussian white noise, the compensa-
tion of the bias is multiplicative and the conversion
is given by

xum = λ−1α rm cos(αm) (3)

yum = λ−1α rm sin(αm) . (4)

where (xum,yum) are the measurements converted to
the Cartesian frame, rm is the measured range, αm
is the measured azimuth and λα is the bias com-
pensation factor given by

λα = e−σ
2
α/2 , (5)

where σα is the standard deviation of the noise in
the azimuth measurements.

Finally, the covariance matrix to be used in the
Kalman Filter is given by

Ru =

[
var(xum|rm, αm) cov(xum, y

u
m|rm, αm)

cov(xum, y
u
m|rm, αm) var(yum|rm, αm)

]
.

(6)
The computation of these variances are not included
here, but can be seen in reference [12].

4. Multisensor Data Fusion
When the sensing system is composed of multiple
sensors, the input data from the sensors needs to be
merged in some way. For this work, the weighted
filter method [13] was used. In this approach, a
weight is computed for each of the sensors, which
represents its reliability. Having computed all the
sensor weights, the sensor with the best result is
picked to provide the measurements in the present
iteration of the process.

To compute the weights, the UAV needs to be
also equipped with reference data sensors, which
provide information about the UAV’s state. IMUs
and optical flow sensors are examples of reference
data sensors used to evaluate the reliability of the
main sensor data and help to decide between those
sensors, based on the rationale that changes in dis-
tance to obstacles correspond to analogous changes
in the UAV’s position. If the obstacles are station-
ary, these variations should coincide. If the ob-
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stacles are moving, this information becomes cor-
rupted, but it is unlikely that this motion corre-
sponds better to randomly wrong measurements.

The weights are computed by comparing all pos-
sible sensor combinations of main data and refer-
ence data using a differential norm, where the ob-
stacle distance corresponding to the sensor with the
lowest weight is considered the final result, while the
remaining are rejected based on the idea that they
are corrupted. However, if the computed weights
have a low variation, the sensor values are fused
according to their weights.

5. Obstacle Detection and Avoidance Algo-
rithms

In this section, the chosen collision detection and
avoidance algorithms based on the work developed
in reference [14] are explained in detail. All subse-
quent simulations make use of the system described
here.

In the developed algorithm, each detected obsta-
cle has several safety zones associated with it, which
play a role in the collision detection phase as well
as in the avoidance phase. The obstacles were mod-
eled as spheres and, as such, the collision radius
(Rc) defines the volume of the obstacle and a col-
lision is said to occur if this radius is trespassed.
The safety radius (Rs) defines the minimum dis-
tance that should be maintained between the UAV
and the obstacle to take into account possible de-
viations and uncertainties that could happen dur-
ing the detection and path prediction phases. The
action radius (Ra) is the distance from which the
replanned paths begins to depart from the origi-
nal path given by the global planner. Lastly, the
detection radius (Rd) represents the distance from
which an obstacle is considered by this algorithm.
The Rs should be similar to the UAV’s size; the Ra
should be comparable to the Rs and the Rd corre-
sponds to the range of the sensors used. A represen-
tation of the described safety zones are displayed in

Figure 4.

Figure 4: Representation of the safety zones around
an obstacle

5.1. Geometric Collision Detection Method

The chosen collision detection method computes
straight projections of the obstacles, considering fu-
ture distances between the obstacles and the UAV.
As such, the resulting collision detection method

consists on computing the closest point of approach
(CPA) between the UAV and the target, assum-
ing that both vehicles will maintain constant veloc-
ities and rectilinear paths. If this distance is smaller
than the safety radius, an evasive maneuver must be
performed, otherwise the obstacle is not considered
a threat to the UAV. In case of multiple collisions
being detected, the obstacles are sorted according
to their times for collision tCPA, so that the obsta-
cles associated with possible collisions that would
happen first are avoided before the remaining ones.

5.2. Potential Fields Method

To solve the local path planning problem, the Po-
tential Fields approach is used, where the way-
points and obstacles are considered charged parti-
cles. Considering this analogy, the waypoints gen-
erate an attractive field, the obstacles a repulsive
field and the sum of all forces is used to generate
the direction of motion.

The attractive potential is given by

fat = αPF
Pc − P
||Pc − P ||

+ (1− αPF )
Pn − Pc
||Pn − Pc||

, (7)

where the first term is responsible for guiding the
UAV to the nearest point of the global path and
the second term is responsible for guiding the UAV
to the next defined waypoint. P is the the UAV’s
position, Pc is the closest point of the global path
and Pn is the position of the next waypoint. αPF
is responsible for giving more or less predominance
to each term.

An example of a global path to a waypoint and
its corresponding attractive potential field is repre-
sented in Figure 5 for αPF = 0.7.

Figure 5: Attractive field for a linear path with
αPF=0.7

Using a simple repulsive potential to avoid obsta-
cles is not feasible since that would lead to irregular
motion around the obstacle. So instead, the poten-
tial associated to the obstacle is described by

4



frep =


∞ d0

||d0|| , if ||d0|| ≤ Rc
Sms , if Rc < ||d0|| ≤ Rs
Sm

Ra−||d0||
Ra−Rs s , if Rs < ||d0|| ≤ Ra

0 , if ||d0|| ≥ Ra ∨ θ ≤ θc

.

(8)
This way, the field is different according to the dis-
tance between the obstacle and the UAV. If the
UAV is in the collision zone, the field will be repul-
sive (d0 is the vector pointing from the obstacle to
the UAV) with infinite intensity. If it is in the safety
zone, the field will have the direction of s, a swirling
term that makes the UAV maneuver in the correct
direction, and the intensity of Sm, a constant to be
defined depending on the velocity of the UAV. In
the action zone, the field is similar to the previous
one but with the addition of a gradient term that
ensures the intensity of the field decreases linearly
with the distance of the UAV to the obstacle un-
til becoming null for ||d0|| = Ra. Lastly, outside
the action zone, the obstacle has no influence in the
motion of the UAV, thus the field intensity is null.
To avoid the UAV being trapped around the obsta-
cle, the generated field needs to become zero once
the obstacle is overcome. To achieve this, the an-
gle θ between the desired direction of motion and
the direction of the obstacle is also computed and
the field becomes null if θ is smaller than a defined
cut-off angle θc. A potential field associated with
an obstacle is displayed in Figure 6.

Figure 6: Repulsive field for an obstacle with
Rc = 2, Rs = 3 and Ra = 6

6. Definition of UAV’s Model

Before performing the necessary simulations, sev-
eral parameters associated with the UAV’s dynam-
ics and the Kalman tracking need to be carefully de-
termined, namely the UAV’s speed, maximum an-
gular velocity and its measurement error covariance
matrix.

6.1. UAV’s Speed and Angular Velocity
Since the simulations were performed in a two-
dimensional environment, the two most important
performance parameters to define are the UAV’s
speed (V) and the maximum angular velocity (ω)
of its turns.

Considering the example of the Tekever AR4 de-
scribed in section 1, the UAV is considered to travel
with a speed between 8 m/s and 15 m/s. The
faster the UAV moves, the larger its angular ve-
locity needs to be so that the obstacles can be ef-
fectively avoided. To prove this concept and to get
the lowest maximum angular velocity needed for dif-
ferent possible UAV speed values, a series of simu-
lations were performed. In these simulations, the
UAV was set in a head-on collision course with an
obstacle with a 2 m radius and a safety radius of 2
m. The obstacle approaches with the same speed
as the UAV, which is equipped with a RADAR
with a 50◦ FOV and a 120 m range. For each of
the tested speeds, the maximum angular velocity
was decreased until the UAV could not perform the
avoidance maneuver without breaching the safety
zone around the UAV. The results obtained from
these tests are presented in Figure 7, in which a
linear dependency can be recognized.

Figure 7: Angular velocity needed to avoid obstacle
safely for different speeds

To check the validity of these results, the avoid-
ance maneuvers can be approximated to coordinate
turns [15]. A coordinate turn is a turning maneu-
ver made at a vertical and constant angular velocity
and in which the lateral component of the resulting
force is null. Considering that there is no wind, the
slip is almost null and the angle of attack and climb
angle are very small, the speed and the angular ve-
locity are related by

tan(φ) =
ωV

g
, (9)

where φ is the correspondent roll angle and g is the
standard acceleration due to gravity (≈ 9.81 m/s2).

The avoidance maneuver is not performed at a
constant angular velocity, but this approximation
can be made to check the roll angles corresponding
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to the speeds and angular velocities obtained. Some
of the obtained values are displayed in the Table 2.

Table 2: Roll angles for each maneuver considering
the performance of a coordinate turn

V (m/s) ω (◦/s) Roll Angle (◦)

8 87 51.1

10 114 63.8

12 136 71.0

15 168 77.4

The obtained roll angles are acceptable consider-
ing the urgency of the maneuvers needed to avoid
obstacles. For the highest speed of 15 m/s, the
corresponding roll angle is already pretty high but
achievable nonetheless. So, for the next simulations,
the maximum angular velocity of the turns was set
to 168◦/s.

6.2. Measurement Error Covariance Matrices
As described in section 3, using polar measurements
and a Cartesian state space leads to inaccuracies
when tracking the obstacles with a Kalman filter.
To test the measurement error covariance matrix
described in that section, the UAV was put in a
head-on collision course, where the UAV is moving
at 8 m/s and obstacle is moving at 10 m/s. The
UAV was equipped with a RADAR with the spec-
ifications of the Aerotenna µSharp Patch (100 m
range, 50◦ FOV and 0.22 m accuracy). The noise
was divided into a radial and an angular compo-
nent, where both components were modeled as a
zero-mean Gaussian noise, with the corresponding
variance chosen so that 99.73% of the set would be
within the accuracy range. The angular accuracy
was considered at half the sensor range (50 m).

To perform this test, one hundred simulations
were performed for the unbiased conversion ma-
trix, the standard conversion matrix and the iden-
tity matrix (as a control group). Then, the average
position errors were computed for both Cartesian
coordinates. The root mean square (RMS) devia-
tion for the three matrices and for both coordinates
is represented in Table 3. Only the first 250 scans
were considered in the computations, so that the
points where the obstacle is not detected anymore
do not influence this metric, as the avoidance ma-
neuver starts after this point.

From Table 3, one can conclude that using the
standard conversion or the unbiased conversion re-
sult in very similar results. This may be due to the
particular conditions of our study, where the sensor
range and the noise variance are not very high. In
spite of the similar results, the unbiased conversion
matrix will be used in all the following simulations.

Table 3: Root mean square deviations for each of
the used matrices

RMS [m] x axis y axis

Standard conversion matrix 0.0165 0.0013

Unbiased conversion matrix 0.0163 0.0016

Identity matrix 0.5993 0.0009

7. Sensor Parametric Studies
In this section, a study of the response of the UAV
to imminent collisions, when it is equipped with sen-
sors with different parameters is made, to verify if
the chosen sensors perform acceptably in avoiding
incoming obstacles.

7.1. Varying Range Simulations
To study how the sensor’s range influences the re-
sponse of the UAV to detected obstacles, the UAV
was set in a head-on collision course with an ob-
stacle with a radius of 2 m, a safety radius of 4 m
and animated with a speed of 10 m/s. The UAV is
equipped with a RADAR sensor with a FOV of 50◦

but, for this kind of experience, the type of sensor
used does not affect the results much. In Figure 8,
the different trajectories from UAVs animated with
a speed of 8 m/s with RADARs with varied ranges
are presented.

Figure 8: Avoidance trajectories for UAVs equipped
with a RADAR with different ranges for a head-on
collision threat

The UAV behaves very similarly for all illustrated
cases. The obstacle is always properly tracked and
avoided, which results in similar tight maneuvers. If
the UAV is equipped with a RADAR with a range
of 10 m, the UAV is already inside the action ra-
dius of the obstacle when the obstacle is detected.
Because of this, the UAV immediately initiates the
avoidance maneuver but cannot avoid breaching the
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safety radius of the obstacle. For this example,
ranges greater than 15 m result in identical trajec-
tories.

7.2. Varying Field of View Simulations
To test the effect of the FOV of the sensor on the
avoidance capabilities of the UAV, the UAV was
set in a 30◦ angled collision course with an obstacle
moving at a speed of 10 m/s, while being equipped
with a LIDAR that performs a measurement every
half degree with a range of 100 m. The LIDAR gain
from equation (2) also needs to be defined. For the
sensor to reach 99% of the real dimensions, p is set
to 0.99 and, to get this precision before the obsta-
cle transverses 10% of the 100 m range, the filter
needs to perform 20 iterations (n), considering the
LIDAR is working at a 50 Hz frequency and assum-
ing the obstacles can move at the same speed of the
UAV, which results in a maximum relative speed of
30 m/s. Knowing n and p, the minimum gain to be
used can be computed using said equation, it be-
ing 0.2057. The responses of the UAV for different
FOVs, when it is moving at a speed of 8 m/s, is
displayed in Figure 9.

Figure 9: Avoidance trajectories for UAVs equipped
with a LIDAR with different FOVs for an angled
collision threat

For a FOV of 30◦, the obstacle is detected when it
is already dangerously close to the UAV so the UAV
breaches the safety radius for several points, despite
avoiding a collision. For FOVs greater than 35◦, the
obstacle is properly tracked in advance, which re-
sults in a proper safe maneuver. Finally, for a FOV
of 0◦, which corresponds to a fixed laser rangefinder,
the UAV detects the obstacle only when it is di-
rectly in front of it, which causes a quick breach
of the safety radius. Because of the singular na-
ture of this case, the obstacle’s velocity can only be
tracked with a radial component and so, the obsta-
cle is tracked as being in a head-on collision course
with a small velocity. This leads to a wide maneu-

ver which results in the UAV leaving the obstacle’s
safety radius after only a couple points.

The obstacles were avoided by the UAVs with dif-
ferent sensors, but the success of the maneuver de-
pends on the approach angle of the obstacle. Small
FOVs also result in inadequate velocity tracking,
which cause the UAV to unreasonably distance it-
self from the planned trajectory.

8. Optimal Sensing System
In this section, an optimization study was made
in order to find the best sensor configuration, for
different sensor sets.

Firstly, fifty scenarios ware randomly generated,
where each scenario leads to imminent collisions.
Then, a function f(β), to be minimized and depen-
dent on the sensor orientation β, was created. f(β)
was initialized to null and all the generated sce-
narios were run, where, for each instant, f(β) was
incremented by{

f(β) = f(β) + 50 , if ||d0|| ≤ Rc
f(β) = f(β) + 1 , if Rc < ||d0|| ≤ Rs

, (10)

where Rc is the collision radius, Rs is the safety
radius and ||d0|| is the distance between the UAV
and a given obstacle. After running all the scenar-
ios, the cumulative value of f(β) can be evaluated:
the lower its value, the less failures and close-calls
happened.

To minimize this function, the Genetic Algorithm
(GA) [16] was used. This method is a gradient-free,
population-based method, which, instead of work-
ing with a single solution candidate, deals with a set
of solutions that are updated simultaneously from
iteration to iteration, which increases the likelihood
of finding the global optimum. In GA, the design
point associated with an individual is represented
as a chromosome. At each generation, the chromo-
somes of the fitter individuals are passed on to the
next generations after undergoing the genetic oper-
ations of crossover and mutation. New candidates
for the solution are generated with a mechanism
called crossover which combines part of the genetic
patrimony of each parent and then applies a random
mutation. If the new individual, called child, inher-
its good characteristics from his parents, it will have
a higher probability of survival. In the context of
genetic algorithms, the value of the objective func-
tion is termed the fitness and the variables need to
be bounded. The problem can then be posed in
standard form as

Minimize f(β)

w.r.t. β , (11)

subject to lb < β < ub ,

7



where lb and ub are the lower and upper bounds
of β, respectively, to be defined for each particular
case.

Before performing the simulations, several opti-
mization parameters needed to be defined:

� The initial population was set to be created
with a uniform distribution;

� The crossover function was set to create 80%
of the population in each generation;

� Because the variables are bounded, the mu-
tation function randomly generates directions
that are adaptive with respect to the last suc-
cessful or unsuccessful generation, where the
chosen direction and step length satisfy the set
bounds;

� The algorithm was set to stop after 20 genera-
tions, enough for one bounded variable to con-
verge until the genetic diversity is very small;

� The population size was set to 30, enough to
find the global minima in a timely manner.

These parameters were chosen following best
practices [17].

8.1. Set of two RADARS
For a set of two RADARs, the orientation of each
sensor was bounded between 0◦ and 90◦ from the
longitudinal axis, in the horizontal plane and, to
simplify the problem in order to reduce the com-
putation time, the two RADARs were considered
to have a symmetrical orientation about the UAV’s
longitudinal axis, which is an acceptable approxi-
mation. This way, the algorithm only had one vari-
able to optimize.

The algorithm performed well and, when the op-
timization was halted, the best fitness was 746 for
an orientation of 34.6◦, as seen in Figure 10. The
expected result of this simulation was for the sen-
sor orientation to be close to 25◦, which would wield
the same result as if the UAV was equipped with a
RADAR sensor with a doubled FOV.

Figure 10: Optimal configuration for two RADARs

A comparison of performance between the op-
timal orientation, a 25◦ orientation and a single

RADAR pointing forward is presented in Table 4,
where a failure happens when the UAV collides with
an obstacle and a close call happens if the UAV
breaches the safety radius of an obstacle.

Table 4: Comparison of performance for different
orientations for two RADARs

Orientation Fitness Value Failure Rate Close Call Rate

0◦ 1625 8% 22%

25◦ 1051 6% 26%

34.6◦ 746 6% 20%

All of the failures that occur when the UAV is
equipped with one RADAR pointing forward do not
happen for the optimal solution because, in those
cases, obstacles would approach the UAV from an
angle that would not allow their detection by a sin-
gle RADAR. However, because the optimal solution
cannot detect obstacles directly in front of the UAV,
two scenarios that were successes for one RADAR
become failures but, because the random scenar-
ios include a larger number of obstacles approach-
ing from a wide angle than approaching head-on,
the optimal solution corresponds to an angle larger
than 25◦. Moreover, overlapping FOVs would re-
sult in the use of the weighted filter data fusion
technique and, consequently, more accurate mea-
surements, but obstacles approaching from wider
angles would not be detected.

8.2. Set of two Laser Rangefinders

Like in the previous optimization, in this one the
two sensors were considered to be symmetrical
about the UAV’s longitudinal axis, so that only one
variable bounded between 0◦and 90◦needed to be
optimized. After 20 generations, both the best fit-
ness and the mean fitness were 348 for an orienta-
tion of 25.1◦(Figure 11).

Figure 11: Optimal configuration for two laser
rangefinders

As seen in Table 5, the optimal configuration re-
sults in no collisions in all scenarios.
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Table 5: Comparison of performance for different
orientations for two laser rangefinders

Orientation Fitness Value Failure Rate Close Call Rate

0◦ 1753 12% 40%

25.1◦ 348 0% 44%

The optimal solution results in a much lower fit-
ness value than when only one laser rangefinder
pointing forward is used, as obstacles coming from
an angled approach can be detected before the col-
lision. However, despite the zero collisions, in 44%
of the scenarios, the safety radius of obstacles were
breached because when collisions with moving ob-
jects are imminent, a UAV equipped only with laser
rangefinders is not capable of properly tracking the
obstacles.

8.3. Set of two Laser Rangefinders and one RADAR
This optimization involved three sensors: one fixed
radar pointing forward and two laser rangefind-
ers symmetrical about the UAV’s longitudinal axis,
whose orientation was bonded between 0◦and 90◦.
When the algorithm halted, the best fitness was 304
for an orientation of 69.2◦(Figure 12).

Figure 12: Optimal configuration for two laser
rangefinders and one RADAR

In Table 6, the performance of the optimal solu-
tion is compared to the performance of the solutions
that would result from a UAV being equipped with
only one type of sensor, it being a RADAR pointing
forward or two symmetrical laser rangefinders with
an orientation of 69.2◦.

Table 6: Comparison of performance for the opti-
mal solution when using different sensors

Sensors Fitness Value Failure Rate Close Call Rate

One RADAR 1625 8% 22%

Two lasers 1660 8% 62%

One RADAR and two lasers 304 2% 18%

Despite the two lasers configuration and the one
RADAR configuration having very similar fitness
values, a UAV with only two lasers has almost the
triple of close calls than a UAV with one RADAR

because the UAV will only be able to detect most
of the obstacles when the safety radius is already
breached. By contrast, the optimal solution results
in only one failure and a reduced number of close
calls.

The obtained solution was expected because ob-
stacles approaching in a head-on collision course
could be detected by the RADAR, while the ones
approaching in an angled collision course could be
detected by the heavily displaced laser rangefind-
ers. Once again, the optimal solution did not in-
volve overlapping sensors, which would increase the
accuracy of the measurements through the use of
the chosen data fusion algorithm, but would not al-
low the detection of obstacles approaching from a
wider angle, which is more favorable.

9. Conclusions
9.1. Achievements
This work was developed with the goal of enhanc-
ing the safety in the flight of fixed-wing mini UAVs,
in regard to the detection of obstacles during flight.
The focus was on the first stage of the S&A phase,
responsible for the acquisition of the necessary in-
formation that allows the vehicle to detect threat-
ening situations like proximity to sensitive infras-
tructures and route of collision with other manned
or unmanned aircraft.

Several possible sensors were considered to be
used by the developed system and after making a
market study on available sensors to know which
sensors had the most adequate attributes (range,
FOV, accuracy, cost), ultrasound and stereo vision
sensors were rejected due to the small range they
provided, ADS-B sensors were rejected for only de-
tecting other aircraft when they were also equipped
with this cooperative sensor, which would not fit
the scope of this work, despite existing small mod-
els that could be implemented in mini UAVs.

This work was part of a comprehensive obstacle
detection and collision avoidance system, so an in-
depth description of the potential field approach,
the chosen algorithm, was also made.

To integrate the adequate sensors into the avoid-
ance system already developed, they needed to be
modeled. These models took into consideration
the range, FOV and accuracy that the real sen-
sors were characterized by. For laser rangefind-
ers and LIDARs, classic Kalman filters were suf-
ficient to guarantee adequate tracking. However,
for the RADAR sensors, a Converted Measurement
Kalman Filter with unbiased conversion was re-
quired, due to the conversion of the measurements
from polar to Cartesian coordinates. Additionally,
to fuse the data obtained from different redundant
sensors at a decision level, the weighted filter tech-
nique was selected due to its simplicity and effec-
tiveness.
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Having modeled the sensors, several parametric
studies were made, where the impact of the range
and field of view of the vehicle in the avoidance of
obstacles from predetermined scenarios was made
clear. From these simulations, the specifications
of the studied sensors were verified as more than
acceptable for avoiding obstacles at the considered
speed range. Additionally, an optimization study
was conducted to determine the best orientation
that the sensors should have when the UAV is
equipped with different sets of sensors. The opti-
mization process was accomplished by using the ge-
netic algorithm to minimize a function closely asso-
ciated with the success and failure of the avoidance
maneuvers. Because the sensors in the tested sets
were redundant, none of the optimal solutions in-
volved using the selected sensor fusion method, as
having the sensors pointing at different directions
is more valuable than having them pointing at the
same obstacle and fusing the results.

Overall, the developed system provided a satis-
factory solution to the obstacle detection problem
of mini UAVs in a simulated environment.

9.2. Future Work

There are several improvements and future work
that can be made. The simulations can be adapted
to a space that better integrates the vehicle dynam-
ics, so that the used models better reflect the reality.
This new simulated environment should also be able
to generate more complex obstacles that better re-
flect the diversity found in the real world. A study
can also be made regarding the fusion of range sen-
sors with image sensors, since this work only dealt
with the fusion of redundant sensors.

Ground and flight tests should also be made to
test how a vehicle would behave when using the cho-
sen avoidance algorithm with different sensor con-
figurations in the real world.

Finally, this work was developed with the objec-
tive of increasing the UAV’s autonomy, but inter-
action with the operator should also be considered,
so that more suitable decision systems can be de-
veloped.
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