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Resumo

Nos últimos anos, o mercado de veículos aéreos não tripulados (UAV) foi-se expandindo e diversifi-

cando substancialmente. Este trabalho apresenta uma solução para o aumento da segurança durante

o voo de UAVs pequenos de asa fixa, no que diz respeito à deteção de obstáculos durante o voo. Esta

tarefa foi alcançada através da realização de um estudo de mercado sobre os sensores disponíveis,

de forma a encontrar os mais adequados a equipar no UAV e modelando-os, para que estes modelos

pudessem ser integrados em simulações de deteção e prevenção de colisões. Também foi feito um

estudo sobre diferentes filtros de rastreio e técnicas de fusão de sensores, onde o Filtro de Kalman

de Medição Convertida e a técnica de Filtro Ponderado foram consideradas as melhores opções. Nas

simulações realizadas, o método de evasão utilizado foi o dos Campos Potenciais por ser computa-

cionalmente barato e por fornecer soluções viáveis em tempo real. Vários estudos paramétricos foram

conduzidos para testar o desempenho dos sensores estudados e para averiguar como os diferentes

parâmetros do sensor afetam o sucesso da evasão de obstáculos. Nestes testes, as características

dos sensores foram consideradas adequadas para evitar obstáculos quando integrados em pequenos

UAVs. Também foi realizado um estudo de otimização, utilizando um algoritmo genético, para encontrar,

para várias configurações de sensores, as orientações que resultassem no melhor desempenho para

um conjunto de cenários gerados aleatoriamente e, no geral, o sistema desenvolvido forneceu uma

solução satisfatória.

Palavras-chave: Campos Potenciais, Algoritmo Genético, Filtro de Kalman, Conversão Im-

parcial, Fusão de Sensores, Estudo Paramétrico
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Abstract

In the last years, the unmanned aerial vehicles (UAV) market has expanded and diversified substan-

tially. This work presents a solution for the enhancement of safety during the flight of small fixed-wing

UAVs, regarding the detection of obstacles during flight. This task was achieved by making a market

study on available sensors to find the most suitable to equip a UAV and by modeling them, so that these

models could be integrated into collision detection and avoidance simulations. A study was also made

on different tracking filters and sensor fusion techniques, where the Converted Measurement Kalman

Filter and the Weighted Filter technique were found to be the best options to implement. In the performed

simulations, the used avoidance method was the Potential Fields for being computationally inexpensive

and for providing feasible solutions in real time. Several parametric studies were conducted to test the

performance of the studied sensors and to see how different sensor parameters affect the success of

the obstacle avoidance. In these tests, the characteristics of the sensors were deemed adequate for

avoiding obstacles when integrated into small UAVs. An optimization study was also conducted, using

a genetic algorithm, to find the orientation of sensors, for different sets of sensors, that results in the

best performance in a collection of random generated scenarios. It is shown that, overall, the developed

system provided a satisfactory solution.

Keywords: Potential Fields, Genetic Algorithm, Kalman Filter, Unbiased Conversion, Sensor

Fusion, Parametric Study
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Chapter 1

Introduction

1.1 UAV Market Overview

Like many other technologies, Unmanned Aircraft Vehicles (UAVs) were initially developed for military

purposes and have since made their way into the civil domain. Their origin dates back to World War

I when the Navy and Army experimented with aerial torpedoes and flying bombs [1]. Since then, the

UAV market has expanded and diversified substantially. Nowadays, UAV applications include but are not

limited to:

• Commercial Photography and Video (Figure 1.1 (a)): Due to their small size and agility, UAVs can

be used to obtain video footage that otherwise would have been impossible to acquire. Moreover,

employing UAVs in video production and broadcasting opens up numerous opportunities for new

forms of content, enhanced viewer engagement and interactivity [2];

• Precision Agriculture (Figure 1.1 (b)): UAVs can be used to estimate and predict health of crops to

design targeted fertilizer treatment plans in order to improve productivity, farm profits and environ-

mental quality [3];

• Border Control (Figure 1.1 (c)): UAVs can also be used to track and recognize illegal activities, un-

wanted infiltrators and unauthorized trespassers of national borders by using cooperative surveil-

lance [4];

• Deliveries (Figure 1.1 (d)): The interest in using UAVs for transportation and delivery of goods has

been increasing. UAVs can avoid obstacles that ground vehicles cannot and therefore the use of

UAVs allows for reductions in time, effort and cost [5].

The market is still growing and projections show that non-military UAV production will total 14.3 billion

dollars in 2028, while totaling 4.9 billion dollars in 2019, presenting a Compound Annual Growth Rate

(CAGR) of 12.6% in constant dollars [10].

UAV classification is important to differentiate existing systems, since each category has different

legal regulations, and also commercial and operational purposes. There is a large number of metrics
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(a) UAV capturing video footage [6] (b) UAV examining a crop [7]

(c) UAV patrolling the US border [8] (d) UAV delivering a parcel [9]

Figure 1.1: Some UAV applications

that have been used for UAV classification, such as maximum take-off weight (MTOW), size, operating

conditions, or any combination of these and other characteristics. MTOW is a good metric for regulatory

purposes since it correlates well with the expected kinetic energy imparted at impact, which in turn is

considered to be the primary factor affecting safety of operations. Basing UAV classes on flight altitude

may also be of interest since they will dictate to a degree collision avoidance requirements.

One possible classification of UAV is presented in Table 1.1, where the variety of UAVs and the

multiple dimensions of differentiation are displayed [11].

Table 1.1: UAV categorization

Category MTOW (kg) Range (km) Flight Altitude (m) Endurance (h)

Micro <5 <10 250 1
Mini <10/25/30/150 1 <10 150/250/300 <2

Close Range (CR) 25-150 10-30 3000 2-4
Short Range (SR) 50-250 30-70 3000 3-6

Medium Range (MR) 150-500 70-200 5000 6-10
MR Endurance (MRE) 500-1500 >500 8000 10-18

Low Altitude Deep Penetration (LADP) 250-2500 >250 50-9000 0.5-1
Low Altitude Long Endurance (LALE) 15-25 >500 3000 >24

Medium Altitude Long Endurance (MALE) 1000-1500 >500 3000 24-48
High Altitude Long Endurance (HALE) 2500-5000 >2000 20000 24-48

Unmanned Combat AV (UCAV) >1000 1500 12000 2

1varies with national legal restrictions
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In the United States, from the 1,563,263 UAVs registered in 2020, 441,709 are used for commercial

purposes and 1,117,900 are used for recreational purposes [12]. The Federal Aviation Administration

(FAA) conducted a survey to get a snapshot of the UAV categories owned by the general population

[13]. By extrapolating the data obtained in this survey to the total commercial and recreational UAVs

registered in the United States, we get the distribution presented in Figure 1.2.

Figure 1.2: Distribution of UAVs in regard to use and category

There is not available data on the quantity of UAVs owned by the United States military but a forecast

indicates that the USA will acquire over 1000 UCAVs in the next 10 years, which is a much smaller num-

ber than the 1,563,263 registered small UAVs [14]. The image and the data show the great interest in

small UAVs from the general public, which surpasses, in volume, the commercial and military branches,

thus motivating the study and development of systems to improve these micro and mini UAVs.

UAVs can also be classified based on their level of autonomy under the three following categories:

• Remotely piloted: A certified pilot controls the UAV either within line of sight (LOS) or with feedback

from the UAV sensors;

• Remotely operated: The UAV is given high-level commands (waypoints, objects to track, etc.) but

the decision making is delegated to a trained operator who monitors its performance;

• Fully autonomous: The UAV is given general tasks and is capable of determining how to accom-

plish them, even at the face of unforeseen events. If any faults occur, it can also react accordingly.

Regarding wing configuration, UAVs can have fixed wing or rotary wing. The configuration must be

chosen according to the operational mission at hand. On the one hand, UCAVs may be required to

operate at a higher speed, so they are likely to have a fixed wing with a low aspect-ratio and take-off

from a long runway or be air-launched. On the other hand, the majority of civilian uses for UAVs will

require the air vehicle to fly at speeds lower than 50 knots for much of its mission and many will require

or benefit from the ability to hover, thus a rotary wing configuration is preferred [15].

3



1.2 Sensing Systems’ Applications

Sensing technology has become very popular and has been used for a wide variety of purposes. In

this section, a brief summary of two of these applications is made.

Back in the 1990’s, mobile robot missions to the surface of Mars were being planned and, to prepare

for these missions, several prototype rovers were constructed to be tested in desert fields. One of

these prototypes was the Rocky 7 [16] (Figure 1.3 (a)). To provide a reliable measurement of the

vehicle heading, this rover was equipped with sun sensors, accelerometers to determine sensor tilt

and an on-board clock, since the Mars’ magnetic field is too negligible to use a magnetic compass. For

hazard avoidance, navigation telemetry and science data, black and white CCD (charge-coupled device)

cameras were used extensively. Images from pairs of these cameras were captured simultaneously as

stereo pairs and were processed on-board to provide depth maps of the environment. Afterwards, the

stereo images were automatically analyzed for abrupt changes in height or high-centering hazards [17].

An application closer to the objective of this work was the Defense Advanced Research Projects

Agency (DARPA) Grand Challenge of 2005, a driverless car race in which several universities competed

to have the shortest time in a 212 km of of-road course. During the race, the engineers could not contact

the vehicle, which could only rely on its sensors to detect and avoid obstacles. In particular, the Stanley

vehicle, the winner of the race [18] (Figure 1.3 (b)), was equipped with coupled laser, vision and RADAR

sensors: the laser sensor had great accuracy and a short range sufficient for slow motion, the camera

captured denser data but was unable to provide range data and the RADAR provided range data for a

range of up to 200 meters, but at a level of coarseness far inferior to the laser measurements. All raw

sensor data was geo-referenced by the unscented Kalman filter (UKF) position estimates. This filter is

a non-linear version of the Kalman filter that asynchronously integrates data from the Global Positioning

System (GPS) systems, the Inertial Measurement Unit (IMU), and the Controller Area Network (CAN

bus) [19, 20].

(a) Rocky 7 Mars rover [16] (b) Stanley vehicle with its five laser sensors on the roof [18]

Figure 1.3: Vehicles possessing complex obstacle detection and avoidance systems
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1.3 Motivation

With the development and increasing numbers of civil UAVs it becomes apparent that their deregu-

lated and mass use can affect negatively the operational security of air navigation as well as people’s

safety.

Portuguese legislation regarding the use and operation of these kind of vehicles already exists and

the Autoridade Nacional da Aviação Civil (ANAC) is the competent Portuguese authority that has ap-

proved the current enforced regulations [21]. A brief summary of these directives include:

• UAVs can only operate during the day, in Visual Line of Sight (VLOS) operation, up to 120 meters

(400 feet) above the surface;

• UAVs must keep a safe distance from people and patrimonial assets to avoid damage in case of

an accident;

• Priority must always be given to manned aircraft;

• UAVs must fly with identification lights always on;

• There are forbidden areas around military bases, airports and aerodromes that must be respected;

• For a flight to happen near the vicinity of aerodromes, several requirements must be met, depend-

ing on its airspace, such as: a special clearance, direct contact with the aerodrome staff and the

ability to measure its altitude;

• Near aerodromes, flights cannot exceed the altitude of the highest obstacle within a radius of 75

meters centered on the UAV;

• An authorization from ANAC is required for operation during the night, Beyond Visual Line of Sight

(BVLOS) flight or if the UAV weighs more than 25 kg.

To complement these regulations, the Decreto Lei 58/2018 was issued in 2018 [22]. This decree

made mandatory to have liability insurance on every UAVs that weighted more than 900 grams and

required the registration of every UAV that weighted more than 250 grams, but at the time of writing,

these new laws have not yet been enforced. These Portuguese regulations were promulgated in antici-

pation to European laws that would be issued in the foreseeable future by the European Aviation Safety

Agency (EASA), and indeed, since July 1, 2020, new European regulations were enforced. These are

resemblant to the Portuguese regulations already in place and will also impose the online evaluation of

remote pilots and registration of UAVs that weight more than 250 grams [23].

For the UAVs to perform the functions described in subsection 1.1 efficiently, autonomous and

BVLOS flight is essential, which is already foreseen by the Portuguese law. Furthermore, for an au-

tonomous and BVLOS flight to be safe and effective, a reliable Detection and Avoidance system is

needed. There are already numerous proposals for avoidance algorithms and sensor layouts but adapt-

ing these systems to certain UAV characteristics and keeping the cost low continues to be a challenge.
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The present work is specifically aimed at fixed-wing mini UAVs (MTOW < 25 kg), due to the big share

of the market that this category occupies (as seen in section 1.1) and due to their versatility and low-cost.

Despite the bigger share of micro UAVs, weighing less than 5 kg makes them less qualified for outdoors

operation. An example of a representative UAV, to which this work is aimed, is the AR4 (Figure 1.4), an

autonomous, fixed-wing and mini UAV designed and manufactured by the Portuguese company Tekever.

This aircraft has a maximum take-off weight of 4 kg, an endurance of 2 hours, a maximum speed of 15

m/s and it is hand launched for take-off [24].

Figure 1.4: Tekever AR4 UAV [24]

1.4 Objectives and Deliverables

With the rapid development of UAVs in recent years and the multiplicity of missions in which UAVs

are being used for, new areas of research regarding these vehicles have been surfacing. An overview

of some of these domains is displayed in Figure 1.5. This thesis will focus on the autonomy subsystem,

specifically on the obstacle detection and sensor fusion aspects.

Figure 1.5: UAV areas of research

The main goal of this thesis is to improve the safety on low-cost fixed-wing mini UAVs regarding

the detection of obstacles during their flight. It is part of an extensive obstacle detection and collision

avoidance system, representing a two-stage "sense" and "avoid" problem, being the work focused solely

on the former.
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During the detection stage, the acquisition of information enables the UAV to detect threatening

situations like proximity to ground obstacles, proximity to sensitive infrastructures, and route of collision

with other manned or unmanned aircraft. This stage requires a set of sensors and communications

devices to be available and the acquired information to be preprocessed and integrated (sensor fusion)

to allow the detection of safety issues. The problem is divided in the following sub-goals:

1. Study existing rangefinders and chose which ones are to be integrated in the UAV platform to

perform the detection of obstacles;

2. Chose suitable sensor fusion techniques to get the appropriate data from the several sensors for

the detection of safety issues;

3. Evaluate the performance of the developed system in a simulated space to determine the draw-

backs and advantages of the proposed methods;

4. Determine optimal sensor configurations that yield the best obstacle avoidance success rate.

In order to meet these proposed objectives, there is a set of deliverables that are expected to be out-

putted, namely:

1. Virtual simulation tools to evaluate the performance of the system configuration;

2. A methodology for getting an optimal configuration of systems adapted to the mission requirements

and the aircraft’s characteristics;

It is to be assumed that the obstacle identification data is to be fed to an existing system that will deal

with the "avoidance" stage and take the appropriate evasive maneuvers.

1.5 Thesis Outline

The remainder of this thesis is organized as follows:

In chapter 2, each one of the blocks of the architecture of the sense and avoidance system is ex-

plained and a description of various cooperative and non-cooperative sensors is made by disclosing how

each one acquires its data and by presenting a couple examples in which that sensor can be used in

different fields of study. After introducing all the considered sensors, a comparative analysis is made in

regards to several critical parameters. Lastly, the architecture of the proposed solution is presented.

Chapter 3 presents a benchmark of sensors commercially available and a quantitative comparison

between them regarding several factors, which include range, field of view, cost and weight, is made so

that the most suitable are chosen to be modeled.

Chapter 4 introduces the different Kalman filters that are used to track the obstacles detected by

the different sensors and discloses the different ways in which each sensor is modeled in the simulated

space. Finally, an approach on how to model the obstacles in the simulated environment is suggested.

Chapter 5 addresses different techniques to fuse the data from the used sensors that provide redun-

dant data and the most suitable is chosen.
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Chapter 6 addresses different possible collision detection and avoidance algorithms and the chosen

geometric collision detection method and the potential fields method are described in detail.

In Chapter 7, several collision scenarios used to study the performance of the sensors are described

and numerous parameters associated with the dynamics of the UAV and with the Kalman tracking are

determined so that the UAV behaves realistically in the simulated space and the tracking phase is ran

correctly. After, a sensor parametric study is made in order to see how different sensor parameters affect

the success of the obstacle avoidance.

Chapter 8 presents an optimization study to find the orientation of sensors that result in the best

performance in a collection of random generated scenarios, for different sets of sensors. The genetic

algorithm used to perform this optimization is also described and the choice to use this algorithm is also

justified.

Lastly, chapter 9 presents the conclusions of this work and recommends future work to be developed.
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Chapter 2

Obstacle Detection

In this chapter, an overview of a typical architecture of Sense and Avoidance (S&A) systems will

be discussed and each module will be briefly explained. Then, an analysis on several sensors that

are commonly used for obstacle detection will be made. These will be divided into two categories:

cooperative and non-cooperative sensors. Cooperative sensors require the existence of other vehicles in

the airspace to be equipped with the same kind of sensors for information to be exchanged between them

so as to conclude the aircraft/object detection. In contrast, both ground and airborne objects without any

communication equipment can be detected by non-cooperative sensors. Cooperative sensors tend to

have a higher cost but function much better in Instrument Meteorological Conditions (IMC) [25].

Finally, a qualitative comparative analysis of these sensors will be made and their specifications will

be presented in a table to get a better idea of each sensor’s positive and negative aspects.

2.1 Architecture of S&A Systems

The process of obstacle detection and avoidance can be divided into several modules represented

in the functional block diagram in Figure 2.1.

Figure 2.1: Block diagram of S&A systems’ architecture
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During the pre-flight phase, in the Flight Planning Module, the optimal path is computed, based on

a set of predetermined waypoints (WP). To evaluate the best path, cost functions are formulated that

take into consideration path lengths, flight altitude, danger zones, energy consumption, threats and flight

time. To solve this optimization problem, several algorithms can be used such as Mixed Integer Linear

Programming (MILP) which is effective despite being computationally demanding. However, this is not

problematic, as this algorithm can be executed in high-end computers during the pre-flight phase, when

there are no hard limitations on computational power and time [26]. Non-deterministic algorithms are

also gaining popularity such as the Genetic Algorithm (GA), where the possible WP are comparable to

genes and the possible solutions are comparable to chromosomes, which are subjected to crossover,

mutation and where the fittest are favored [27].

Once this phase is completed, the list of waypoints to follow will be loaded into the Flight Controller,

which will issue control commands to the UAV actuators, so that the UAV can make the correct maneuver

to proceed to the next WP.

The Sensing Module is responsible for searching continually for obstacles in the UAV’s vicinity and

sending the obstacle data to the Collision Detection Module at a constant frequency to be stored in a list.

Each element of this list contains the obstacle three-dimensional position, height, velocity and radius of

protection volume, which encompasses the obstacle and a safety margin.

In the Collision Detection Module, knowing the UAV’s position, the distance to the obstacle can be

computed and used to order the elements of the list from closest to farthest, since the closest obstacles

pose the highest risk. However, if the obstacle is not static, its velocity must also be taken into account

to define the priority order of the obstacles within the list.

If one of these poses a threat to the UAV’s navigation, the Collision Avoidance Module will be trig-

gered and it will identify possible solutions to avoid the danger by using one of several algorithms. When

designing this module, several aspects must be considered, such as the maneuverability of the UAV, the

surrounding environment, safety, cost of the path and energy to be spent in the segment of leg (path

between current position of UAV and the next WP). These aspects are incorporated in the form of cost

functions that need to be minimized, and in the form of constraints that a path must act in accordance

with. Once a solution is found, the waypoint list is updated to feature the new optimized waypoint and

passed on to the flight controller module to allow the tracking of the new path [28].

All this process (except for the Flight Planning phase) must be completed in a timely manner as this

is a real-time system with a strict time constraint considering that the collision may not be avoided if the

computations and actions take too long.

2.2 Cooperative Obstacle Sensing

2.2.1 Traffic Alert and Collision Avoidance System (TCAS)

This cooperative obstacle sensing system is mandatory on all large transport aircraft and has helped

preventing many catastrophic accidents. Its surveillance is based on air-to-air interrogations broadcast
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once per second by a mode S (select) transponder, which has a unique 24-bit identifier. Once the

intruder’s transponder receives this interrogation, it emits a response with its current altitude. When this

response is received, the TCAS computes the range and the bearing of the intruder and if a collision is

predicted to happen within the next 20 to 48 seconds (depending on the altitude), TCAS issues a traffic

advisory (TA), which is presented in a display and communicated as a spoken message. The pilot is

then supposed to search visually for the threat and prepare for an evasive maneuver. If the situation

worsens (15 to 35 seconds before collision, depending on altitude), a resolution advisory (RA), which

is coordinated through a data link to ensure that each aircraft maneuvers in a compatible direction, is

issued and the pilot is commanded to turn the auto-pilot off and either climb or descent, following the

spoken and displayed instructions [29]. The TA and RA regions are represented in Figure 2.2.

Figure 2.2: Traffic Advisory (TA) and Resolution Advisory (RA) regions [30]

Several versions of TCAS were developed over the years. TCAS I was intended to accommodate the

general aviation (GA) community and the regional airlines. This system includes the traffic display, pro-

vides TAs and is mandatory on aircraft with 10 to 30 seats, although TCAS II may be installed instead.

TCAS II is a more sophisticated system which provides the information of TCAS I, and also includes

complex collision avoidance logic to provide vertical RAs to the flight crew. It is required internationally

in aircraft with more than 30 seats or weighing more than 15,000 kg. TCAS III was envisioned as an

expansion of the TCAS II concept to include horizontal RA capability. However, by 1995, it was deter-

mined that the concept was unworkable using available surveillance technology (due to the inadequacy

of horizontal position information), and that horizontal RAs were unlikely to be invoked in most encounter

geometries. In a continued effort to develop horizontal RA capability, a TCAS IV concept was studied

in the mid 1990s. TCAS IV would use extended transponder messages to provide accurate position in-

formation from traffic navigation sources, such as inertial navigation systems or GPS, when requested.

However, this concept was abandoned as ADS-B development started [31].

Nonetheless, using TCAS in UAVs is challenging as the payload is strictly limited. As an example,

the TTR-4100 [32], a lightweight TCAS, requires 28 V DC to function and weighs 6.2 kg which already

exceeds the Tekever AR4’s MTOW. Moreover, TCAS has trouble in dealing with multiple aircraft and

communication between manned and unmanned aircraft is also a drawback [25].

In references [33] and [34], the implementation of a collision avoidance system using TCAS in larger
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UAVs is contemplated. The authors concluded that this system does not provide sufficiently precise

directional information to use in unmanned aircraft as this system is intended to aid visual acquisition by

indicating the proper sector to search out the cockpit, but does not provide sufficient bearing or altitude

rate accuracy to support avoidance maneuvers by itself, requiring supplementary systems to provide

precise directions.

2.2.2 Automatic Dependent Surveillance-Broadcast (ADS-B)

ADS-B, at its introduction, represented a completely new paradigm for air-traffic control and has

gained so much prominence that since June 2020 every manned aircraft that weighs more than 5700 kg

or has a maximum cruise speed greater than 250 knots will need to be equipped with ADS-B capabilities

to be operated in European airspace [35], which is already required for operation in the U.S. airspace.

Every aircraft that uses this system retrieves its position and velocity by using an onboard GPS receiver.

Then the information is periodically broadcast by the transmitting subsystem ADS-B Out. This message

is received and processed by the Air Traffic Control (ATC) as well as surrounding aircraft equipped with

ADS-B In, as is depicted in Figure 2.3. With the knowledge of other aircraft’s position, velocity and

course, collisions can be avoided by the remote or auto-pilots [36].

Figure 2.3: Operation of ADS-B system [37]

ADS-B is favorable for UAV S&A since it can provide accurate and reliable information of naviga-

tion variables, uses well-proven communication technology, possesses flexible structure for easy imple-

mentation and can even be integrated into existing traditional TCAS transponders. However, ADS-B is

ineffective in the case of ground-based obstacles, such as terrain features, towers or power lines [25].

Lin et al. [38] developed a collision avoidance system to be used in helicopter/UAV cooperative

disaster surveillance operations that makes use of quasi ADS-B systems employing the same general
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operation principles of traditional TCAS. However, they made use of a different approach to TCAS,

more suitable for helicopters and UAVs, by proposing an algorithm that uses a virtual sector in front

of each aircraft instead of the conventional separation bubble algorithm, that issue TA and RA from

the position and overlapped area of two aircraft’s sectors. This was done as a result of the higher

maneuverability of UAVs and helicopters, which can turn rapidly and violate the straight flight route

assumed by conventional TCAS. Since this operation combines manned and unmanned aircraft, only

the manned helicopters were supposed to change paths when alerted, while the UAVs were assigned

a higher priority and only broadcast their position and following way-point through a quasi ADS-B out

system.

In reference [39], an ADS-B radar system was designed to perform cooperative and non-cooperative

obstacle sensing. This system broadcasts standard ADS-B messages to alert other aircraft, receives

the same kind of information from others and uses the echo of its own transmissions to detect and track

non-cooperative targets, such as terrain or aircraft without proper cooperative sensors. This system

operates using standard ADS-B transponders which do not require any modification, despite an antenna

array being required to detect the reflected signals. The needed components weigh less than 1.1 kg,

have a size of 200 cm3 and a power consumption of less than 40 W, which may be acceptable depending

on the type and application of the UAV.

2.3 Non-cooperative Obstacle Sensing

2.3.1 Laser Rangefinder

Laser rangefinders are able to compute distances to obstacles by emitting a laser pulse and mea-

suring the time it takes for the reflected beam to be detected, as represented in Figure 2.4. This kind

of sensor is being used more and more due to its low price, portability and stability, despite being fairly

impacted by illumination and atmospheric conditions [40].

Figure 2.4: Operation principle of a laser rangefinder [41]
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Saunders et al. [42] developed a static and dynamic obstacle avoidance for miniature air vehicles,

by using a laser rangefinder, due to the weight and electrical power limitations in such small vehicles.

The fixed sensor was mounted to detect obstacles directly in front of the UAV. In addition to a rapidly-

exploring random tree algorithm used to generate waypoint paths around obstacles known a priori,

a dynamic geometric algorithm is used to generate paths around detected obstacles. Regarding the

sensing phase, there are two algorithms that run in turn to gather information on obstacle locations. The

first scans the area of the UAV’s expected trajectory and the second scans the dimensions of obstacles

already partially detected in an attempt to provide enough information to avoid them.

In reference [43], an obstacle and avoidance system to perform in urban environments was imple-

mented in a micro UAV by using a pair of miniature laser rangefinders and two proportional-integral-

derivative (PID) controllers cooperating with an obstacle avoidance controller. For this micro UAV, using

laser sensors was also the best solution due to its simplicity and power and weight constraints. In this

case, using a single laser rangefinder was not feasible, as such configuration disables the possibility of

flight in streets’ canyons. As a result, the chosen configuration was to place both laser beams tangent

to the UAV plane, forming a 60 degree "V" shape. The data was filtered to eliminate noise, disturbances

and peaks caused by small obstacles that could bring instability to the system. Additionally, the fact that

the sensors were fixed to the UAV body frame meant that a coordinate transformation was needed to

obtain the real distances to the obstacles.

2.3.2 Light Detection and Ranging (LIDAR)

Laser rangefinders can also be used to achieve laser scanning, also known as LIDAR, if the sensor

is attached to a scanning surface such as a servo or if an oscillating mirror deflects the laser beams. By

doing so, a large number of distance measurements can be acquired for a small area, thus creating a

3-D point cloud, as represented in Figure 2.5.

Figure 2.5: 3-D map of point cloud obtained from LIDAR [44]

To improve the surveying accuracy of the point cloud obtained from a LIDAR, its errors should be

reduced as much as possible. The motion error associated with the movement of the UAV while the

laser beam is rotating can be reduced by increasing the scanning speed (limited by hardware) or by
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correcting the point cloud using position estimation via GPS or Inertial Navigation System (INS). These

systems can be used to map the laser points into a desired coordinate system and a clustering algorithm

can be used to cluster the point cloud with uneven density [45]. Additionally, the error resulting from

the larger distance between consecutive detected points for farther obstacles, which results in smaller

recorded dimensions, can be reduced by recording the maximum detected dimensions, comparing future

measurements to these maxima and considering the largest of the two [46].

LIDAR sensors make use of the same technology as laser rangefinders, but require servos or os-

cillating mirrors to function, which results in an increase in weight and required power. The obtained

measurements are precise and dense, although the use of these sensors may limit the UAV’s speed, roll

and pitch angles in order not to significantly affect the computed obstacle distances [40].

In reference [47], LIDAR sensors installed in UAVs were used for forest inventory. The information

obtained from these sensors was fused with a GPS receiver, an IMU and a High Definition (HD) video

camera. This fusion allowed for a more rigorous of the spatial accuracy of the final point clouds. LIDAR

was ideal for this application due to the high temporal and spatial resolutions datasets and its low oper-

ational cost. The obtained point clouds allow for the use of multi-temporal surveys such as forest health

and canopy closure monitoring.

In reference [48], LIDAR-equipped UAVs were used for building modeling, due to the flexibility of

UAVs, which were capable of surveying the most inaccessible parts of buildings, and due to the great

efficiency of laser sensors for geometric data acquisition, both in terms of time and precision. The

UAV had also to be equipped with a GPS receiver and an IMU so that the two-dimensional point cloud

obtained with the LIDAR sensor could be placed in its right position of the computed trajectory, thus

forming a 3-D model of the building.

In the field of geology and geomorphology, in reference [49], airborne LIDAR and UAVs were used to

analyze the kinematic evolution of the Montescaglioso landslide in southern Italy. The objective of this

study was to compare pre- and post-event orthomosaics, and to evaluate the evolutionary behavior of

the slope instability by analyzing the obtained digital terrain models (DTM). The study also showed the

effectiveness of combining the two UAV-LIDAR methodologies. For this particular application, the LIDAR

was not appropriate for near real-time monitoring due to the elaborate programming and processing

phases.

2.3.3 Radio Detection and Ranging (RADAR)

Radar is a technology that transmits and receives electromagnetic waves in order to detect, locate,

and gauge the speed of distant objects. Reflected waves are analyzed using mathematically derived

equations, designed to overcome natural phenomena that affect the propagation of those waves. Radio

waves move through the atmosphere at a known speed in a way that can be projected mathematically.

An echo indicates that an object is out there somewhere, and analysis of the returning signal provides

information about the direction of that object from the transmitter. By calculating the amount of time it

takes for the radio signal to move from transmitter to target and back, the operator arrives at an accurate
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measure of the distance. The operation of the RADAR is very similar to the LIDAR, where the main

difference resides in the frequency of the emitted radiation. RADARs rely on the emission of radio

waves while LIDARs predominantly use infra-red radiation [50].

In reference [51], the capability of an ultra-wideband software defined radar to produce high-resolution

images of sub-surface landmine-like targets is demonstrated. The RADAR is supposed to be attached

to a low-altitude UAV pointing to the ground for the radiation to penetrate the ground, considering the

dispersive and refractive effects of the air-ground interface. To deal with these effects, a back-projection

(BP) focusing algorithm was developed, which has the advantages of presenting flexibility and precision

regarding phase and motion errors compensation.

In reference [52], a RADAR sensor was designed and its performance was evaluated in different

scenarios in order to assess if all requirements regarding its real-time measurement capability, oper-

ational environment, payload constrains and air safety regulation were met. This RADAR was to be

implemented in a smart UAV capable of high speed cruise and vertical take off/landing (VTOL). Since

the atmospheric attenuation is the main reason for decreasing signal to noise ratio (SNR) in millimeter

wave bands, the attenuation according to range was considered in the radar equation. The probability of

detection for the designed RADAR was larger than 90% and the simulation results showed that, in case

of radar error data, the safety margin boundary was well designed for securing the safety of the UAV.

Ajith Kumar and Ghose [53] propose a RADAR-assisted collision avoidance/guidance strategy for

flight vehicles on low-altitude missions. The basic inputs of this system were the guidance command

input, the vehicle state estimate provided by the on-board INS, and the range map provided by the

obstacle detection active sensors, while the output was the commanded lateral acceleration. A classi-

cal proportional navigation (PN) guidance law was used, as it requires minimal computations and the

needed inputs are easily available from the radar and the INS carried in the vehicle. The RADAR cut-off

range Rc was carefully defined, as a large Rc could make the vehicle deviate too much from the desired

trajectory because of radar returns from distant obstacles. At the same time, it had to be large enough

to warn the vehicle well in advance of an impending collision. The actual selection of Rc had to depend

on some knowledge of the distribution of the obstacles on the terrain.

2.3.4 Vision Sensors

UAVs can also detect obstacles by using vision cameras (or thermal cameras) and image process-

ing equipment. The detection techniques should provide high detection probability for obstacles that

can have the size of only a few pixels, while maintaining a low false alarm probability in the presence

of noise and severe background clutter and working in a timely manner. Unlike ultrasonic and laser

sensors, vision sensors have the advantage of being passive, while being lightweight, power efficient

and inexpensive compared to scanning lasers, as these do not require mirrors or servos, therefore be-

ing more robust to vibration and shock. Vision does however rely on adequate texture and lighting of

features in the scene for proper image processing and this image processing requires significant com-

putational power. Also, the range accuracy decreases with distance squared from the camera [54].
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In reference [55], a method was developed to use both thermal and vision cameras for search and

rescue missions. Thermal cameras cannot detect humans at large distances because of low image

resolution and quality. Likewise, human detection algorithms working with color imagery give best results

at low distances. The technique presented in this paper first detects human-temperature silhouettes

with the infra-red (IR) cameras and subsequently subjects the corresponding region to a human body

classifier configured to allow for weak classifications in order not to miss potential targets. The small

focus of the processed image allows for a high processing rate which in turn leads to the pruning of false

positives and the collection of statistics about classified humans.

A vehicle detection and tracking system based on imagery collected by a UAV has been developed

by Wang et al. [56]. In that work, the developed system uses consecutive frames to generate vehicle’s

dynamic information, such as positions and velocities, and four different modules were developed: the

image registration module, where the movement of the UAV is subtracted from the obtained images to

obtain only the real motion of the vehicle; the image feature extraction module, where the edge, optical

flow and optical feature points are extracted from the images; the vehicle shape detecting module, where

the previously obtained features are used to detect the boundaries of vehicles; and finally, the vehicle

tracking module, where, once again, the optical flow and local feature point obtained in the previous

module are used to track the vehicles, considering possible occlusions. An example of a vision system

tracking moving vehicle is illustrated in Figure 2.6.

Figure 2.6: Vehicle tracking using UAVs equipped with vision sensors [57]

In the field of precision agriculture, vision sensors are also a great way to acquire field data in a

fast and easy way. In reference [58], a Tetracam camera was mounted on a multi-rotor hexacoptor,

while the data was processed with a photogrammetric pipeline to create orthoimages of the surveyed

sites. These orthoimages were then used to extract several Vegetation Indices (VI) used to evaluate

the characteristics of the crops. The image management, processing and exportation was achieved

using the software PixelWrench2 (PX2), included in the camera. This software allowed the captured

images to be exported as a triband image. However, the use of vision sensors in this field still entails

several problems, as the well-established procedures to extract VI from remotely sensed imagery were
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developed for airborne and satellite datasets. Also, to compute VI, reflectance values obtained from

ground measurements by spectro-radimoters should be used. By only using low-cost cameras and on-

board image processing, the calibrated radiance values cannot be obtained and the achieved results are

mainly qualitative and not quantitative, due to being computed from raw indices that still give a decent

description of the vegetation conditions [59].

The previous works rely on vision sensors to perform detection and tracking operations where the

targets have known shapes and sizes, given the altitude of the flight. For our work, the target can be

at any given distance to the camera and, because of that, have various sizes in the captured images.

Since vision sensors can only provide two-dimensional images, computing the obstacle’s distance can

be challenging. The following examples provide solutions to this problem, by using complex image-

processing techniques and by using stereo vision, where images are obtained from two different lenses.

Fusing vision sensors with other sensors also solves this problem.

Carrillo et al. [60] developed a navigation system for a quad-rotor UAV by combining stereo vision

with an INS. The adopted stereo odometry method consisted on searching for desired features on the left

image and searching for the corresponding feature on the right image. Afterwards, the three-dimensional

positions of the matched features are reconstructed using triangulation. This method can be used to

obtain obstacles’ range data or produce 3-D maps of the UAV’s surroundings. In this particular work, it is

used to determine the vehicle’s relative motion in all six degrees of freedom, by comparing consecutive

images. In Figure 2.7, a depth map obtained from stereo vision is represented, showcasing the ability

of these cameras to obtain range data from targets.

Figure 2.7: Depth map obtained from stereo vision [61]

The National Aeronautics and Space Administration (NASA) developed technologies for a new su-

personic aircraft. One of the technological areas considered for the aircraft is the use of vision sensors

and image-processing equipment to aid the pilot in detecting other aircraft in the sky. Several different

algorithms were developed to detect obstacles in collision course and crossing trajectories: in case of a

motionless background, the clutter is subtracted between consecutive frames. If the background moves,
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an algorithm separates objects that have planar motion (background) from those with significant parallax

motion (obstacles). In case of an object on collision course, morphological filtering is used because such

objects can be nearly stationary in the image. Besides target translation, target expansion is also ana-

lyzed to get ranging information, as the increase of the image size of an object is inversely proportional

to the time to collision [62].

2.3.5 Ultrasonic Sensors

Ultrasonic sensing is one of the direct ways to estimate the distance between the UAV and an ob-

stacle. In principle, the sensor emits a sound, the sound wave hits the obstacle, it is reflected and the

returning echo is recorded in the sensor. If the speed of the emitted sound in the air medium is known,

then the distance to the object can be computed. The sonar operation replicates the echolocation per-

formed by bats to locate their preys, as represented in Figure 2.8.

Figure 2.8: Bat echolocation [63]

Ultrasonic sensors are very effective under poor lighting conditions such as smoke or fog. However,

these are proximal sensors, which means that their signal attenuates fast and the distance measurement

ability is mostly below 10 m. Moreover, they cannot detect sound absorbing surfaces such as clothes.

Therefore, these sensors are not reliable for detecting people. Because of this, it is fairly common to

fuse these kind of sensors with infra-red sensors as their simultaneous use solves the drawbacks of

each one [64, 65].

In reference [66], a sonar sensor model was designed to safeguard landings of UAVs, in which ob-

stacles in the landing field are detected and, in case of obstacles higher than the UAV’s landing legs,

the procedure is aborted. Two different procedures were tested. Firstly, four ultrasonic sensors were at-

tached to the UAV to identify the landing field plane and its tilt angle. Secondly, rotary ultrasonic sensors

rotate along the vertical of the UAV, thus being able to map the landing plane and search for obstacles.

The instability of the UAV due to the ground proximity affected the accuracy of the measurements but

the results were acceptable.

In another work [67], the use of a hybrid acoustic and optical indoor positioning system for 3D po-

sitioning of UAVs was proposed. The acoustic sensing module was based on a Time-Code Division

Multiple Access (T-CDMA) scheme, where the sequential emission of five spread spectrum ultrasonic

codes was performed to compute the horizontal vehicle position following a 2D multilateration procedure.

The received echoes were captured by a portable receiver and were then transmitted to an external com-
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puter where the data fusion and iterative processing took place. Once again, the sensor fusion resulted

in a 70-80% improvement of the overall accuracy. This approach differs significantly from the present

work, since the processing will have to take place in an on-board computer.

2.4 Sensors’ Comparative Analysis

With the information presented in this chapter, several inferences can be made. First and foremost,

using cooperative detection is inadequate to the intended mission due to their high cost and weight,

which are two of the critical parameters when designing an obstacle detection system to be used by

mini UAVs. There are ADS-B systems adequate for UAV use, but since cooperative sensors are only

able to detect other aircraft equipped with the same equipment, static obstacles like the ground, trees

and unequipped aircraft remain undetectable.

Secondly, laser sensors and sonar sensors are fairly complementary. While laser sensors have

a considerable range, sonars suffer from high signal attenuation and can only measure distances up

to 10 m. Moreover, laser sensors do not perform well under low visibility conditions and ultrasonic

sensors are not able to detect sound absorbing surfaces, but their simultaneous use can solve their

singular drawbacks and thus, fusing these kind of sensors proves to be advantageous. These also

have a significantly lower price compared to other sensors while being stable and easy to use. The main

drawback of regular laser rangefinders is the narrow field of view (FOV), which only allows these sensors

to detect what is directly in front of them. To solve this issue, a LIDAR can be used, which consists of

a multidirectional laser range finder. However, these represent an increase in cost, weight and required

power, since an electrical servo or oscillating mirror system also needs to be installed.

Most of the RADARs that can be used by UAVs comprise a patch or a scanning antenna, meaning

that these sensors can be directional or multidirectional. This technology is also very power efficient

while providing a large FOV and a range comparable to that of a laser rangefinder. This technology is

very similar to that used by laser rangefinders and LIDARs, where the main difference resides in the

frequency of the emitted radiation: RADARs emit 24 GHz microwave radiation while lasers use 300 THz

infrared light.

Vision sensors also provide a good range, power efficiency, weight and cost, but are not capable of

providing range information, so it is common practice to fuse vision with other sensors or to use stereo

vision. These heavily rely on the texture and lighting of the objects and require a significantly more

complex processing stage than other non-cooperative sensors, and also cooperative ones, since the

range information is simply broadcast to these.

All these inferences are qualitatively represented in Table 2.1 and, in chapter 3, a more quantitative

study will be made for each of the sensor types.
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Table 2.1: Qualitative comparison of UAV sensor types

Sensor Weight Electric Power Signal Processing Cost Range Directionality FOV

TCAS high high very simple high very high omnidirectional -
ADS-B high low very simple low very high omnidirectional -

Laser Rangefinder low low simple low high directional very narrow
LIDAR medium medium simple medium high multidirectional very narrow
RADAR medium low simple medium high (multi)directional broad

Vision Sensors low low complex low low directional variable
Ultrasonic Sensors low low simple low low directional medium

2.5 Proposed Architecture

To detect and avoid obstacles in the UAV’s path, various steps need to be taken in sequence but

including several feedback links, so that the operation can be completed successfully. In the following

chapters, each step will be analyzed and several options for each one will be given. The steps are the

following:

1. Obstacle data acquisition from installed sensors: at the end of this phase, the controller will have

access to the points that correspond to detected surfaces;

2. Data filtering and fusion: the obtained data can be filtered and fused with data obtained from other

sensors in order to reduce present noise and obtain more accurate data;

3. Assignation of obtained data to a surface or shape: to apply any of the avoidance algorithms, a

list of obstacles to avoid is needed and simply feeding a large number of detected points to this

algorithm would not be feasible. So, in this stage, the sets of points are assigned to surfaces and

shapes defined by certain parameters to be outputted to the following stages in form of list;

4. Collision detection: having the obstacles’ list is not enough to start the avoidance maneuver be-

cause the list can be too extensive, as not every one of the detected obstacles will interact with the

UAV’s path. Consequently, the obstacles need processing in regard to their capability of interac-

tion with the UAV. Also in this phase, the obstacles are sorted by risk, so that the more immediate

threats are avoided first. The trimmed and ordered list that includes only the obstacles with high

probability of interaction with the UAV will then be fed to the next and final stage;

5. Collision avoidance: finally, the UAV performs an avoidance maneuver, according to the proximity,

velocity and type of obstacle.

As it can be seen in the flowchart representing this process in Figure 2.9, there are two feedback

loops: a smaller one connecting the collision avoidance module to the collision detection module and a

bigger one connecting the collision detection to the obstacle data acquisition module. As the avoidance

maneuver is taking place, the UAV’s state changes with it. This change affects the collision detection

module, as obstacles that were not threats in the previous state can become threatening with the UAV’s

new position and orientation, which justifies the existence of the smaller control loop.
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The first three phases occur sequentially, as they all consist of data acquisition and processing.

However, a feedback loop needs to connect the collision detection module to the first one because the

later modules can take much longer than the previous ones, due to the high operating frequency of the

sensors, which can lead to new threats being detected while the last two modules are operating.

Figure 2.9: Flowchart representing chosen architecture
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Chapter 3

Benchmark of Sensors

In this chapter, several models of previously described sensors will be compared in regard to their

size, range, sensibility and other specifications so that the best suited sensors for our UAV can be

chosen. Lastly, the sensed area of a sensor of each category will be graphically represented to get a

better idea of what each of them can detect.

3.1 ADS-B

uAvionix has developed several dual-frequency ADS-B traffic sensors, namely pingRX, a receiver

for UAV sense and avoid, which receives position reports from surrounding aircraft and displays them

to the UAV pilot [68]. This sensor is extremely light, low-priced and communicates with the autopilot

by MAVLink [69], a serial protocol most commonly used to send data and commands between vehicles

and ground stations. MAVLink messages have a length of 263 bytes at most, can be sent over almost

any serial connection and do not depend upon the underlying technology (WiFi, 900mhz radio, etc).

The biggest drawback of this sensor is the fact that it does not include the ADS-B Out subsystem,

hence cannot transmit information to other aircraft, being only able to receive data from others. uAvionix

distributes other sensors able to send and receive aircraft data, but they are much more expensive and

demand more voltage than pingRX. Ping1090i, for example, has Satellite Based Augmentation System

(SBAS), GPS and a precision barometric sensor integrated to gather data to transmit to other ADS-B

Out equipped systems [70].

The TR-1W produced by Aerobits is also an ADS-B Out transmitter/receiver with a more reasonable

price than the Ping1090i, also compatible with any UAV using Mavlink protocol and also equipped with a

barometer and Global Navigation Satellite System (GNSS) receiver [71]. The technical specifications of

these sensors are displayed in Table 3.1 for easy consultation and the mentioned sensors are displayed

in Figure 3.1.
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Table 3.1: Comparison of different ADS-B sensors

uAvionix pingRX uAvionix Ping1090i Aerobits TR-1W

ADS-B Out no yes yes
Mass (g) 5 26 30

Input Voltage (V) 4-6 11-28 5
Sensitivity on 1090 MHz (dBm) -84 -88 -72

Cost (e) 230 1835 725

(a) uAvionix pingRX next to a coin for refer-
ence [68]

(b) uAvionix ping1090i [70] (c) Aerobits TR-1W [71]

Figure 3.1: ADS-B sensors

3.2 Laser Rangefinders/LIDAR

Lightware is one of the leading companies in the development and distribution of laser range-finder

technology for application across numerous industries. They offer a wide variety of products, namely the

LW20/C model, which has a 100 meter range in sunlit conditions, a 1 cm resolution, an accuracy of 10

cm, weights 20 grams and is confined within a water-proof enclosure [72].

The LW20/C runs from a single 5 Volt power source and has two operations modes: it can be used

as a distance measuring sensor which allows this device to be used like an altimeter, or be attached to

a digital servo to create LIDAR maps that sense the world as two dimensional images, thus becoming

a low cost, lightweight collision avoidance sensor. In scanning mode, 48 to 388 measurements per

second can be made and the data can be internally processed or streamed either by Serial or I2C ports

in the form of 32 bit ASCII strings, while the servo is controlled by a pulse-width modulated (PWM) signal

coming from a control line of the LW20/C. Additionally, two alarms can be set so that warnings are issued

once obstacles are within a certain distance.

Other models produced by this manufacturer include the SF30/C [73] and the SF30/D [74], which

can also operate as rangefinders or LIDARs and have the same resolution, accuracy and power supply

parameters as those of the LW20/C. The sensors are displayed in Figure 3.2 and their differences are

displayed in Table 3.2. It is important to note that despite being the only sensor with a protective casing,

the LW20/C is still the lightest model.
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Table 3.2: Comparison of different laser rangefinders

Lightware LW20/C Lightware SF30/C Lightware SF30/D

Protective casing yes no no
Mass (g) 20 35 35

Range (m) 100 50 200
Maximum measurement frequency (Hz) 388 20010 20000

Cost (e) 255 275 365

(a) Lightware LW20/C [72] (b) Lightware SF30/C [73] (c) Lightware SF30/D [74]

Figure 3.2: Laser/LIDAR sensors

3.3 RADAR Sensors

Aerotenna is a company powered by Ainstein specialized in RADAR sensing and processing so-

lutions for UAVs. They developed, among others, the µSharp Patch Sense and Avoid RADAR, which

is very lightweight and requires a very low power consumption [75]. Regarding its performance, the

µSharp Patch provides high resolution distance sensing in the range of 0.5 m to 120 m. It is able to

detect both moving and stationary objects and delivers a remarkable performance in all weather and

light conditions. It has a horizontal FOV of 50◦ and a vertical FOV of 30◦ , which is fairly adequate for

fixed-wing UAVs.

Another model provided by Aerotenna is the µSharp - 360◦ Sense-and-Avoid RADAR, which scans

360◦ without blind spots, locating targets on the horizon for reliable and quick reactions to change flight

course [76]. It is also very compact and power efficient, despite having a smaller range (40 m) and

weighing considerably more due to the mechanical equipment needed for scanning.

Aerotenna’s sister company, Ainstein, produces the SRD-D1, an object detection RADAR sensor

suitable for small UAVs [77]. In addition to range and relative position, this sensor is also able to compute

the velocity of the detected targets. It does not experience degradation in performance under low-light

and adverse meteorological conditions. Regarding other performance characteristics, the SRD-D1 is

weaker than the previous two sensors: it has a worse accuracy, a lower update rate and weighs almost

as much as the scanning RADAR. Conversely, it has a wider horizontal FOV than the µSharp Patch. All

these sensors only require 5V of input voltage and have a UART connection interface. These sensors

are displayed in Figure 3.3 and their specifications are represented in Table 3.3.
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Table 3.3: Comparison of different RADAR sensors

Aerotenna µSharp Patch Aerotenna µSharp - 360◦ Ainstein SRD-D1

Range (m) 120 40 30
Mass (g) 43 243 200

Horizontal FOV (◦ ) 50 360 60
Accuracy (cm) 22 22 60

Update rate (Hz) 90 80 10
Cost (e) 630 7665 530

(a) Aerotenna µSharp Patch
[75]

(b) Aerotenna µSharp - 360◦ [76] (c) Ainstein SRD-D1 [77]

Figure 3.3: RADAR sensors

3.4 Vision Sensors

The chosen vision sensors for this study include two monocular sensors unable to compute range

data directly and one stereo sensor. All these sensors employ the complementary metal-oxide semi-

conductor (CMOS) technology in which the charge is converted to voltage at the pixel, as opposed to

charge-coupled device (CCD) in which each pixel’s charge packet is transferred to a common output

structure which converts the charge to voltage, once the exposure is complete. CMOS sensors offer

superior integration, power dissipation and system size at the expense of image quality (particularly in

low light) and flexibility, but the cost of these technologies are approximately equal [78]. Despite offering

superior image quality and flexibility, CCD cameras’ development has slowed down and this technology

is near its end of life, which entailed the choice of comparing only CMOS sensors.

There is also a distinction to be made regarding the type of shutter used. With rolling shutters, the

image is captured by scanning the area rapidly. These are cheaper and easier to implement, which

results in a good SNR, but can lead to distorted pictures if the target or the camera itself moves too

quickly, as seen in the example presented in Figure 3.4. On the other hand, cameras with global shutters

capture the whole scene at the same time to prevent this effect, but require one to three more transistors

per pixel, which can induce noise [79].

Lumenera is one of the global market leaders regarding digital cameras, providing an extensive range

of high quality vision sensors with different resolution, speed and sensitivity. Lt-C1950 and Lt-C1900 are

two of the sensors offered by this company. Lt-C1900 is a CMOS sensor with a rolling shutter and a
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Figure 3.4: Distortion caused by a rolling shutter in the rotating blades of an airplane [80]

60 fps frame rate, providing great color reproduction, dynamic range, low noise and a high sensitivity

which makes imaging easier in environments with variable or uncontrolled lighting. The Lt-C1900 and

the Lt-C1950 models look and weigh the same but the Lt-C1950 possesses a slightly higher resolution

and a much higher frame rate (162 fps). Moreover, this model has a global shutter, which despite all

the advantages cited above means an increased cost of 470 e (The cost of the Lt-C1900 model was not

available but it can be assumed lower than 470 e) [81].

Intel has produced several stereo cameras that can be used for UAV navigation such as the Depth

Camera D435 that is equipped with two imagers, whose data is sent to the Vision Processor, which

calculates depth values for each pixel in the image by correlating points on the left image to the right

image, and via shift between a point on the left image and the right image. It has a 10 m range, a 90◦ x

65◦ FOV (H x V) and is also equipped with a RGB camera and an infra-red projector that projects non-

visible static IR pattern to improve depth accuracy in scenes with low texture. Another great attribute

of this camera is the fact that a vision processor is also integrated in the small form module, making

it easier to implement and reducing the load the UAV will have to transport. By having global shutter

sensors, this camera works adequately in low-light environments [82].

The different sensors are displayed in Figure 3.5 and their different specifications are presented in

Table 3.4. The Intel D435 is a more suitable model for our application, as it contains a global shutter,

can provide depth information at close range and has an IR projector while weighing less than the other

models and having a significantly lower cost.

Table 3.4: Comparison of different cameras

Lumenera Lt-C1900 Lumenera Lt-C1950 Intel D435

Type of camera monocular monocular stereo
Type of shutter rolling global global

Mass (g) 88 88 72
RGB Resolution (MP) 2.1 2.3 2.1

Cost (e) N/A 470 160

27



(a) Lumenera Lt-C1900/Lt-
C1950 [81]

(b) Intel D435 [82]

Figure 3.5: Vision sensors

3.5 Ultrasonic Sensors

MaxBotix designs and manufactures ultrasonic sensors, namely the ones belonging to the I2CXL-

MaxSonar-EZ series. These sensors have a high acoustic power output along with real-time auto cal-

ibration for changing conditions. They require low power operation (3V to 5.5V), have a centimeter

resolution, can detect obstacles from 20 cm to 765 cm, have a 40 Hz read rate and have a small form

factor. The communication is made using the I2C protocol and the sensor can only receive three differ-

ent commands: take range reading, report last range value and change sensor address. Because of

this, the controller needs to periodically send these first two commands in order to obtain a stream of

data [83].

The models of ultrasonic sensors belonging to this series include the MB1202, the MB1222 and the

MB1242. All these different models operate the same way and differ only on their range, cost and beam

pattern, which are represented in Figure 3.6 and Table 3.5, while a typical sensor belonging to this series

is represented in Figure 3.7.

(a) MaxBotix MB1202 (b) MaxBotix MB1222 (c) MaxBotix MB1242

Figure 3.6: Different models’ beam patterns for a 8.89 cm diameter dowel [83]

The beam patterns of Figure 3.6 show the capability of the different models to detect a small dowel

and so, represent their sensitivity and beam wideness but not their range. From this figure and the

sensors’ datasheets [83], we can infer that the MB1202 has the highest sensitivity and widest beam
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Table 3.5: Comparison of the sonar models’ range and cost

MaxBotix MB1202 MaxBotix MB1222 MaxBotix MB1242

Range (cm) 770 810 655
Cost (e) 40 35 35

sensor, making it the best suited sensor of this series for people detection, despite having the lowest

noise tolerance. The MB1222 model offers a good balance between wide and narrow beam sensors,

and large and narrow object detection, which makes it suitable for nearly all conceivable applications.

The MB1242 has the highest noise tolerance and the narrowest beam of the whole series, being able to

provide stable range readings to large targets even in electrically and acoustically noisy environments.

Figure 3.7: MaxBotix I2CXL-MaxSonar-EZ sensor [83]

3.6 Chosen Sensors Comparison

In this section, one of each sensor type was picked to be compared to the others, regarding their

range and FOV (horizontal and vertical), so that their attributes and flaws could be better showcased.

The picked sensors for this comparison were the uAvionix pingRX ADS-B sensor, the Lightware LW20/C

laser rangefinder, the Aerotenna µSharp Patch RADAR, the Intel D435 stereo camera and the MaxBotix

MB1242 sonar. All these sensors’ sensed areas are represented in Figure 3.8, except for the ADS-

B sensor, due to its omnidirectionality and the fact that its range depends on the power of the other

aircraft’s emitting signal. The sonar’s FOV represented in the figure was based on the beam width

present in Figure 3.6 (c), which is approximately 50◦ . This sensor’s FOV is not very visible as a result of

its small range (two orders of magnitude below the RADAR’s range), so a detail was included in Figure

3.8 (b).

It is important to note that the LIDAR sensor, due to its multidirectionality, can scan with different

angular apertures, and its area is only limited by the used scanning servo. In Figure 3.8, an arbi-

trary 70◦ horizontal FOV was chosen and, because of this, the limits of the sensed area were dotted.

The LW20/C’s area, when the scanning mode is not activated, is represented in dark blue, where its

0.3◦ beam divergence can be observed. This value is also the vertical FOV for this sensor whether its

scanning mode is activated or not, as the servo only scans the horizontal plane.

The camera’s sensed area is associated with its depth image sensors. The infra-red and color
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(a) Vertical plane (b) Detail of vertical plane

(c) Horizontal plane

Figure 3.8: Comparison of several sensors’ ranges and FOVs (UAVs not to scale)

cameras have their own range and FOV but these are more applicable to complement other sensors as

they do not provide depth data.

Based on this comparison, the ultrasound and stereo vision sensors were not modeled in chapter 4

due to their small range, as identifying obstacles when they are only at a distance of 10 m or 0.765 m,

when the UAV is traveling at a maximum cruise speed of 15 m/s, generally, does not result in successful

avoidance maneuvers.
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Chapter 4

Sensor and Obstacle Models

Before analyzing the models for the different sensors, a study of Kalman filters (KF) must be made,

due to its widespread use and effectiveness in tracking the status of dynamic systems with random

disturbances. After introducing the different Kalman filters, the different sensor models are analyzed

and a possible way to model the obstacles in the environment is also made.

4.1 Kalman Filters

The Kalman filter is a real-time estimator that employs a predictor-corrector method because it prop-

agates the linear least mean squares estimate x̂ and its covariance of estimation uncertainty P forward

in the time between measurements, predicting the estimate of the state variables along its covariance

of estimation uncertainty before the next measurement is used. Then, the results of the measurements

are used to correct the predicted values to reflect the influence of the information gained from the new

measurements. If no new measurements are obtained, then the update is not performed [84].

In Figure 4.1, an example of the use of a Kalman filter is illustrated, in which a green sphere passes

through a cardboard box that hides the sphere from the camera. In both parts of the image, all the

video frames that include the sphere are overlaid. However, the right part of the image also includes

the estimation of the sphere’s position obtained from a Kalman filter applied to a constant acceleration

model.

Figure 4.1: Tracking of a green sphere with a Kalman filter, when occluded [85]
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All of the considered sensors for obstacle detection can only provide the relative position between

the target and the UAV, therefore the vehicle needs to be equipped with a set of sensors that would allow

it to get the absolute state of the obstacles. The Kalman filters can be used to track them.

The essential implementation equations for the update part of the Kalman filter are given by [84]

Kk = P−k HTk (Rk + HkP−k HTk )−1 (4.1)

x̂+
k = x̂−k + Kk(zk − Hkx̂−k ) (4.2)

P+
k = P−k − KkHkP−k , (4.3)

while the equations associated with the prediction are

x̂−k = Φkx̂+
k−1 + Bkuk (4.4)

P−k = ΦkP+
k−1Φ

T
k + Qk . (4.5)

The parameters and variables used in these equations are described in Table 4.1. To apply this algo-

rithm, the matrices need to be adequately defined and initial estimations of the state vector and the

covariance matrix need to be made.

Table 4.1: Parameters and variables used in the Kalman filter equations

Symbol Description Dimension

n Dimension of state vector 1
`k Dimension of k th measurement vector 1
jk Dimension of k th input vector 1
k Discrete measurement index 1
tk Discrete time of k th measurement 1

x̂+
k−1 A posteriori state estimate at time tk−1 n× 1

P+
k−1 A posteriori state estimation covariance at time tk−1 n× n
Φk State transition matrix from tk−1 to tk n× n
Bk Control-input matrix at time tk n× jk
Qk Uncertainty accumulated between tk−1 and tk n× n
uk Input vector at time tk jk × 1

x̂−k A priori state estimate at time tk n× 1

P−k A priori estimation covariance at time tk n× n
zk Measurement vector at time tk `k × 1

Hk Measurement sensitivity matrix at time tk `k × n
Rk Measurement error covariance at time tk `k × `k
Kk Kalman gain matrix at time tk n× `k
x̂+
k A posteriori state estimate at time tk n× 1

P+
k A posteriori estimation covariance at time tk n× n

The classic Kalman filter is a very effective linear estimator. However, since many of the estima-
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tion problems of practical interest are nonlinear, several approximations were developed to apply the

more successful linear estimation methods to less-than-linear problems, namely the first-order Extended

Kalman Filter (EKF) and the Unscented Kalman Filter (UKF) [84]. The EKF, specifically, uses first-order

partial derivatives evaluated at the estimated value of the state vector. Thus, if the state vector is nonlin-

ear, this vector and the state transition matrix are defined as

xk = fk(xk−1,uk) + ωk (4.6)

Φk =
∂fk
∂x

∣∣∣∣
x=x̂+

k−1

, (4.7)

where ωk is the process noise, assumed to be a zero-mean multivariate Gaussian noise with covariance

Qx. Due to the loss of linearity, equation (4.4) is no longer valid in the prediction phase of the filter.

Because of this, it is replaced by the previous computation of the state transition matrix, equation (4.7),

and by

x̂−k = fk(x̂+
k−1,uk) (4.8)

On the other hand, if the measurement vector is nonlinear, this vector and the measurement sensi-

tivity matrix are defined as

zk = hk(x−k ) + νk (4.9)

Hk =
∂hk
∂x

∣∣∣∣
x=x̂−

k

, (4.10)

respectively, where νk is the observation noise, assumed to be a zero-mean multivariate Gaussian noise

with covariance Rx. Because of the nonlinearity of the measurement vector, equation (4.2) of the update

phase is no longer valid and it is replaced by the previous computation of the sensitivity matrix, equation

(4.10), and by

x̂+
k = x̂−k + Kk(zk − hk(x−k )) . (4.11)

Obviously, if the state and measurement vectors are simultaneously nonlinear, both changes given

by equations (4.7 - 4.10) need to be made.

4.2 Sensor Models

A sensor model is an abstraction of the actual sensing process that describes the information a

sensor can provide, how this information is limited by the environment and how it can be enhanced by

data obtained from other sensors. According to [86], having an effective model of the sensor capabilities

is the key to intelligent fusion of disparate sensors, as having the sensors’ capabilities well estimated a
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priori leads to the development of sensor strategies more in line with the application’s requirements.

For the developed simulation, different sensors need to be modeled in order to compare their be-

havior and find the combination of sensors that achieve the best results. The sensors are characterized

by their range, FOV, accuracy and data frequency. The values used for these parameters are the ones

presented in section 3.6, which were obtained from their technical manuals or inferred from available

data. The considered parameters are presented in Table 4.2.

Table 4.2: Characteristics of the different sensors used in simulations

LIDAR Laser rangefinder RADAR

Range (m) 100 100 120
Horizontal FOV (◦ ) variable 0.3 50

Accuracy (m) 0.2 0.2 0.22
Maximum Frequency (Hz) 388 388 90

4.2.1 Laser Rangefinder/LIDAR model

Fayad and Cherfaoui [46] presented an approach to solve the problem of tracking partially hidden

objects by a single layer laser scanner to be used in driving situations. The proposed method to cluster

and estimate results from the point cloud provided by the sensor can be adapted to perform obstacle

modeling so that the obstacle parameters can be fed to the collision detection module.

A scanning laser rangefinder can only detect objects, either dynamic or static, that have sufficient

reflectivity and that are inside its visible area. That is to say, the objects are within range, inside the

FOV and are not obstructed by other objects. All these different zones present in the scanning plane are

displayed in Figure 4.2.

Figure 4.2: Different areas of the scanning plane of a LIDAR

The used approach consists of representing a detected obstacle with the smallest parallelepiped

that encloses all the detected points, where the generated parallelepipeds are aligned horizontally, the

scanning direction, as a result of the minute vertical field of view that lasers possess. So, the obstacle’s
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length and width could be detected while a prediction could be made to estimate its height according to

its classification considering its position and detected dimensions.

One problem associated with obstacle detection using laser rangefinders is the fact that only one or

two sides of the obstacle can be detected, but the detected points are not uniformly distributed along

the detected surfaces. Because of this, using the center of gravity of the detected points can introduce

large errors and discontinuities. A better approximation consists of identifying the geometric center of

the obtained points and associating it to the gravity center.

To compute the object’s dimensions and the position of its geometric center, the obstacles need to be

reconstructed. If an object is totally visible, it is considered that its half was detected and the remaining

of the obstacle is reconstructed assuming symmetry, where the center of symmetry is the medium point

of the segment connecting the first and last point of the cluster. The described process is represented

in Figure 4.3. In subsequent scannings, this approximation is updated according to the object’s position

and new data. If the object is completely visible but only one side of the obstacle is detected instead of

two, it is not possible to estimate the object’s length, so the reconstruction only takes place in following

detections, after more data is gathered.

Figure 4.3: Obstacle reconstruction using a LIDAR

If the obstacle is partially outside the visible zone, these estimations take into consideration the data

history collected of the obstacle if the object was detected in a previous cycle in the totally visible zone.

If the present cycle corresponds to the first time the object was detected, the measured parameters are

saved in the object’s history to be used in following cycles, where the object is better positioned. The

recognition of any hidden part of the object is based on the position of the object within the visible zone

and in regard to other obstacles present in the scene.

Fayad and Cherfaoui [46] also provide a solution to the errors caused by the higher distance between

consecutive points in farther obstacles which results in smaller detected dimensions, as seen in Figure

4.3, where the modeled obstacle is considerably smaller than the real obstacle. Instead of saving the

maximum detected dimensions and updating these only if larger ones are detected, the dimensions

are passed by a time filter. This was done because the maximum saving method fails easily if noisy

measurements occur, as a large and noisy measurement can be saved and never replaced by real,

future and smaller measurements.
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So, in each measurement the detected length L and/or the detected width W are filtered by

Wk = Wk−1 +G(Wm −Wk−1) (4.12)

Lk = Lk−1 +G(Lm − Lk−1) , (4.13)

where G (0<G<1) is the filter gain, Wk and Lk are the filtered dimensions at instant tk, Wk−1 and Lk−1

are the filtered dimensions at instant tk−1, and Wm and Lm are the measured dimensions at instant tk.

The gain needs to be carefully selected as it impacts the speed of the variation of the dimensions. A

small gain corresponds to a slow variation and it is preferable for noisy environments but not suitable for

high relative speed objects. The gain can be determined by

G = 1− n
√

1− acc , (4.14)

where acc corresponds to a fraction that represents the desired accuracy of the dimensions and n

corresponds to the number of filter cycles required to get an accuracy of acc.

Regarding the tracking phase, classical Kalman filters were used, where the motion of detected ob-

stacles is considered to be linear and constant between consecutive scans. This simplification describes

the state of the targets with an acceptable error, considering a high scanning frequency. The coordinates

of the obstacles need to be known for the filter to be applied.

Using this model, the state vector and the state transition matrix can be defined, respectively, as

xk =


xk

yk

vxk

vyk

 and Φk =


1 0 ∆tk 0

0 1 0 ∆tk

0 0 1 0

0 0 0 1

 , (4.15)

where ∆tk is the sampling time between two scans at iteration k, (xk, yk) is the position of the detected

obstacle at instant tk according to a fixed frame of reference and (vxk , vyk ) is the obstacle’s velocity at

instant tk. This model assumes a LIDAR that only scans horizontally, but if the rangefinder was to be

attached to a gimbal with two degrees of freedom, it would have to be extended to include the third

dimension.

The laser range finder is only able to measure the position of the obstacle. Therefore, the measure-

ment vector and measurement sensitivity matrix are defined, respectively, as

zk =

xk
yk

 and Hk =

1 0 0 0

0 1 0 0

 . (4.16)

The measurement error covariance matrix Rk should be calculated from the laser scanner charac-

teristics, while the uncertainty between two measurements Qk should take into consideration all errors

imported by the approximation of the real motion by the equation of the model.
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4.2.2 Camera Model

One of the simplest models that describes the operation of a camera is the pinhole camera model.

This model describes a relationship between the coordinates of a point in the three-dimensional world

and its projection onto the image plane of an ideal pinhole camera, where no lenses are used to focus

light and the aperture of said camera is considered punctual. This model is very simple and does not

take into account several effects caused by the presence of lenses and finite-sized apertures, such as

geometric distortions and the blurring of unfocused objects. In spite of this, it is a reasonable model

since these effects are small enough to be neglected if a camera with a high enough quality is used

[87, 88].

In Figure 4.4, the geometry of the pinhole model is represented, where the obstacle’s position Xobs

is unknown to the vehicle, unlike its position projected into the image plane Zobs. The image plane is

parallel to the axes Zc and Yc, intercepts the principal axis Xc at the principal point P and is located at a

distance f (focal length) from the origin.

Figure 4.4: Pinhole camera model (adapted from [88])

Considering the vector xc = LCLx = [Xc, Yc, Zc]
T containing the coordinates of the point Xobs in a

frame aligned with the camera’s attitude (rotated by LCL from the local frame to the camera frame), and

the vector z = [zy, zz]
T containing the coordinates of Zobs in the image plane, by recognizing the similar

triangles in the aforementioned figure, the 2-D measurement of the obstacle position in the image plane

at a k-th time step can be given by

zk =
f

Xck

Yck
Zck

+ νk = hk(LCLkxk) + νk (4.17)

where f is the focal length of the camera and νk is a zero mean Gaussian discrete white noise process

with covariance matrix Rk = σ2I [89].

The measurement model is nonlinear with respect to the relative state. Thus, an EKF with a linear

state vector is applied to estimate the relative position of the obstacles. By using equation (4.10), the

measurement sensitivity matrix can be computed as

Hk =
1

X̂−ck

[
−h(X̂

−
ck

) I2×2
]

LCLk (4.18)
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and equation (4.4) is rewritten as

x̂−k = Φkx̂−k−1 − vk−1∆tk−1 −
1

2
ak−1∆t2k , (4.19)

where ∆tk is, once again, the sampling time and and vk−1 and ak−1 are the velocity and acceleration

vectors of the vehicle, respectively, in the local fixed frame at instant tk−1. The omission of the term

Bu is due to the lack of known control inputs. Instead, it is replaced by the new terms, which represent

the effects caused by unknown inputs. Furthermore, the state transition matrix is approximated to the

identity matrix (Φk = I), which is valid for stationary obstacles and a sufficiently small sampling time.

Lastly, the covariance matrix of the process noise is defined as

Qk = σ2
X I2×2∆tk . (4.20)

The biggest disadvantage of this model is its inability to deal with moving obstacles. This can be

achieved by applying an adaptive estimator for the relative state of moving obstacles. However, regard-

less of the approach, obtaining the distance between the UAV and any other moving vehicle by relying

only on vision-based data is a difficult task, as the accuracy of the range estimations depends on the

camera translation motion: it is at its highest when the UAV is moving in parallel to the image plane and

is at its lowest when its motion is perpendicular to this plane.

Another associated problem is the influence of the target’s acceleration on the estimations provided

by the EKF. These unknown accelerations act as unmodeled disturbances on the estimation process,

which results in biased or even diverging estimates [89].

4.2.3 RADAR Model

To evaluate the system performance, the RADAR sensor was modeled in the context of the Sense

and Avoid system. So, this model addresses the angular accuracy, update rate, range and field of

view of the RADAR, rather than being a lower-level model that would deal with signal and environment

modeling.

Assuming the RADAR sensor outputs the range, bearing and elevation of the detected obstacles,

the state estimation becomes more complicated than the estimations used in previous models, as these

outputs are polar, whereas the intruder dynamics are best expressed in rectangular coordinates. Track-

ing in Cartesian coordinates using polar measurements can be handled in two ways. The first method

consists in converting the polar measurements to a Cartesian frame of reference so that a linear Kalman

filter can be used, whereas the second approach is to use an extended Kalman filter, which incorporates

the original measurements in a nonlinear fashion into the target state estimation, resulting in a mixed

coordinate filter [90].

In both techniques, the inaccuracy of the measurements when converted to a Cartesian frame of ref-

erence must be accounted for properly. In the first method, the measurement error covariance matrix H

must be computed in every iteration of the filter, while in the second approach, the initial state covariance
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depends on the accuracy of the initial converted measurements and the gains depend on the accuracy

of the subsequent linearization.

The chosen radar model was the converted measurement Kalman filter (CMKF), due to its easier

implementation. Once again, for simplicity’s sake, all the following equations reflect a two-dimensional

model that can easily be extended to 3-D.

Standard Conversion

Using the standard conversion, described in [91], the Cartesian coordinate measurements xm and

ym to be processed by the KF are obtained from

xm = rm cos(αm) (4.21)

ym = rm sin(αm) , (4.22)

where αm is the measured azimuth and rm is the measured range in polar coordinates, obtained from

rm = r + r̃ (4.23)

αm = α+ α̃ , (4.24)

where r and α are the true values of range and azimuth, respectively, and r̃ and α̃ are the measurement

errors assumed to be independent Gaussian white noises with zero mean and standard deviation σr and

σa respectively. Using Taylor first-order expansion, the measurement errors in Cartesian coordinates are

x̃ = xm − x ≈ r̃ cos(α)− α̃r sin(α) (4.25)

ỹ = ym − y ≈ r̃ sin(α) + α̃r cos(α) , (4.26)

where x = r cos(α) and y = r sin(α). From equations (4.25) and (4.26), the Cartesian covariance matrix

for the standard conversion can be built, but since the true values (r, α) are practically unavailable,

these are replaced by the measured values in the expression. So, the resulting covariance matrix for the

standard conversion is given by

Rs = (xm, ym|rmαm) =

R11
s R12

s

R21
s R22

s

 , (4.27)

where
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R11
s = σ2

r cos2(αm) + r2mσ
2
αm sin2(αm) (4.28)

R22
s = σ2

r sin2(αm) + r2mσ
2
αm cos2(αm) (4.29)

R12
s = R21

s = 0.5(σ2
r − r2mσ2

αm) sin(2αm) . (4.30)

Unbiased Conversion

The standard conversion is the simplest way to implement the CMKF. However, it gives biased incon-

sistent estimates for certain levels of cross-range measurement error owing to the nonlinear transforma-

tion of the noisy bearing. Because of this, several studies were made to compensate the present bias

within the Kalman filter framework. Here, the unbiasing method developed in [92] is described.

Taking expectation in equations (4.22) and (4.22), we have

E(xm) = λαr cos(α) (4.31)

E(ym) = λαr sin(α) , (4.32)

where λα is the bias compensation factor given by

λα = E(cos(α̃)) = e−σ
2
α/2 . (4.33)

Thus, the conversion is biased if λα 6= 1 and an unbiased conversion can be given when λα 6= 0, as the

polar-to-Cartesian unbiased conversion is given by

xum = λ−1α rm cos(αm) (4.34)

yum = λ−1α rm sin(αm) . (4.35)

The compensation of the bias is, therefore, multiplicative.

Similarly to what happened in the standard conversion, the elements of the covariance matrix are

conditioned on the true measured values, which are unknown in practice. To solve this problem, the

authors suggest that the squared error is averaged directly conditioned on the observations. In this new

approach, the approximate measurement covariance matrix is given by

Ru =

R11
u = var(xum|rm, αm) R12

u = cov(xum, y
u
m|rm, αm)

R21
u = R12

u R22
u = var(yum|rm, αm)

 , (4.36)

where
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R11
u = (λ−2α − 2)r2m cos2(αm) + 0.5(r2m + σ2

r)(1 + λ4α cos(2αm)) (4.37)

R22
u = (λ−2α − 2)r2m sin2(αm) + 0.5(r2m + σ2

r)(1− λ4α cos(2αm)) (4.38)

R12
u = (λ−2α − 2)r2m cos(αm) sin(αm) + 0.5(r2m + σ2

r)λ4α sin(2αm) . (4.39)

4.3 Obstacle Models

In a real flight environment, the UAV must avoid a wide diversity of obstacles while performing its

designated application, which can vary from mountains and buildings to other aerial vehicles. These

obstacles and threats can be modeled by many methods.

In reference [93], each point of the environment has a value associated that corresponds to the risk

of flying in said zone. This value is computed from a normal distribution of the probabilistic risk of the

area.

In reference [94], the obstacles are modeled in a more pragmatic way, where each one is defined by

several parameters which impact its position, size and shape. In particular, the function

Γ =

(
x− x0
a

)2p

+

(
y − y0
b

)2q

+

(
z − z0
c

)2r

(4.40)

was adopted to simplify the model of the obstacle, where a, b and c are the size parameters, p, q and r

are the shape parameters and (x0, y0, z0) is the position of the center of the obstacle. Points with Γ = 1

correspond to the surface of the obstacle while points with Γ < 1 are inside and points with Γ > 1 are

outside. Several kinds of obstacles can be obtained by varying these parameters, including spheres and

cylinders, as seen in Figure 4.5.

(a) Sphere
(a=b=c, p=q=r=1)

(b) Cone (a=b, p=q=1, r<1) (c) Cylinder
(a=b, p=q=1, r>1)

(d) Cuboid (p>1, q>1, r>1)

Figure 4.5: Models of typical obstacles [94]

One big flaw of this model is the fact that it does not take the obstacle’s velocity into consideration.

However, associating a three-dimensional vector to the obstacle is enough to solve this problem.

The shape of the modeled obstacle also has a close relation with the kind of sensor used in its

detection. A scanning laser rangefinder can only detect points of the obstacle in its scanning plane, so

assuming a cylindrical shape for the obstacles detected with this kind of sensor may be an acceptable

approximation model, which would not be the case for obstacles detected by three-dimensional sensors.
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Chapter 5

Multisensor Data Fusion Techniques

When the sensing system is composed of multiple sensors, the input data from the sensors needs to

be merged in some way. In this chapter, the concept of sensor fusion is explained and justified. Then, the

weighted filter and the Parzen-like estimator techniques are explained and finally, one of the approaches

is chosen, considering their advantages and drawbacks.

5.1 Data Fusion Overview

Multisensor data fusion consists on taking data obtained from a set of different sensors and combin-

ing them in order to achieve more accurate measurements and more specific inferences than a single

sensor could achieve. Additionally, obtaining redundant observations of physical phenomena results on

statistical advantages due to the improved obtained estimates.

In reference [95], the benefits of multisensor data fusion are showcased. The objective of said

work was to sense possible collisions with moving vehicles detected by both a pulsed radar and stereo

vision. The radar was able to measure the accurate distance to the obstacle but struggled to determine

its angular direction with precision. By contrast, the imaging sensor had sufficient lateral resolution

to find the boundaries of the obstacle, but was unable to measure range as accurately. The correct

association of the observations obtained from both of these sensors resulted in a reduced error region

which prompted an improved determination of the obstacle’s location and occupying areas. The different

error areas are displayed in Figure 5.1.

The data fusion techniques can be characterized by the inference level associated with the trans-

formation between the observed quantity and the decision produced by the fusion estimation process

regarding the existence, characteristics or identity of the obstacle, as seen in Figure 5.2 (a). The in-

ference level of this transformation ranges from the observed signals to progressively more abstract

concepts and depends on the application under consideration. For our application, the fusion is at a

"position and/or velocity" level of inference, as the situation assessment and threat analysis are not to

be conducted in this phase of the process.

Data fusion methods can also be categorized in regard to the level at which the process takes place.
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Figure 5.1: Error regions of a radar, a stereo vision sensor and the fusion of both (adapted from [95])

The data can be combined at a raw data level, at a state vector level or at a decision level, as illustrated

in Figure 5.2 (b). Fusion at a raw data level is more common when several sensors of the same type are

used and typically involve classic detection and estimation methods. State vector fusion is associated

with the extraction of representative features from different sensor observations are joined into a single

concatenated feature. Finally, decision level fusion is made after each sensor has already processed

its data and computed the obstacle’s location and attributes. Because sensors of different types are to

be used in our work, the sensor fusion is to be made at a decision level, which will be more thoroughly

detailed in following sections [96].

(a) Inference hierarchy of sensor fusion data (adapted from
[96])

(b) Sensor fusion specificity hierarchy

Figure 5.2: Hierarchies that characterize sensor fusion techniques

5.2 Weighted Filter Technique

The weighted filter is a data fusion or data selection technique used in reference [64] to obtain the

best distance measurements from multiple sensors. In this approach, a weight is computed for each of

the sensors, which represents its reliability. Having computed all the sensor weights, the sensor with the
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best result is picked to provide the measurements in the present iteration of the process.

To compute the weights, the UAV needs to be also equipped with reference data sensors, which

provide information about the UAV’s state. IMUs and optical flow sensors are examples of reference

data sensors used to evaluate the reliability of the main sensor data and help to decide between those

sensors, based on the rationale that changes in distance to obstacles correspond to analogous changes

in the UAV’s position. If the obstacles are stationary, these variations should coincide. If the obstacles

are moving, this information becomes corrupted, but it is unlikely that this motion corresponds better to

randomly wrong measurements.

The weights are computed by comparing all possible sensor combinations of main data and reference

data using a differential norm, where the obstacle distance corresponding to the sensor with the lowest

weight is considered the final result, while the remaining are rejected based on the idea that they are

corrupted. However, if the computed weights have a low variation, the sensor values are fused according

to their weights.

As an example, considering a UAV equipped with a stereo camera, a laser rangefinder and an optical

flow sensor, the needed norms the laser rangefinder are

N1 = |Ok − (Lk − Lk−1)| (5.1)

N2 = |Ok − (Lk −Dk−1)| , (5.2)

where Ok is the position variation of the UAV between the two measurements computed from the data

given by the optical flow sensor, Lk and Lk−1 are the measurements obtained from the laser rangefinder

at instants k and k−1 and Dk−1 is the measurement used in the previous iteration by the chosen sensor

(or fused result). With these norms computed, an exponential moving average filter can be applied with

a smoothing factor e, so that the history can be accounted for. So, the first term of the filter is given by

W ′Lk = a1 ×N1 + a2 ×N2 , (5.3)

where a1 and a2 must be tuned to determine the influence of the different sources, and the filter itself is

given by

WLk = e×W ′Lk + (1− e)×WLk−1
, (5.4)

which corresponds to the weight for the laser rangefinder.

The weight for the stereo vision WVk is computed analogously and, if the difference between both

weights is less than 10%, the overall distance is computed by the weighted average

Dk =
Lk ×WLk + Vk ×WVk

WLk +WVk

, (5.5)

where Vk is the measurement obtained from the stereo vision sensor.
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5.3 Parzen-like Estimator Technique

The Parzen estimator is a non-parametric method for estimating probability density functions without

making any assumptions about the nature of the distribution. For a given set of sensors’ data, this esti-

mator uses a set of parametric functions such as Gaussian functions that are centered on the sensors’

data. Then, these functions are added up and normalized. The resulting probability density function

(PDF) reflects the distribution of the sensors’ data with more energy concentrated where most data

points exist [97].

Considering the parametric function as the sum of the true measurement value with additive white

Gaussian noise with a standard deviation estimated from the noise level of the sensor’s data, the PDF

produced by this method is given by

PDF (x) =
1

N

N∑
k=1

1

σk
√

2π
exp

(
− (x− xk)2

2σ2
k

)
, (5.6)

where N is the number of redundant sensors, xk is the k-th sensor data and σk is the standard deviation

associated with the k-th sensor, estimated based on each sensor’s specifications. In Figure 5.3, an

example of a PDF obtained from three different sensor measurements is presented. In this example, all

measurements were performed by similar sensors with the same standard deviation (1 m).

Figure 5.3: PDFs corresponding to measurements and corresponding cumulative PDF

Knowing that the centroid of the PDF can be computed from∫
X
xPDF (x) dx∫

X
PDF (x) dx

, (5.7)

a value resulting from the fused data can be extracted from the computed PDF, following the steps [97]:

1. Find the range X which contains 95% of the PDF’s energy;

2. Find the centroid of the PDF;

3. Find the area on each side of the centroid of the PDF;
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4. Get the value of the measurand that corresponds to the supreme of the PDF on the side of the

centroid with highest area.

5.4 Benchmark of Techniques

The chosen technique for our work was the weighted filter. Firstly, this technique is less computa-

tionally demanding than the Parzen-like estimator, as only some computations need to be made in order

to calculate the weight associated with each sensor. Moreover, in the second approach, the estimated

value does not explicitly reflect the degree of agreement between the sensors. This problem could be

solved by introducing the computation of a confidence level associated with each sensor that would im-

pact the weight given to its PDF [97]. However, this would require more calculations in each step of the

detection phase and an a priori study of each sensor’s data distribution to obtain its initial confidence

level.

It would be feasible to perform these additional steps but the weighted filter methodology is simpler

and already adequate to perform the data fusion.
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Chapter 6

Obstacle Detection and Avoidance

Algorithms

In this chapter, an analysis is made on several collision detection methods, since not all detected

obstacles interfere with the UAVs trajectory and require an avoidance maneuver to be made. In the next

section, an overview of several approaches to change a predefined reference path in order to avoid de-

tected objects is made and the attributes and disadvantages of each one are discussed. Subsequently,

the collision detection and obstacle avoidance algorithms used in a previous work [98] are explained in

greater detail. Portions of the code needed to be changed to account for different sensor characteristics

and these modifications are also discriminated in this chapter.

6.1 Collision Detection

After receiving the obstacle data from the equipped sensors, this data needs to be processed, since

only a few will require an avoidance maneuver to take place. The existence of this processing phase

helps to save computing time and power during the avoidance phase, considering that some of the

avoidance algorithms can be very demanding. Moreover, some of these algorithms are impracticable

when run on their global form but feasible on their local form. Also in this phase, the list of obstacles

is ordered according to the imminence of the detected collisions. The layout of a typical and general

collision detection module is displayed in the flowchart of Figure 6.1 and several approaches described

in the survey [99] are presented in the following.

The distance estimation is a very common collision detection method due to its simplicity and easy

implementation. In this method, a safety radius is defined around the UAV and the shortest distance

between the UAV and the obstacle is computed, whether it is a static or a dynamic obstacle. If this

distance is smaller than the defined safety radius, then an evasive maneuver is made.

The act as seen approach is an even simpler collision detection method, which consists on acting

defensively as soon as an obstacle is detected. This method is mainly used by UAVs equipped with

vision sensors and it must be used when the avoidance method is equally simple, as more complex
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Figure 6.1: Flowchart of a general collision detection phase

avoidance algorithms could be easily overwhelmed by having to compute avoidance strategies to every

single detected object [100].

In the previous methods, the trajectory of moving obstacles is not taken into account and if one

wishes to consider the future position of these obstacles, several predictions can be made with varying

degrees of simplicity and effectiveness.

The simplest projection method is the straight projection method, where the current state of the

obstacle is projected into the future along a straight trajectory made at a constant velocity (6.2 (a)).

This method can be only used in situations in which the aircraft trajectories are very predictable and

for a short period of time. The other extreme is the worst case scenario, which assumes the obstacle

will perform any possible maneuver after being detected (6.2 (b)). If any of the possible trajectories

comes into conflict with the UAV, a collision is predicted and an avoidance maneuver is performed. This

approach is the most effective but the most inefficient. Therefore, it should also be limited to a short

period of time to limit the computation requirement for risk assessment [101].

The other projection method is the probabilistic one, where uncertain factors and their probability
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(a) Straight projection (b) Worst case projecion

Figure 6.2: Two methods used for projecting the UAVs trajectory

distributions act as variables. In reference [102], the considered factors were the UAV’s and obstacle’s

lateral position, vertical position, along-track speed, cross-track position, the obstacle’s heading change

and altitude change. Using this model, the probability of collision is computed using Monte Carlo simu-

lations. In Monte Carlo simulations, risk analysis is performed by establishing models of possible results

by substituting a range of values for any factor that has inherent uncertainty. It then calculates results

repeatedly, each time using a different set of random values from the probability functions. The draw-

back of this approach is the excessive computational power required to run the Monte Carlo simulations

several times with such a number of uncertain factors, which would be unfeasible for a mini UAV in real

time.

Based on the previous remarks, the code used to perform our simulations uses the straight projection

method which performs well while being the one that requires the least computational power and time of

all the discussed approaches (excluding the act as seen approach which would not be feasible). Besides

this, elements from the distance estimation approach are also used, not only due to its simplicity but

also because the chosen avoidance algorithm relies heavily on the distance between the UAV and the

obstacle, as discussed in the next section. Additionally, the picked method will be discussed in detail in

section 6.3.

6.2 Obstacle Avoidance Algorithms

After having the obstacle information returned by the sensors and a possible collision detected, the

UAV must apply its avoidance strategy to ensure that a safety distance is kept between itself and the

detected obstacles. To achieve this, a local path is generated so that the threatening obstacles are

avoided and only when there are no more obstacles representing potential collisions does this module

export its generated local path to the flight controller, so that it can be followed. Before describing the

next stage of the avoidance algorithm, it is important to distinguish global WPs from WPs belonging to

the global path: global WPs are considered mandatory and the UAV must cross them to complete the
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present flight phase, while WPs belonging to the global path connect two global WPs because these are

the waypoints that define the trajectory and they are to be followed by the flight controller but are not

mandatory to cross, as the UAV can deviate from the global path if an obstacle is blocking it. Because of

this, following the obstacle avoidance, if an obstacle was sensed blocking the next global waypoint, the

algorithm is also responsible for generating a local path to the missed global WP in order to complete

the present flight phase. However, if the blocking obstacle is static, the global waypoint is considered

unreachable and it is discarded from the flight plan, so that the UAV can continue its mission by moving

to the next global WP. Only the current global WP can be excluded in this phase, as discarding future

global WPs would be too computationally demanding if the global path had to be recalculated and would

be inconsequential otherwise. Considering all this, the flowchart of a general collision avoidance module

is displayed in Figure 6.3.

Figure 6.3: Flowchart of a general collision avoidance phase
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Several avoidance techniques can be used to generate a local path around the obstacles and, in

references [59, 99, 103], these approaches are divided in different categories, which include geometric,

path planning, bearing angle based and potential field, all of which will be briefly described next.

In the geometric approach, the collisions are detected and avoided through a geometric analysis

by simulating the trajectories of the UAV and the obstacles. To accomplish this, both vehicles’ velocity,

heading and position are needed and because of this, this method is most associated with the use of

ADS-B sensors. A typical use of this approach is demonstrated in reference [104] where, given the

vehicles’ motion in a two-dimensional environment and considering they keep linear trajectories, the

subtraction of their movement vectors at the Closest Point of Approach (CPA) is computed and, in case

of a possible collision, their trajectories are changed to widen this vector. However, this conflict resolution

process fails if a high number of UAVs have to avoid each other, since applying this algorithm to each

obstacle, one at a time, does not always result in a successful conflict avoidance.

The path planning approach is a grid based method that utilizes the path re-planning algorithm with

graph search algorithm to find a collision free trajectory during the flight. It has some similarities with

the previous approach due to relying on some trajectory calculation in a geometric way. However, by

using this approach, the generated trajectory is usually the most optimized one, where all obstacles are

avoided while the predefined trajectory is still maintained at a short distance. This approach is more

suited for static obstacles and their size and position must be known. This approach was adopted in

reference [103], where the environment was discretized by dividing the map into a grid, represented by

a weighted graph. This grid enables finding a collision free path by using a graph search algorithm like

A* [103], such that in case of an obstacle detection, a path re-planning is performed by calculating the

shortest path from the actual position to the goal while avoiding the edges of the graph that connect cells

within the obstacle’s safety distance. An example of this resolution is displayed in Figure 6.4.

Figure 6.4: Obstacle avoidance by path planning with A* search [103]

The bearing angle based approach relies on visual sensors and their ability to return relative angle of

obstacles toward the UAV. To avoid the collision using this method, the obstacle has to be kept at a "safe"

position in the sensor’s FOV, which results in spiral flight paths. This method has all the disadvantages

of the vision sensors, being affected by external conditions that can affect the image and relying on

image processing techniques. In reference [100], computing the distance and time to collision is not
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required, since this method relies completely on the obstacle’s bearing and UAV’s heading to avoid

obstacle. The maneuver starts as soon as the obstacle is detected, while the stopping decision is based

on thresholding a cost function.

Lastly, in the potential fields approach, the waypoints and obstacles are considered charged particles

with associated potentials that affect the UAV’s movement according to its proximity to obstacles or to a

waypoint. However, computing the potential of each point of the plane would not be feasible, as it would

require too much time and computing power. Because of this, the potential gradient is instead used,

which correlates to a force to be exerted on the UAV. A potential field generated by a waypoint and an

obstacle is represented in Figure 6.5. In reference [105], an analytically tractable potential field model

of free space is presented, which assumes that the border of every two-dimensional region is uniformly

charged. The Newtonian potential function was used and simulation results showed that the collision

avoidance was effective and the resulting path was smooth.

Figure 6.5: Potential field generated by an obstacle and a goal [106]

The approach used in our legacy code [98] is the potential field method, although the collision de-

tection method, as described before, shares several similarities with the geometric approach. The other

methods were not so suited to the resolution of our problem, as the path planning approach is more ap-

propriate for avoiding previously known static obstacles and the bearing angle based approach restricts

the kind of sensors used due to relying heavily on vision sensors. The actual approach will be described

in greater detail in the following section.
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6.3 Description of Adopted Algorithm

6.3.1 Safety Zones

In the developed algorithm, each detected obstacle has several safety zones associated with it,

which play a role in the collision detection phase as well as in the avoidance phase. The obstacles

were modeled as spheres and, as such, the collision radius (Rc) defines the volume of the obstacle

and a collision is said to occur if this radius is trespassed. The safety radius (Rs) defines the minimum

distance that should be maintained between the UAV and the obstacle to take into account possible

deviations and uncertainties that could happen during the detection and path prediction phases. The

action radius (Ra) is the distance from which the replanned paths begins to depart from the original

path given by the global planner. Lastly, the detection radius (Rd) represents the distance from which

an obstacle is considered by this algorithm. The Rs should be similar to the UAV’s size and depend on

the UAV’s speed and type of obstacle approach, as demonstrated in reference [98]; the Ra should be

comparable to the Rs and the Rd should correspond to the range of the sensors used. A representation

of the described safety zones is displayed in Figure 6.6.

Figure 6.6: Representation of the safety zones around an obstacle

6.3.2 Geometric Collision Detection Method

As seen in section 6.1, the chosen collision detection method computes straight projections of the

obstacles, considering future distances between the obstacles and the UAV, like in the distance esti-

mation approach, which results in a collision detection method similar to the geometric approach (the

collision avoidance method).

As such, the resulting collision detection method consists of computing the closest point of approach

(CPA) between the UAV and the target, assuming that both vehicles will maintain constant velocities

and rectilinear paths. With these considerations, the motion of two vehicles, A and B, can be described

as A(t) = A0 + vAt and B(t) = B0 + vBt and the distance between them at an instant t is given by

||A(t)−B(t)||. By solving its derivative, the instant corresponding to the minimum distance between the

two points (tCPA) is given by

tCPA =
−(A0 −B0) · (vA − vB)

||vA − vB ||2
. (6.1)
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Knowing the value of tCPA, the minimum distance between the two vehicles can be easily computed, as

dCPA = ||A(tCPA)−B(tCPA)||. (6.2)

Finally, if this distance is smaller than the safety radius, an evasive maneuver must be performed, oth-

erwise the obstacle is not considered a threat to the UAV. Since the linear projection is not the most

effective, these computations will have to be made regularly to take into account maneuvers performed

by the UAV itself and by non-threatening obstacles that can become threatening after said maneuver.

Furthermore, the installed sensors can detect new obstacles, whose risk will also have to be evaluated.

In case of multiple collisions being detected, the obstacles are sorted according to their tCPA, so

that the obstacles associated with possible collisions that would happen first are avoided before the

remaining ones.

The adopted algorithm with all of the elements described above is presented in Pseudo-code 1.

Input: UAV’s position A, UAV’s speed vA, obstacle’s position B, obstacle’s speed vB ,
obstacle safety radius Rs

Output: Flag indicating possible colision flag, tCPA, Obstacle’s position at CPA BCPA
begin

set tCPA = −(A0−B0)·(vA−vB)
||vA−vB ||2

set BCPA = B + vB × tCPA
set ACPA = A+ vA × tCPA
set dCPA = ||ACPA −BCPA||
if tCPA > 0 and dCPA < Rs then

set flag = 1
else

set flag = 0
end

end
Pseudo-code 1: Collision avoidance algorithm

6.3.3 Avoidance Strategy

Before explaining the avoidance method, the avoidance strategy needs to be defined. As stated in

section 1.3, UAVs must always give way to manned aircraft and, since the sensing is assumed to be

non-cooperative, the UAV will always make an evasive maneuver to avoid a collision, while respecting

the Rules of the Air [107]. So, in case of an imminent collision, the avoidance strategy is the following:

• In level flight, if the intruder is in a head-on collision path or to the right of the UAV, the avoidance

algorithm makes the UAV turn right;

• In level flight, if the intruder is approaching from the left, the UAV turns left to avoid being in front

of the intruder;

• While climbing, upon detecting an intruder with a high risk of collision, the UAV levels off until the

obstacle is overcome;
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• While descending, when a target is detected, the UAV increases its rate of descent (unless it is at

its maximum), which is easier than leveling off due to the vehicle’s inertia;

• In case of a static obstacle, the direction in which the obstacle is circled is the one that corresponds

to the smaller path to reach the goal.

6.3.4 Potential Fields Method

To solve the local path planning problem, the Potential Fields approach is used, where the waypoints

and obstacles are considered charged particles. This approach was used in the previous works [98,

108]. Considering this analogy, the waypoints generate an attractive field, the obstacles a repulsive field

and the sum of all forces is used to generate the direction of motion. However, punctual charges are not

enough for the UAV to have an appropriate behavior. Because of this, several changes to this method

needed to be done so that the UAV could follow a path and avoid an obstacle in a smooth and regular

manner.

Attractive potential

The attractive potential is given by

fat = αPF
Pclose − P
||Pclose − P ||

+ (1− αPF )
Pnext − Pclose
||Pnext − Pclose||

, (6.3)

where the first term is responsible for guiding the UAV to the nearest point of the global path and the

second term is responsible for guiding the UAV to the next defined waypoint. P is the UAV’s position and

Pclose is the closest point of the global path. Subtracting both positions and dividing by its norm results

in a unit vector pointing from the UAV to the closest point of the path. The second term functions under

the same principles, where Pnext is the position of the next waypoint. The αPF term is responsible for

giving more or less predominance to each term.

An example of a global path to a waypoint and its corresponding attractive potential field is repre-

sented in Figure 6.7 for αPF = 0.7.

Repulsive potential

Using a simple repulsive potential to avoid obstacles is not feasible since that would lead to irregular

motion around the obstacle. Adding a swirling motion to the potential flow solves this problem and makes

the evasion start sooner, since the UAV will evade the obstacle instead of just keeping the distance to

the obstacle.
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Figure 6.7: Attractive field for a linear path with αPF=0.7

The swirling term is given by

sdir =
k̂× d0

||d0||
, (6.4)

where k̂ is the unit vector in the z direction (0,0,1) and d0 is the vector pointing from the obstacle

to the UAV. Computing sdir this way results in a vector that makes the UAV circumvent the obstacle

counterclockwise. When the obstacle needs to be circled in the other direction, the symmetric of sdir is

used.

To avoid the UAV being trapped around the obstacle, the generated field needs to become zero once

the obstacle is overcome. To check this condition, an angle θ between the desired direction of motion

(m) and the direction of the obstacle needs to be computed from

θ = arccos

(
m · d0

||m||||d0||

)
. (6.5)

If this angle is larger than a θcut−off , the obstacle will have been overcome, making the field null.

Knowing this, the potential associated to the obstacle is represented in Figure 6.8 and it is described

by

frep =



∞ d0

||d0|| , if ||d0|| ≤ Rc

Smaxsdir , if Rc < ||d0|| ≤ Rs

Smax
Ra−||d0||
Ra−Rs sdir , if Rs < ||d0|| ≤ Ra

0 , if ||d0|| ≥ Ra ∨ θ ≤ θcut−off

. (6.6)

This field is different according to the distance between the obstacle and the UAV. If the UAV is in the

collision zone, the field will be repulsive with infinite intensity. If it is in the safety zone, the field will have

the direction of sdir, previously defined, and the intensity of Smax, a constant to be defined depending

on the velocity of the UAV. In the action zone, the field is similar to the previous one but with the addition

of a gradient term that ensures the intensity of the field decreases linearly with the distance of the UAV

to the obstacle until becoming null for ||d0|| = Ra. Lastly, outside the action zone, the obstacle has no
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influence in the motion of the UAV, thus the filed intensity is null.

Figure 6.8: Repulsive field for an obstacle with Rc = 2, Rs = 3 and Ra = 6

6.3.5 Pseudo-code of Avoidance Algorithm

The avoidance algorithm is represented in pseudo-code 2 and it includes two functions:

Pclose = find_closest(P, path), which finds the point of the global path closest to the position of the UAV;

and v =get_velocity(f,v), which computes the direction of the force F and creates a velocity vector

with this direction and the magnitude of V . The variable mov is computed previously and indicates the

direction the UAV will take in order to avoid the obstacle according to their positions. Moreover, as stated

before, the constants Smax and θcut need to be defined according to the size and speed of the UAV in

order to obtain the most effective avoidance maneuvers.
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Input: Position of UAV P , speed of UAV v, position at CPA of obstacle PCPA, radius of obstacle
Rc, position of next global WP Pnext, safety radius Rs, action radius Ra, weighing term
αPF , points of global path path, time step dt, variable indicating avoidance strategy mov

Output: Flag indicating if collision was avoided flag, next point of local path PL
begin

set Pclose =find_closest(P, path)

set fat = αPF
Pclose−P
||Pclose−P || + (1− αPF ) Pnext−Pclose

||Pnext−Pclose||
set d0 = P − PCPA
if mov == 1 then

set sdir = k̂×d0

||d0||
else

set sdir = − k̂×d0

||d0||
end
if ||d0|| ≤ Rc then

frep =∞ d0

||d0||
else if Rc < ||d0|| ≤ Rs then

frep = Smaxsdir
else if Rs < ||d0|| ≤ Ra then

frep = Smax
Ra−||d0||
Ra−Rs sdir

else
frep = 0

end

set θ = arccos
(

fat·d0

||fat||||d0||

)
if θ > θcut then

set f = fat
set flag = 1

else
set f = fat + frep
set flag = 0

end
set v = get_velocity(f,v)
set PL = P + v× dt

end
Pseudo-code 2: Collision avoidance algorithm
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Chapter 7

Sensor Parametric Studies

The main focus of this chapter is on studying the response of the UAV to an imminent collision,

when it is equipped with sensors with different parameters. However, before making this study, the col-

lision scenarios need to be defined and several parameters associated with the UAV’s dynamics and

the Kalman tracking need to be carefully determined, namely the UAV’s speed, maximum angular ve-

locity and the measurement error covariance matrix. All the simulations were performed using MATLAB

R2018a.

7.1 Collision Scenarios

The possible scenarios, in which the simulations present in this chapter were performed, include a

head on collision course (Figure 7.1 (a)) and an angled collision course (Figure 7.1 (b)).

(a) Head-on approach (b) Angled approach

Figure 7.1: Scenarios used for the simulations

The positions and velocities of the vehicles in these figures are arbitrary and are better defined in

the sections referring to the particular simulations. For example, in the case of the angled approach, the

initial position of the obstacle needs to be adjusted in accordance to the chosen velocities, so that the

obstacle crosses the UAV’s path dangerously.
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7.2 UAV’s Speed and Angular Velocity

Before performing the various simulations, some UAV characteristics need to be defined. Since the

simulations were performed in a two-dimensional environment, the two most important performance

parameters to define are the UAV’s speed (V) and the maximum angular velocity (ω) of its turns.

Considering the example of the Tekever AR4, described in section 1.3, the UAV is considered to

travel with a speed between 8 m/s and 15 m/s. The faster the UAV moves, the larger its angular velocity

needs to be so that the obstacles can be effectively avoided. To prove this concept and to get the lowest

maximum angular velocity needed for different possible UAV speed values, a series of simulations were

performed. In these simulations, the UAV was set in a head-on collision course with an obstacle with

a 2 m radius and a safety radius of 2 m. The obstacle approaches with the same speed as the UAV,

which is equipped with a RADAR with a 50◦ FOV and a 120 m range. For each of the tested speeds,

the maximum angular velocity was decreased until the UAV could not perform the avoidance maneuver

without breaching the safety zone around the UAV. The results obtained from these tests are presented

in Figure 7.2, in which a linear dependency can be recognized.

Figure 7.2: Angular velocity needed to avoid obstacle safely for different speeds

To check the validity of these results, the avoidance maneuvers can be approximated to coordinate

turns. A coordinate turn is a turning maneuver made at a vertical and constant angular velocity and in

which the lateral component of the resulting force is null. Considering that there is no wind, the slip is

almost null and the angle of attack and climb angle are very small, the speed and the angular velocity

are related by

tan(φ) =
ωV

g
, (7.1)

where φ is the correspondent roll angle and g is the standard acceleration due to gravity (≈ 9.81 m/s2)

[109].

The avoidance maneuver is not performed at a constant angular velocity, but this approximation can
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be made to check the roll angles corresponding to the speeds and angular velocities obtained. All the

obtained values are displayed in the Table 7.1.

Table 7.1: Roll angles for each maneuver considering the performance of a coordinate turn

Speed (m/s) Angular Velocity(◦ /s) Roll Angle (◦ )

8 87 51.1
9 96 57.0

10 114 63.8
11 121 67.1
12 136 71.0
13 145 73.4
14 153 75.3
15 168 77.4

The obtained roll angles are acceptable considering the urgency of the maneuvers needed to avoid

obstacles. For the highest speed of 15 m/s, the corresponding roll angle is already pretty high but

achievable nonetheless. So, for the next simulations, the maximum angular velocity of the turns was set

to 168◦ /s.

7.3 Measurement Error Covariance Matrices

As described in section 4.2.3, using polar measurements and a Cartesian state space leads to inac-

curacies when tracking the obstacles with a Kalman filter. To test the two measurement error covariance

matrices described in that section, the UAV was put in a head-on collision course (Figure 7.1 (a)), where

the UAV is moving at 8 m/s and the obstacle is moving at 10 m/s. The UAV was equipped with a

RADAR with the specifications of the Aerotenna µSharp Patch (100 m range, 50◦ FOV and 0.22 m ac-

curacy). The noise was divided into a radial and an angular component, where both components were

modeled as a zero-mean Gaussian noise, with the corresponding variance chosen so that 99.73% of

the set would be within the accuracy range. The angular accuracy was considered at half the sensor

range (50 m).

To test the standard conversion matrix and the unbiased covariance matrix, one hundred simulations

were performed for both matrices and the average position errors were computed for both Cartesian

coordinates. The identity matrix was also tested as a control group. The results are presented in

Figure 7.3.

For the two studied matrices, during the first scans, the position errors are considerably high, but

after only 50 scans, they are below the 0.01 m mark for the x coordinate and remain at this order of

magnitude for the remaining scans. For the y coordinate, the initial overshoot is much smaller compared

to the one of the x coordinate, due to the nature of the chosen scenario, where neither the obstacle

nor the UAV have velocity in the y direction. For this reason, the identity matrix produces a very small

error in the y direction but, in the x direction, produces an error one order of magnitude above the other

matrices.
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(a) X coordinate (b) Y coordinate

Figure 7.3: Average position errors for different measurement error covariance matrices

After 250 scans, the UAV initiates the avoidance maneuver and the obstacle is no longer detected

by the sensor. So, after this point, the uncertainties present in the tracked velocity starts to propagate,

which results in linear increases of the position errors. In the x direction, the slopes of the average

position errors are very similar for both matrices but, in the y direction, using the unbiased conversion

results in a much faster deviation. For both coordinates, using the standard conversion matrix results in a

slower deviation, despite both deviations being acceptable, considering that 50 scans later, the average

position errors are still two order of magnitude below the obstacle’s radius.

The root mean square (RMS) deviation for the three matrices and for both coordinates is represented

in Table 7.2. Only the first 250 scans were considered in the computations, so that the points where the

obstacle is not detected would not influence this metric.

Table 7.2: Root mean square deviations for each of the used matrices

RMS [m] x axis y axis

Standard conversion matrix 0.0165 0.0013
Unbiased conversion matrix 0.0163 0.0016

Identity matrix 0.5993 0.0009

From Table 7.2, one can conclude that using the standard conversion or the unbiased conversion

result in very similar outcomes. This may be due to the particular conditions of our study, where the

sensor range and the noise variance are not very high. In spite of the similar results, the unbiased

conversion matrix was used in all the following simulations.

7.4 Varying Range Simulations

To study how the sensor’s range influences the response of the UAV to detected obstacles, the UAV

was set in a head-on collision course with an obstacle with a radius of 2 m, a safety radius of 4 m and

animated with a speed of 10 m/s. The UAV is equipped with a RADAR sensor with a FOV of 50◦ but,
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for this kind of experience, the type of sensor used does not affect the results much. In Figure 7.4, the

behavior of the UAV when animated with a speed of 8 m/s is illustrated.

(b) At instant t=0.44s (c) At instant t=0.9s

(d) At instant t=0.98s (e) At instant t=2.66s

Figure 7.4: Avoidance trajectories for UAVs with a speed of 8 m/s equipped with a RADAR with different
ranges for a head-on collision threat

The UAV behaves very similarly for all illustrated cases. The obstacle is always properly tracked

and avoided, which results in similar tight maneuvers. If the UAV is equipped with a RADAR with a

range of 10 m, the UAV is already inside the action radius of the obstacle when the obstacle is detected.

Because of this, the UAV immediately initiates the avoidance maneuver but cannot avoid breaching the

safety radius of the obstacle. For this example, ranges greater than 15 m result in identical trajectories.

The same scenario for a UAV with a velocity of 15 m/s is depicted in Figure 7.5. The UAV’s behavior

is similar to that of the UAV with the lower speed, although the higher speed results in a higher produced

potential, which forces the UAV to perform a less conservative maneuver that prevents the UAV from

entering the obstacle’s safety radius when it is equipped with a RADAR with a range of 10 m.

From these results, one can conclude that for a UAV moving at a maximum speed of 15 m/s, the

range provided by the Aerotenna µSharp Patch is more than enough to prevent head-on collisions,

assuming that the obstacles are also moving at a maximum speed of 15 m/s.
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(b) At instant t=0.34s (c) At instant t=0.62s

(d) At instant t=0.9s (e) At instant t=2.12s

Figure 7.5: Avoidance trajectories for UAVs with a speed of 15 m/s equipped with a RADAR with different
ranges for a head-on collision threat

7.5 Varying Field of View Simulations

To test the effect of the FOV of the sensor on the avoidance capabilities of the UAV, the UAV was

set in a θ=30◦ angled collision course (Figure 7.1 (b)) with an obstacle moving at a speed of 10 m/s,

while being equipped with a LIDAR that performs a measurement every half degree with a range of 100

m. The responses of the UAV for different FOVs, when it is moving at a speed of 8 m/s, is displayed in

Figure 7.6.

All the obstacles were simulated as circles. Therefore, equations (4.12) and (4.13) were adapted to

filter the obstacle’s radius instead of its length and width. The LIDAR gain from equation (4.14) also

needed to be defined. For the sensor to reach 99% of the real dimensions, acc is set to 0.99 and, to get

this precision before the obstacle transverses 10% of the 100 m range, the filter needs to perform 20

iterations (n), considering the LIDAR is working at a 50 Hz frequency and assuming the obstacles can

move at the same speed of the UAV, which results in a maximum relative speed of 30 m/s. Knowing n

and acc, the minimum gain to be used can be computed using said equation, it being 0.2057.

66



For a FOV of 30◦ , the obstacle is detected when it is already dangerously close to the UAV, so the

UAV breaches the safety radius for several points, despite avoiding a collision. For FOVs greater than

35◦ , the obstacle is properly tracked in advance, which results in a proper safe maneuver. Finally, for a

FOV of 0◦ , which corresponds to a fixed laser rangefinder, the UAV detects the obstacle only when it is

directly in front of it, which causes a quick breach of the safety radius. Because of the singular nature

of this case, the obstacle’s velocity can only be tracked with a radial component and so, the obstacle

is tracked as being in a head-on collision course with a small velocity. This leads to a wide maneuver

which results in the UAV leaving the obstacle’s safety radius after only a couple points.

The obstacles were avoided by the UAVs with different sensors, but the success of the maneuver

depends on the approach angle of the obstacle (θ). For an obstacle closing in at a θ=30◦ angle, a FOV

of 35◦ is sufficient to properly track the obstacle but that would not be the case if the obstacle would

close in at a wider angle. Small FOVs also result in inadequate velocity tracking, which cause the UAV

to unreasonably distance itself from the planned trajectory.

(b) At instant t=0.36s (c) At instant t=0.76s

(d) At instant t=1.3s (e) At instant t=3.2s

Figure 7.6: Avoidance trajectories for UAVs with a speed of 8 m/s equipped with a LIDAR with different
FOVs for an angled collision threat
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As seen in Figure 7.7, if the UAV is moving with a speed of 15 m/s, the maneuvers for FOVs of

30◦ and 35◦ become identical, as the obstacle is successfully tracked in both cases, which results

in a successful avoidance for both cases. The maneuvers also become wider, which also leads to a

successful maneuver for a FOV of 0◦ .

(b) At instant t=0.5s (c) At instant t=0.8s

(d) At instant t=1.1s (e) At instant t=2.22s

Figure 7.7: Avoidance trajectories for UAVs with a speed of 15 m/s equipped with a LIDAR with different
FOVs for an angled collision threat

Concluding, the success of an avoidance of an obstacle coming from an angled approach is highly

dependent on the speed of the UAV, the speed of the obstacle and the angle of approach. However, the

wider the FOV, the higher the chance of being able to avoid said obstacle, thus it is better to equip the

UAV with a sensor with a wider FOV.
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Chapter 8

Optimal Sensing System

In this section, an optimization study is made in order to find the best sensor configuration, for

different sensor sets. First, the problem is defined, the algorithm used to perform the optimization is

described and its use is justified. Then, the results obtained from the optimizations are displayed and

explained. All the sensors used in this chapter have the specifications of the sensors present in the

Table 4.2. Therefore the only parameter subject to optimization is their individual orientation.

8.1 Problem Formulation

Firstly, a large number of scenarios was generated, where a random number of obstacles with ran-

dom velocities are moving when the UAV is traveling through a linear trajectory to a waypoint. From

this set of scenarios, fifty that resulted in imminent collisions were selected to perform the subsequent

tests. Then, a function f(β), to be minimized and dependent on the sensor orientation β, was created.

The function is initialized to null and all the generated scenarios are run, where, for each instant, f(β) is

incremented by f(β) = f(β) + 50 , if ||d0|| ≤ Rc

f(β) = f(β) + 1 , if Rc < ||d0|| ≤ Rs
, (8.1)

where Rc is the collision radius, Rs is the safety radius and ||d0|| is the distance between the UAV and

a given obstacle. If a collision occurs, this metric increases intensely, if the safety radius is breached,

it increases lightly and it is not incremented otherwise. After running all the scenarios, the cumulative

value of f(β) can be evaluated: the lower its value, the less failures and close-calls happened.

Gradient-based methods, such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) were deemed in-

adequate to minimize this function, since in the chosen function, the variables have null derivatives

for long stretches of their domains, which prevented the function from converging to its minima. As a

consequence, the Genetic Algorithm (GA), a gradient-free method, was used instead [110].

The Genetic Algorithm is a gradient-free, population-based method, which, instead of working with a

single solution candidate, deals with a set of solutions that are updated simultaneously from iteration to

iteration, which increases the likelihood of finding the global optimum. As such, this algorithm mimics the
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evolution or behavior of a population, where population is understood as the set of solutions. Therefore,

population-based methods might be more efficient in exploring the whole search space at the cost of a

higher computational load and more complex structures.

In the Genetic Algorithm, the design point associated with an individual is represented as a chromo-

some. At each generation, the chromosomes of the fitter individuals are passed on to the next genera-

tions after undergoing the genetic operations of crossover and mutation. New candidates for the solution

are generated with a mechanism called crossover which combines part of the genetic patrimony of each

parent and then applies a random mutation. If the new individual, called child, inherits good characteris-

tics from his parents, it will have a higher probability to survive. In the context of genetic algorithms, the

value of the objective function is termed the fitness and the variables need to be bounded.

The problem can then be posed in standard form as

Minimize f(β)

w.r.t. β , (8.2)

subject to lb < β < ub ,

where f(β) is the sensing system metric defined in equation (8.1), β is the orientation of the sensor and

lb and ub are the lower and upper bounds of β, respectively, to be defined for each particular case.

Before performing the simulations, several optimization parameters needed to be defined.

• The initial population was set to be created with a uniform distribution;

• The crossover function was set to create 80% of the population in each generation;

• Because the variables are bounded, the mutation function randomly generates directions that are

adaptive with respect to the last successful or unsuccessful generation, where the chosen direction

and step length satisfy the set bounds;

• The algorithm was set to stop after 20 generations, enough for one bounded variable to converge

until the genetic diversity is very small;

• The population size was set to 30, enough to find the global minima in a timely manner.

These parameters were chosen following the best practices given in reference [111].

8.2 Set of two RADARs

The set of two RADARs was the first to be optimized. The orientation of each sensor was bounded

between 0◦ and 90◦ from the longitudinal axis, in the horizontal plane and, to simplify the problem in

order to reduce the computation time, the two RADARs were considered to have a symmetrical orien-

tation about the UAV’s longitudinal axis, which is an acceptable approximation. This way, the algorithm

only had one variable to optimize.
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As seen in Figure 8.1 (a), the algorithm performed well, as the best fitness value decreases slightly

as the generations progress. Eventually, the mean fitness converges to the best fitness and, at the

twentieth generation, when the optimization is halted, the best fitness is 746 and the mean fitness is

746.67. The expected result of this simulation was for the sensor orientation to be close to 25◦ , which

would wield the same result as if the UAV was equipped with a RADAR sensor with a doubled FOV.

However, the optimal value reached by the algorithm was a value of 34.6◦ , as seen in Figure 8.1 (b).

(a) GA results (b) Optimal configurtion

Figure 8.1: Results from the optimization of the two RADARs set

A comparison of performance between the optimal orientation, a 25◦ orientation and a single RADAR

pointing forward is presented in Table 8.1, where a failure happens when the UAV collides with an

obstacle and a close call happens if the UAV breaches the safety radius of an obstacle.

Table 8.1: Comparison of performance for different orientations for two RADARs

Orientation Fitness Value Failure Rate Close Call Rate

0◦ (one RADAR) 1625 8% 22%
25◦ (doubled FOV) 1051 6% 26%

34.6◦ (optimal solution) 746 6% 20%

All of the failures that occur when the UAV is equipped with one RADAR pointing forward do not

happen for the optimal solution because, in those cases, obstacles would approach the UAV from an

angle that would not allow their detection by a single RADAR. However, because the optimal solution

cannot detect obstacles directly in front of the UAV, two scenarios that were successes for one RADAR

become failures but, because the random scenarios include a larger number of obstacles approaching

from a wide angle than approaching head-on, the optimal solution corresponds to an angle larger than

25◦ . Moreover, overlapping FOVs would result in the use of the weighted filter data fusion technique

and, consequently, more accurate measurements, but obstacles approaching from wider angles would

not be detected.
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8.3 Set of two Laser Rangefinders

Like in the previous optimization, in this one, the two sensors were considered to be symmetrical

about the UAV’s longitudinal axis, so that only one variable bounded between 0◦ and 90◦ needed to be

optimized.

After 20 generations, both the best fitness and the mean fitness were 348. So, after this generation,

only through mutation would a better solution be found. The evolution of the population is presented in

Figure 8.2 (a) and the configuration that produced the best fitness (25.1◦ ) is presented in 8.2 (b).

(a) GA results (b) Optimal configuration

Figure 8.2: Results from the optimization of the two laser rangefinders set

As seen in Table 8.2, the optimal configuration results in no collisions in all scenarios.

Table 8.2: Comparison of performance for different orientations for two laser rangefinders

Orientation Fitness Value Failure Rate Close Call Rate

0◦ (one laser) 1753 12% 40%
25.1◦ (optimal solution) 348 0% 44%

The optimal solution results in a much lower fitness value than when only one laser rangefinder

pointing forward is used, as obstacles coming from an angled approach can be detected before the

collision. However, despite the zero collisions, in 44% of the scenarios, the safety radius of obstacles

was breached because when collisions with moving objects are imminent, a UAV equipped only with

laser rangefinders is incapable of properly tracking the obstacles.

8.4 Set of two Laser Rangefinders and one RADAR

This optimization involved three sensors: one fixed RADAR pointing forward and two laser rangefind-

ers symmetrical about the UAV’s longitudinal axis, whose orientation was bonded between 0◦ and 90◦ .

As seen in Figure 8.3 (a), the mean fitness did not converge to the best fitness as much as in the pre-

vious simulations, but the best fitness remained unchanged for the last eleven generations. Therefore,
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stopping the optimization at the twentieth generation was still appropriate. When the algorithm halted,

the mean fitness was 392.8 and the best fitness was 304 for an orientation of 69.2◦ . The obtained

optimal configuration is represented in Figure 8.3 (b).

(a) GA results (b) Optimal configurtion

Figure 8.3: Results from the optimization of the two laser rangefinders and one RADAR set

In Table 8.3, the performance of the optimal solution is compared to the performance of the solutions

that would result from a UAV being equipped with only type of sensor, it being a RADAR pointing forward

or two symmetrical laser rangefinders with an orientation of 69.2◦ .

Table 8.3: Comparison of performance for the optimal solution when using different sensors

Sensors Fitness Value Failure Rate Close Call Rate

One RADAR 1625 8% 22%
Two lasers 1660 8% 62%

One RADAR and two lasers 304 2% 18%

Despite the two lasers configuration and the one RADAR configuration having very similar fitness

values, a UAV with only two lasers has almost the triple of close calls than a UAV with one RADAR

because the UAV will only be able to detect most of the obstacles when the safety radius is already

breached. By contrast, the optimal solution results in only one failure and a reduced number of close

calls.

The obtained solution was expected because obstacles approaching in a head-on collision course

could be detected by the RADAR, while the ones approaching in an angled collision course could be

detected by the heavily displaced laser rangefinders. Once again, the optimal solution did not involve

overlapping sensors, which would increase the accuracy of the measurements through the use of the

chosen data fusion algorithm, but would not allow the detection of obstacles approaching from a wider

angle, which is more favorable.
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Chapter 9

Conclusions

9.1 Achievements

This work was developed with the goal of enhancing the safety in the flight of fixed-wing mini UAVs,

in regard to the detection of obstacles during flight. The focus was on the first stage of the S&A phase,

responsible for the acquisition of the necessary information that allows the vehicle to detect threatening

situations like proximity to sensitive infrastructures and route of collision with other manned or unmanned

aircraft. The system was developed supposing that the collected data would be fed to an existing avoid-

ance algorithm, responsible for taking the appropriate evasive maneuvers.

Several possible sensors were considered to be used by the developed system and, ultimately, after

studying the operation of each type of sensor and making a market study on available sensors to know

which sensors had the most adequate attributes (range, FOV, accuracy, cost), ultrasound and stereo

vision sensors were rejected due to the small range they provided, TCAS sensors were rejected because

of the high payload and power they required and ADS-B sensors were rejected for only detecting other

aircraft when they were also equipped with this cooperative sensor, which would not fit the scope of this

work, despite existing small models that could be implemented in mini UAVs. Of the studied available

models, the laser rangefinder/LIDAR Lightware LW20/C and the RADAR Aerotenna µSharp Patch were

the ones that would best meet the needs of the system.

This work was part of a comprehensive obstacle detection and collision avoidance system, so a brief

study on existing collision detection and avoidance algorithms was made and an in-depth description of

the potential field approach, the chosen algorithm, was also made. Knowing the sensors and the avoid-

ance algorithm to be used, a S&A architecture was proposed and developed that would guarantee that

only obstacles that represent impeding collisions generate avoidance maneuvers and that the vehicle

returns to the predefined path or to a missed global WP once these obstacles were cleared.

To integrate the adequate sensors into the avoidance system already developed, they needed to be

modeled. These models took into consideration the range, FOV and accuracy that the real sensors

were characterized by. To allow the tracking of the detected obstacles, a study on different Kalman

filters took place. For laser rangefinders and LIDARs, classic Kalman filters were sufficient to guarantee
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adequate tracking. However, for the RADAR sensors, a Converted Measurement Kalman Filter with

unbiased conversion was required, due to the conversion of the measurements from polar to Cartesian

coordinates. Additionally, to fuse the data obtained from different redundant sensors at a decision level,

two alternatives were presented and the weighted filter technique was selected due to its simplicity and

effectiveness.

Having modeled the sensors, several parametric studies were made, where the impact of the range,

field of view, and speed of the vehicle in the avoidance of obstacles from predetermined scenarios was

made clear. From these simulations, the specifications of the studied sensors were verified as more than

acceptable for avoiding obstacles at the considered speed range. Additionally, an optimization study was

conducted to determine the best orientation that the sensors should have when the UAV is equipped with

different sets of sensors. The optimization process was accomplished by using the genetic algorithm

to minimize a function closely associated with the success and failure of the avoidance maneuvers.

Because the sensors in the tested sets were redundant, none of the optimal solutions involved using the

selected sensor fusion method, as having the sensors pointing at different directions is more valuable

than having them pointing at the same obstacle and fusing the results.

Overall, the developed system provided a satisfactory solution to the obstacle detection problem of

mini UAVs in a simulated environment.

9.2 Deliverables

The defined goals and deliverables for this thesis were mostly achieved: The software to test the

performance of a sensor was developed, which can be used to tune the sensors’ parameters in order

to find the configuration that results in the the best avoidance of obstacles for any given scenario. The

software to obtain the optimal configuration of a set of sensors was also developed, taking into account

the aircraft characteristics and mission constraints.

9.3 Future Work

There are several improvements and future work that can be made. The simulations can be adapted

to a space that better integrates the vehicle dynamics, so that the used models better reflect the reality.

This new simulated environment should also be able to generate more complex obstacles that better

reflect the diversity found in the real world. A study can also be made regarding the fusion of range

sensors with image sensors, since this work only dealt with the fusion of redundant sensors.

Ground and flight tests should also be made to test how a vehicle would behave when using the

chosen avoidance algorithm with different sensor configurations in the real world.

Finally, this work was developed with the objective of increasing the UAV’s autonomy, but interaction

with the operator should also be considered, so that more suitable decision systems can be developed.
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