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Abstract
The performance sensitivity of a low-pressure turbine stator-rotor stage of a commercial jet engine to its blades and hub
shapes is analyzed. The derivatives of various metrics, such as isentropic efficiency, total pressure ratio, total pressure
loss, and loss coefficient are computed using an adjoint solver capable of handling multi-row analyses. The importance
of considering the coupled stator-rotor stage is highlighted from the computed sensitivities, which reveal that performing
individual stator or rotor row component optimization may lead to an unexpected performance loss of the whole stage. The
obtained coupled sensitivities are then used in an endwall contouring application, consisting of two Hicks-Henne bumps
applied on the hub surface of the rotor to maximize stage efficiency, at locations selected where the impact is found to be
the highest from the adjoint-based sensitivity analysis. The performance gain obtained with the bumps is correlated to the
changes in the flow field, in particular with the effect on secondary flows.

Keywords Multistage coupling · Sensitivity analysis · Aerodynamic shape optimization · Endwall contouring ·
Gas turbine · Jet engine

1 Introduction

As computational power has been rapidly increasing and
with the advances in numerical methods, the use of high-
fidelity computational fluid dynamics (CFD) tools in the
design of turbomachinery has also increased, becoming
more and more common, particularly in numerical opti-
mization environments.

The choice of the optimization algorithm often dictates
the selected approach for the analysis of the flow.
Optimization problems in turbomachinery typically consist
in a large number of design variables and, as such, the
computational cost inherited from the high-dimensional
design space must be taken into account. Heuristic gradient-
free methods, such as genetic algorithms or differential-
evolution, can be an important tool for early design
stages (Chirkov et al. 2018; Joly et al. 2014), when a new
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rough design is being developed, as they are able to find
minima without being stuck in local minima close to the
initial conditions. In such cases, the use of surrogate models
is often employed as it greatly reduces the optimization
cost in terms of CPU time (Pierret et al. 2007; Yu et al.
2011; Benamara et al. 2017). In later stages of the design
process, gradient-based algorithms offer a big advantage
since they are much more computationally efficient, both
in terms of reduced number of function evaluations and
convergence of the optimal solution. However, as their name
implies, they imply computing the gradients of the functions
of interest with respect to the design variables. Traditional
methods such as finite-difference approximations present
a computational cost proportional to the number of design
variables. For large number of the later, an efficient
method to compute these gradients is essential to maintain
acceptable computational requirements.

The adjoint method applies control theory to the
flow governing equations to obtain a linear system
of equations—the adjoint system of equations—whose
solution can be used to compute the total derivatives
of functions of interest, often called sensitivities, with a
computational cost that is nearly independent of the number
of design variables. It was first introduced by Pironneau
(1974) in CFD and further extended by Jameson (1988) to
optimization of airfoil profiles and wings and full aircraft
geometry (Jameson et al. 1998, 2004). Its efficiency in
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computing sensitivities in problems with high number of
design variables has made it the choice in a wide range
of subjects. Particularly in turbomachinery, many authors
have used adjoint-based gradients in numerical optimization
frameworks (Walther and Nadarajah 2015; Backhaus et al.
2017).

Being very complex mechanisms, many approaches can
be taken to increase the performance of turbomachinery
such as the control of the inlet/exit conditions (Marta and
Shankaran 2014), the modification of the shape of the
blades (Duan et al. 2018) and/or endwall regions (Poehler
et al. 2015), or the use of higher performance materials (Min
et al. 2011).

While the blades are responsible for the primary flow
structures, and their shape is carefully tuned to obtain
the desire pressure ratios (Mueller and Verstraete 2017),
the efficiency of a turbomachine is often dictated by the
so-called secondary flows. The flow inside turbomachine
components is highly three-dimensional (3D) and unsteady,
particularly in high-pressure compressors with high blade
loading and small aspect ratio blades (Beselt et al. 2014).
However, even in low-pressure turbine components (Schnei-
der et al. 2013), the endwall (hub and casing) regions can be
affected by 3D phenomena such as the tip clearance vortex
or the horseshoe vortex, that are responsible for the loss of
performance of the turbine or compressor. As such, by prop-
erly controlling the flow in these critical regions, the losses
can be minimized.

One way of controlling the secondary flows is by means
of modifying the geometry of the the hub and casing
surfaces, also known as endwall contouring, which can
bring significant reduction of the secondary losses. Many
works addressing this topic can be found in the literature,
such those of Sauer et al. (2001) that reduced secondary
losses due to horseshoe vortex by imposing an endwall
bulb near the leading edge, Corral and Gisbert (2008) that
optimized the endwall profile of a low-pressure turbine
(LPT) row using the discrete adjoint-based gradients to
reduce the secondary kinetic energy, Luo et al. (2015)
that applied continuous adjoint-based sensitivities to the
optimization of a single turbine blade row through endwall
contouring, or even Reutter et al. (2017) that used NURBS
to parameterize the hub of a low-pressure turbine in a
multi-point optimization environment.

It should be noted that most axial turbomachinery are
composed of multiple stages, each composed of a stator
and a rotor rows, in order to compress and expand the
flow at even higher pressure ratios. However, the typical
blade shape optimization or endwall contouring, such as
those described previously, considers only a single row,
keeping the inlet and boundary conditions frozen. From
first principles of fluid mechanics, in subsonic flows, the
flow perturbations propagate not only downstream but also

upstream. This implies that any design change of a row
part will have an effect on both neighboring rows. For
instance, optimizing a turbine rotor row for maximum
efficiency can theoretically have a detrimental impact not
only in the downstream but also in the upstream stator rows,
leading eventually to an overall worse stage efficiency.
Consequently, it is paramount to consider the row coupling
effects when performing multi-row turbomachinery design
optimization. This is the focus that we try to address in this
work.

In this paper, we present the results of the application
of an adjoint solver capable of handling multi-row
domains (Rodrigues and Marta 2018) to conduct the
sensitivity analysis of the exit mass flow, the isentropic
efficiency, and total pressure ratio of a low-pressure turbine
stator-rotor stage to blade and hub geometry changes. We
analyze the adjoint-based sensitivities to obtain insight
on which direction should the geometry of the blades
and hub be modified to improve the performance of the
stage. Furthermore, we use the sensitivity to hub shape
of the rotor to select the locations where two bumps are
imposed on the baseline geometry to try to mitigate some
possible secondary flows that exist on the turbine and thus
improve the stage efficiency. A grid-perturbation sensitivity
is chained with the adjoint-based sensitivities to obtain
numerical gradients of the parameters defining the height
of the bumps, and a line search procedure is performed
manually to find suitable bump perturbation that are close
to the possible maximum along the direction defined by
the gradient. Following this, we analyze and discuss the
flow obtained from the modified geometry, highlighting the
features of the flow that were changed due to the shape
perturbations and the coupling effects among blade rows.

2 Background

The typical problem in which shape sensitivity information
is applied in turbomachinery is included in either the design
phase of a new turbomachine blade, or the modification of
a legacy geometry to improve performance. Both problems
can be represented by an optimization problem, defined
mathematically as

minimize I(α, q(α))

w.r.t. α,

subject to C(α, q(α)) ≤ 0

and R(α, q(α)) = 0, (1)

where I is the set of objective functions (or performance
metrics) to be minimized/maximized, α is the set of design
variables, q is the solution obtained from solving the flow-
governing equations represented by R, and S represents
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the possible set of constrains. The objective functions and
constraints might depend directly on the set of design
variables, and also via the their dependency on the solution
q, if such exists.

2.1 Flow-governing equations

The present work uses the Reynolds-averaged Navier-
Stokes (RANS) equations to model the flow. In conservative
form, the Navier-Stokes equations can be written as

∂ρ

∂t
+ ∂

∂xj

(
puj

) = 0 , (2a)

∂

∂t
(ρui) + ∂

∂xj

(
ρuiuj + pδij − τji

) = 0 (2b)

and
∂

∂t
(ρE) + ∂

∂xj

(
ρEuj + puj − uiτij + qj

) = 0 , (2c)

where ρ is the density, ui is the mean velocity in i direction,
E the total energy, p is the pressure, τij is the viscous stress,
and qj is the heat flux. Reynolds stresses are modeled with
Wilcox’s two equation k − ω model (Wilcox 2008),

∂

∂t
(ρk) + ∂

∂xj

(
ρkuj

) = τij

∂ui

∂xj

− βkρkω

+ ∂

∂xj

[(
μ + σk

ρk

ω

)
∂k

∂xj

]
(3a)

and
∂

∂t
(ρω) + ∂

∂xj

(
ρωuj

) = γω

k
τij

∂ui

∂xj

− βωρω2

+ ∂

∂xj

[(
μ + σω

ρk

ω

)
∂ω

∂xj

]
,

(3b)

where ω is the specific dissipation rate and k is the
turbulence kinetic energy, and the constants are γ = 5/9,
βk = 9/100, βω = 3/40, σk = 1/2, and σω = 1/2. The
effective viscosity is computed as a sum of a laminar and
turbulent term, μ = μl + μt , with μt computed as μt =
ρk/ω andμl obtained from the Sutherland’s law. To account
for the near-wall viscous effects, a wall function method
is used to model the boundary layer, namely the standard
model without pressure gradients (Launder and Spalding
1972). Wall integration is also available in the solver but
it was not chosen as it would dramatically increase the
computational cost due to the required finer meshes.

In their discretized form, the RANS equations can be
written as
dqijk

dt
+ Rijk(q) = 0 , (4)

where and the triad ijk represents the three computational
directions. As this work deals with the steady RANS

equations, the unsteady term is dropped through the rest of
this paper.

2.2 Adjoint equations

The adjoint system of equations (Giles and Pierce 2000) can
be defined as

[
∂R

∂q

]T

ψ =
[
∂I
∂q

]T

, (5)

from which the solution φ can be used to compute the
derivative of the function of interest I to a set of arbitrary
design variables α as

dI
dα

= ∂I
∂α

− φT ∂R

∂α
. (6)

Since there is no dependency on q in (6), the adjoint
solution ψ can be used to compute derivatives of a specific
function of interest to various sets of design variables
without any additional solution of the adjoint system of
equations, or flow governing equations.

The treatment of the turbulence equation in the adjoint
formulation can either consider full or frozen turbu-
lence (Marta and Shankaran 2013). In this work, the com-
plete RANS equations were handled in the adjoint system,
resulting in seven adjoint state variables.

2.3 Adjoint-based shape sensitivity

Equation (6) is typically used to produce the sensitivity of
performance metrics I to the computational grid, assuming
α = X = [x, y, z]T , as
dI
dX

= ∂I
∂X

− ψT ∂R

∂X
. (7)

While being the foundation for obtaining higher-end
sensitivities of geometry parameters, the sensitivity of the
performance metric to mesh grid dI/dX does not provide
information that can be easily analyzed as is. The designer,
as well as the numerical optimizer, would be interested in
the sensitivity to certain parameterization parameters which
would be more easily related with the geometric features
of the blade and/or allow for smoother modifications to the
geometry. These can be (i) engineering specific parameters
(such as curvature, stiffness or sweep), (ii) parameters that
define the shape of the blade directly (such as NURBS
(Mykhaskiv et al. 2018) or other CAD parameters (Agarwal
et al. 2018)), and (iii) deformation techniques (such as free
form deformation (Lamousin and Waggenspack 1994) or
Hicks-Henne bump functions (Hicks and Henne 1978)).

To obtain the sensitivity of the performance metrics to the
specific shape parameterization, the sensitivity to the grid is
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multiplied by the sensitivity of the computational grid itself
to the design parameters dX/dα following the chain rule as

dI
dα

=
(

∂I
∂X

− ψT ∂R
∂X

)
dX

dα
. (8)

For the case of parameters that define the geometry
directly, particularly if black box mesh generators are
used, this term can be obtained with finite-difference
approximations. Given that in an automated optimization
framework, the sensitivity analysis has to be performed at
least once in every iteration of the gradient-based optimizer,
and the use of mesh deformation techniques (Luke et al.
2012; Ding et al. 2014) might prove beneficial in terms of
computational cost, in particular if the mesh regeneration
is found to be computationally expensive. In that case, the
sensitivity of the mesh grid nodes to the design parameters
can be obtained through the chain rule as

dX

dα
= dXv

dXs

dXs

dα
, (9)

where Xv represents the interior nodes of the computational
mesh and Xs , the boundary (surface) nodes. The first
term is obtained from the propagation of the imposed
deformations from the surface to the interior of the
domain, while the latter term depends on the selected
deformation/parameterization approach.

In the current study, the computation of dX/dα follows
the mesh perturbation technique, where the perturbations
on the surface are first computed from a set of design
parameters ΔXs = f (Xs , α) and then the perturbation
propagated into the volume grid X∗

v = f (ΔXs). The
sensitivity to the design variables is then computed from
the original and modified grid using first-order finite
differences as

dX

dα
= Xv − X∗

v

h
. (10)

3 Description of test case

A stator-rotor stage of a low-pressure axial turbine of a
commercial jet engine is used as an illustrative test case
in this work. A description of the computational domain,
boundary conditions, and functions of interest are presented
next.

3.1 Computational domain

The multi-row computational domain consists of two
individual computational domains, representing a single
blade per row due to periodicity, each discretized with an O-
H grid. The stator and rotor grids are divided into 15 and 14
blocks, respectively, as represented in Fig. 1, totaling 90,750

Fig. 1 Computational mesh and multi-block domain

cells. The flow is in the positive axial z-direction, being only
the stator and rotor blades and the hub surfaces represented
in the figure.

3.2 Boundary conditions

The stage inlet boundary conditions prescribed are absolute
tangential velocity and pressure extrapolated from the
interior. The stage exit static pressure is held fixed (Marta
and Shankaran 2014). All solid walls are considered
impermeable with no-slip condition. The remaining faces
are either block-to-block interfaces or periodic.

Between the two stator-rotor domains, the boundary
conditions are updated with the mixing-plane algorithm
described by Holmes (2008), where the flux differences are
used as a control signal to adjust the auxiliary flow variables
at each side of the interface until multi-row convergence
is achieved and the radial profiles at the interface between
adjacent blades is very similar.

Figure 2 presents a schematic of the boundaries of the
computational domain, namely, the inlet (purple), mixing-
plane (green), exit (yellow), stator and rotor blade (gray),
and hub surfaces (gray). The casing surface was omitted to
allow for a better visualization of the various boundaries.

Fig. 2 Schematic of domain boundaries
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3.3 Performancemetrics

The sensitivity analyses of the turbomachine performance
include metrics of the stator, rotor, and stage, so that
coupling effects can be properly studied. In total, seven
performance metrics I are assessed, namely the stator loss
coefficient ηstator, the stator total pressure loss πstator, the
rotor isentropic efficiency ηrotor, the rotor total pressure ratio
πrotor, the stage isentropic efficiency ηstage , the stage total
pressure ratio πstage, and the stage exit mass flow ṁ.

The stator loss coefficient is defined as

ηstator = p
inlet,1
T a − p

exit,1
T a

p
inlet,1
T a − p

inlet,1
s

× 100 , (11)

where the subscripts s and T a refer to static and total
absolute quantities, respectively. The numbering in the
superscripts refers to the stator (1) and rotor (2) blade
passages. The stator total pressure loss is evaluated as

πstator = p
inlet,1
T a − p

exit,1
T a

p
inlet,1
T a

× 100 . (12)

The rotor isentropic efficiency is defined as

ηrotor =
(
T
exit,2
T a /T

inlet,2
T a

)
− 1

(
p
exit,2
T a /p

inlet,2
T a

)(γ−1)/γ − 1
(13)

and its total pressure ratio is evaluated using enthalpy
averaged total pressures,

πrotor = p
exit,2
T a

p
inlet,2
T a

. (14)

Similarly to the rotor metrics, the stage isentropic
efficiency is defined by

ηstage =
(
T
exit,2
T a /T

inlet,1
T a

)
− 1

(
p
exit,2
T a /p

inlet,1
T a

)(γ−1)/γ − 1
, (15)

and the stage total pressure ratio is given as

πstage = p
exit,2
T a

p
inlet,1
T a

, (16)

again with the total pressure being enthalpy averaged.
The mass flow is computed at the exit of the last (rotor)

blade passage.
It should be noted that, given our test case consists

of a turbine stage, the design goal consists of achieving
the maximum flow expansion at the highest efficiency,
thus reducing the losses. The desired evolution of the
performance metrics (11) to (16) is summarized in Table 1.

Table 1 Desired evolution of the performance metrics

Stator Rotor Stage

η Reduce (↘) Increase (↗) Increase (↗)

π Reduce (↘) Reduce (↘) Reduce (↘)

4 Direct and adjoint solutions

The flow-governing equations given by (4) were run to
steady state with a 4th-order Runge-Kutta scheme down to a
relative averaged residual of the continuity equation of 10−9

or less, as shown in Fig. 3. All computations were performed
in double precision.

The normalized pressure field on the stator blade, rotor
blade, and hub surfaces is presented in Fig. 4, viewed from
two directions for the blades to show both their pressure side
(PS) and suctions side (SS).

The flow solution provides valuable information to the
experienced designer, in particular highlighting adverse
viscous or compressibility effects, such as secondary
flows and shock waves, respectively. Nevertheless, in the
occurrence of such undesired effects, it might not be clear
what design change must be pursued to mitigate them. This
is where the use of the adjoint-based sensitivity analysis tool
comes handy.

With the converged flow solution, the adjoint systems of
equations, given by (5), are solved for each performance
metric I, with a computational cost similar to solving one
direct solution. The solver uses the built-in Krylov subspace
method of the Portable, Extensible Toolkit for Scientific
Computation (PETSc) (Balay et al. 2014), more specifically,
the Generalized Minimum Residual Method (GMRES) with
the incomplete factorization preconditioner with one level
fill, ILU(1). The restart of the GMRES procedure was set
to 75 iterations and the solution was converged down to
a residual of 10−9. The residual history of the GMRES
algorithm is presented in Fig. 5 for some of the metrics,
where effect of the restart can also be noticed.

Fig. 3 Residual iteration history of flow solution
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Fig. 4 Pressure field of turbine stage (normalized)

The normalized adjoint solution corresponding to the
continuity equation is shown in Fig. 6, for the same
geometry views as before, considering the stage isentropic
efficiency as metric, I = ηstage.

Even though it is possible to infer from the adjoint
solution about the sensitivity of the turbomachine, that is
not a straightforward process (Marta et al. 2013). Therefore,
based on the adjoint solution, the proper performance
metric sensitivities to blade shape and endwall contour are
computed using (7) or (8) and (10). These sensitivities are
presented in the next sections.

The adjoint-based sensitivities hereafter presented have
been thoroughly verified against finite differences. This
verification can be found in previous works by the

authors (Marta and Shankaran 2013; Rodrigues and Marta
2018).

5 Performance sensitivity to blade shape

The adjoint-based sensitivities of the different efficiency
and pressure ratio metrics to the shape of the blades are
presented in Figs. 7, 8, 9, and 10, respectively. The contour
plot in these figures is the magnitude of the gradient vector
projected onto the blade surface outer normal as

dI
dn

= dI
dx

dx

dn
+ dI

dy

dy

dn
+ dI

dz

dz

dn

= dI
dx

nx + dI
dy

ny + dI
dz

nz , (17)

where the surface outer normal unit vector is given by n =
(nx, ny, nz). In these sensitivity contour plots, and the ones
following in the document, a solid line is used to identify
the border between negative and positive derivatives. To
better illustrate the sensitivities on the blade surfaces, Figs. 7
and 9 show the sensitivities on the stator pressure side and
rotor suction side, whereas Figs. 8 and 10 present them
on the stator suction side and rotor pressure side. Each of
these figures contains three subfigures corresponding to the
metric evaluated at the stator, rotor, and stage level.

Observing Figs. 7c–8c, and 9c–10c, it is clear that the
stage efficiency is much more sensitive to the shape of the
blades than the stage pressure ratio, with derivatives to blade
shape in normal direction almost an order of magnitude
higher for the former metric.

At the stator blade pressure side, in Figs. 7c and 9c, the
derivatives of the two metrics are generally qualitatively
similar, with both metrics exhibiting derivatives of stage
efficiency and pressure ratio with the same sign at
coincident locations, except at the stator tip mid chord.
Recalling Table 1, the design goal of increasing both the
stage efficiency and decreasing the stage total pressure

Fig. 5 Residual iteration history of adjoint solutions for different
metrics
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(a) Stator pressure side and rotor suction side

(b) Stator suction side and rotor pressure side

(c) Stator and rotor hub surfaces

Fig. 6 Continuity adjoint field of turbine stage for I = ηstage
(normalized)

ratio is not possible in this case as it would require
derivatives with opposite signs. This observation highlights
the common occurrence of competing metrics, when
progressing in a certain direction of the design space (e.g.,
displacing the stator blade pressure side surface in one
direction) would increase the stage efficiency (desired),
while at the same time would also increase the stage
total pressure ratio (undesired). This makes it necessary to
either perform trade-off studies or to solve the optimization
problem (1) considering one of the metrics as the objective
I and the other as a constraint C, so that one is not improved
at the cost of worsening the other. However, an improvement
of the stage performance is possible by changing the stator
blade suction side since, referring to Figs. 8c and 10c, the

sensitivity information shows that a shape displacement in
the outer normal direction at the aft portion of the blade
suction side leads to an increase of the stage efficiency and
to a decrease of the stage total pressure ratio.

Looking at Figs. 9 and 10, the benefit of selecting a
performance metric that encompasses the whole stage is
evidenced by the difference in the sensitivity of the stage
total pressure ratio and that of the stator total pressure loss
or rotor total pressure ratio to the shape of the blades.
From Fig. 9a, if the designer was to focus solely on the stator
performance, then a reduction of the stator total pressure
loss would be obtained by displacing the stator blade

(a)

(b)

(c)

Fig. 7 Sensitivity of efficiency metrics to blade shape in normal
direction—stator pressure side and rotor suction side view
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(a)

(b)

(c)

Fig. 8 Sensitivity of efficiency metrics to blade shape in normal
direction—stator suction side and rotor pressure side view

pressure side outwards in the region of negative derivatives
and inwards in the region of positive derivatives. However,
such blade shape change would lead to an unexpected
worsening of the overall stage total pressure ratio because,
as seen in Fig. 9c, the sensitivity of stage pressure ratio to the
stator blade shape on the pressure side is opposite in sign up
to roughly 80% span. A similar unexpected behavior is also
found by looking at the stator suction side in Fig. 10a, where
the negative derivative on the whole surface means that a
reduction of the stator total pressure loss would be obtained
by displacing the stator blade suction side outwards, but that

would create a detrimental impact on the stage total pressure
ratio, since this metric has an opposite sensitivity on the fore
portion of the blade, as seen in Fig. 10c.

The danger of performing single blade row optimization
not only occurs for the stator, as described before, but also
for the rotor, although not as severe for the present case.
Referring to the rotor suction side in Fig. 9b, there is a small
region of negative derivative of the rotor total pressure ratio
at the trailing edge near the blade tip. The same region is
also present when considering the stage total pressure ratio
in Fig. 9c, although not as extended. Therefore, there could

(a)

(b)

(c)

Fig. 9 Sensitivity of pressure ratio metrics to blade shape in normal
direction—stator pressure side and rotor suction side view
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(a)

(b)

(c)

Fig. 10 Sensitivity of pressure ratio metrics to blade shape in normal
direction—stator suction side and rotor pressure side view

potentially occur a detrimental effect on the overall stage if
the rotor blade is changed in this mismatched region having
in mind just to improve the rotor total pressure ratio.

This clearly demonstrates the danger of optimizing
individual rows or, in other words, the benefit that
considering the coupled stator-rotor system would bring to
the overall design. Were it not for the coupled stator-rotor
performance sensitivity computed, thanks to the developed
turbomachinery multi-row adjoint solver, these behaviors
would not been possible to capture, possibly leading the
designer to perform erroneous design changes.

6 Performance sensitivity to endwall shape

As mentioned in Section 1, secondary flows that occur
in the endwall regions of turbomachine components have
a significant impact on their performance. As such, the
sensitivity information given by the adjoint solver regarding
the endwall shape can provide very insightful information
to a designer on how to mitigate the adverse effect of these
flows on the performance by tuning the hub and/or casing
geometries.

In this section, the adjoint-based sensitivities presented
are projected onto the radial direction, through the
transformation

dI
dr

= dI
dx

dx

dr
+ dI

dy

dy

dr
= dI

dx
cos(θ) + dI

dy
sin(θ) , (18)

where θ is the tangential angle in cylindrical coordinates
measured from the x- to the y-axis.

The sensitivity of the stator loss coefficient, and the rotor
and stage efficiencies to the radial position of the mesh grid
nodes of the hub is presented in Fig. 11, while the sensitivity
of the stator total pressure loss, rotor total pressure ratio,
and stage total pressure ratio is shown in Fig. 12. The
sensitivity to radial position is obtained from the sensitivity
to x- and y-coordinates with the transformation defined by
(18), meaning that, for the presented figures, positive values
of dη/drhub indicate that moving the surface nodes in the
direction of the casing (or the viewer) would increase the
efficiency. It should also be noted that the computational
domains are repeated axially in these figures to better
visualize the sensitivity results.

The sensitivity of the efficiency metrics (Fig. 11) is
higher than that of the pressure ratio metrics (Fig. 12)
relative to endwall contouring, similarly to what was also
observed relative to the blade shape in Section 5.

Observing Figs. 11c and 12c, the sensitivities of the
stage efficiency and pressure ratio reveal that there is a
significant hub region close to the stator pressure side where
the derivatives present a positive value. This means that
a change in the hub radius, in this stator region, aiming
to increase stage efficiency (desired) would also increase
the stage total pressure ratio (undesired). The rotor hub
also presents conflicting impact on these two performance
metrics, particularly in the region at about 50% of the chord
and roughly equidistant between the rotor blades. Thus,
similarly to the blade shape analyses made in Section 5,
contouring the hub shape can also lead to conflicting results.

Focusing on the efficiency metrics, Fig. 11a contains
the stator pressure loss coefficient sensitivity to stator hub
shape, that would be used in the single stator optimization
aimed at reducing its loss. Comparing it to sensitivity of
the stage efficiency to the stator hub in Fig. 11c, whose
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(a)

(b)

(c)

Fig. 11 Sensitivity of efficiency metrics to radial perturbation of hub
grid nodes dη/drhub (normalized)

derivatives are opposite in sign, it shows that the reduction
of the stator loss coefficient by means of endwall contouring
of the stator hub would lead to an overall increase of the
stage efficiency.

The same findings apply when considering the optimiza-
tion of the isolated rotor or the whole stage, since the

sensitivity of the rotor efficiency (in Fig. 11b) and the sen-
sitivity of the stage efficiency (in Fig. 11c) to the hub rotor
shape are very similar.

The observations made regarding the effect of single
stator or single rotor efficiency optimization on the overall
stage efficiency can also be made relative to the other

(b)

(c)

(a)

Fig. 12 Sensitivity of pressure ratio metrics to radial perturbation of
hub grid nodes dπ/drhub (normalized)
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Fig. 13 Hicks-Henne bumps imposed on the rotor hub

metrics of pressure ratio. Looking at the sensitivity of
the stator total pressure loss in Fig. 12a and comparing
it with the sensitivity of the stage total pressure ratio in
Fig. 12c, focusing on the stator hub shape, there is a large
conflicting region (different derivative signs) up to about
90% streamwise (from leading edge to almost trailing edge).
This once again means that contouring the stator hub for
reducing the stator total pressure loss (desired) leads to
an unexpected increase of the stage total pressure ratio
(undesired).

7 Improving stage efficiency with endwall
contouring

Based on the findings in Section 6, we present in this section
an attempt to improve the stage efficiency by contouring
the hub of the rotor thru the application of two bumps on

Fig. 14 Sensitivity of stage performance metrics to bumps height

Fig. 15 Variation of the stage performance metrics with the
perturbation step parameter β

its surface. We selected the locations of the bumps from
the analysis of the adjoint-based sensitivities to the hub
geometry presented in Fig. 11c, and selected their height
using a manual line search procedure.

7.1 Hicks-Henne bumps

Looking again at Fig. 11c, it shows that the hub region
between the blades, at a streamwise location equal to the
leading edge of the rotor blade, presents high (negative)
influence on the stage efficiency. The hub region close to the
pressure side of the rotor blade also presents relatively high
(positive) influence. As such, we selected these two regions
to impose the bumps, which are represented in Fig. 13.

The bumps are imposed on the hub by perturbing its
surface in the radial direction by an amount given by

Fig. 16 Radial displacement imposed on the rotor hub (in % of blade
span)
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(a) Original pressure field

(b) Modified pressure field

(c) Relative pressure difference

Fig. 17 Pressure field change due to the two bumps on the rotor hub
at an XY plane centered at bump 1

(a) Original pressure field

(b) Modified pressure field

(c) Relative pressure difference

Fig. 18 Pressure field change due to the two bumps on the rotor hub
at an XY plane centered at bump 2
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(a) Original radial velocity

(b) Velocity difference

Fig. 19 Radial velocity change due to the two bumps in the rotor hub
at an XY plane at 85% chord (normalized values)

the Hicks-Henne bump function (Hicks and Henne 1978),
defined as

ΔXs,i =
Nb∑

j=1

hj

[

sin

(

πx̂

log 0.5
log tc,1,j

1,i

)]tw,1,j

×
[

sin

(

πx̂

log 0.5
log tc,2,j
2,i

)]tw,2,j

, (19)

where Nb is the number of bumps; hj is the amplitude
(peak height) of bump j ; x̂1,j and x̂2,j are the normalized
coordinates of vertex i in the two directions θ and z,
respectively; tc,1,j and tc,2,j define the location of the peak
of bump j ; and tw,1,j and tw,2,j define how spread the
bump is in each location (higher values lead to a less spread
bump).

As mentioned in Section 2.3, the sensitivity to the Hicks-
Henne bump parameters is obtained from a first-order finite
difference approximation, computed using the original and
modified grids. The interior grid nodes are modified using
an inverse distance weight interpolation scheme (Shepard
1968) as

ΔXv,j =
∑Ns

i=1 ΔXs,i/r
p
j,i

∑Ns

i=1 1/r
p
j,i

, (20)

where Ns is the number of surface nodes, rj,i is the distance
from the interior node j to the surface node i, and p is the
power parameter.

7.2 Line search procedure

We started by computing the adjoint-based sensitivities
of the various performance metrics using (8), where
the mesh perturbation sensitivity dX/dα was computed
using forward finite differences from the unperturbed and
perturbed meshes. The resultant gradients are presented in
Fig. 14.

These gradients indicate that (i) introducing a negative
bump (inwards) near the leading edge (bump 1) would
translate into an increase of the stage efficiency, total
pressure ratio, and mass flow; (ii) a positive displacement
(outwards) of bump 2 would translate into an increase of
the stage efficiency and mass flow while reducing the stage
total pressure ratio.

Should this information be used by a gradient-based
numerical optimization algorithm, such as steepest descent,
the bump height parameters, h1 and h2, would be perturbed
along the search direction according to

h = (h1, h2) = β

(
dηstage
dh1

,
dηstage
dh2

)
, (21)

where a line search procedure would be performed to find
the optimal value of β that maximizes ηstage.

In this work, we performed manually a line search,
similarly to what an optimizer would do, resulting in the
values presented in Fig. 15, where the variation of ṁexit,
ηstage and πstage relative to the baseline is plotted for
different values of β.

The behavior of the stage efficiency is as one would
expect, increasing with β up to a certain point (between 0.05
and 0.08 in the present case) and then decreasing. The mass
flow at the exit of the stage presents a similar variation (in
percentage) to the stage efficiency, although with smaller
magnitude. On the other hand, the stage total pressure
ratio shows a slight decrease as the bumps are perturbed
following the search direction given by dηstage/dh.

We selected a value of β = 0.06 from Fig. 15, which is
roughly near the value that maximizes ηstage, that translates
into an efficiency improvement of approximately 0.03%.
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Fig. 20 Streamtraces along the
rotor blade passage

(a) Original

(b) Modified hub

The relatively small expected efficiency improvement can
be explained by the already tuned low-pressure turbine stage
test case we used, and also it might indicate that the number
of bumps should be extended to provide a larger design
space.

The two bumps present a maximum height of approxi-
mately 0.8% of the rotor blade span, as shown in Fig. 16.

7.3 Improved flow

The improvement of the stage efficiency with the applica-
tion of the “optimal” bumps, found in the previous section,
is the result of a modified flow field. Here, we try to identify
the main flow features responsible for the stage efficiency
improvement.

Figure 17 presents the original and modified pressure
fields (normalized values) due to the presence of the two
bumps, in an XY plane located at the center of the first
bump, as well as the relative difference between the two,
computed as

Δp = (p)bumps − (p)base

(p)base
× 100 , (22)

meaning that positive difference values represent an
increase from the baseline to the modified pressure flow
field. The increase of pressure due to the negative bump

(concave) is evident but there is also a reduction in pressure
near the suction side of the blade.

Figure 18 presents the pressure field in an XY plane
located at the center of the second bump. In this case, the
presence of the bumps only reduces the pressure in that
plane, particularly in the region near suction side of the
blade.

Figure 19 shows the original radial velocity component
as well as its variation due to the presence of the two bumps,
in an XY plane located at 85% of the blade chord. Both
the velocity and difference values are normalized by the
maximum radial velocity in the rotor passage.

The two bumps create a deficit in the velocity in the radial
direction (Fig. 19b), reducing the mixture of the boundary
layer with the flow. This region contains relatively high
velocity in the radial direction, as also seen in Fig. 20a
that illustrates a set of streamtraces along the rotor blade
passage.

The secondary flow created at the interface hub blade is
clearly visible in the streamtraces. The effect of the bumps
is visible in Fig. 20b, where the streamtraces remain closer
to the surface than in the original geometry, reducing its
detrimental impact on the performance, thus increasing the
efficiency.

The original radial velocity field in a XY plane located
behind the rotor blade is presented in Fig. 21a, normalized
by the maximum radial velocity in the rotor passage. The
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(a) Original radial velocity

(b) Velocity difference

Fig. 21 Radial velocity change due to the two bumps in the rotor hub
at an XY plane behind blade (normalized values)

region of higher mixture of the boundary layer, highlighted
in Fig. 20, is visible from the higher values of radial velocity
below the trailing edge.

Fig. 22 Sensitivity of stage performance metrics to bumps height in
modified geometry

The presence of the two bumps mitigate this by trying
to homogenize the radial velocity profile in the pitchwise
direction, which is clear in Fig. 21b, where the variation in
the radial velocity due to the bumps is presented, along with
the vector field of the variation of velocity.

Figure 22 presents the adjoint-based gradients of the
performance metrics presented in Fig. 14 considering the
modified geometry, obtained by computing the adjoint
solution from the new modified flow solution and following
the procedure previously mentioned.

While there is a clear reduction in the magnitude of
the gradients, this is unsurprisingly evident for the case
of stage efficiency, that was used as objective function to
be maximized in the steepest descent iteration performed.
It also shows that further iterations would be required to
converge the unconstrained optimization since the stage
efficiency gradient is still non-zero.

8 Conclusions

We made use of an adjoint solver for turbomachinery sensi-
tivity analysis, capable of handling multi-row problems, to
study a low-pressure turbine stator-rotor stage. We studied
the influence of blades and hub shapes on a set of relevant
performance metrics, where we presented the differences
between the sensitivities of single component (individual
stator and individual rotor) metrics and the whole stage
(coupled stator-rotor). We have found contradictory sen-
sitivities, not only between themselves but also between
single or coupled components. While the former can be
dealt with trade-off studies or constrained optimization, the
latter can pose a challenger to the designer since individual
component optimization can actually lead to an undesired
coupled performance loss. This highlights the importance of
coupling the various rows of turbomachinery components
not only in their analysis but mainly in their design.

As a demonstration of the use of the adjoint-based
stage coupled sensitivities, we imposed two bumps on the
rotor hub surface, representing a simple case of endwall
contouring, where we achieved an improvement of the stage
efficiency. We were then able to correlate the changes in
the flow field that resulted from the endwall contouring
with the achieved performance gain, particularly in terms of
secondary flows.

9 Replication of results

The results of this paper can be reproduced using any
solver capable of solving the RANS governing equations
and respective adjoint equations. All the numerical methods
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used are referenced throughout the paper. The computer
code used to obtain the results presented in this paper as well
as the blade geometry are proprietary and, as such, cannot
be provided.
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