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a b s t r a c t 

The use of high-fidelity computational fluid dynamics (CFD) tools in turbomachinery design has seen a 

continuous increase as a result of computational power growth and numerical methods improvement. 

These tools are often used in optimization environments, where gradient-based optimization algorithms 

are the most common due to their efficiency. In cases where the optimization contains a large number 

of design variables, the adjoint approach for calculating the gradients is beneficial, as it provides a way 

of obtaining function sensitivities with a computational cost that is nearly independent of the number 

of design variables. The interaction between adjacent blade rows is of utmost importance for the per- 

formance of multistage turbomachines. The most commonly used method to address these effects (i.e. 

coupling in the simulation of multiple rows) is the mixing-plane treatment, that has become a standard 

industrial tool in the design environment. In this paper, the formulation and implementation of an ad- 

joint solver for multistage turbomachinery applications are presented, namely the adjoint counterpart of 

the mixing-plane formulation used in the direct solver. The solver is developed using the discrete ADjoint 

approach, where the partial derivatives required for the assembly of the adjoint system of equations are 

obtained using automatic differentiation tools. The sensitivity of several performance metrics relative to 

neighbor blade/hub row geometry and boundary conditions are shown to highlight the physical coupling 

in multi-row turbomachines. The verification of the adjoint multistage solver against the finite-difference 

approach is performed successfully with relative differences below 1 %. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

With the growth in computational power, external and internal

flow simulations using high-fidelity computational fluid dynamics

(CFD) models have become a routine in industry, with the emerg-

ing trend being to use optimization techniques as part of the de-

sign process. 

However, given the nature of the flow models, a numerical

simulation may take hours or even days to evaluate the desired

performance metric functions, meaning that an optimization case,

which may require hundreds of function evaluations to find an op-

timum, may lead to a prohibitive time requirement. For this rea-

son, the most desired optimization methods are the gradient based

(GB) because of their efficiency. The GB methods, however, require

the calculation of the derivatives, which, if using methods such as

finite-differences, also lead to prohibitive computational and time

requirements, in the case of a large number of design variables.
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his problem is overcome by the adjoint method, which produces

xact derivatives with a cost that is nearly independent of the

umber of design variables. 

The adjoint method was first introduced to computational fluid

ynamics by Pironneau [1] and further extended by Jameson [2] to

ptimization of airfoil profiles [2] and wings [3] . Since then, it has

een used in solving multi-point aerodynamic shape [4] and aero-

tructural [5] optimization problems, magneto-hydrodynamic flow

ontrol [6] and turbine blades [7] . Other developments on the ap-

lication of the adjoint approach to gradient-based optimization

n turbomachinery environments have also been made. However,

ost of these cases cannot account for the interaction between

ifferent blade rows, which has a significant impact on the perfor-

ance of the whole multistage turbomachine [8] . Its incorporation

n the optimization environment provides a more realistic insight

f the direction to which the overall design should evolve. Simi-

arly to what is already an industrial standard in turbomachinery

nalysis, the multistage coupling adjoint sensitivity should also be-

ome a standard in multistage turbomachinery design. 

The adjoint solver can be obtained either by linearizing the un-

erlying flow governing equations followed by their discretization

https://doi.org/10.1016/j.compfluid.2018.09.015
http://www.ScienceDirect.com
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Fig. 1. Stator-rotor stage in study and computational domain using a single blade 

per row. 
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continuous approach or by the linearization of the already dis-

retized equations – discrete approach . The latter can also be im-

lemented with different approaches, either by linearizing the dis-

rete equations manually [9] or making use of Automatic Differen-

iation (AD) to obtain the linearization of the computation routine

10] . 

Previous works in implementing adjoint solvers with multistage

apabilities were done by Frey et al. [11] using finite-difference

pproximation to set-up the discrete adjoint system of equations,

ang and Li [12,13] following the continuous approach, Walther

nd Nadarajah [9] which implemented an adjoint solver using

he manual discrete approach and Backhaus et al. [14] using an

perator-overloading AD tool to implement the adjoint solver. 

This paper describes the adjoint formulation, development and

mplementation of a mixing-plane boundary interface. It follows

he previous work of Marta and Shankaran [15] on the implemen-

ation of the discrete adjoint counterpart of a proprietary turbo-

achinery CFD solver, by using a source transformation AD tool

n the direct routines. The improved adjoint solver is used to

btain sensitivity analysis of various functions of interest, such

s pressure ratio, efficiency and mass flow, to both the hub and

lade shapes and to the inlet and exit boundary conditions of a

tator-rotor turbomachinery state. The sensitivities are compared

o finite-difference approximations to verify the correct implemen-

ation of the mixing-plane boundary conditions. 

. Background 

In a turbomachinery design environment, various parameters

an be used to define its geometry and operating conditions, such

s blade stagger, camber angle and thickness distributions and ax-

al and radial stacking. All these input parameters will influence

ne or more performance characteristics that are to be studied

and improved), such as efficiency, pressure ratio or mass flow.

his can constitute an optimization problem, where the adjustable

arameters are the design variables and the performance charac-

eristics are the functions of interest, either the cost function or

ome constraints. The generic CFD design problem can be formu-

ated as 

Minimize F( α, q ( α)) 

w.r.t α

ubject to R ( α, q ( α)) = 0 

C ( α, q ( α)) = 0 , (1) 

here F is the cost function, α is the vector of design variables, q

s the flow solution and C represents additional constraints that

ay or may not involve the flow solution. The flow governing

quations are expressed in the form R = 0 and appear as a con-

traint, as the solution q must always obey the flow physics. 

.1. Flow governing equations 

The present work uses the Reynolds-Averaged Navier–Stokes

quations (RANS) for describing the flow. The Navier–Stokes equa-

ions, in conservation form, can be written as 

∂ q 

∂t 
+ 

∂ f i 
∂ x i 

− ∂ f v i 
∂ x i 

= Q , (2) 

here q , f i and f v i are the vectors of state variables, inviscid, and

iscous fluxes, respectively, define as 
q = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ρ
ρu 1 

ρu 2 

ρu 3 

ρE 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

, f i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ρu i 

ρu 1 u i + p δi 1 

ρu 2 u i + p δi 2 

ρu 3 u i + p δi 3 

ρE u i + p u i 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

nd f v i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

0 

τi j δi 1 

τi j δi 2 

τi j δi 3 

u j τi j + q i 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

, (3) 

here ρ is the flow density, u i is the mean velocity in direction

, E is the total energy, τ ij is the viscous stress and q i is the heat

ux. The source term Q represents all potential body forces, such

oriolis force and centrifugal force. To model the Reynolds stresses,

ilcox’s two-equation k − ω turbulence model [16] is used, result-

ng in a system with 7 equations. 

The RANS equations can be expressed in their semi-discrete

orm as 

d q i jk 

d t 
+ R i jk ( q ) = 0 , (4)

here R is the residual of the inviscid, viscous, turbulent fluxes,

oundary conditions and artificial dissipation. The triad ( i, j, k ) rep-

esents the three computational directions. Since this work deals

ith the steady solutions of the RANS equations, the unsteady

erm is dropped out for the remaining of the paper. 

.2. Multistage mixing plane 

The mixing-plane method was first introduced by Denton and

ingh [17] and has since become the industry standard for multi-

ow simulations. It is used with steady state simulations and re-

uires only a single blade per row, as illustrated in Fig. 1 for a

tator-rotor stage. The description is made for the case of an ax-

al turbomachine but it can be easily extended to radial and mixed

onfigurations. 

Between each of the blade passages, the flow properties are

ircumferentially averaged in the so-called mixing-plane interface.

olmes [18] describes a mixing plane algorithm that achieves sev-

ral key goals, including complete flux conservation at the in-

erface, robustness, indifference to local flow direction and non-

eflectivity. It consists in using a control-theory based flux balance



184 S.S. Rodrigues, A.C. Marta / Computers and Fluids 176 (2018) 182–192 

Fig. 2. Schematic representation of the multistage mixing-plane interface steps. 
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algorithm to drive the differences between the fluxes in the two

faces to zero, by updating the conserved variables in the ghost cells

with a value based on the flux differences. To assure maximum

non-reflectivity in the interface, the method uses the two dimen-

sional approach of Giles [19] . The overall mixing-plane algorithm

(schematically represented in Fig. 2 ) can be condensed in the fol-

lowing five steps: 

1. Compute the fluxes from conserved quantities q at the mixing-

plane face and create a local profile by averaging them at each

spanwise position, 

p local , j = f ( ̃  q j ) ; (5)

2. Communicate the local radial profiles p local of averaged quan-

tities as donor profiles p don between blade rows, 

p local −→ p don ; (6)

3. Interpolate the received p rec profiles to match local cell distri-

bution, 

p rec = f ( p don , p local ) ; (7)

4. Compute differences in fluxes and state variables p 

∗
rec between

the interpolated and local profiles, 

p 

∗
rec = f ( p rec , p local ) ; (8)

5. Compute the variation in the conserved variables q ∗ to be ap-

plied to the auxiliary cells, from the flux differences and update

them, 

q 

∗
local = f ( p 

∗
rec , q local ) . (9)

For simplicity, Fig. 2 only represents the transfer of information

from one row to another, but this algorithm occurs in both direc-

tions for each interface. 

2.3. Adjoint equations 

Following the work by Giles and Pierce [20] in derivation of

the adjoint equations for systems of partial differential equations

(PDEs), the adjoint for the flow governing equations in Eq. (4) can

be expressed as [
∂ R 

∂ q 

]T 

ψ = 

[
∂F 

∂ q 

]T 

, (10)

where ψ is the adjoint vector. The adjoint solution can be used in

the calculation of the total gradient of the function of interest with

respect to a set of variables of interest α, given by 

d F 

d α
= 

∂F 

∂ α
− ψ 

T ∂ R 

∂ α
. (11)

The choice of variables in the previous equations is only limited

to being able to describe the objective function F and residual

R in terms of those variables. It should be noted that the general

constrained problem Eq. (1) requires one additional adjoint system
or each constraint C to compute the derivatives d C / d α required

y the GB optimizer. 

As stated, the implementation of the adjoint equations for a

iven system of PDE’s can be achieved in two ways, the continu-

us and the discrete adjoint approach . These two approaches result

n different systems of linear equations that, in theory, converge

o the same result with mesh refinement. However, the discrete

pproach brings some advantages, such as being applicable to any

et of governing equations, treat arbitrary functions of interest and

rovide sensitivities consistent with those produced by the dis-

retized solver. It is also easier to obtain the appropriate boundary

onditions for the adjoint solver with the discrete approach, which

s paramount for the purpose of this work. 

.4. Automatic differentiation 

Automatic differentiation – also known as algorithmic or com-

utational differentiation – applies the chain rule to computer pro-

rams to obtain derivatives of their outputs based on their inputs

21] . 

Any computational algorithm consists in a sequence of opera-

ions that can be expressed in the form 

 i = f i ( t 1 , t 2 , . . . , t i −1 ) i = n + 1 , n + 2 , . . . , m , (12)

here each function f i can be either a unary or binary operation,

 1 , t 2 , . . . , t n are the independent variables and t n +1 , t n +2 , . . . , t m 

re the dependent variables. By applying the chain rule, the deriva-

ive of t i in respect of t j is given by 

∂t i 
∂t j 

= 

i −1 ∑ 

k =1 

∂ f i 
∂t k 

∂t k 
∂t j 

j = 1 , 2 , . . . , n . (13)

AD can work in two ways, the forward mode and the reverse

ode . In the first j is kept fixed and i is advanced until achieving

he desired derivative. The latter works by fixing i , and decreasing j

own to the independent variables. The differentiation of the code

an be achieved either by operator overloading or source code trans-

ormation . Depending on the programming language and structure

f the code, the use of one might bring more advantages than

he other. While AD is as accurate and much easier to implement

han an analytic method, the run time of the differentiated version

f the algorithm in forward mode takes approximately two times

onger to run than the real-valued version, taking even longer in

ackward mode. Another limitation of this method is that more

omplex codes may be difficult, or even impossible to differentiate

n one go, due to the limitations of the AD tool. 

.5. ADjoint method 

This hybrid approach consists in computing the total deriva-

ive with the adjoint method but having the partial derivatives of

qs. (10) and (11) , ∂ R / ∂ q , ∂ F / ∂ q , ∂F / ∂ α and ∂ R / ∂ α, evaluated

ith automatically differentiated routines. To do so, the residual

alculation is rearranged (if needed) into a routine that has as in-

uts the information of the stencil of influence and outputs the

esidual [10] . This routine is then differentiated using an AD tool,

hus producing the necessary terms for the calculation of the ad-

oint solution. 

.6. Adjoint multistage interface 

Assuming a simulation of a series of n blade rows, each blade

ill influence and be influenced by its neighbors. If no multi-

tage interface were used, a system of equations Eq. (10) would be

olved for each row independently. However, to consider the influ-

nce of the rows on each other the coupled systems of equations
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[
∂ R 1 
∂ q 1 

]
. . . 

[ 
∂ R 1 
∂ q n 

] 
. . . 

. . . 
. . . [

∂ R n 
∂ q 1 

]
. . . 

[ 
∂ R n 
∂ q n 

] 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎧ ⎨ 

⎩ 

ψ 1 

. . . 
ψ n 

⎫ ⎬ 

⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∂F 
∂ q 1 
. . . 

∂F 
∂ q n 

⎫ ⎪ ⎬ 

⎪ ⎭ 

. (14) 

he term ∂ R i / ∂ q j represents the influence of row j in the residual

f row i . Each row only influences its neighbors, therefore 

∂ R i 

∂ q j 

]
= 0 , i − 1 > j > i + 1 . (15) 

The chain rule can be applied in the computation of the cou-

ling non-zero off-diagonal terms to distinguish the single-row

erm ∂ R rec / ∂ q ∗local 
from a term that represents the influence of

he state solution of the adjacent domain, q don on the updated

tate solution q ∗
local 

, thus obtaining 

∂ R rec 

∂ q don 

= 

∂ R rec 

∂ q 

∗
local 

d q 

∗
local 

d q don 

. (16) 

ecalling the mixing-plane algorithm description, the subscript

rec” and “don” indicate, from the point of view of a single row,

f the term belongs to the same row or the adjacent row, respec-

ively. 

Recalling the multistage interface described in Section 2.2 , the

pdated state solution can be represented as a function of the var-

ous terms computed during the mixing-plane step, 

 

∗
local = f 

(
p 

∗
rec 

(
p don ( q don ) , p local ( q local ) 

)
, q local 

)
. (17) 

n expression for the multistage coupling term can be obtained by

ifferentiating each of the terms identified above and applying the

hain rule, thus obtaining 

d q 

∗
local 

d q don 

= 

∂ q 

∗
local 

∂ p 

∗
rec 

∂ p 

∗
rec 

∂ p don 

∂ p don 

∂ q don 

. (18) 

he previous expression regards only the dependence on the cells

cross the multistage interface. However, there is also a new de-

endency on the cells of the local face due to the multistage

oundary condition 

∂ R rec 

∂ q local 

= 

∂ R rec 

∂ q 

∗
local 

d q 

∗
local 

d q local 

, (19) 

here the coupling term is obtained from 

d q 

∗
local 

d q local 

= 

∂ q 

∗
local 

∂ p 

∗
rec 

∂ p 

∗
rec 

∂ p local 

∂ p local 

∂ q local 

+ 

∂ q 

∗
local 

∂ q local 

. (20) 

he first term of the RHS of Eq. (20) increases the stencil of the

esidual calculation to cover at least a whole row of cells in the

adial position of each cell of the single stage stencil that belongs

o the multistage interface. The second term comes from the non-

eflectivity boundary conditions and also increases the stencil of

nfluence to cover a certain number of radial rows of the mixing-

lane face. 

To obtain the total derivative given by Eq. (11) it is also nec-

ssary to compute ∂ R / ∂ α with the coupling taken into account.

he present work assumes inlet and outlet boundary conditions U

nd computational grid coordinates X as possible design variables

, representing operating conditions and blade/hub shape, respec-

ively. For the case of boundary conditions U , nothing has to be

one regarding the mixing-plane interface, since the inlet and out-

et surfaces are either the first inlet or last outlet of the coupled

omains. 

There is, however, a dependence of the updated state on the

rid coordinates X of the adjacent domain. Therefore, it is neces-

ary to take the multistage coupling into account in its computa-

ion, if the grid coordinates are chosen as the design variables. In
his case, the term ∂ R / ∂ X is given by 

∂ R rec 

∂ X don 

= 

∂ R rec 

∂ q 

∗
local 

d q 

∗
local 

d X don 

. (21) 

here the term d q ∗
local 

/ d X don reflects the dependency of the local

tate solution on the computational grid coordinates of the donor

ells. 

. Implementation 

Some details of the implementation of the coupling multistage

nterface previously described are presented next. 

.1. Flow solver 

The legacy flow solver TACOMA, is capable of solving the steady

r unsteady RANS using a finite-volume formulation [22] . It sup-

orts three-dimensional, multi-block and structured grids. Avail-

ble turbulence models include the k − ω, k − ε and SST, having

he option to use wall functions or wall integration for the bound-

ry layer resolution. The solver is able to run in multiple processes

ia Message Passing Interface (MPI). 

.2. Adjoint solver 

The discrete adjoint solver was previously implemented by us-

ng the ADjoint hybrid approach [10] . The AD tool chosen in the

entioned work, as well as in the present work, was Tapenade

23] , as it supports Fortran 90, which is the programming lan-

uage used in the flow solver implementation. The built-in Krylov

ubspace method of the Portable, Extensible Toolkit for Scien-

ific Computation (PETSc) [24] is used to solve the adjoint system

n Eq. (10) , more specifically, the generalized minimum residual

ethod (GMRES) with the incomplete factorization preconditioner

ith one level fill, ILU(1), are used. The turbulence equations were

ully handled in the discrete adjoint formulation, despite having

he option to run the adjoint solver with frozen turbulence [25] . 

Following the same ADjoint approach used to develop the ad-

oint solver, the adjoint mixing-plane interface is implemented

y differentiating the rewritten subroutines responsible to com-

ute the quantities described in Section 2.6 to obtain the terms

 q ∗
local 

/ d q don and d q ∗
local 

/ d q local . 

The original main routine ms_exchange responsible for the

ixing-plane interface, as schematically detailed in Fig. 3 , could

ot be differentiated due to its complexity, namely dependency on

ata from Fortran modules that could not be used as explicit de-

endent variables for differentiation, use of MPI communications

nd use of dynamically allocated data structures that could not be

ifferentiated. Instead, it was divided into rewritten subroutines

epresented by the previously described individual steps, as de-

ailed in Fig. 4 , and each of those subroutines (in green) was then

ifferentiated using Tapenade. The general rule was to remove MPI

ommunications from routines to be differentiated while trying to

he data flow as close to the original as possible and rewrite the

arious subroutines to take de dependent and independent vari-

bles as explicit arguments. The MPI communications were then

anually added in the merge of the rewritten subroutines into the

ain routine adj_ms_exchange . 
Subroutine adj_ms_preprocess creates all the required

ata structures to be used in the computation of the profiles

nd boundary condition updates; adj_ms_comp_prof_1 , 
dj_ms_accumulate and adj_ms_comp_prof_2 result 

rom splitting ms_compute_profile into the local accumula-

ion on each process (producing stAdjLocal ), accumulation

o the profile owner (producing stAdjGlobal ) and nor-

alization of the profiles (producing prAdj_loc , or p local ) ,
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Fig. 3. Schematic of the original mixing-plane interface routine ms_exchange in 
flow solver. 

Fig. 4. Schematic of the re-written mixing-plane interface routine 

adj_ms_exchange . 

Fig. 5. Partial schematic of the manually assembled subroutine 

adj_ms_exchange_b . 
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espectively. The interpolation of the profile received from

he neighbor, originally performed in the ms_read_profile
as removed to the routine adj_ms_interp and merged

ith the subroutine adj_ms_aux_deltas into a subrou-

ine than computes all the required deltas between the local

nd received profiles ( prAdj_loc and prAdj_don ), pro-

ucing prAdj_rec ∗ (or p 

) . 
rec ∗ Recalling the mixing-plane

lgorithm steps mentioned in Section 2 , step 1 is per-

ormed by adj_ms_comp_prof_1 , adj_ms_accumulate
nd adj_ms_comp_prof_2 , step 2 is performed by

dj_ms_write_profile and adj_ms_read_profile ,
tep 3 and 4 by adj_ms_interp and adj_ms_aux_deltas ,
espectively, and step 5 by adj_ms_update_bc . 

The data structure stAdj contains the radial local accumula-

ion of the quantities needed to create the profile and prAdj is

he modified structure containing the profile. This modified struc-

ure was implemented due to Tapenade not being able to differ-

ntiate structures containing Fortran’s allocatable arrays. With

he modified structures, instead of having one structure element

ith various arrays, pr%array1(:), ..., pr%arrayN(:) ,
e have an array of structures containing fixed size elements,

rAdj(:)%value1, ..., prAdj(:)%valueN) . 
This rewritten routine adj_ms_exchange is only required for

he differentiation procedure and does not replace the original

ubroutine in the direct solver. An extensive verification was per-

ormed to ensure it delivered the same results as the original. 

The final assembly of the differentiated main routine

dj_ms_exchange_b was performed manually, once again

ollowing the chain rule of differentiation and by using the

erivative obtained from one subroutine as seed for the next

ifferentiated subroutine call, as partially represented in Fig. 5 .

he MPI communications were dealt similarly to the routine

dj_ms_exchange . This routine adj_ms_exchange_b takes

s inputs the state at the mixing-plane surface qAdj , and the seed

AdjB , both N i × N j × N v sized arrays, where i and j represent the

wo dimensions of the face and N v the number of state variables,

hich selects the cell(s) to which the sensitivity to the adjacent

ow face cells is to be computed. Its output is the sensitivity to

he neighbor face quantities. It is worth mentioning that further

nhancements/modifications to the original code would have

o be manually propagated to the rewritten code, which would

hen be differentiated and propagated to the adjoint solver. For

odifications that do not introduce large changes to the structure

f the code, this is a rather straightforward process. 
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Fig. 6. Computational mesh used in the present work. 
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Fig. 7. Schematic representation of the inlet and exit boundary surfaces of the 

stator-rotor stage domain. 

Fig. 8. History of residual of flow solution during convergence. 
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With the differentiated mixing-plane subroutine producing the

ixing-plane coupling terms d q ∗
local 

/ d q don and d q ∗
local 

/ d q local , 

heir integration with the single stage solver is performed in an

dditional step of the assembly of the Jacobian ∂ R / ∂ q in Eq. (10) .

n this additional step, the sensitivity of the state variable of each

ell whose dependency stencil contains any cell in a shared bound-

ry is used as seed to the differentiated mixing-plane routine, ac-

ording to the chain rule of differentiation in Eq. (16) . The resulting

artial derivatives are then inserted into the respective row of the

acobian matrix. 

. Results 

This section presents various results of the analysis of a multi-

ow stator-rotor stage of a low pressure turbine and their compar-

son against finite-difference approximations to verify the correct

mplementation of the adjoint multistage interface. 

.1. Description of the test case 

The test case consists in a stator-rotor stage of a low pressure

urbine. Both the stator and rotor are modeled with a single blade

assage, using periodic boundary conditions. Each domain is dis-

retized with an OH-grid topology, with a total of 90,750 cells

mongst the two domains. The computational mesh used in the

resent work is presented in Fig. 6 . 

Absolute total enthalpy h inlet 
Ta 

and pressure p inlet 
Ta 

, tangential

elocity v inlet 
t and flow angle φinlet are imposed at the inlet of

he stator, with extrapolation of the pressure to the interior. Static

ressure p exit 
s is held fixed at the exit of the rotor. Between

he two domains, the boundary conditions are updated with the

ixing-plane algorithm with exchange of boundary fluxes. The in-

et, outlet and mixing-plane surfaces are represented in Fig. 7 . For

he boundary layer, wall-functions were used to keep the mesh rel-

tively coarse. 

Four different functions of interest F are considered: exit mass

ow ( ˙ m 

out ), pressure ratio of stator ( π1 ), pressure ratio of rotor

 π2 ) and rotor efficiency ( η2 ). The mass flow is computed at the

xit of the last (rotor) blade passage. The pressure ratio computed

t the stator is given by 

1 = 

p inlet,1 
Ta 

− p exit,1 
Ta 

p inlet,1 
Ta 

× 100 , (22) 

here the total pressure is area averaged. The pressure ratio com-

uted at the rotor is given by 

2 = 

p exit,2 
Ta 

p inlet,2 
, (23) 
Ta 
ith the total pressure, in this case, being enthalpy averaged. Fi-

ally, the rotor efficiency given by 

2 = 

(
p exit,2 

Ta 
/ p inlet,2 

Ta 

)( γ −1 ) /γ − 1 (
T exit,2 

Ta 
/ T inlet,2 

Ta 

)
− 1 

, (24) 

here the total pressure is enthalpy averaged and the total tem-

erature is mass averaged. The subscript Ta refers to total absolute

uantity. The inlet and exit surfaces are respective to the respec-

ive blade passage, meaning that for π1 the exit surface is at the

ixing-plane interface identified in Fig. 7 , as is the inlet surface of

2 and η2 . 

.2. Flow and adjoint solutions 

The flow solution was converged to an averaged residual of the

ontinuity equation of 10 −9 , as observed from the history of the

esidual, presented in Fig. 8 . For the adjoint solutions, the conver-

ence criterium was a relative difference in the magnitude of the

esidual between iterations of 10 −9 . The history of the residual

uring the GMRES iterations is presented in Fig. 9 . The restart of

he GMRES was set at 75 iterations, which is visible in the residual

istory. All the computations were performed in double precision. 

The converged flow solution and corresponding adjoint solu-

ion (computed with F = ˙ m 

out ) are presented, for the case of the

ensity, in Fig. 10 and Fig. 11 , respectively. The next subsections

resents the solutions of the adjoint system of equations for the

our different functions of interest described in Section 4.1 . These

unctions are computed either at the exit surface alone (for the

ase of exit mass flow) or at the exit/inlet surfaces together with

he mixing-plane surface (refer to Fig. 7 ). From the many sensitiv-

ties possible to be evaluated by the multistage adjoint solver, five
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Fig. 9. History of residuals of adjoint solutions during GMRES iterations. 

Fig. 10. Normalized flow solution of the continuity equation. 

Fig. 11. Normalized adjoint solution of the continuity equation for exit mass flow 

as the objective function. 

 

 

 

 

 

Table 1 

Selection of test cases included. 

d F 
d α π1 π2 η2 ˙ m 

out 

h inlet 
Ta – – – –

p inlet 
Ta – – – � 

v inlet 
t – – � –

φ inlet – – – –

p exit 
s � – – –

r hub – � – –

n blade – – � –

Table 2 

Comparison of computational requirements of di- 

rect and adjoint solvers (normalized by the direct 

solver). 

CPU time Memory 

Direct 1 1 

Adjoint ∼ 1 ∼ 10 

Preprocess (1) 0.3% –

Assemble ∂ R 
∂ q 

, ∂F 
∂ q 

(2) 51.1% ∼ 50% 

GMRES Solver (3) 42.2% ∼ 50% 

Assemble ∂ R 
∂ U 

, ∂F 
∂ U 

(4) 6.2% –

Compute Sensitivity (5) 0.1% –

I/O (6) 0.1% –
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combinations of function of interest F and design parameter α
were selected, as summarized in Table 1 , where the superscripts

in the variables denote inlet of stator or exit of rotor and the sub-

scripts in the functions denote stator (row 1) and rotor (row 2).

The variables r hub and n blade correspond to the radial coordinate of

the hub geometry and to the local normal coordinate of the blade

geometry, respectively. 
The selected adjoint-based sensitivities, presented in the

ext subsection, were verified against first-order forward finite-

ifference approximations. For these verifications, four nodes were

andomly selected at the inlet and exit boundary faces of the

tator-rotor stage, as well as four at the hub of the stator and four

t the surface of the stator blade (two on the pressure and two

n the suction side). The flow solver was run to convergence and

or every design variables α perturbation imposed on each control

ode. This would lead in theory to 20 runs (five variables times

our control points) but, in practice, the number of runs was much

igher, as the finite-difference approximation is highly sensitive to

he perturbation step size and a manual search had to be per-

ormed to obtain the optimal step for each control node to obtain

 good trade-off between truncation error due to large step sizes

nd subtractive cancellation due to too small perturbations. 

A comparison of the computational requirements of the direct

nd adjoint solvers is presented in Table 2 . While the CPU time

equirements of computing both solutions is approximately the

ame, the memory requirements of the adjoint solver increase ten-

old compared to the direct solver. This is a direct consequence

f the solution method chosen for the adjoint system of equa-

ions, that includes a full matrix storage and the iterative GM-

ES method. This effect could be considerably mitigated if matrix-

ree algorithms [26] or pseudo-time marching Runge–Kutta meth-

ds [27] were employed instead. The table also presents a detailed

escription of the memory and CPU time required by each of the

rocesses of computing the adjoint solution, namely the 1) pre-

rocessing, 2) assembling of the system of equations, 3) comput-

ng the solution with the GMRES solver, 4) assembling the matri-

es/vectors to compute the total derivatives, 5) computing the total

erivatives and 6) Output of the solutions to files. As observed, the

ssembly of the matrices and the solution of the adjoint system

f equations take the bulk of the required CPU time and memory,

eing roughly the same for each part. 

.3. Sensitivity of stator pressure ratio π1 

The normalized adjoint-based sensitivity of stator pressure ratio

1 to exit static pressure p exit 
s boundary condition of the rotor do-

ain can be observed in Fig. 12 , where the contour plot is shown

or the rotor exit surface. It is worth noting that the sensitivity is
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Fig. 12. Normalized adjoint-based sensitivity of stator pressure ratio π1 to exit 

static pressure boundary condition. 

Fig. 13. Verification of adjoint-based sensitivities of stator pressure ratio to exit 

static pressure using FD (normalized values). 
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lways negative, implying that stator pressure ratio would decrease

ith an increase of the static exit pressure, as would be expected.

his effect is largest at the exit section midspan, away from the

ub and casing walls and aligned with the rotor wake. This proba-

ly means that the effect is amplified when reducing the blockage

ffect of the blade. 

The results of the verification of the adjoint-based sensitivity of

he four control nodes identified in Fig. 12 are presented in Fig. 13 .

he sensitivities computed by both methods differ by less than

.5%, which attests the correct numerical implementation of the

djoint mixing-plane interface. 

.4. Sensitivity of rotor pressure ratio π2 

Fig. 14 presents the normalized sensitivity of the pressure ratio

f the rotor π2 to the radial position of the hub wall r hub . This

adial sensitivity was obtained from the sensitivity to the hub x -

nd y -coordinates as 

d π2 

d r 
= 

d π2 

d x 

d x 

d r 
+ 

d π2 

d y 

d y 

d r 

= 

d π2 

d x 
cos (θ ) + 

d π2 

d y 
sin (θ ) , (25) 

here θ is the tangential angle in cylindrical coordinates measured

rom the x to the y -axis. This sensitivity information can be ex-

remely important in hub and/or casing shape optimization pro-

esses, often referred as endwall contouring , which can lead to sig-

ificant performance improvement of the turbomachine by signifi-

antly impacting the secondary flows [28] . From Fig. 14 , it can be

nferred that the rotor pressure ratio can be increased by contour-

ng the hub wall in different ways: making humps on the positive

erivative regions and/or making recessions at the negative deriva-

ive regions. The multi-row coupling manifests itself in this exam-

le since there is a clear effect of stator hub endwall contouring

n the rotor pressure ratio. Some oscillations, visible near the inlet

nd outlet of the stage, may result from the pointwise perturbation

f the mesh and from non-reflectivity only being enforced at the

ixing plane and not at the inlet and exit of the stage. A designer
or an optimizer) would not be interested in perturbing the mesh

irectly, but in changing a set of design parameters β that would

epresent the geometry/deformation by some method of parame-

erization, which would introduce some smoothing to the pertur-

ation and thus smoothing the unwanted oscillations. The sensitiv-

ty information of the performance metrics to the design parame-

ers β would be obtained using the adjoint-based sensitivity infor-

ation to the mesh as 

d F 

d β
= 

d F 

d x 

d x 

d β
+ 

d F 

d y 

d y 

d β
+ 

d F 

d z 

d z 

d β
. (26) 

epending on the tool used to generate the flow grid mesh ( x , y ,

 , ) from the geometry parameterization β, the sensitivities d x /d β,

 y /d β and d z /d β can be obtained by either analytic methods (if

ource code is available) or by FD approximations (if a blackbox is

sed). 

The results of the verification the sensitivity of π2 to the hub

all x -coordinates are shown in Fig. 15 , exhibiting again very good

greement with the FD approximation, with relative differences

elow 0.9%. Similar results were obtained for the y -coordinates,

resent in Eq. (25) . 

.5. Sensitivity of rotor efficiency η2 

Fig. 16 presents the adjoint based sensitivity of the rotor effi-

iency η2 to the shape of the blade. In this case, the contour shown

s the magnitude of the sensitivity vector projected onto the blade

urface outer normal at each point, evaluated as 

d π2 

d n 

= 

d π2 

d x 

d x 

d n 

+ 

d π2 

d y 

d y 

d n 

+ 

d π2 

d z 

d z 

d n 

= 

d π2 

d x 
n x + 

d π2 

d y 
n y + 

d π2 

d z 
n z , (27) 

here the surface outer normal unit vector is given by n =
(n x , n y , n z ) . Similarly to the hub contouring test case, this test

ase also demonstrates the coupling between rows by quantita-

ively showing the impact of the stator blade shape on the rotor

fficiency. Analyzing Fig. 16 , it can be seen that the rotor efficiency

an be increased by moving the stator blade in the positive (neg-

tive) outer normal direction at the regions of positive (negative)

erivatives. 

The control nodes used for the verification procedure are also

dentified Fig. 16 , two at the suction side and two at the pres-

ure side of the blade. The derivatives of rotor efficiency with re-

pect to the y -coordinate of the selected control nodes of the sta-

or blade surface were compared to finite-differences and the re-

ults are shown in Fig. 17 (note that the values are normalized to

he maximum value of the derivative at both row domains). Good

greement is again obtained, with a maximum relative difference

f 1.1%. As with the hub control nodes, a good agreement with

nite-differences was also obtained for the other two coordinates. 

Another example of coupling is shown in Fig. 18 which shows

he effect of inlet tangential velocity on the stator efficiency, repre-

ented on the inlet plane. From the contour plot Fig. 18 , the stator

fficiency sensitivity to the inlet tangential velocity varies consid-

rably depending on both the radial and tangential location. This

ariation is particularly strong (positive) closer to the hub and at

idspan (negative). Such rich information can be extremely use-

ul with analyzing turbomachines at off-design conditions, such as

hen inflow distortion occurs [29] . 

Fig. 19 presents the comparison of the adjoint-based sensitiv-

ties to FD approximations. In this case, the optimum step for

he FD approximation was harder to obtain, particularly in control

ode 2, where the minimum relative error we were able to ob-

ain was approximately 3.5%. This was probably due to the differ-

nces of order of magnitude of the derivatives O(10 −6 ) , function
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Fig. 14. Normalized adjoint-based sensitivity of rotor pressure ratio to hub wall radial position. 

Fig. 15. Verification of adjoint-based sensitivities of rotor pressure ratio to hub wall 

grid x -coordinates using FD (normalized values). 

 

 

 

 

Fig. 17. Verification of adjoint-based sensitivities of rotor efficiency to stator blade 

surface grid y -coordinates using FD (normalized values). 
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of interest O(10 1 ) and quantity to perturb O(10 2 ) . The difference

in magnitudes is not visible in the bar plots due to normalization.

This difficulty highlights the advantages of the adjoint method over

the FD method, as the adjoint-based sensitivities avoid the concept

of perturbation step altogether. 
Fig. 16. Adjoint based sensitivity of rotor efficien
.6. Sensitivity of exit mass flow ˙ m 

out 

The sensitivity of the mass flow at the exit of the rotor to the

otal pressure boundary condition imposed at the inlet of the rotor

s presented in Fig. 20 . The values are normalized by the maximum

bsolute value of the derivative. The positive derivative, exhibited

n almost all inlet section locations, reveals the expected increase

f mass flow with the increase of inlet total pressure. 
cy η2 to blade shape in normal direction. 
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Fig. 18. Normalized adjoint based sensitivity of rotor efficiency, η2 to inlet tangen- 

tial velocity, v inlet 
t . 

Fig. 19. Verification of adjoint-based sensitivities of rotor efficiency to tangential 

velocity inlet boundary conditions using FD (normalized values). 

Fig. 20. Normalized adjoint based sensitivity of outlet mass flow, ˙ m 

out to inlet total 

pressure, p inlet 
Ta 

. 

Fig. 21. Verification of adjoint-based sensitivities of mass flow to total pressure in- 

let boundary conditions using FD (normalized values). 
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The adjoint-based derivative values also show good agreement

ith the FD approximation, as seen in Fig. 21 , where the results of

he verification presented for the four control nodes exhibit differ-

nces smaller than 0.5%. 
. Conclusions 

The formulation of the discrete adjoint mixing-plane was devel-

ped and implemented in a proprietary multistage turbomachin-

ry CFD solver, using automatic differentiation tools to compute

oupling terms of the discrete adjoint equations. The multistage

djoint solution was computed for a stator-rotor case and the fi-

al derivative of selected function of interest with respect to the

oundary conditions at the inlet and exit of the stator-rotor stage,

s well as with respect to the geometry of the blades and hub,

ere presented and compared with finite-difference approxima-

ions. Good agreement was obtained between the two approaches,

ith relative differences typically below 1% for most of the verifi-

ation cases. 

While the adjoint method required one additional solver run for

ach function of interest, with a computational cost similar to flow

irect run in terms of CPU time, the finite-difference approach re-

uired many direct solver runs to obtain a converged value, thus

mphasizing the benefits of using the adjoint method for sensitiv-

ty analysis. 

The importance of a coupled multistage turbomachinery anal-

sis and design is highlighted by the selected results presented,

hich clearly demonstrate the physical flow coupling between ad-

acent blade rows. By using the adjoint solver with handling of

he multistage interface between adjacent rows, it is possible to

fficiently and accurately quantify the impact of: i) boundary in-

et conditions to downstream blade rows performance; ii) bound-

ry exit conditions to upstream rows performance; iii) upstream

lade or hub/casing shapes to downstream row performance; and

v) downstream blade or hub/casing shapes to upstream row per-

ormance. 

The proposed inclusion of adjoint multistage handling in a

radient-based multistage turbomachinery design framework is 

hus paramount to achieve the best overall results, both in terms

f computational cost but mainly in terms of optimal design out-

ome. 
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