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Abstract: The increasing use of Unmanned Aerial Vehicles (UAVs) demands enhanced
flight safety systems. This study presents the development of an affordable and efficient
Sense and Avoid (S&A) system for small fixed-wing UAVs, typically under 25 kg and fly
at speeds of up to 15 m/s. The system integrates multiple non-cooperative sensors, two
ultrasonic sensors, two laser rangefinders, and one LiDAR, along with a Pixhawk 6X flight
controller and a Raspberry Pi CM4 companion computer. A collision avoidance algorithm
utilizing the Vector Field Histogram method was implemented to process sensor data and
generate real-time trajectory corrections. The system was validated through experiments
using a ground rover, demonstrating successful obstacle detection and avoidance with
real-time trajectory updates at 10 Hz.

Keywords: obstacle detection; collision avoidance; vector field histogram; flight controller;
companion computer; ultrasonic sensor; laser rangefinder; LiDAR

1. Introduction
Unmanned Aerial Vehicles (UAVs) have evolved from primarily military applications

to a wide range of civil and commercial uses, such as in surveillance, agriculture, logistics,
and media [1]. These applications often require UAVs to operate at low altitudes, where
obstacles like buildings, trees, and power lines pose significant collision risks. Consequently,
the rapid expansion of the UAV market [2] emphasizes the need for reliable safety systems.

While significant effort is being put into the popular multirotor platforms, small
fixed-wing UAVs are often overlooked in terms of safety systems. To mitigate this, the
present work addresses the safety enhancement of fixed-wing UAVs, with Maximum
Take-Off Weight (MTOW) under 25 kg and cruise speed in the order of 15 m/s. The
focus is on developing a Sense and Avoid (S&A) system aimed at detecting obstacles
and avoiding collisions autonomously during flight. These target fixed-wing aircraft
applications are characterized by specific dynamics, in particular relatively fast forward
flight and limited maneuvering capabilities, which required S&A solutions distinct from
those of multicopters.

Obstacle sensing systems in UAVs are generally divided into cooperative
detection—when information is exchanged between the aircraft and the obstacle (usu-
ally another aircraft), as in Traffic Alert and Collision Avoidance System (TCAS) [3,4] or in
Automatic Dependent Surveillance–Broadcast (ADS-B) systems [5,6]—and non-cooperative
detection. During the operation of small UAVs, the most common obstacles in the sur-
rounding environment are man-made structures (buildings, bridges, or power lines) and
orography (steep terrain or cliffs). For this reason, non-cooperative S&A solutions should
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be sought for small fixed-wing UAVs, not only for their reduced cost but also for obstacles
that do not broadcast their position [7].

Non-cooperative obstacle sensing requires proper hardware. Active sensors determine
the distance to an object by measuring the time lapse between the emission of a wave
and the reception of its reflection from the object. Examples include Radio Detection and
Ranging (RADAR), laser rangefinders, and Light Detection and Ranging (LiDAR) sensors,
which use electromagnetic waves, as well as ultrasonic sensors (sonars), which use sound
waves. Laser rangefinders are potentially more accurate than RADARs and ultrasonic
sensors due to the usage of electromagnetic waves with shorter wavelengths, which allow
for higher spatial resolution. Passive sensors rely on capturing energy emitted by external
sources. The most common are electro-optical sensors, such as those in video cameras,
which consist of an array of pixels capable of measuring the intensity of electromagnetic
waves in the visible wavelength range. The captured images must be processed based
on visual features, such as edge, color, size, texture, shape, and optical flow, to detect the
obstacles and estimate their position and motion.

The application of body-fixed laser rangefinders for obstacle detection and avoidance
in a quadrotor UAV was simulated in [8], assessing the feasibility of different configurations
regarding the number of sensors and installation angles. LiDAR, characterized by allowing
wider scanning angles, was considered, for instance, in [9] for small fixed-wing UAVs, and it
was simulated as part of an S&A system. It proved to be a good option for obstacle detection
and allows for the further generation of optimized trajectories to safely avoid obstacles in
a wide range of weather and geometric conditions. The ultrasonic sensors are a cheaper
and lighter option for obstacle detection. However, they have a limited detection range
compared to previous sensors, such that they are usually implemented in combination with
other sensors. In [10], a low-cost obstacle detection and collision avoidance solution for
quadrotors is proposed, which uses data fusion from twelve ultrasonic sensors and sixteen
infrared sensors for 360◦ coverage. The electro-optical sensors require real-time image
processing, which makes them of limited application in low computational power airborne
platforms [11]. Nevertheless, the optical flow technique has been successfully demonstrated
in multicopters [12], where motion parallax is used to calculate the displacement of pixels
between consecutive image frames and identify the relative motion between the camera
and the obstacles.

Collision avoidance often requires the aircraft to adjust its flight path in order to
perform an evasive maneuver. Path planning methods for collision avoidance in UAVs can
be global when the obstacles are known before a flight or local when the obstacles are not
expected, and the path is updated in real time. Among the global methods, variations of
the graph-based algorithms A* [13] and Rapidly exploring Random Tree (RRT) [14] are the
most commonly found in UAV applications [15–17]. In the case of local methods, which
are the most important in this work, it is common to find the following: (i) geometric
methods, which generate paths to avoid collisions with obstacles by taking advantage of
their geometry, relative position, and relative velocity [18–20]; (ii) potential field methods,
which model the space around a UAV, creating a field of attractive and repulsive forces to
guide a UAV to avoid the obstacles [21,22]; (iii) gap-based methods, which search for a path
to move a UAV through the most suitable space gap between obstacles in the environment.
Of the latter, it is worth noting the Vector Field Histogram (VFH) method [23], which
represents the environment around the UAV in a polar histogram used for selecting the
direction with less density of obstacles. In [24], a slightly modified version of the VFH
was successfully validated in real flight tests with seven similar fixed-wing UAVs, using
onboard host computers running Ubuntu 14 and Pixhawk flight controllers running a
feed-forward PID control algorithm.
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When designing an S&A system for fixed-wing UAVs, which cannot hover, the sys-
tem’s response time is critical for a safe avoidance maneuver. This time is affected by the
update rate of the sensors, the computational delay of data processing, and the latency
of the actuator commands. The speed and maneuverability of the UAVs are essential to
determine the limit of the timeframe within which this response must fall. Although a
detailed approach to UAV maneuvering is left out of this study, the response time of the
S&A system is explored concerning UAV speed and sensor detection ranges.

Building upon previous works that modeled specific sensors and optimized sensing
configurations for a small fixed-wing UAV [25–27], this study presents a novel S&A system
integrating multiple non-cooperative sensors and a real-time collision avoidance algorithm.
The key contributions are as follows:

• The design and implementation of a complete hardware solution for the system,
which incorporates a sensor configuration with two ultrasonic sensors, two laser
rangefinders, one LiDAR, a flight controller, and a companion computer;

• The implementation of a software solution for the system based on the adaptation
of the open-source flight control software, PX4, and the development of a software
prototype to process sensor data, which compute obstacle positions and apply the
VFH method for collision avoidance trajectory re-planning in real time;

• The experimental validation of the overall S&A system through bench testing in a
ground rover robot, which provides a foundation for future UAV flight tests.

2. S&A Hardware Implementation
The hardware implementation of an S&A system requires some decisions regarding

the physical components that comprise it, as well as how they are configured and connected.

2.1. Range Sensors

The key components of the sensing system are the range sensors, which should provide
accurate distance measurements between the aircraft and the surrounding obstacles.

The optimization study performed in [27,28] compared different sensing configu-
rations using ultrasonic sensors, laser rangefinders, LiDAR, and RADAR sensors in a
simulation environment. It concluded that the best configurations consist of a front-facing
LIDAR accompanied by either two laser rangefinders pointing sideways at ±10◦ or two
RADARs at ±28◦. From these, the first configuration was chosen, given the lower cost of
the laser rangefinders compared to RADARs. Moreover, the ultrasonic sensors were not
discarded, given their potential to be used, for instance, in low-speed ground operations
covering blind spots of the other sensors.

In summary, the hardware chosen to support the obstacle detection is composed of
three different types of non-cooperative active sensors: two ultrasonic sensors (Figure 1a),
two laser rangefinders (Figure 1b), and one LiDAR (Figure 1c). The update rate of the
sensors has a major impact on the overall response time of the S&A system.

(a) (b) (c)

Figure 1. Range sensor hardware components: (a) Ultrasonic sensor Maxbotix MB1242 [29], (b) Laser
rangefinder Lightware LW20/C [30], (c) LiDAR Lightware SF45/B [31].

Two different models of ultrasonic sensors from the Maxbotix are used, MB1202 and
MB1242, which share specifications, such as detection range up to 7.65 m, resolution of
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1 cm, accuracy of 10 cm, and maximum update rate of 10 Hz constrained by the duration
of a ranging cycle. The major difference between them is the type of beam pattern, which
is wider for MB1202 (more noise clutter) and narrower for MB1242 (less noise clutter).
To operate both sensors simultaneously on the same bus of the Inter-Integrated Circuit
(I2C) communication interface and distinguish their range measurements, they must have
different addresses Thus, the I2C address of MB1202 was changed to 0x68 and MB1242
to 0x70.

Two identical laser rangefinders, Lightware LW20/c, are considered. Their detection
range goes up to 100 m, much higher than that of the ultrasonic sensors. Since they rely on
the speed of light instead of the speed of sound, the update rate can also be much higher.
Moreover, they are tolerant to changes in background lighting conditions, wind, and noise.
The accuracy is not generally affected by the color or texture of the target surface, nor the
angle of incidence of the beam [30], as opposed to the ultrasonic sensors. Regarding the
communication interface, it was chosen to use I2C; therefore, the I2C address of one laser
was changed to 0x67 using the Lightware Studio software provided by the manufacturer,
and the other kept the original 0x66.

To scan a wider area ahead of the UAV, the Lightware SF45/B LiDAR sensor is
considered. With a detection range up to 50 m, the major features of this LiDAR are the
scanning angle, which can be set from 20◦ to 320◦, and the update rate, configurable from
50 Hz to 5000 Hz. The speed of rotation depends on the scan angle and can go up to
5 sweeps per second. Similarly to the laser rangefinder, it is also tolerant to changes in
background lighting conditions, wind, and noise [31]. The scanning angle was configured
to range from −45◦ to 45◦, given the turning rate limitations of a fixed-wing UAV. In this
case, it was chosen to use serial over I2C as a communication interface through one of the
telemetry (TELEM) ports of the flight controller.

The main specifications of the selected sensors are summarized in Table 1.

Table 1. Range sensors’ hardware specifications.

Ultrasonic Sensor [29] Laser Rangefinder [30] LiDAR [31]

Range (m) 0.20–7.65 0.20–100 0.20–50
Scan angle (◦) n/a n/a 20–320
Resolution (cm) 1 1 1
Angular resolution (◦) n/a n/a <0.2
Update rate (Hz) 10 40–388 50–5000
Accuracy (cm) ±10 ±10 ±10
Power supply voltage (V) 3.3–5 4.5–5.5 4.5–5.5
Power supply current (mA) 2.7–4.4 100 300
Communication interface I2C Serial or I2C Serial or I2C
Dimensions (mm) 22 × 19 × 15 30 × 20 × 43 51 × 48 × 44
Weight (g) 5.9 20 59

2.2. Flight Controller and Companion Computer

The obstacle detection sensors are connected to the flight controller, which collects
and processes their measurements in the first instance. Due to the flight controller’s limited
computational power, the processing necessary for the application of a collision avoidance
method is executed by a more powerful companion computer that directly communicates
with it.

The flight controller chosen for this application is the Pixhawk 6X from Holybro, which,
together with the Raspberry Pi Computer Module 4 (CM4) as a companion computer, is
integrated into the Holybro Pixhawk RPi CM4 baseboard [32], as presented in Figure 2.
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Figure 2. Flight controller Holybro Pixhawk RPi CM4 baseboard parts (from left to right): case with
fan, baseboard, Pixhawk 6X, and Raspberry PI CM4 [32].

2.3. Electrical Layout

The electrical layout of the hardware connections is shown in Figure 3, including the
auxiliary components essential for the flight operation of a fixed-wing UAV, such as power
module, battery, electric motor, servos, Electronic Speed Controller (ESC), Global Position-
ing System (GPS) module, radio receiver and multiplexer (MUX), and telemetry module.

Even though the companion computer and the flight controller are internally con-
nected in the baseboard through the serial TELEM2 port, an Ethernet connection was used
instead due to its higher bandwidth.

Figure 3. UAV flight control and S&A systems: hardware electrical diagram.
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3. S&A Software Implementation
The software implementation of the S&A system addressed in this work can be seen

as an application with additional developments of existing open-source solutions. Figure 4
presents the diagram of the software’s main components, namely flight control software,
ground control software, and companion computer software, and the high-level interaction
between them.

Figure 4. S&A system software: implementation diagram.

3.1. Flight Control Software

The flight control software adopted is the PX4 open-source project [33] due to its
reliability, modular architecture, allowing for extension of functionalities, good documen-
tation, and increasing presence in the industry, with a growing community of users and
developers. It supports different types of vehicles, such as multicopters, fixed-wing UAVs,
and rovers.

3.1.1. Internal Communication

The communication between internal modules of PX4 is performed using the micro Ob-
ject Request Broker (uORB) protocol, which is based on a mechanism to publish/subscribe
messages in topics, allowing multiple independent instances of the same topic. Each uORB
topic must have a prior definition of the fields that make up its message context.

The data from the obstacle detection sensors are published in the distance_sensor
uORB topic, whose fields are described in Table 2. The most important fields are the
device_id, a unique ID of the sensor, the current_distance, the sensor range measure-
ment, and the current_yaw, which is the only non-standard field, added to include the
direction of the LiDAR in the horizontal plane, in degrees.

Table 2. uORB topic distance_sensor fields [33].

Name Unit Description

timestamp ms Timestamp
device_id - Sensor ID
min_distance m Minimum range
max_distance cm Maximum range
current_distance cm Current range
current_yaw * deg Current yaw
variance m2 Variance
signal_quality % Signal quality
type - Sensor type
h_fov rad Horizontal Field of View (FOV)
v_fov rad Vertical FOV
q - Orientation quaternion
orientation - Sensor orientation

* non-standard field
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The goal is to have the sensor data published in a single distance_sensor uORB topic,
with one instance for each sensor. However, the PX4 driver (Section 3.1.2) of the ultrasonic
sensors is prepared for processing data from multiple sensors, so the two ultrasonic sensors
end up sharing the same instance of the uORB topic. Consequently, all sensor data are
internally organized in four different instances of the same distance_sensor uORB topic
to, then, be streamed over MAVLink (Section 3.1.3) to both the Ground Control Station
(GCS) and the companion computer.

Other uORB topics are also used in the S&A system. For example, the following is
true: (i) vehicle_local_position is used to communicate the UAV local position, velocity
and acceleration estimates in a NED (North-East-Down) frame; (ii) trajectory_setpoint
is used to internally communicate position, velocity and acceleration setpoints in a local
NED frame; (iii) vehicle_local_position_setpoint can be used to monitor the setpoints
inputted to the position controller of PX4.

3.1.2. Distance Sensor Drivers

The interface between obstacle detection sensors and the PX4 is made possible by
drivers, which are responsible for sensor initialization, acquisition of data measurements,
primary data processing, and communication with the uORB messaging bus. These drivers
can be controlled through MAVLink Console commands.

Ultrasonic sensors are controlled by the built-in mb12xx PX4 driver, whose single
instance can control multiple ultrasonic sensors connected to the same I2C bus, provided
they have different I2C addresses. The sensor update rate is defined by its driver to 10 Hz
to match the maximum ranging cycle time of around 100 ms, and since the same driver
controls two sensors, a 50 ms interval is set between consecutive sensor reads to meet the
ranging cycle requirement per sensor.

The laser rangefinders are controlled by the built-in lightware_laser_i2c PX4 driver.
Contrary to what happens with the ultrasonic sensors, this driver is unable to control, in a
single instance, multiple sensors with different I2C addresses in the same I2C bus. For this
reason, the solution found to have two lasers connected at the same time was to start two
independent instances of the driver in the startup shell script of PX4.

The LiDAR is controlled by the built-in lightware_sf45_serial PX4 driver. Unlike
the previous drivers, it is not included in the firmware by default, so it needs to be manually
enabled in the PX4 firmware configuration. Although the LiDAR sensor measures the
scanning angle at each instant, the standard version of its driver does not publish these
measurements, which are necessary to fulfill the custom current_yaw field added to the
distance_sensor uORB topic. So, for this purpose, the s_update() function developed
in [27] was included.

3.1.3. External Communication

External communication between the flight controller and other devices, such as
the GCS and the companion computer, is performed through Micro Air Vehicle Link
(MAVLink). MAVLink messages are characterized by a name, an id, and fields containing
the data to be transmitted. PX4 includes MAVLink as a module, and generally, MAVLink
messages stream data of an already existing uORB message with similar fields. Further-
more, it can have independent instances to communicate with different peripheral devices
simultaneously.

DISTANCE_SENSOR (ID=132) is the standard MAVLink message used to communicate
data from the obstacle detection sensors. Although most of its fields are similar to those
of the homonym uORB topic, it had to be slightly modified to suit the S&A system, with
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the custom addition of the device_id and current_yaw fields, to hold the unique sensor
identifier and LiDAR yaw angular position (when applicable), respectively.

Among many other standard MAVLink messages, the ones most relevant to the S&A
system are the following: (i) LOCAL_POSITION_NED, used to communicate the UAV local
position; (ii) SET_POSITION_TARGET_LOCAL_NED, used to communicate position, velocity
or acceleration setpoints defined by the collision avoidance algorithm running in the
companion computer; (iii) POSITION_TARGET_LOCAL_NED, used to retrieve data from the
vehicle_local_position_setpoint uORB topic to monitor the setpoints that are actually
being sent to the position controller of PX4; (iv) VFR_HUD, used to communicate head-up
display (HUD) information, such as airspeed, ground speed, heading, throttle, altitude
MSL, and climb rate.

Since, in addition to the previous ones, a few more standard messages are communi-
cated over MAVLink, the streaming rate of data is conditioned by the flight controller’s
processing power, the congestion of the link, as well as the characteristics of the physi-
cal connection.

3.2. Ground Control Station Software

The GCS is a ground-based system that allows a human operator to monitor, control,
and manage the systems of a UAV in real time. The open-source QGroundControl [34] was
used as the GCS software due to its proven integration with PX4. It ran on a computer with
Windows 11 OS to communicate with PX4 over USB (wired) or telemetry (wireless).

The telemetry module responsible for the physical connection between the flight
controller and the GCS limits, significantly, the streaming rate of the MAVLink messages
received by QGroundControl.

3.3. Companion Computer Software

A communication link between the companion computer and the flight controller is
needed. It is used to exchange data, namely for the companion computer to receive the
obstacle detection sensors data from the flight controller and to send it new setpoints to
perform the collision avoidance maneuver.

Firstly, an Ethernet connection between them is set, since it has a much higher band-
width compared to serial connections and can handle high streaming rates of data. Then,
the MAVLink interface to use in the companion computer was chosen among MAVSDK,
pymavlink, and MAVROS. MAVSDK [35] is a cross-platform high-level API to interface
with MAVLink, that is easy to use, but it has limited low-level access and control over
the messages. In contrast, pymavlink [36] is a low-level Python library that provides fine-
grained control of the MAVLink messages, but it presents a steeper learning curve. Lastly,
MAVROS [37] is a Robot Operating System (ROS) package that acts as a bridge between
ROS and MAVLink by translating MAVLink messages to/from ROS messages, organized
in ROS topics. Since it includes well-tested PX4 support and allows the integration of the
S&A system as a ROS package, MAVROS 1.19.1 with ROS1 Noectic was the option selected
to interface with MAVLink despite being more resource-intensive.

To communicate distinguishable data from the five obstacle detection sensors, the
distance_sensor plugin of MAVROS had to be modified to map the sensors from the
device_id field. Moreover, a custom ROS message was created to include the device_id
and current_yaw fields.

Although the physical Ethernet connection does not represent a constraint for the
streaming rate of data, the MAVLink streaming rate is limited to 20 Hz to avoid a link
overload due to the large number of MAVLink messages that are communicated to the
companion computer. Therefore, even though the update rate of the laser rangefinder and
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the LiDAR are higher, the streaming of their reads to MAVROS is limited to 20 Hz. The
ultrasonic sensor’s reads are not affected because they are limited to 10 Hz by hardware.

3.4. Collision Avoidance Software

Given that ROS provides a flexible framework for writing robotic software with
MAVROS as a MAVLink interface, the remaining steps of obstacle detection and collision
avoidance can be developed as a software prototype within a ROS package. This approach
is not a novelty since there is already an open-source package developed by the PX4
community, PX4-Avoidance [38], to enable obstacle detection with a stereo-vision camera
hardware and collision avoidance for multicopters.

Regarding the programming language, Python was chosen in this stage of develop-
ment for rapid prototyping, although C++ allows better performance. The rospy Python
library provides an interface with ROS for the creation of nodes, publish/subscription
of topics, and interaction with services and parameters. A multithreading approach was
considered, with the threading Python module, to allow multiple tasks to run concurrently
within a single process.

The software prototype was divided into two main parts: (1) obstacle detection, which
is responsible for processing the data from the distance sensors and transforming it into
two-dimensional positions; (2) collision avoidance, which is responsible for generating, in
real time, an avoidance trajectory for the UAV. The approach followed here was based on
the VFH method [23,24].

3.4.1. System Architecture

The architecture of the S&A system software prototype is illustrated in Figure 5 and
includes the files, classes, methods, and the data flow between methods. It is organized
in two main files: Parameters (params.py), where the main parameters of the system,
related to the distance sensors, Kalman filter, polar histogram, and avoidance process are
configured/tuned; and the Collision Avoidance Node (collision_avoidance_node.py),
where all the code developments are included. The developed source code can be found
in [39].

3.4.2. Obstacle Detection Implementation

The obstacle detection part of the software is implemented within the class Obsta-
cleDetector . It starts with the subscription of five ROS topics, one for each sensor, where
data are being published by MAVROS. This way, every time new sensor data are published
on the corresponding topic, a callback function is called to save it in sensor-specific variables
and process it. A one-dimensional Kalman filter, from the filterpy Python package, is
applied to the range measurements of the ultrasonic sensors and laser rangefinders that are
within the detection range considered (Table 3) to smooth noisy sensor data and provide a
better estimate d̂ of the true distance to the obstacles.

Table 3. Detection range values per sensor type for measured data filtering.

Sensor Detection Range (m)

Ultrasonic sensor 1–7
Laser rangefinder 1–50
LiDAR 1–50
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Figure 5. Obstacle detection and collision avoidance system architecture.

Then, the filtered range measurements of the sensors d̂ are transformed to polar coor-
dinates in the UAV body reference frame to represent two-dimensional obstacle positions.
For this, the position in Cartesian coordinates (xsens, ysens) and orientation βsens in the body
frame, specified as parameters for each sensor installed on the UAV, are used to compute
the radial and azimuthal components of the obstacle position, (robs, φobs), from

robs =
√
(d̂ cos (βsens) + xsens)2 + (d̂ sin (βsens) + ysens)2 (1)

and

φobs = arctan

(
d̂ sin (βsens) + ysens

d̂ cos (βsens) + xsens

)
. (2)

3.4.3. Collision Avoidance Implementation

The collision avoidance part of the software is implemented mainly within the class
AvoidancePathGenerator, using some methods of the class Vehicle. Having the position
of the obstacles detected by the sensors in polar coordinates of the body frame and aiming
to apply the VFH method, a polar histogram is generated to represent the obstacle density
in space using the algorithm flowchart in Figure 6.
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Figure 6. Polar histogram creation and continuous update algorithm.

It starts with the creation of the polar histogram using the parameters MIN_ANGLE and
MAX_ANGLE to define the angular range of space coverage around the UAV, and STEP_ANGLE
to define the resolution of the histogram, i.e., the angular step covered by each bin. Then,
there is a loop with a frequency of 20 Hz, which is the expected streaming rate of MAVLink
messages with new sensor reads from the laser rangefinders and the LiDAR, to update the
obstacle density value corresponding to each histogram bin using the most recent obstacle
position detected by each sensor. The obstacle positions, (robs, φENU

obs ), in East-North-Up
(ENU) frame, are used to find the corresponding bin k of the histogram, in which the
obstacle is inserted, and compute the obstacle density, hk, using the arbitrary function

hk =
50 − robs

50
, (3)

ensuring obstacle significance decreases linearly with distance. The constant of 50 was cho-
sen to correspond to the maximum detectable distance considered for the laser rangefinders
and the LiDAR, thus normalizing the bin obstacle density value. For safety reasons, the
obstacle density of a bin is spread to its neighbor bins, using a function controlled by the
parameter γ as

hk±a = hk, a = 1, . . . , γ . (4)

The continuous update process includes methods to erase old sensor data as well as
old histogram data.
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Concurrently to the update of the polar histogram, new trajectory setpoints for the
UAV are generated with a frequency of approximately 10 Hz from the algorithm flowchart
of Figure 7, in order to wait for new data from all sensors, including the hardware limited
10 Hz update rate of the ultrasonic sensors.

Figure 7. Avoidance setpoints generation algorithm.

This process starts from desired setpoint positions in ENU frame, which are given by
an external off-board control script, and are used to determine the desired direction.

Then, the bins of the polar histogram with an obstacle density below a prescribed
THRESHOLD (available bins) are selected and, from these, the one corresponding to a direction
closer to the average between the desired direction and the direction followed in the last
iteration is chosen. From that direction, a new setpoint velocity in Cartesian coordinates is
generated using the SETPOINT_STEP parameter, as well as a new setpoint position in the
ENU frame using local position data. Finally, the new setpoint position or velocity can
be published.

4. S&A System Validation Tests
To validate the proposed S&A system hardware and software architectures and cor-

responding implementations, a few real-world tests were conducted. Given the risks
associated with testing these new developments in a fixed-wing UAV in flight, a small
unmanned ground vehicle (UGV), hereinafter referred to as a rover, was used instead at
this stage. The following sections present the S&A system hardware and software setup
in the rover, as well as three basic tests performed: (i) static vehicle and multiple static
obstacles; (ii) static vehicle and a moving obstacle; (iii) moving vehicle and a static obstacle.

4.1. Rover System Setup

The hardware for testing in a rover was adapted from the electrical layout in Figure 3,
resulting in the setup in Figure 8. For flight control software, the rover_pos_control
module of PX4 1.14.3 was used.
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(a) Top view (labeled hardware components). (b) Right-side view.

Figure 8. Rover setup for S&A system validation.

The positioning of the laser rangefinders and the LiDAR in the vehicle frame repro-
duced the optimal configuration presented in [28]. The ultrasonic sensors were placed
facing forward in the most distant lateral points to cover the blind spots of the other sensors
at low distances.

4.2. Static Vehicle and Static Obstacles

The first test was conducted with the vehicle static in front of three obstacles, which
were also static, of different frontal areas, A (0.55 m2), B (0.55 m2) and C (0.35 m2), which
were arranged as shown in Figure 9a. The goal was to validate the capabilities of the S&A
system to detect obstacles, estimate their relative positions, and translate them to the polar
histogram of the VFH method. The system ran for around 10 s.

(a) Static obstacles spatial arrangement. (b) Obstacles detected by sensors during test.

Figure 9. S&A system test with static vehicle and static obstacles.

Table 4 presents the parameters used for sensors, Kalman filters, polar histogram,
and avoidance algorithm. The sensor parameters reflect their two-dimensional position,
(xsens, ysens), in the vehicle’s body frame, relative to its estimated center of mass, and their
orientation, βsens, relative to the vertical axis of the vehicle’s body frame. The Kalman
filter parameters used resulted from a previous tuning process that aimed to set dt with
the respective sampling interval of the ultrasonic sensors and laser rangefinders, P with
a realistic estimate of the initial sensor measurements, and the process noise covariance,
Q, and the measurement noise covariance, R, with a relative difference of one order of
magnitude to allow the filtering of outliers and noise, while keeping the estimations
responsive to sudden changes in measurements. The polar histogram parameters were
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set for it to have a 360◦ coverage, bins with a width of 10◦, and two neighbors each
(γ = 2). Regarding the avoidance process, the TIME_CLEAN_BINS parameter was set for the
histogram to keep its bins for 0.1 s before cleaning, and the THRESHOLD for a normalized
obstacle density of 0.8 and the SETPOINT_STEP for the next trajectory setpoint positions
were to be placed according to a vector with 3 m of magnitude.

Table 4. Obstacle detection and collision avoidance software parameters.

Parameter Value Parameter Value Parameter Value

POS_X_SONAR1 (m) 0.2 POS_Y_LASER2 (m) −0.1 R_LASER 1
POS_Y_SONAR1 (m) 0.2 YAW_LASER2 (◦) −10 Q_LASER

[
10−1 0

0 10−1

]
YAW_SONAR1 (◦) 0 POS_X_LIDAR (m) 0.2 MIN_ANGLE (◦) 0
POS_X_SONAR2 (m) 0.2 POS_Y_LIDAR (m) 0 MAX_ANGLE (◦) 360
POS_Y_SONAR2 (m) −0.2 DT_SONAR 0.1 STEP_ANGLE (◦) 10
YAW_SONAR1 (◦) 0 P_SONAR 7 GAMMA 2
POS_X_LASER1 (m) 0.2 R_SONAR 1 TIME_CLEAN_BINS (s) 0.1
POS_Y_LASER1 (m) 0.1 Q_SONAR

[
10−1 0

0 10−1

]
THRESHOLD 0.8

YAW_LASER1 (◦) 10 DT_LASER 0.05 SETPOINT_STEP 3
POS_X_LASER2 (m) 0.2 P_LASER 50

The data of the positions of the obstacles in polar coordinates in the rover body frame,
(robs, φobs), are plotted in Figure 9b and separated by range sensor data source.

It can be observed that the ultrasonic sensors did not detect any obstacles since they
were outside their range, the laser rangefinders detected obstacles along the directions
they were pointed to, and the LiDAR detected many in different directions, as expected.
It is possible to identify obstacle A, which was successfully detected by both Laser2 and
LiDAR, as well as obstacles B and C, which were only detected by LiDAR. The cluster
of LiDAR points on the right-hand side, the single point on the left-hand side, and the
points further away around 40 m distance, including the one from Laser1, correspond to
the detection of the walls of the sports field where the test was conducted. From this test, it
was possible to conclude that the obstacle sensing system can detect the targets successfully
using both the laser rangefinders and LiDAR, and that the sonars are of limited use due to
their reduced range.

The translation of the obstacles’ positions to the polar histogram, with bins from 0◦ to
360◦, and step angle of 10◦, were plotted in Figure 10a,b, from two time instants, t1 and t2,
when the pairs of obstacles (A,B) and (A,C) were detected, respectively.

At time t ≈ 1.8 s, there are three main bins, one for 260◦ from Laser2’s detection of
obstacle A, another for 280◦ from the LiDAR detection of obstacle B, and a smaller bin
for 290◦ from Laser1’s detection of the wall. At time t ≈ 5.4 s, there is the same main bin
for 260◦ and another for 290◦ from the LiDAR detection of obstacle C. The plots in the
second and third rows of Figure 10 present the effect of spreading the obstacle density to
neighbor bins, which are controlled by γ as defined in Equation (4). Having γ = 1 leads
to zero neighbors, γ = 2 leads to two neighbors for each main bin, and γ = 3 leads to
four neighbors for each main bin. This parameter can be used to tune the allowable safety
margin around obstacles. A good trade-off needs to be found since a higher γ corresponds
to safer, more conservative, obstacle detection at the expense of reducing obstacle-free path
alternatives for the collision avoidance algorithm. An example of a threshold line of 0.8
is also presented—the bins with obstacle densities above 0.8 are considered unavailable,
while the others are available in the collision avoidance VFH algorithm.
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(a) Time instant t1 ≈ 1.8 s. (b) Time instant t2 ≈ 5.4 s

Figure 10. S&A system test with static vehicle and static obstacles (A,B,C): polar histograms for
γ = 1, 2, 3 (top to bottom).

4.3. Static Vehicle and Moving Obstacle

The second test was performed with the vehicle static and an obstacle of frontal area
0.55 m2 moving in front of it, from left to right, at a speed of about 1 m/s and a distance
within an interval between 3 m and 4 m. This interval can be transcribed in the local body
frame of the rover as

3
cos θobs

≤ robs ≤
4

cos θobs
, − 45◦ ≤ θobs ≤ 45◦. (5)

The objective of this test was to validate the detection of dynamic obstacles and their
reflection in variations of the polar histogram. The same parameters in Table 4 were used,
except for THRESHOLD, which was changed to 0.9 to make the system less sensitive and react
only to obstacles with radial distance under 5 m from the vehicle.

To assess the characteristics of the sensor data that feed the system, the raw and filtered
range measurements of the sensors were saved and truncated to the time intervals when
the obstacle is detected. These data are plotted in Figure 11a–e, for each of the five sensors,
ordered from the first to the last that detected the obstacle. Given the positions of the
sensors in the vehicle, the sequence of detection by the lasers and ultrasonic sensors is as
expected for an obstacle moving from left to right.

For all cases, the obstacle was detected through range measurements between 2.8 m
and 4 m. Moreover, the Kalman filter performed reasonably for the lasers and ultrasonic
sensors, reducing the noise and dampening the effect of outlier measurements that could
lead the system to unnecessary reactions. Measurements of the ultrasonic sensors above 7 m
were not considered for filtering since these sensors report their maximum range (7.65 m)
when no obstacles are detected. Finally, the LiDAR data were not subject to any filtering
process but presented good results by detecting the obstacle at each scan.

The transformation of the data from all sensors to obstacle positions in polar coor-
dinates in the vehicle’s body frame over the execution of the test resulted in Figure 12a.
The points are labeled by the sensors that originated them, such that the cluster of points
distributed approximately along the −11◦ azimuth came from Laser2, the points along the
−3◦ azimuth came from Sonar2, the points along the 3◦ azimuth came from Sonar1, the
points along the 11◦ azimuth came from Laser1, and the other scattered points came from
LiDAR. Once again, the evolution of the point positions in time is in accordance with the
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trajectory of the obstacle from left to right, as the moving obstacle is detected successfully
by the sensing system.

(a) Laser2 data. (b) Sonar2 data.

(c) Sonar1 data. (d) Laser1 data.

(e) LiDAR data.

Figure 11. S&A system test with static vehicle and moving obstacle: raw and filtered obstacle
detection sensor data.

(a) (b)

Figure 12. S&A system test with static vehicle and moving obstacle: time evolution of obstacle detec-
tion. (a) Detected obstacles position in polar coordinates of the vehicle’s body frame. (b) Available,
unavailable, and chosen bins in polar histogram.

The obstacle positions detected by the sensors were compared with the expected
interval defined by Equation (5). The points that are inside/outside the interval and the
respective relative error are presented in Table 5 per sensor.
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Table 5. S&A system test with static vehicle and moving obstacle, number of obstacle positions
detected inside/outside the expected interval and relative error, per sensor type.

Sensor Inside Outside Error (%)

Sonar1 28 3 9.7
Sonar2 32 1 3.0
Laser1 27 0 0.0
Laser2 30 0 0.0
Lidar 29 5 14.7

It can be observed that both ultrasonic sensors presented a relatively low error, ex-
plained by the appearance of virtual points from the delay of the filtering process. The laser
rangefinders made all the detections inside the expected interval, besides also being subject
to filtering. The LiDAR was the one with the highest error, probably due to operational
errors in the test execution, given that its detection pattern points to a relatively good
detection of the obstacle.

The resulting classification into available/unavailable histogram bins is plotted over
time in Figure 12b, together with the bins chosen each time. The setpoints arbitrarily input
to the system were such that the desired vehicle direction was 280◦. As soon as the obstacle
covered that direction, the corresponding bin became unavailable, and the system was
forced to choose another bin direction. As the obstacle moved to the right-hand side in
time, the bins affected were dynamically blocked and released from lower to higher angles
while the system was dynamically choosing the available bin closer to the desired direction.
From this test, it can be concluded that the system successfully detects a dynamic obstacle,
and it is capable of presenting an intended solution to the collision avoidance algorithm.

4.4. Moving Vehicle and Static Obstacle

The last test was performed with the vehicle moving toward one static obstacle
(0.55 m2). The objective was to validate the capabilities of the system to, based on the
detection of obstacles, perform a real-world collision avoidance maneuver. The soft-
ware was tuned with the parameters of Table 4, except the adjusted settings γ = 4 and
TIME_CLEAN_BINS=1 to enhance safety. Regarding the avoidance part of the software, it
was decided to only publish setpoint positions.

The vehicle performed the test at an average speed of 2 m/s. The local vehicle position
(in earth-fixed ENU frame) over time is plotted in Figure 13a, together with the position
of the obstacle. It shows that the vehicle was following a linear desired trajectory headed
toward the obstacle, and around 3 m before the collision, a small trajectory deviation to the
right was made, allowing for successful obstacle avoidance.

The classification of histogram bins is plotted in Figure 13b. Initially, the vehicle was
physically aligned to the desired heading of 100◦ and, at the time instant t = 3.6 s, the
detection of the obstacle led to the blocking of bins from 60◦ to 110◦, forcing the system
to choose the hrading of 120◦ and start the avoidance trajectory. In the following seconds,
the blocked bins eventually evolved to the range from 30◦ to 120◦, forcing the vehicle to
follow the heading of 130◦. When the polar histogram data were cleaned and no further
obstacles were detected, the system returned to the desired heading of 100◦, finishing the
avoidance trajectory.

As shown in Figure 13a, the desired heading followed before starting the avoidance
maneuver and after passing the obstacle was not the same, even though the system pub-
lished setpoint positions in the direction of 100◦ in both cases. The odd behavior was most
likely due to a faulty calibration of the Pixhawk compass, which led to inaccurate heading
measures during the test.
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(a) (b)

Figure 13. S&A system test with moving vehicle and static obstacle: time evolution of obstacle
detection outputs. (a) Vehicle local position in ENU frame. (b) Available, unavailable, and chosen
bins in polar histogram.

The expected rate of trajectory setpoint generation was 10 Hz, without considering the
data processing time delay. However, the data analysis of the setpoints published in this
test resulted in an average rate of 9.66 Hz, or an average time interval between publishes of
104 ms, meaning an average 4 ms delay in the data processing. Thus, regarding an analysis
of the response time of the S&A system, there is a 100 ms contribution to take into account
the update of reads from all sensors, added by 4 ms for data processing. The contributions
of the communication delay between the sensor measurements and its publishing in the
ROS topic, as well as the delay between the publishing of the setpoints in the ROS topic
and the actuator commands, were not measured as they were considered small enough to
be disregarded.

This demonstrated that the S&A system was able to perform obstacle detection and
collision avoidance in the presence of a single obstacle at a vehicle speed of around 2 m/s
by generating a trajectory of avoidance setpoint position at a frequency of approximately
10 Hz.

Extrapolating for a fixed-wing UAV flying at 15 m/s, an average response time of the
S&A system of 104 ms would delay the start of the avoidance maneuver by 1.56 m, which is
reasonably small, considering that the detection range of the laser rangefinder and LiDAR
sensors goes up to 50 m.

From the tests performed, it was possible to identify two limitations of the current
VFH implementation. First, it was observed that, for the vehicle to choose a direction to
follow and perform the avoidance maneuver smoothly without hesitating to follow other
mistakenly available bins, there is a need to set a low resolution to the polar histogram. This
can be achieved by setting either higher values of the STEP_ANGLE parameter to increase
the angular size of each bin or higher values of γ to increase the number of neighbor bins
affected by an obstacle detection. This way, the VFH tends to classify narrow gaps as
inaccessible, even if they are navigable by the vehicle. Second, the VFH method neglects
the dynamics and kinematics of the vehicle under the assumption that it is possible to
instantly change the direction of motion at every sampling time. To address these two
limitations, future work will explore the improved VFH+ method, which aims to solve the
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indecisive behavior characteristic of VFH while assuming a more realistic trajectory of the
vehicle based on circular arcs and straight lines.

4.5. Future Testing Plans

While the rover-based tests provided valuable insights into the performance of the
S&A system, they do not fully replicate the aerodynamic and dynamic constraints of a fixed-
wing UAV. To address this, future work will include applying the developed system in a
simulation environment using the Gazebo open-source robotics simulator, which allows
for a smooth integration with ROS and PX4. PX4 supports two different types of flight
control simulation: Software In the Loop (SITL) simulation, where the flight stack runs on a
computer, and Hardware In the Loop (HITL) simulation, where a simulation firmware runs
on an actual flight controller board, as the Pixhawk 6X [33]. The advantages of simulation
tests lie in the possibility of testing the S&A system in a risk-free environment using models
of sensors, such as Inertial Measurement Unit (IMU), GPS, airspeed sensor, ultrasonic
sensors, laser rangefinders, and LiDAR, together with the model of a small fixed-wing
UAV which, in turn, is subject to rigid body physics laws, as well as aerodynamic lift, drag,
and thrust. These simulations will allow testing of the system in the presence of static and
dynamic obstacles of different dimensions and shapes, contributing to the refinement of
the avoidance parameters.

After a study of the S&A system behavior in a simulation environment, the conditions
are met to proceed to full-scale UAV flight tests using a real fixed-wing UAV equipped with
the proposed sensing and avoidance system. These tests will be conducted in restricted
airspace, large enough to allow the UAV to reach its cruise speed, and the obstacles will be
as collision-safe as possible, such as inflatable air pylons as static obstacles and inflatable
air balloons attached to manually controlled multicopters as dynamic obstacles. These tests
will allow the validation of the system performance under real flight conditions, focusing
on obstacle detection reliability at higher speeds, real-time trajectory correction planning,
and safe maneuver execution.

5. Conclusions
This work proposed a simple yet efficient S&A system to enhance the flight safety

of small fixed-wing UAVs. The system integrates multiple non-cooperative sensors—two
ultrasonic sensors, two laser rangefinders, and one LiDAR—along with a Pixhawk 6X flight
controller and a Raspberry Pi CM4 companion computer. The software implementation
was developed within the PX4 and ROS frameworks, using the Vector Field Histogram
method for real-time collision avoidance.

To validate the system, experiments were conducted using a ground rover, demon-
strating successful obstacle detection and avoidance. The results confirmed that the system
could detect both static and dynamic obstacles, translate them into a polar histogram
representation, and generate real-time avoidance maneuvers at approximately 10 Hz.

While promising, these tests were limited to ground-based scenarios. Future work
will focus on integrating sensor fusion techniques for robust obstacle tracking and refining
the collision avoidance strategy with more advanced methods such as VFH+ or VFH*.
Additionally, future system validations will include Gazebo simulations of a fixed-wing
UAV model, allowing for controlled and risk-free virtual flight testing before real-world
deployment, and, finally, full-scale UAV flight tests to further evaluate system performance
in real-world conditions.
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