
Assessing Turbomachinery Performance Sensitivity
to Boundary Conditions Using Control Theory

Andre C. Marta∗

Universidade de Lisboa, 1049 Lisbon, Portugal

and

Sriram Shankaran†

General Electric Global Research Center, Niskayuna, New York 12309

DOI: 10.2514/1.B35087

The adjoint method is extended to assess the sensitivity of turbomachinery performance with respect to inlet and

exit boundary conditions. The derivation of the adjoint and sensitivity equations are briefly derived in general form,

such that they can be applied to any set of flow-governing equations. In this paper, the Reynolds-averaged Navier–

Stokes equations have been used, where the k-ω turbulence model has been selected. A compressor rotor blade test

case is studied for verification and demonstration of the methodology. The adjoint-based sensitivities are verified

using finite differences. The sensitivities of efficiency and pressure ratio with respect to the boundary condition

parameters prescribedat each computational grid node at the inlet and exit faces of the bladepassageare illustrated in

the form of contour plots. Circumferentially averaged values and sensitivities demonstrate that fuller, more uniform

profiles lead to improved performance, in line with basic thermodynamic principles. Two examples of modifying

either inlet or exit boundary profiles, according to the sensitivity data obtained, show that performance tuning can be

achieved. The sensitivity assessment approach presented is shown to be accurate and extremely efficient, while

providing the designer with valuable information and insights to achieve a robust design.

Nomenclature

E = total energy
e = internal energy
h = enthalpy
k = turbulence kinetic energy
p = pressure
q = vector of conservative variables
qj = heat flux
R = residual operator
s = blade spanwise coordinate
t = time
u = vector of boundary conditions
ui = mean velocity components
xj = coordinate direction
Y = function of interest
α, β = tuning steps
γ = heat ratio
η = isentropic efficiency
μ = viscosity
μm = molecular (laminar) viscosity
μT = turbulent eddy viscosity
π = absolute total pressure ratio
ρ = density
τij = viscous stress tensor
ψ = adjoint vector
ω = specific dissipation rate

I. Introduction

I NTURBOMACHINERYdesign, one of themost important goals
is to improve performance, while meeting a number of re-

quirements. From an aerodynamic perspective, this could, for
instance, imply increasing efficiency or total pressure ratio of rotors
or decreasing the total pressure loss of stators. Although most of the
effort to accomplish this is by blade shaping and endwall contouring,
the boundary conditions play an extremely important role.
If the flow is modeled by some high-fidelity form of the Navier–

Stokes equations, not only the conditions at the inlet sections are
critical to the solution, but also some conditions at the exit influence
the upstream flow, as one would recall from the hyperbolic nature of
the governing equations.
In either single-stage or multistage turbomachinery design, the

optimal shape of the blades depends strongly on the boundary
conditions, which are typically set to some nominal values that are
kept frozen during the design process. However, design best practices
include the study of turbomachinery performance under variation of
the boundary conditions. Most of these studies have been primarily
made in a test rig, but with the advent of powerful computational
resources and trustful computational fluid dynamics (CFD) tools,
they can now be reliably performed in a virtual world. Typically, the
sameCFDsoftware used for design at nominal conditions is also used
to perform off-design simulations, implying as many CFD runs as
there are boundary parameters that need to be evaluated. However,
this approach is computationally prohibitive when the number of
boundary condition parameters becomes large, as is the casewhen the
inlet and exit boundary conditions are specified in the form of a radial
profile and onewishes to estimate the impact of each data point of that
profile in the overall performance.
Assessing the robustness of turbomachinery performance can be

posed as estimating the sensitivity of some figures of merit with
respect to its inlet and exit boundary conditions. The focus is then on
efficiently estimating the sensitivity (also designated as gradient) of
the function of interest (or vector of functions) with respect to a very
large number of parameters (also known as design variables), in flow
problems modeled by complex governing equations. The control
theory approach, also called the adjoint method, emerges as the best
solution for this sensitivity analysis.
This paper focuses on extending the adjoint method to handle inlet

and exit boundary condition profiles as design parameters, thus
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providing an efficient way to account for variations on the per-
formance of the turbomachinery due to the boundary conditions. The
obtained adjoint-based gradient information of aerodynamic per-
formancemetrics can be used inmany different ways by the designer.
For instance, it can be 1) directly used to manually tweak the flow,
2) incorporated in an automatic gradient-based optimization design
framework, or 3) used for uncertainty quantification in robust design.

II. Control Theory

The adjoint method has already been mathematically well
documented by Giles and Pierce [1] and, being a semi-analytic
method, it is capable of computing derivatives with the same
precision as the quantity that is being differentiated.
Adjoint methods have been used to perform sensitivity analysis of

partial differential equations (PDEs) for over three decades. These
methodswere first applied to optimal control problems and thereafter
used to perform sensitivity analysis of linear structural finite element
models. The first application to fluid dynamics was due to Pironneau
[2]. The method was then extended by Jameson to perform airfoil
shape optimization [3]. Later, its use in three-dimensional problems
led to applications such as aerodynamic shape optimization of wings
[4], aerostructural design [5], and even optimal plasma seeding [6].
Recent applications to turbomachinery include aerodynamic shape
design optimization of blades [7,8] and endwalls [9] and coupled
aerodynamic–aeroelastic blade design optimization [10]. In that
regard,Marta et al. [11] exposed an interpretation of adjoint solutions
for turbomachinery flows.
The adjoint method is extremely valuable because it provides a

very efficientmethod to compute the sensitivity of a given function of
interest with respect to many parameters by solving a system of
equations of size equivalent to the governing equations of the flow.
Typically, its main area of application has been shape optimization
[12–14], using gradient-based algorithms, because having an
efficient and accurate sensitivity analysis capability is very important
in high-fidelity design frameworks.
With the increasing interest in the fields of robust design and

uncertaintyquantification, the control theory canbe extended tohandle
inlet and exit boundary conditions as design parameters. Among other
uses, this proposed extension should assist on the important topic of
inlet distortion flow, namely, in estimating the performance penalty in
transonic fans operating within nonuniform inlet flow [15].
The next sections lay out the theory devoted to this goal, when the

flow problem is governed by a complex PDE.

A. Flow-Governing Equations

The governing equations used in the present work are the
Reynolds-averaged Navier–Stokes (RANS) equations. In conserva-
tion form, the Navier–Stokes system of equations may be written in
index notation as

∂ρ
∂t
� ∂

∂xj
�ρuj� � 0 (1a)

∂
∂t
�ρui� �

∂
∂xj
�ρuiuj � pδij − τji� � 0; i � 1; 2; 3 (1b)

∂
∂t
�ρE� � ∂

∂xj
�ρEuj � puj − uiτij � qj� � 0 (1c)

where ρ, ui, and E are, respectively, the density, mean velocity, and
total energy; τij is the viscous stress and qj is the heat flux.
A turbulence model needs to be used to model the Reynolds

stresses. In this paper, a two-equation turbulence model was used, in
particular, the k-ω model of Wilcox [16]:

∂
∂t
�ρk� � ∂

∂xj
�ρkuj� � τij∂ui∂xj − βkρkω

� ∂
∂xj

��
μ� σk

ρk

ω

�
∂k
∂xj

�
(2a)

∂
∂t
�ρω� � ∂

∂xj
�ρωuj� �

γω

k
τij∂ui∂xj − βωρω

2

� ∂
∂xj

��
μ� σω

ρk

ω

�
∂ω
∂xj

�
(2b)

where k is the turbulence kinetic energy and ω is the specific
dissipation rate. The turbulent eddy viscosity is computed from
μT � ρk∕ω and the constants are γ � 5∕9, βk � 9∕100, βω � 3∕40,
σk � 1∕2, and σω � 1∕2. The effective viscosity used in the Navier–
Stokes Eqs. (1a–1c) is then computed as μ � μm � μT , where μm is
the molecular (laminar) viscosity.
In semidiscrete form, the RANS governing Eqs. (1) and (2) can be

expressed as

dqijk
dt
�Rijk�q� � 0 (3)

where q � �ρ; ρui; ρE; ρk; ρω�T is the vector of conservative
variables, R is the residual with all of its components (inviscid,
viscous, and turbulent fluxes, boundary conditions, and artificial
dissipation), and the triad ijk represents the three computational
directions. The unsteady term of Eq. (3) is dropped out because only
the steady solution of the equation is of interest in this work.

B. Adjoint Equations

For the derivation of the adjoint equations for systems of PDEs,
a Lagrangian viewpoint is used. This approach follows the method of
Lagrange multipliers for the solution of a constrained minimization
problem, in which the augmented function of interest is defined as

~Y�q; u� � Y�q; u� − ψTR�q; u� (4)

whereψ is the vector of Lagrangemultipliers that takes the role of the
adjoint variables, and u is the vector of design variables, which here
are the inlet and exit boundary condition parameters. From the de-
finition of augmented function of interest, the constraints are nat-
urally enforced by the optimal solution, thus the governing equations
are automatically satisfied.
The sensitivity of the augmented function of interest is then

d ~Y

du
� dY

du
− ψT

dR

du
(5)

which can be expanded as

d ~Y

du
�
�
∂Y
∂q

dq

du
� ∂Y

∂u

�
− ψT

�
∂R
∂q

dq

du
� ∂R

∂u

�
(6)

Rearranging Eq. (6) results in

d ~Y

du
�
�
∂Y
∂q

− ψT
∂R
∂q

�
dq

du
�
�
∂Y
∂u

− ψT
∂R
∂u

�
(7)

To eliminate the dependence on the flow variables, the term involving
dq∕du must vanish, which is achieved by choosing ψ such that it
satisfies the adjoint equation

∂Y
∂q

− ψT
∂R
∂q
� 0 ⇒

�
∂R
∂q

�
T

ψ �
�
∂Y
∂q

�
T

(8)

C. Adjoint-Based Sensitivities

Once ψ is obtained by solving the adjoint system of equations (8),
the sensitivity of the function of interest with respect to the inlet or
exit boundary conditions u set at each computational boundary face
grid node is given by Eq. (5), which can be rewritten as
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dY

du
� ∂Y

∂u
− ψT

∂R
∂u

(9)

Equation (9) reveals the advantage of the adjoint approach (the
independence of δq), meaning that the gradient ofYwith respect to an
arbitrarily large vector of parameters u can be determined without the
need for additional solutions of the PDE. This is in contrast with
standard sensitivity analysis methods, such as finite difference
approximations, that require a number of additional flow solutions
proportional to the number of parameters.
It should be noted, however, that the evaluation of the sensitivity of

each function of interest requires solving Eq. (8) with a new right-
hand side vector. On the other hand, the computational cost of the
function sensitivity Eq. (9) is almost independent of the number
boundary parameters u, which is the feature that makes the adjoint
method so attractive for problems involving a large number of
parameters and a few functions.

III. Implementation

The two center pieces included in the methodology presented in
this paper are the flow solver and the adjoint solver. Given the
maturity of CFD, the implementation of the flow solver is only briefly
mentioned, being the main focus the development of the adjoint
solver and its extension to the computation of sensitivities with
respect to boundary conditions.

A. Flow Solver

The proprietary flow solver used in this work supports three-
dimensional, multiblock, structured grids, and it uses a finite volume
formulation of the steady and unsteady, nonlinear and linear RANS
equations. Several turbulence models are available, such as k-ω, k-ε,
and SST, having the option to use wall functions or wall integration
for boundary-layer resolution. A detailed description of the numer-
ical techniques employed can be found in [17–19]. This solver is
typically employed in the solution of turbomachinery blade rows and
it is capable of efficiently performing three-dimensional analysis for
aeromechanics, aerodynamic design, parametric studies, and robust
design applications.
As typical for most iterative CFD flow solvers, the residual

calculation Eq. (3) is done in a subroutine that loops through the
three-dimensional domain and accumulates the several fluxes and
boundary conditions contributions in R.
In this paper, the steady, nonlinear RANS equations with k-ω

turbulence model [16], together with wall functions, are used.
The flow solver supports several inlet and exit boundary con-

ditions, including pressure extrapolation, Riemann invariant, and
two-dimensional nonreflecting boundaries for the inlet, and velocity
extrapolation, Riemann invariant, and non-reflecting boundaries for
the exit. Denote by the subscript 1 the ghost cell outside the com-
putational domain and by the subscript 2 the first interior cell in the
direction normal to the boundary face, as illustrated in Fig. 1.
The extrapolation schemes, selected for the inlet and exit

boundaries in the test cases presented in this paper, assume isentropic
flow and calorically perfect gas. In the ghost cells at the inlet
boundary, with reference to the cell numbering convention exhibited
in Fig. 1a, the pressure and conservative variables are set as

p1 � min�p2; p
inlet
T � (10a)

ρ1 � ρT

�
p1

pinlet
T

�
1∕γ
; ρT �

γ

γ − 1

pinlet
T

hinletT

(10b)

�ρux�1�ρ1�Vr cos�θ�−Vt sin�θ��; Vr�VrzCinlet
r ; Vt�V inlet

t

(10c)

�ρuy�1 � ρ1�Vr sin�θ� � Vt cos�θ�� (10d)

�ρuz�1 � ρ1VrzC
inlet
z ; Vrz �

������������������������
V2 − V2inlet

t

q
;

V2 � 2�hinletT − hinlet�; hinlet � γ

γ − 1

p1

ρ1
(10e)

�ρE�1 �
1

γ − 1
p1 �

1

2
ρ1V

2 (10f)

�ρk�1 � ρ1k
inlet (10g)

�ρω�1 � ρ1ω
inlet (10h)

where the prescribed inlet quantities are the total pressure pinlet
T , total

enthalpy hinletT , absolute tangential velocity V inlet
t , radial direction

cosine Cinlet
r , axial direction cosine Cinlet

z , and turbulence level
through kinlet and ωinlet. The scheme selected for the exit prescribes
the static pressure pexit. The other quantities are extrapolated. This
yields the following relations for the pressure and conservative
variables in the ghost cells at the exit boundary, with reference to the
cell numbering convention exhibited in Fig. 1b:

p1 � pexit (11a)

ρ1�
1

γ−1

p1

e1
; e1�E1−

1

2
V2
1; E1�E2��ρE�2∕ρ2 (11b)

�ρux�1 � ρ1ux1; ux1 � ux2 � �ρux�2∕ρ2 (11c)

�ρuy�1 � ρ1uy1; uy1 � uy2 � �ρuy�2∕ρ2 (11d)

�ρuz�1 � ρ1uz1; uz1 � uz2 � �ρuz�2∕ρ2 (11e)

�ρE�1 � ρ1

�
e1 �

1

2
V2
1

�
; V2

1 � u2x1 � u2y1 � u2z1 (11f)

�ρk�1 � ρ1�ρk�2∕ρ2 (11g)

�ρω�1 � ρ1�ρω�2∕ρ2 (11h)

The vector of boundary conditions u is then composed of
�pinlet

T ; hinletT ; V inlet
t ; Cinlet

r ; Cinlet
z ; pexit�, where each of the six terms is

of size corresponding to the number of ghost cells that discretize the
block faces at the inlet or exit boundaries.
It should be noted that the flow solver reads prescribed radial

profiles (one-dimensional) for inlet and exit boundary conditions,
that is to say, it assumes circumferentially averaged values for the
boundary faces. However, given the benefit of using the adjoint
method, the sensitivities are computed with respect to the prescribed
boundary values at every boundary cell face (two-dimensional
surface), as detailed in Sec. III.B.

B. Adjoint Solver

The adjoint equations (8) for the RANS equations are obtained
using a discrete formulation, where the governing PDE are first

a) Inlet boundary b) Exit boundary

Fig. 1 Schematic of the computational cells at the boundaries.
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discretized and then the adjoint system is derived from these discrete
equations.
The discrete adjoint approach formulation is chosen because it can

be applied to any set of governing PDEs and it can treat arbitrary
functions of interest Y. As such, and in contrast to the continuous
approach, no simplifications have to be made during the derivation:
The effects of viscosity and heat transfer and the turbulence equations
can be easily handled when deriving the discrete adjoint. Another
advantage of this formulation is that the boundary conditions are
handled seamlessly because the adjoint solver is derived from the
discretized flow residual equations that already implement them.
Therefore, the adjoint-based sensitivities computed are perfectly
consistent with the flow solver.
The choice of the discrete approach makes it possible to use

automatic differentiation (AD) tools to help build the adjoint solver
routines. As such, the approach used in this work is a hybrid and it
follows the work of Marta et al. [20]. The discrete adjoint solver is
derived with the aid of AD, which is selectively applied to the CFD
source code that handles the residual R and function Y evaluations.
This hybrid approach retains the accuracyof the adjointmethods,while
it adds the ease of implementation of the automatic differentiation
methods.
The adjoint solver used has been built around the custom flow solver

mentioned in Sec. III.A. The residual calculation in the iterative CFD
solver is done in a subroutine that loops through the three-dimensional
domain and accumulates the several fluxes and boundary conditions
contributions in the residualR. Applying a purely automatic approach to
the nested-loop residual code would translate into enormous computa-
tional inefficiencies. Recognizing that the residual at each cell only
depends on flow variables at that cell and at the cells adjacent to it, which
define the stencil of dependence, the routines in the flow solver that
evaluate the residuals were rewritten in such a way that the residual for a
given computational cell Rijk would be given by a routine of the form
subroutineresidualAdj�ib;i;j;k;uAdj;qAdj;rAdj�.
This routine returns the Nv residuals rAdj, given the stencil of

boundary conditionsuAdj and flow variablesqAdj for a given node
�i;j;k� in block ib on each processor. For the RANS equations,
Nv � 7. There are a total of (Nv × Ns) flow variables in the stencil,
where Ns is the dimension of the computational stencil used in the
flow solver.
TheAD tool chosen in this work is Tapenade [21] because it supports

Fortran 90, which is a requirement taking into account the programming
language used in the flow solver. Because of the way residuals are
computed, the reverse mode is much more efficient in this case and, on
this basis, it was used to produce adjoint code for the set of residual
evaluation routines. The automatic differentiation process produced the
differentiated routine subroutineresidualAdj B�ib;i;j;�
k;uAdj;uAdjB;qAdj;qAdjB;rAdj;rAdjB�, where qAdjB
and uAdjB are the derivatives of the residual with respect to the
stencil of flow variables q and boundary conditions u, respectively.
Therefore, this routine is able to compute all the necessary nonzero
entries for the matrices ∂R∕∂q and ∂R∕∂u, used in Eqs. (8) and (9),
respectively. TheNv × �Nv × Ns� sensitivities that need to be computed
for eachnode, corresponding toNv rows in the∂R∕∂qmatrix, are readily
computed by this automatically differentiated routine in reverse mode
because it yields

qAdjB�ii;jj;kk;n� � ∂R�i; j; k; m�
∂q�i� ii; j� jj; k� kk; n� (12)

where the triad �ii;jj;kk� spans the stencil, m spans the number of
governing equations Nv and n spans the Nv flow variables. The Nv ×
�Nb × Np� sensitivities, corresponding toNv rows in the ∂R∕∂umatrix,
are given by

uAdjB�l;n� � ∂R�i; j; k;m�
∂u�l; n� (13)

where l spans the boundary face nodes Nb and n spans the different
boundary parameters Np.

Similarly, the routine that evaluates the functions of interest is
rewritten as subroutinefunctionAdj�ib;i;j;k;uAdj;�
qAdj;yAdj� and the AD tool produced the differentiated rou-
tine subroutinefunctionAdjB�ib;i;j;k;uAdj;uAdjB;�
qAdj;qAdjB;yAdj;yAdjB�, which is used to evaluate the entries of
the vectors ∂Y∕∂q and ∂Y∕∂u, used in Eqs. (8) and (9), respectively.
This way, the code that computes the entries of the several matrices

and vectors of partial derivatives necessary to evaluate gradients (9)
using the adjoint method (8) is automatically generated. The sizes of
the matrices and vectors involved in this process are

∂R
∂q
�Nq × Nq�;

∂Y
∂q
�NY × Nq�;

∂R
∂u
�Nq × Nu�;

∂Y
∂u
�NY × Nu� (14)

where NY is the number of functions of interest, Nu is the number
of terms in the boundary condition (BC) stencil (number of BC
parameters Np times the number of boundary cell faces Nb), andNq
is the size of the statevector (number of governing equationsNv times
the number of cells of the computationalmesh). Although ∂R∕∂q and
∂R∕∂u can easily be very largematrices, they are extremely sparse as
a consequence of the local stencil of dependence.
The large sparse linear system of adjoint equations (8) has to be

solved NY times for different right-hand side vectors because ψ is
valid for all boundary parameters u but must be recomputed for
each function Y. The Portable, Extensible Toolkit for Scientific

Fig. 2 Schematic of the adjoint-based BC sensitivity algorithm.

Fig. 3 Zoom of compressor rotor disk.
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Computation [22] is used to solve the system. The Generalized
MinimumResidual algorithm is used, preconditionedwith the block-
Jacobi method, with one block per processor, each solved with ILU
(0) preconditioning.
The full RANS adjoint solver described makes use of the complete

vector of conservative variables and handles the corresponding seven
governing equations (1) and (2). Further details about the im-
plementation and verification of the adjoint solver and the adjoint
treatment of the turbulence equations canbe found in thework ofMarta
et al. [23,24], respectively.

C. Performance Sensitivity to Boundary Conditions at Inlet and Exit

From a design perspective, the performance of turbomachinery
depends heavily not only on the blade geometry but also on its inlet
and exit boundary conditions. The algorithm proposed to assess the
turbomachinery performance sensitivity to boundary conditions
using control theory is illustrated in Fig. 2.
Let u denote the boundary condition at the inlet or exit sections.

Given the mesh and the boundary conditions, the flow solver
computes the flow solution q and, using some postprocessing, the

values of the function of interest Y can easily be computed. Using the
flow solution obtained from the flow solver, the adjoint solution ψ is
evaluated using the adjoint solver. Once the adjoint solution is
obtained from Eq. (8), the sensitivity of the function of interest with
respect to the boundary conditions are computed by Eq. (9), which
implies a simple matrix-vector multiplication operation.

IV. Results

The approach implemented in Sec. III has been applied to a
representative test case: a transonic compressor rotor blade. The test
comprises four parts: 1) the problem is described; 2) the flow and
adjoint solutions are evaluated; 3) the adjoint-based sensitivities of
the functions of interest are computed with respect to inlet and exit
boundary conditions and verified against finite difference (FD)
derivative approximations; and 4) a performance tuning example is
used to demonstrate a possible use of the sensitivities computed.

A. Description of Test Case

The test problem is a transonic blade passage of a high-pressure
axial compressor rotor. A zoom of the rotor wheel geometry is shown
in Fig. 3, where the blade passage has been replicated for illustration
purposes.
Only a single blade passage is modeled using periodicity. The

mesh generated has an OH-grid topology around the blade, reverting
to an H-grid topology further away from it. The wall refinement has
an average y� of 25, found to be adequate given that wall functions
are used for the boundary-layer resolution. A total of 60 blocks are
created, as shown in Fig. 4, totaling 1.2 million cells, and the
simulations are run on a cluster using 16 processors.
The inlet boundary conditions are absolute tangential velocity

fixed and pressure extrapolated from the interior, as described in
Eq. (10). The exit static pressure is held fixed according to Eq. (11).
All solid walls are considered impermeable with a no-slip condition.
The remaining faces are either block-to-block interfaces or periodic.
Two functions of interest are used: absolute total pressure ratio and

isentropic efficiency. The absolute total pressure ratio is defined as

π � pexit
Ta

pinlet
Ta

(15)

and the isentropic efficiency is defined as

η � �p
exit
Ta ∕pinlet

Ta ��γ−1�∕γ − 1

�Texit
Ta ∕Tinlet

Ta � − 1
(16)

where the pressure is enthalpy averaged, the temperature is mass
averaged at the inlet or exit sections, and the subscript Ta refers to

Fig. 4 Compressor rotor blade passage.

Fig. 5 Compressor rotor pressure distribution.
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a total absolute quantity. For simplicity, these metrics are referred to
as pressure ratio and efficiency in the remaining text.

B. Flow and Adjoint Solutions

The flow and adjoint solvers both use a convergence criterion
based on the continuity equation residual. Convergence is assumed
when the residual relative error reaches 10−6.
The contours of nondimensional pressure on the hub and blade

surface planes (suction and pressure sides) are shown in Fig. 5, where
the hub, blade tip, leading edge (LE) and trailing edge (TE) are
labeled.
The contours of nondimensional density, corresponding to the

state variable q1 � ρ in the solution of Eq. (3), are shown in Fig. 6 on
the hub and blade suction side planes.
The contour plots corresponding to the nondimensional adjoint of

the continuity equation are shown in Fig. 7 for both functions of
interest. These correspond to the adjoint variable ψ1 � ψρ, using the
metrics Y � π and Y � η in the right-hand side for the solution of
Eq. (8), and are the adjoint counterpart of the primal solution shown
in Fig. 6. Similar to the flow density solution, the two adjoint
solutions are only shown on the hub and blade surface planes, despite
also being three-dimensional fields. As typical for the adjoint
solution, both plots in Fig. 7 show an adjoint flow reversed when
compared with the real flow in Fig. 6.

C. Verification of Sensitivities

The adjoint-based sensitivity of pressure ratio and efficiency with
respect to several inlet boundary conditions are evaluatedusingEq. (9).
The adjoint-based sensitivities are verified against first-order

forward-difference derivative approximations. The formula for the
first derivative, obtained from the Taylor series expansion of function
Y for a perturbation about a point u, is used

dY

du
� Y�u� Δu� − Y�u�

Δu
�O�Δu� (17)

Although a second-order FD approximation would have been
preferred to minimize the truncation error, its computational
cost would have been doubled because twice the CFD runs are
needed.
The verification runs are made using coarser grids to mitigate the

computational effort required by FD. Regarding the inlet BC
sensitivity verification, the mesh is coarsened two levels and four
inlet face nodes are selected, as illustrated in Fig. 8. For the exit BC
sensitivity verification, only one level coarsening is used, and four
exit face nodes are selected, as illustrated in Fig. 9.
Theverification ismade by forcing a variation in the prescribedBC

parameter at each of these control nodes. Because the flow solver is
only prepared to read boundary radial profiles, it is necessary to
modify the code after these have been read to perturb the boundary
face value at the selected control nodes. This implies running
separately the flow solver to convergence over and over again
for each parameter, for each node, which equates to a total of
24 times, corresponding to the five prescribed inlet parameters
�pinlet

T ; hinletT ; V inlet
t ; Cinlet

r ; Cinlet
z � at the four inlet control nodes, and

Fig. 6 Compressor rotor density distribution.

Fig. 7 Compressor rotor adjoint solution of the continuity equation.

Fig. 8 Control nodes at the inlet boundary face.
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the prescribed exit parameter pexit at the four exit control nodes. In
practice, a much higher number of runs are necessary because the
expression (17), as any FD derivative approximation, suffers from a
large sensitivity to the choice of step size Δu. If the perturbation is
chosen too large, the derivative estimate might be inaccurate because
of the large truncation error; if it is made too small, then subtractive
cancellation might occur and the estimate is again inaccurate. After
some trials, the sweet spot of Δu is found to be 0.25% for pinlet

T , 1%
for hinletT , 3% for V inlet

t , and 0.5% for pexit.
The comparison between the adjoint-based sensitivities and the FD

derivative approximation with respect to the inlet total pressure,
enthalpy, and absolute tangential velocity is summarized in Figs. 10–
12, respectively, for the inlet boundary face nodes shown in Fig. 8.

The errors are computed using the RANS adjoint-based sensitivity
values as reference.
Considering that first derivatives are being compared, not function

values, and taking into account the strong sensitivity to the
perturbation step Δu experienced by the finite differences, there is a
very good agreement between the RANS adjoint-based sensitivities
and the FD derivative approximations for the tested node locations.
Even in cases where the relative difference is higher, not only do the
values have the same sign (which indicates a consistent direction of
change of the evaluated metric function with respect to the design
parameter), but also their absolute values remain very close. These
results demonstrate the correct implementation of the inlet BC
sensitivity assessment.
Perturbing the exit pressure at the boundary face nodes shown in

Fig. 9 produces the comparison between the adjoint-based
sensitivities and the FD derivative approximation summarized in
Fig. 13. Again, there is a good match between the two sensitivity
analysis methods, proving once again the adjoint approach.
The fact that the full RANS adjoint is being used, that is, all terms

have been linearized in the adjoint formulation (from artificial
dissipation to eddy viscosity), implies that the discrepancies between
the adjoint-based and the finite difference gradients are mainly due to
numerical errors in the latter. This comes as no surprise because not
only a first-order finite difference gradient approximation is used, but
also a rather high sensitivity to the perturbation step size Δu in
Eq. (17) has been experienced.

D. Performance Sensitivity to Inlet Conditions

Five different inlet BC parameters are analyzed: inlet total pres-
sure pinlet

T , inlet total enthalpy hinletT (computed from inlet total

Fig. 10 Verification of adjoint-based sensitivity with respect to pinletT using FD.

Fig. 11 Verification of adjoint-based sensitivity with respect to hinletT using FD.

Fig. 9 Control nodes at the exit boundary face.
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temperature), absolute tangential velocity V inlet
t , and radial Cinlet

r and
axial Cinlet

z direction cosines.
A positive value at a point indicates the increased magnitude of

pressure ratio π or efficiency η per unit change in the inlet boundary
condition parameter at that boundary face node. Consequently,

a designer can easily infer from Figs. 14–22 how sensitive the blade
performance is to these inlet boundary conditions.
Besides the two-dimensional sensitivity contour plots, the cir-

cumferential area average is computed and plotted together with the
boundary condition area-averaged profile set in the test case. The BC

Fig. 12 Verification of adjoint-based sensitivity with respect to Vinlet
t using FD.

Fig. 13 Verification of adjoint-based sensitivity with respect to pexit using FD.

Fig. 14 Compressor rotor efficiency and pressure ratio sensitivity with respect to inlet total pressure.
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profiles of pinlet
T , hinletT , and V inlet

t were nondimensionalized using
their maximum values as reference. In those one-dimensional plots,
the span variable in the horizontal axis ranges from zero (hub) to one
(casing).
For the computational mesh used, the inlet boundary has a total of

5376 cell faces. Because one single run of the adjoint-based solver
evaluates the sensitivity of one performance parameterwith respect to
the number of BC parameters times this number of boundary cell
faces, thismeans that a total of 26,880 sensitivity values are evaluated
by the solver.
The sensitivity of the performance metrics with respect to the inlet

total pressure is shown in Figs. 14 and 15. The former figure shows
the sensitivity in the two-dimensional inlet plane. The latter figure
shows the circumferentially averaged values of the sensitivities. The
circumferentially averaged profiles of the sensitivities shows that, in
general, if the total pressure profile is made more uniform, then it can
improve the efficiency of the rotor. In particular, it can be noticed that,
near the endwalls, the effect of increasing the total pressure is an
attempt to decrease the viscous effects from the walls. This suggests
that improvements on the upstream stator or the endwall design are
one way to achieve this uniform pressure profile going into the rotor.
In the two-dimensional plots for the sensitivity, a region of strong
total pressure gradients at around the 20 and 80% span can be
observed. In this region, the sensitivity plots suggest a decrease in the

total pressure. In addition, the effect of the blade can be seen as a
streak at the inlet plane, along which a decrease in total pressure
increases the efficiency of the rotor.
The influence of the inlet total absolute enthalpy is presented in

Figs. 16 and 17. As in the plots for the sensitivity for total pressure,
the plots for sensitivity to total temperature suggest that an overall
uniform inlet total enthalpy will increase the efficiency of the rotor.
Hence, a decrease in the total enthalpy near the endwalls, leading to
local smaller total temperatures, enables all portions of the rotor to be
equally (and more) effective in pumping the flow to the downstream
blade row. One way to achieve this is through improved blade and
endwall design that reduces friction losses. In the middle of the inlet
plane, the sensitivities suggest that (as expected) reducing themixing
losses from thewake of the upstream blade row is one possibleway to
increase the efficiency of the rotor. Relative to the gains from altering
the profile near the endwalls, altering the profile in the core of the
flow seems to have a bigger impact on the overall efficiency. It is
interesting to note that the sensitivities of the inlet total enthalpy to the
efficiency and the pressure ratio are in opposite (and roughly equal
magnitude) directions.
In Figs. 18 and 19, the effect of the inlet absolute tangential

velocity on the blade rotor performance is illustrated. The contours on
the two-dimensional plot again show a region of large changes that
corresponds to the portion of the flow incident on the leading edge of

Fig. 15 Compressor rotor efficiency and pressure ratio sensitivity with

respect to circumferentially averaged inlet total pressure.

Fig. 16 Compressor rotor efficiency and pressure ratio sensitivity with respect to inlet total enthalpy.

Fig. 17 Compressor rotor efficiency and pressure ratio sensitivity with

respect to circumferentially averaged inlet total enthalpy.
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the blade. The circumferentially averaged profiles in Fig. 19 show
changes to the tangential velocity that aremostly positive and suggest
sharp changes near the hub. To improve the efficiency, this averaged
profile needs to be decreased, thus suggesting that the blade may be
in an off-incidence condition. This could be due to the endwall three-
dimensional effects. The region between the 20 and 80% span shows
an overall constant increase in tangential velocity. However, in the
tip region, the changes decrease rapidly to zero (or small negative
numbers), suggesting that the blade is at the correct incidence while
accounting for tip flow features. It is interesting to note that the
changes to the profile for improvements in efficiency and pressure
ratio are in different directions in the bottom (<40% span) and tip
portions of the blade.
The performance sensitivity to the inlet radial and axial direction

cosines are shown in Figs. 20–23. Unlike the tangential velocity
profiles, there is no discernible effect of endwalls and tip effects here.
The circumferentially averaged plots indicate that where the radial
direction cosines are positive there is a suggested reduction and
where it is negative there is a suggested increase. This trend is the
same for both efficiency and pressure ratio. This suggests that,

Fig. 18 Compressor rotor efficiency and pressure ratio sensitivity with respect to inlet absolute tangential velocity.

Fig. 19 Compressor rotor efficiency and pressure ratio sensitivity

with respect to circumferentially averaged inlet absolute tangential

velocity.

Fig. 20 Compressor rotor efficiency and pressure ratio sensitivity with respect to inlet radial direction cosine.
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overall, the effect of three dimensionality (due to radial shifts) has
been accounted for in the baseline design and further improvements
can be obtained by small changes.

E. Performance Sensitivity to Exit Conditions

The sensitivity of pressure ratio and efficiency with respect to exit
boundary conditions are shown in Figs. 24 and 25. Similar to the inlet
condition plots, a positive value at a point indicates the increased
magnitude of pressure ratio π or efficiency η per unit change in the
exit boundary condition parameter at that boundary face node.
In Fig. 25, the profile of pexit was nondimensionalized using its
maximum value as reference.
The suggested changes to the exit static pressure for improvement

in efficiency (Figs. 24 and 25) are consistent with the definition of
efficiency. It is interesting to note that a larger increase in static
pressure is suggested near the root region (<20% span). The overall
increase in static pressure at the exit for a fixed velocity leads to a
larger exit total pressure, suggesting that the rotor is more efficient.
The suggested changes also lead to a flatter exit pressure profile and,
recalling the turbomachinery radial equilibrium equation, this can be
achieved by controlling the circumferential velocity distribution
(swirl). One way to obtain this is by reducing the flow turning and
profile losses on the rotor in the midpassage section. The changes to
exit pressure that lead to higher pressure ratio π is similar to the profile
for the improvements for efficiency. However, the changes are larger

in the mid to tip region than the suggested changes for increased
efficiency.

F. Example of Tuning Using Sensitivity to Boundary Conditions

As mentioned before, the data produced by using the adjoint-
based sensitivity analysis presented in Secs. IV.D and IV.E can be
used to improve the blade performance. Such improvement can be
achieved by numerical optimization, in particular, using gradient-
based optimization algorithms, or by manual tuning, where the
designer carefully adjusts the inlet and exit boundary conditions by
considering the interaction with the upstream and downstream
turbomachinery rows or stages.
To verify and demonstrate the sensitivity information obtained by

means of the adjoint method, two simple examples are presented
here, in which the inlet and exit boundary conditions are modified
compared with the original conditions. The changes follow the
sensitivity of pressure ratio and efficiency as given by the previously
described adjoint method.
The first example aims to show an improvement of pressure ratio

with respect to inlet absolute tangential velocity tuning. The baseline
inlet absolute tangential velocity profile (see Fig. 19) is modified by
adding the gradient vector as

~V inlet
t �s� � V inlet

t �s� � α
∂π

∂V inlet
t

�s� (18)

Fig. 22 Compressor rotor efficiency and pressure ratio sensitivity with respect to inlet axial direction cosine.

Fig. 23 Compressor rotor efficiency and pressure ratio sensitivity with

respect to circumferentially averaged inlet axial direction cosine velocity.
Fig. 21 Compressor rotor efficiency and pressure ratio sensitivity

with respect to circumferentially averaged inlet radial direction cosine

velocity.
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where the step α is chosen such that a maximum perturbation of−1%
is obtained, resulting in the profile shown in Fig. 26a. As seen from
Fig. 26b, a relative improvement of about 0.01% in the pressure ratio
is obtained with such modified inlet profile.
The second example shows an improvement of isentropic

efficiencywith respect to exit static pressure tuning. The baseline exit

static pressure profile (see Fig. 25) is modified by adding the gradient
vector as

~pexit�s� � pexit�s� � β
∂η

∂pexit
�s� (19)

where the step β is chosen such that amaximum perturbation of�1%
is obtained, resulting in the profile shown in Fig. 27a. Again, an
improvement in the isentropic efficiency is obtained, of about 0.1% in
relative terms, as illustrated in Fig. 27b.

V. Conclusions

The control theory has been successfully extended to assess the
sensitivity of turbomachinery performance with respect to inlet or
exit boundary conditions. The adjoint method approach has been
applied to the RANS equations with the k-ω turbulence model, but
its implementation can be extended to any set of flow-governing
equations.
A realistic compressor rotor blade test case was used to

demonstrate the methodology and implementation. The computed
sensitivities of efficiency and pressure ratiowith respect to some inlet
and exit boundary condition parameters proved to be physically
correct. The circumferentially averaged profiles of the sensitivities
showed that, in general, if the total pressure and total temperature
profiles are mademore uniform, then they can improve the efficiency

Fig. 25 Compressor rotor efficiency and pressure ratio sensitivity with

respect to circumferentially averaged exit static pressure.

Fig. 26 Example of tuning of inlet tangential velocity for pressure ratio improvement.

Fig. 24 Compressor rotor performance sensitivity with respect to exit static pressure.
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of the rotor. The produced results also showed important details about
endwall viscous effects and blade upstream influence. The effect of
the inlet absolute tangential velocity revealed not only significant
endwall effects but also tip effects, in a quantitative manner, on the
blade rotor performance. The suggested changes to the exit static
pressure for improvement in efficiency were also consistent with the
definition of efficiency.
The adjoint-based sensitivity of the aerodynamic performance

(pressure ratio and efficiency) to inlet total pressure, total enthalpy,
inlet absolute tangential velocity, and exit static pressure showed that
aerodynamic performance is worse at the endwalls, tip, behind
upstream, or current blade row wakes. This is in agreement with the
basic physical knowledge of fluid mechanics and turbomachinery,
which demonstrate that performance improvements can be made by
reducing relative-flow rotationality, or vorticity, by making the flow
more uniform.
The use of control theory to assess the sensitivity of turbo-

machinery performance to boundary conditions proved to be
feasible, accurate, and extremely efficient, while providing the de-
signer with valuable information and insights to achieve a robust
design. Although the expertise of turbomachinery designers and their
incredible insight of the complex physics involved allow them to
qualitatively assess the impact of any inlet or exit boundary condition
profile change, the adjoint method presented here represents a tool
capable of accurately quantifying that impact. In a future outlook, the
plethora of information produced by the adjoint approach opens the
possibility of incorporating that sensitivity data into a gradient-based
design tool, giving the designer the option to produce blades that
show greater robustness to varying boundary conditions, such as inlet
distortions or ambient conditions.
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