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Recent developments in numerical design tools have made practical the use of gradient-based optimiza-
tion using high-fidelity computational fluid dynamic simulations. Such has been made possible with the
use of adjoint solvers, that can efficiently provide gradients of functions of interest with respect to design
variables. However, in the presence of flows modeled by the Reynolds-Averaged Navier–Stokes (RANS)
equations, the corresponding adjoint might become too complex to be fully derived or run. This has
led to the use of many simplifications in the implementation of such adjoint solvers. In this paper, the
constant eddy viscosity (CEV) approximation is explained and its validity tested. Two cases are used, a
two-dimensional turbine vane blade and a three-dimensional transonic compressor rotor blade. The gra-
dients computed using both the full RANS and the CEV approximation adjoints are verified against finite-
differences. It is shown that the gradients differ slightly but when used in an optimization problem, the
optimal solution found is nearly identical. Therefore, the CEV approximation in RANS adjoint solvers
proved to be valid for engineering design problems, bringing significant advantages, such as faster imple-
mentation and less computational resources needed in terms of CPU and memory size, when compared to
the full RANS adjoint solver.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The continuous growth of computational power has made
external and internal flow simulations to be routinely performed
using high-fidelity computational fluid dynamic (CFD) models.
The emerging trend is to use optimization techniques as part of
the design tools, with numerical design optimization becoming
common practice not only in academia but also in industry.

Among the several optimization methods developed by the oper-
ations research field [1], and considering that CFD flow simulations
can take hours, if not days, to perform, the most efficient methods
are gradient-based, which require a minimal number of cost func-
tion evaluations. However, these methods require an estimate of
the cost function derivatives. To address this, the designer faces
the problem of evaluating the derivatives [2]. Finite-difference
(FD) approximations have always been popular due to their simplic-
ity but they rapidly become computationally prohibitive when the
number of variables greatly exceeds the number of functions. In this
case, an adjoint method is the best-suited approach to efficiently
estimate function gradients since the cost involved in calculating
sensitivities using the adjoint method is practically independent of
the number of design variables.
The application of adjoint methods to CFD was pioneered by
Pironneau [3] and it was later revisited and extended by Jameson
to perform airfoil [4] and wing [5] design. More recent successful
applications include multipoint aerodynamic shape optimization
problems [6], aero-structural design optimization [7], and even
magnetohydrodynamics flow control [8].

The major drawback of using adjoint-based gradients has al-
ways been the necessity of implementing an additional solver –
the adjoint system of equations solver, that is generally of the same
complexity as the flow solver. Thus, in the presence of flows mod-
eled by the Reynolds-Averaged Navier–Stokes (RANS) equations,
the corresponding adjoint system might become far too complex
to be fully derived. This has led to the use of many approximations
and simplifications in the implementation of such adjoint solvers.
The different approaches found in the literature are:

� Euler equations
Both the flow and adjoint solvers only account for the inviscid
flow effects. The argument being that, in some external flows,
such as in clean aircraft configurations, and in some internal
flows, such as in some turbine blades, the viscous effects can
be neglected since there are no regions of flow separation [9].
� RANS with algebraic turbulence models

The adjoint solver is consistent with the flow solver, but a sim-
plistic turbulence model is used to expedite the development of
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the former solver. Often used when the viscous and turbulent
effects needs to be accounted for, but the development effort
is kept to a minimum [10].
� RANS with constant eddy viscosity (CEV) approximation

The flow solver uses proper two-equation turbulence models,
such as j–� or j–x, but the adjoint solver assumes frozen eddy
viscosity. In this case, the flow is properly solved but it is
assumed that the variation of eddy viscosity can be neglected
in the adjoint [11,12].
� RANS flow and adjoint solver

This corresponds to the exact derivation of the adjoint solver,
regardless of the complexity of the turbulence model used.
The dual (adjoint) solver is perfectly consistent with the primal
(flow) solver. This approach is made feasible if one uses the
hybrid ADjoint methodology to develop the adjoint solver [13].

These approaches are all used today by the adjoint-based design
community, but there is no clear evidence of what are the penalties
associated with approximation models compared to the exact ad-
joint solver, when using the adjoint solution to drive a realistic gra-
dient-based optimization problem. This paper intends to shed
some insight about the trade-off’s between the last two approaches
listed, that is to say, to evaluate the constant eddy viscosity
approximation model compared to the full RANS adjoint solver
when performing design optimization problems.

2. Background

The underlying theory of adjoint-based high-fidelity CFD design
optimization is presented next.

2.1. Generic design problem

A generic CFD design problem can be formally described as

Minimize Yða;qðaÞÞ;
w:r:t: a;

subject to Rða;qðaÞÞ ¼ 0;
Cða;qðaÞÞ ¼ 0;

ð1Þ

where Y is the cost function, a is the vector of design variables, q is
the flow solution, which is typically of function of the design vari-
ables, and C = 0 represents additional constraints that may or may
not involve the flow solution. The flow governing equations ex-
pressed in the form R = 0 also appear as a constraint, since the solu-
tion q must always obey the flow physics.

When using a gradient-based optimizer to solve the design
problem (1), the evaluation of the cost and constraint functions,
and their gradients with respect to the design variables are also re-
quired, that is, dY/da and dCi/da have to be estimated.

2.2. Flow governing equations

The governing equations used in the present work are the RANS
equations. In conservation form, the Navier–Stokes system of
equations may be written in index notation as

@q
@t
þ @

@xj
ðqujÞ ¼ 0; ð2aÞ

@

@t
ðquiÞ þ

@

@xj
ðquiuj þ pdij � sjiÞ ¼ 0; i ¼ 1;2;3; ð2bÞ
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@xj
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where q, ui and E are respectively the density, mean velocity and
total energy, sij is the viscous stress and qj is the heat flux.
A turbulence model needs to be used to model the Reynolds
stresses. In this paper, a two-equation turbulence model was used,
in particular the k–x model of Wilcox [14],
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where k is the turbulence kinetic energy and x is the specific
dissipation rate. The turbulent eddy viscosity is computed from
lT = qk/x and the constants are c = 5/9, bk = 9/100, bx = 3/40,
rk = 1/2 and rx = 1/2. The effective viscosity used in the Navier–
Stokes equations (2) is then computed as l = lm + lT, where lm is
the molecular (laminar) viscosity.

In semi-discrete form, the RANS governing equations (2, 3) can
be expressed as

dqijk

dt
þ RijkðqÞ ¼ 0; ð4Þ

where q = (q, qu, qE, qk, qx)T is the vector of conservative vari-
ables, R is the residual with all of its components (inviscid, viscous
and turbulent fluxes, boundary conditions and artificial dissipation),
and the triad ijk represents the three computational directions. The
unsteady term of (4) is dropped out since only the steady solution of
the equation is of interest in this work.

2.3. Adjoint equations

The derivation of the adjoint equations for systems of PDEs fol-
lows the work by Giles and Pierce [15]. The adjoint equations can
be expressed as

@R
@q

� �T

w ¼ @Y
@q

� �T

; ð5Þ

where w is the adjoint vector.
If geometric parameters not handled directly by the CFD solver

are chosen as design variables a, it is necessary to use the chain
rule of differentiation to express the gradient of the cost function
with respect to the design variables as

dY
da
¼ dY

dx
dx
da

; ð6Þ

being the total gradient of the cost function with respect to the
computational grid coordinates of each node x, based on the adjoint
solution w, given by

dY
dx
¼ @Y
@x
� wT @R

@x
: ð7Þ

The evaluation of the gradient of each cost or constraint func-
tion in the optimization problem (1) requires solving (5) with a
new right-hand side vector. On the other hand, the computational
cost of the total sensitivity (7) is almost independent of the num-
ber of grid coordinates x, which is the feature that makes the ad-
joint method so attractive for gradient-based optimization
involving a large number of variables and a few functions.
3. Implementation

The development of the flow and adjoint solvers and their inte-
gration into a design system are described next.



Fig. 1. Computational flow stencil: 25 nodes.
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3.1. Flow solver

The proprietary flow solver used in this work supports three-
dimensional, multi-block, structured grids, and it uses a finite-vol-
ume formulation of the non-linear and linear RANS equations. Sev-
eral turbulence models are available, such as k–x, k–� and SST,
having the option to use wall functions or wall integration for
boundary layer resolution. This solver is typically employed in
the solution of turbomachinery blade rows and it is capable of effi-
ciently performing three-dimensional analysis for aeromechanics,
aerodynamic design, parametric studies, and robust design
applications.

As typical for most iterative CFD flow solvers, the residual calcu-
lation is done in a subroutine that loops through the three-dimen-
sional domain and accumulates the several fluxes and boundary
conditions contributions in the residual R. However, the residual
at each computational cell only depends on the flow variables at
that cell and at the cells adjacent to it, which define the stencil
of dependence, as shown in Fig. 1.
3.2. Adjoint solver

The simple mathematical form of (5) can be very misleading
since, depending on the approach, their numerical implementation
can be quite complex, if derived by manual differentiation, or quite
costly, if derived using finite-differences.

A discrete adjoint approach formulation is chosen because it
can be applied to any set of governing equations and it can treat
arbitrary cost functions. As such, and in contrast to the continuous
approach, no simplifications have to be made during the deriva-
tion: the effects of viscosity and heat transfer and the turbulence
equations can be easily handled when deriving the discrete adjoint.

But the most interesting feature of the discrete approach is that
it allows the use of automatic differentiation (AD) tools [16] in its
derivation, expediting considerably the process of obtaining the
differentiated form of the discretized governing equations neces-
sary to assemble the adjoint system of equations.

As such, the approach used in this work is hybrid and it follows
the work of Marta et al. [13]. The discrete adjoint solver is derived
with the aid of an automatic differentiation tool that is selectively
applied to the CFD source code that handles the residual and func-
tion evaluations. This hybrid approach retains the accuracy of the
adjoint methods, while it adds the ease of implementation of the
automatic differentiation methods. If the AD tool was directly
applied to the original CFD solver, it would produce an inefficient
adjoint code that would require unaffordable memory resources
and computational time. Therefore, it is necessary to rewrite the
residual and function evaluation code, transforming the original
flux calculation loop over the computational control volume faces
to a complete single control volume evaluation, where all faces
including boundary condition treatment are handled. Given that
the adjoint solver is built over a legacy CFD solver, there is a signif-
icant development effort involved. Had a new CFD solver been
developed from scratch having the adjoint solver already in mind,
like by extensively making use of pointers or by using a different
code structure with segregated residual and function evaluation
kernels, much of this effort would have been considerably reduced
because the change from the face-based CFD approach to the cell-
based adjoint approach would have been achieved by a simple
change in the residual (or function) evaluation main routine.

The AD tool is then applied to the rewritten routines, producing
the code that evaluates the local partial derivative matrices @R/@q,
oY/@q, oY/@x and @R/@x that are necessary to compute gradients (7)
using the adjoint method (5). These local matrices (cell based) are
subsequently assembled in the global matrices according to the
connectivity given by the computational stencil and the cell global
numbering scheme. The AD tool chosen in this work is Tapenade
[17] because it supports Fortran 90, which is a requirement taking
into account the programming language used in the flow solver.

The sizes of the global matrices involved in this process are

@R
@q
ðNq � NqÞ;

@Y
@q
ðNY � NqÞ;

@R
@x
ðNq � NxÞ;

@Y
@x
ðNY � NxÞ;

ð8Þ

where NY is the number of cost functions, Nx the number of grid
coordinates and Nq the size of the state vector. The size of the vector
q depends on the number of governing equations, Ne, and the num-
ber of cells of the computational mesh, Nc, that discretizes the phys-
ical domain, according to the relation Nq = NeNc, which for the
solution of a large, three-dimensional problem involving a system
of conservation laws, can be very large. The size of the grid coordi-
nates vector x, is given by dimensionality of the problem times the
number of vertexes corresponding to the computational mesh used,
that is, Nx = 3Nv for three-dimensional problems. Although @R/@q
and @R/@x can easily be very large matrices, they are extremely
sparse, as a consequence of the stencil of dependence illustrated
in Fig. 1.

The adjoint linear system of Eq. (5) has to be solved NY times be-
cause w is valid for all grid coordinates x, but must be recomputed
for each function Y. To solve this large sparse discrete adjoint prob-
lem, the Portable, Extensible Toolkit for Scientific Computation
(PETSc) [18] is used. The adjoint system of equations is solved
using a PETSc built-in Krylov subspace method, more specifically,
the Generalized Minimum Residual (GMRES) method [19].
3.3. Constant eddy viscosity approximation

The full RANS adjoint solver described so far makes use of the
complete vector of conservative variables and handles the corre-
sponding seven governing equations (2, 3).

The CEV approximation still solves the full RANS flow equations
but it assumes that the variation of the turbulent eddy viscosity, lT,
can be neglected in the derivation of the adjoint equations. There-
fore, under the CEV assumption, only five equations (2) are used to
derive the adjoint, which significantly reduces the size of the dual
problem, as quantified in (8). The benefits being easier implemen-
tation, faster run time and reduced memory requirements. The
matrix @R/@q is reduced by a factor of 72/52 = 1.96, and the vector
oY/@q and matrix @R/@x are reduced by a factor of 7/5 = 1.4.



Fig. 2. Schematic of the adjoint-based optimization algorithm.

Fig. 3. 2-D vane grid.

Fig. 4. 2-D vane density distribution.
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In the present adjoint solver implementation, a single flag con-
trols whether CEV approximation is to be used. If so, the turbulent
equations are neglected in the adjoint and the turbulent eddy vis-
cosity is retrieved from the flow solution and added to the total ad-
joint viscosity.
3.4. Gradient-based optimization framework

From a design perspective, a turbomachine is geometrically rep-
resented by some high-level descriptors, such as stagger, camber
angle distribution and thickness distribution. Let a denote the
high-level geometric parameters that form the set of design vari-
ables. The grid generator receives these parameters as input and
it produces a computational mesh in terms of nodes coordinates x.

Given the mesh and the boundary conditions, the flow solver
computes the flow solutions q and, using some post-processing,
the cost function values Y can easily be computed. Using the flow
solution obtained from running the flow solver, the corresponding
cost function gradients with respect to the grid coordinates require
an additional solver – the adjoint solver. Once the adjoint solution,
w, is evaluated from (5), the gradients of the functions Y with
respect to the grid coordinates are computed by (7), which implies
a simple matrix–vector multiplication operation.

Then, it is still necessary to evaluate the gradient of the compu-
tational mesh with respect to those high-level geometric parame-
ters, dx/da, according to (6), but because the source code of every
tool involved in the grid generation process is not available, it is
necessary to use an approximation. In this work, a finite-difference
approximation is used to accomplish that, which implies
perturbing each design variable individually and re-generating
the computational mesh. A sensitivity study was conducted for
each high-level geometric parameter to properly select the pertur-
bation step size used in the finite-differences. Since these changes
are local to the solid walls, mesh morphing is used to reduce com-
putational cost. The caveat being that one has to guarantee that the
mesh topology is maintained during re-meshing. Mesh morphing
is also used to modify the grid after an update of the design
variables.

Even though this approach makes use of a fast fully automatic
grid generator, which is embedded in the optimization framework,
the mesh gradients can be computed in parallel in case the number
of design variables becomes very large. This is typically possible
since computational resources are available at this step: while
the flow and adjoint solvers require multi-processor clusters or
workstations, the grid generator is run in a single-processor.

The computed final sensitivity dY/da is then used by the gradi-
ent-based optimizer to find the search direction, along which a
step is taken in the design space. The optimizer then loops though
the described steps until the optimality criteria are satisfied.

The schematic of such adjoint-based optimization algorithm is
illustrated in Fig. 2.

In terms of computational cost, the flow and adjoint solvers are
the two main blocks of the process, being the cost of the solution of
the adjoint equations approximately the same as that of the solu-
tion of the flow governing equations, since both equations are of
similar size and complexity.
4. Results

This section includes two testcases, a two-dimensional turbine
vane blade and a three-dimensional transonic compressor rotor
blade. Each example is comprised of six parts: firstly, the problem
is described; secondly, the flow and both adjoint solutions (full



Fig. 5. 2-D vane adjoint solution of the continuity equation.

Fig. 6. 2-D vane gradient vector plot (dg/dx).
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RANS and CEV approximation) are evaluated; thirdly, the adjoint-
based gradients are computed; then, those gradients are verified
against FD derivative approximations; after those steps, an optimi-
zation problem is solved using both the full RANS adjoint solver
and the CEV approximation; and lastly, a comparison is made in
terms of optimal solution found, computational time and memory
usage.
4.1. 2-D turbine vane

4.1.1. Description of testcase
The first testcase consists of a two-dimensional turbine vane.

This was chosen to validate the discrete adjoint solver developed
using the hybrid approach and to perform a preliminary compara-
tive study between the full RANS adjoint and the CEV approxima-
tion adjoint solvers.

The geometry is shown in Fig. 3. The mesh has been refined
close to the wall to achieve an average unity Y+. The computational
domain includes 60 blocks and 25,000 cells and the simulations
were run on a workstation using 4 processors.

In this case, the loss coefficient is used as objective function
during the optimization,

g ¼
Parea

ta exit � Parea
ta inlet

� �
Parea

ta inlet � Parea
s inlet

� � ; ð9Þ

where P and T are the area averaged pressure and temperature, and
the subscripts ta and s refer to the total absolute and static
quantities.

4.1.2. Baseline flow and adjoint solutions
Fig. 4 shows the contours of nondimensional density of the

baseline vane blade geometry. The contour plots corresponding
to the nondimensional adjoint of the continuity equation are
shown in Fig. 5 for the loss coefficient (9), using both the full RANS
adjoint and the CEV model adjoint solvers.

As typical for the adjoint solution, both plots show an adjoint
flow reversed when compared to the real flow. However, the CEV



Fig. 7. Changes applied to the vane geometry.

Fig. 8. 2-D vane comparison of function gradients.

Fig. 9. 2-D vane minimization of loss coefficient.
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solution misses a great portion of the adjoint field structure,
namely at the vane leading edge, where the level of adjoint turbu-
lence is highest.

4.1.3. Adjoint-based gradient solutions
The adjoint-based gradient of loss coefficient with respect to the

grid coordinates is evaluated using (7). Using the components cor-
responding to each coordinate,

dg
dx
¼ dg

dx
ex þ

dg
dy

ey þ
dg
dz

ez; ð10Þ

it is possible to plot the gradient vector at the vane wall nodes as
shown in Fig. 6.

Each point indicates the direction of increased loss coefficient
and its magnitude is the improvement per unit change in the grid
node coordinate. Consequently, a designer can easily infer from
Fig. 6 how to tune the blade for deceased loss, since those vectors
tell him how the surface geometry should change to accomplish it.

As a result of the missing features in the CEV adjoint solution,
the adjoint-based gradients are also distinct between the two ad-
joint turbulence treatment models. Even though the vector gradi-
ents show a qualitative match, the gradients computed using the



Fig. 10. 2-D vane shape (black: optimized, grey: baseline). Fig. 12. 3-D rotor multi-block computational mesh.
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CEV adjoint are somewhat amplified when compared to the full ad-
joint gradient values.

4.1.4. Verification of gradients
The engineering design variables used in this testcase are the

stagger angle and the overturning angle, as illustrated in Fig. 7.
The adjoint-based gradients are verified against 2nd-order cen-
tral-difference derivative approximations.

The comparison between the adjoint-based gradients and the
full FD derivative approximation is summarized in Fig. 8 for the
different design variables. The errors are computed using the full
RANS adjoint-based gradients as reference. There is an excellent
agreement between the full RANS adjoint-based gradient and the
FD derivative approximation, for both design variables used. As ex-
Fig. 11. 3-D roto
pected, following the results shown in Fig. 6, the gradients ob-
tained using the CEV model adjoint solution do not match
perfectly. Nevertheless, the mismatch is of the order of only 2%
compared to the full RANS adjoint-based gradients.
4.1.5. Adjoint-based gradient optimization
At this point, the adjoint solver implementation is considered

successful and ready to be integrated in a gradient-based optimiza-
tion framework as depicted in Fig. 2.

A sample optimization application, a unconstrained minimiza-
tion optimization problem using the loss coefficient as the cost
function, is performed. Two design variables are used, as described
in Section 4.1.4. Separate runs using the full RANS adjoint solver
and the CEV approximation adjoint solver are made.
r geometry.



Fig. 13. 3-D blade density distribution.
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The relative evolution of the cost function using a gradient-
based optimizer, based on the steepest descent method for sim-
plicity, is illustrated in Fig. 9, where the initial loss coefficient value
is used as reference. As it can be seen, even though the baseline
vane blade corresponded to a tuned geometry, the optimizer is able
to improve its performance by 4 points using the full adjoint and 3
points using the CEV adjoint, after three iterations.

More interesting is the fact that, despite the slightly off gradi-
ents produced by the CEV adjoint, the optimizer still marches in
Fig. 14. 3-D blade adjoint solutio
the right direction, though at a slower convergence rate compared
to the full RANS adjoint.

4.1.6. Comparison between full RANS and CEV approximation
There are no significant differences between the optimal shape

solutions found by using the full adjoint solver or the CEV adjoint
solver. The final vane geometry resulting from the optimization
run using the CEV model is shown in Fig. 10.

Given that this was a rather small problem, neither the compu-
tational time nor the memory usage are significant for a compari-
son to be made between the two adjoint turbulence treatment
models.

4.2. 3-D compressor rotor blade

4.2.1. Description of testcase
To demonstrate the full capabilities of the adjoint solver devel-

oped and to perform the realistic comparative study between the
full RANS adjoint and the CEV approximation adjoint solvers, a
transonic blade passage of a high-pressure compressor stage is
used. The three-dimensional geometry is shown in Fig. 11, where
the casing wall has been removed, and the passage passage has
been duplicated for visual clarity.

The mesh generated has a OH-grid topology around the blade,
reverting to H-grid topology further away from the blade, and a
wall refinement leading to an average Y+ of 25. A total of 60 blocks
are created, as shown in Fig. 12, totaling 1.2 million cells, and the
simulations are run on a cluster using 32 processors.

The inlet boundary conditions are absolute tangential velocity
fixed and pressure extrapolated from the interior. The exit static
pressure is held fixed. All solid walls are considered impermeable
with no-slip condition. The remaining faces are either block-to-
block interfaces or periodic.

In this case, the isentropic efficiency is used as cost function,

g ¼
Penth

ta exit=Penth
ta inlet

� 	ðc�1Þ=c
� 1

Tmass
ta exit=Tmass

ta inlet

� �
� 1

; ð11Þ
n of the continuity equation.



Fig. 15. 3-D blade gradient of efficiency w.r.t. node coordinates.
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where the superscripts enth, mass and area indicate an enthalpy,
mass and area averaged quantities at the inlet or exit sections.

4.2.2. Baseline flow and adjoint solutions
The contours of nondimensional density on the hub and blade

surface planes corresponding to the baseline blade geometry are
shown in Fig. 13. The corresponding adjoint solution of the conti-
nuity equation for isentropic efficiency is shown in Fig. 14.

Similarly to Section 4.1.2, the plot shows an adjoint flow some
how reverse of the real flow. But in this testcase, the difference
of the adjoint solutions obtained using the two adjoint turbulence
treatments is not significant. A very slight decrease of the adjoint
wake extension towards the leading edge occurs when switching
to the CEV approximation model.

4.2.3. Adjoint-based gradient solutions
The contour of the gradient of efficiency with respect to the grid

coordinate components evaluated using (7) is illustrated in Fig. 15
for the blade surface nodes.

The large values at the blade leading edge reveal how sensitive
the machine performance is relative to this region. In contrast to
the two-dimensional testcase in Section 4.1.3, the comparison



Fig. 16. 3-D blade: Hicks–Henne bumps applied to the blade camber line angle.

Fig. 17. Comparison of function gradients.
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between the full adjoint and the CEV approximation reveals little
difference between them. This is in line with the negligible differ-
ence in the adjoint solutions seen in Fig. 14.

4.2.4. Verification of gradients
Similarly to the two-dimensional testcase in Section 4.1.4, the

adjoint-based gradients are verified against FD derivative approxi-
mations. However, to minimize the necessary number of evalua-
tions of the flow solver, the 1st-order forward-difference formula
for the first derivative is used.

Hicks–Henne bump functions [20] are used to test the integra-
tion with the grid generation module and compute higher-level
gradients of the form dY/da. Fig. 16 shows the individual perturba-
tion produced by applying nine bumps on the blade camber line



Fig. 18. 3-D blade maximization of efficiency.

Table 1
3-D blade comparison of optima design variables.

Bump # Full adjoint CEV adjoint

1 2.3700 2.3167
2 0.4506 0.4521
3 0.5683 0.5666
4 1.0734 1.0753
5 1.2685 1.2522
6 1.4305 1.4301
7 0.7134 0.6860
8 0.7064 0.6963
9 0.7512 0.7343

Table 2
3-D blade comparison of runtime and memory use.

Flow solver
(reference)

Full
adjoint

CEV
adjoint

CEV-full difference
(%)

Runtime 1.00 1.66 1.04 �37.7
Memory 1.00 22.83 14.38 �37.0
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angle, evenly distributed along the blade chord (30%, 50%, 70%) and
span (30%, 50%, 70%).

The gradient of isentropic efficiency, g, with respect to the
bump amplitude, a, are computed using the adjoint solver.
Fig. 17 summarizes these results, together with the comparison
using full FD derivative approximation. There is an excellent agree-
ment between the full RANS adjoint-based gradient and the FD
derivative approximation, for the different bump locations. On
the other hand, adjoint-based gradients using the CEV model dif-
fers from the full RANS adjoint-based gradients by as much as 3%.

4.2.5. Adjoint-based gradient optimization
An unconstrained maximization optimization problem is run,

using isentropic efficiency as the cost function, and the previously
described nine Hicks–Henne bumps on the camberline angle used
as design variables, as shown in Fig. 16.

Fig. 18 shows the optimization history using the same optimizer
as in Section 4.1.5, having set the initial efficiency value as refer-
ence. Again, it was possible to improve the blade performance,
even though it corresponded to a highly hand-tuned geometry,
with a net gain of about 0.16 pts after two iterations.
In contrast to the 2-D vane testcase in Section 4.1.5, the final
maximum blade efficiency obtained by the gradient-based opti-
mizer, using either the full adjoint solver or the CEV adjoint solver,
is virtually the same.

4.2.6. Comparison between full RANS and CEV approximation
Comparing the final design variable values at the optimal solu-

tion, condensed in Table 1 in nondimensional form, it can be seen
that the optimum blade shape is nearly identical whether using the
full RANS adjoint or the CEV adjoint solvers. A value greater than
one means an increase of the camber line angle, whereas a smaller
than one means a reduction. It should be noted that the design
variables are not bounded, that is to say, there are no geometric
constraints set in the optimization problem.

In terms of computational time and memory usage, the CEV ad-
joint solver proves to be both faster and less memory intensive
compared to the full adjoint solver. For this particular problem set-
up, the CEV adjoint solver is nearly 38% faster than its full RANS ad-
joint counterpart, while requiring less than 37% memory, as
summarized in Table 2.

It should be noted that the full adjoint matrix @R/@q is stored
during the GMRES solve, thus the significantly higher memory
needs of the adjoint solver when compared to the flow solver.
Had the adjoint linear system been solved using a matrix-free
method, the adjoint memory required would have been compara-
ble to the flow solver, at a penalty of higher runtime.
5. Conclusions

The two most relevant approaches for the development of ad-
joint solvers for the RANS equations were analyzed. As a direct
consequence of the assumption of frozen turbulence in the adjoint,
it was shown that some features in the adjoint solution were lost
when using the CEV model. Therefore, the CEV model leads to an
error in the adjoint-based gradients of the order of a few percent
(typically 2–3% for the testcases shown), when compared to the ex-
act full RANS adjoint-based gradients. Despite the slightly off gra-
dients produced by the CEV adjoint, the optimizer still marches in
the right direction, though at a slower convergence rate compared
to the full RANS adjoint. As such, the impact on the optimal solu-
tion found by an optimization design framework is almost negligi-
ble. Moreover, the CEV adjoint solver proved to be up to 38% faster
and require less 37% memory compared to the full RANS adjoint
solver, for the testcases presented.

The CEV approximation in RANS adjoint solvers seems to be a
valid approach to be used in optimization engineering problems
using high-fidelity CFD models. This is extremely relevant since
industry has the need to handle larger and more complex design
problems, where the use of RANS equations to model the flow
physics are absolutely necessary. This way, the code developers
can significantly reduce the implementation effort and the design-
ers can effectively reduce the hardware needs.
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