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Although the mathematical derivation of the adjoint equations and their numerical implementation is well
established, there is scant discussion on the understanding of the adjoint solution by itself. As this is a field solution of
similar resolution of the flowfield, there is a wealth of data that can be used for design guidance. The aim is to tie the
adjoint solution to the flowfield, which has physical properties. The adjoint solution of four representative cases taken
from turbomachinery aerodynamic problems are used to identify the physical insight it provides. The focus is on
changes related to geometry, but the changes can also be realized using other inputs to the flow solver (e.g., boundary
conditions). It is shown how the adjoint counterpart of the density and velocity field can be used to provide insights
into the nature of changes the designer can induce to cause improvement in the performance metric of interest.
Discussion on how to use adjoint solutions for problems with constraints to further refine the changes is also included.
Finally, a turbine strut problem is discussed where it is not immediately apparent what geometry changes need to be
used for further evaluation with optimization algorithms. The adjoint and flow solutions are used to determine the
kind of end-wall treatments that reduce the loss. These changes are then implemented to show that the loss is actually
reduced. The results in this paper show there is a twofold use of the adjoint method: one for guiding the automatic
optimization as such and the second for guiding the designer in the choice of the design space.
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a = independent design variable
p = density

Tj; = stress tensor

174 = adjoint field

[0} = specific dissipation rate

1. Introduction

HE continuous growth of computational power has made

external and internal flow simulations to be routinely performed
using high-fidelity computational fluid dynamic (CFD) models. The
emerging trend is to use optimization techniques as part of the design
tools, with numerical design optimization becoming common prac-
tice not only in academia but also in industry.

Among the several optimization methods developed by the
operations research field [1], and considering that CFD flow simu-
lations can take hours, if not days, to perform, the most efficient
methods are gradient-based, which require a minimal number of
cost-function evaluations. However, these methods require an
estimate of the cost-function derivatives. To address this, the designer
faces the problem of evaluating the derivatives [2]. Finite-difference
approximations have always been popular due to their simplicity, but
they rapidly become computationally prohibitive when the number
of variables greatly exceeds the number of functions. Although the
cost of finite differences is proportional to the number of design
variables, the cost of the adjoint method is proportional to the number
of objective functions. Thus, in case the number of design variables
greatly exceeds the number of objective functions, the adjoint method
is the best-suited approach to efficiently estimate function gradients
because the cost involved in calculating sensitivities using the adjoint
method is practically independent of the number of design variables.

The application of adjoint methods to CFD was pioneered by
Pironneau [3], and it was later revisited and extended by Jameson [4]
and Jameson et al. [5] to perform airfoil and wing design, respec-
tively. More recent successful applications include multipoint
aerodynamic shape optimization problems [6], aerostructural design
optimization [7], and even magnetohydrodynamics flow control [8].
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There are roughly two approaches to developing adjoints: a con-
tinuous one and a discrete approach. The reader is referred to [9,10]
for an introduction to adjoints and detailed discussions of the two
approaches and their benefits and drawbacks.

It should be noted, though, that gradient-based methods can
be of limited use because of their local nature, being just one of the
options, with global optimization being often the preferred choice.
However, the adjoint-based sensitivities can be used either directly
in gradient-based optimization that leads to local optimum or in
conjunction with surrogate models like kriging to obtain global
optima. Recent studies have successfully used the adjoint method
in conjunction with surrogate models for global optimization tech-
niques [11-13].

The major drawback of using adjoint-based gradients has
always been the necessity of implementing an additional solver:
the adjoint system of equations solver, which is generally of the
same complexity as the flow solver. Thus, in the presence of flows
modeled by the Reynolds-averaged Navier—Stokes (RANS) equa-
tions, the corresponding adjoint system might become far too
complex to be fully derived. This has led to the use of many approxi-
mations and simplifications in the implementation of such adjoint
solvers. Among the different approaches found in the literature, the
major ones are:

Euler equations: Both the flow and adjoint solvers only account for
the inviscid flow effects. The argument is that, in some external flows,
such as in clean aircraft configurations, and in some internal flows,
such as in some turbine blades, the viscous effects can be neglected
because there are no regions of flow separation [14].

RANS with algebraic turbulence models: The adjoint solver is
consistent with the flow solver, but a simplistic turbulence model is
used to expedite the development of the former solver. Often used
when the viscous and turbulent effects needs to be accounted for, but
the development effort is kept to a minimum [15].

RANS with constant-eddy viscosity (CEV) approximation: The
flow solver uses proper two-equation turbulence models, such as k-¢
or k-, but the adjoint solver assumes frozen eddy viscosity. In this
case, the flow is properly solved, and it is assumed that the variation of
viscosity can be neglected in the adjoint [16,17].

RANS flow and adjoint solver: This corresponds to the exact
derivation of the adjoint solver, regardless of the complexity of
the turbulence model used. The dual (adjoint) solver is perfectly
consistent with the primal (flow) solver. This approach is made
feasible if one uses the hybrid ADjoint methodology to develop the
adjoint solver [18,19], where automatic differentiation (AD) is used
to assist its implementation.

These approaches are all used today by the adjoint-based design
community, but there is no clear evidence of what are the penalties
associated with approximation models compared to the exact adjoint
solver, when using the adjoint solution to drive a realistic gradient-
based optimization problem.

Traditionally the process of selecting design variations has
been carried out by trial and error, relying on the intuition and
experience of the designer. It is not at all likely that repeated
trials using an interactive design and analysis procedure can lead to
a truly optimum design. Even more systematic approaches such as
design of experiments (DOE) lose to adjoint methods because the
cost of the former scale with the number of variables. To take full
advantage of the possibility of examining a large design space, the
numerical simulations need to be combined with automatic search
and optimization procedures. However, the realizable improvements
are limited by the capability of the CFD model to capture the flow
physics.

II. Background

The underlying theory of adjoint-based high-fidelity CFD design
optimization is presented next. Typical use of the adjoint in a design
environment involves the following steps: 1) obtain a steady flow-
field, and 2) obtain a adjoint field.

A. Generic Design Problem
A generic CFD design problem can be formally described as

Minimize F(w, S(a))

w.r.t. a
subject to R(w, S(a)) =0
C(w, S(a)) =0 €]

where F is the cost-function vector, S and « are the dependent and
independent (respectively) set of design variables, w is the flow
solution (which is typically of function of the design variables), and
C = 0 represents additional constraints that may or may not involve
the flow solution. The distinction is made between S and « to reflect
the geometry kernels of common design environments, where quan-
tities that the designer alters are engineering parameters, like stagger or
thickness, are lumped in a, while S represents the CFD mesh points.

The flow-governing equations expressed in the form R = 0 also
appear as a constraint because the solution w must always obey the
flow physics.

When using a gradient-based optimizer to solve the design
problem [Eq. (1)], the evaluation of the cost and constraint functions
as well as their gradients with respect to the design variables are

required, that i 1s and dc’ have to be estimated.

B. Flow-Governing Equations

The governing equations used in the present work are the RANS
equations. In conservation form, the Navier—Stokes system of
equations may be written in index notation as

[7)
a/t)-l-—(pu,) =0 (2a)
0 0 .
E(pui) + g(puiuj + pd;—1;) =0, i=1,2,3 (2b)
J
7] 4]
E(PE)‘FE(/’EW‘FPMJ‘—MI‘T”‘F%) =0 (20)
J

where p, u;, and E are the density, mean velocity, and total energy,
respectively; p is the pressure; 7;; is the viscous stress; and g; is the
heat flux.

A turbulence model needs to be used to model the Reynolds
stresses. In this paper, a two-equation turbulence model was used, in
particular the k- model of [20]:
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where k is the turbulence kinetic energy, and w is the specific
dissipation rate. The turbulent eddy viscosity is computed from
ur = pk/w, and the constants are y =5/9, g, =9/100, g, =
3/40, o, = 1/2, and 6, = 1/2. The effective viscosity used in the
Navier—Stokes equation [Eq. (2)] is then computed as y = p,,, + pr,
where u,, is the molecular (laminar) viscosity.

In semidiscrete form, the RANS governing equations [Eqs. (2) and
(3)] can be expressed as
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dwijk
dr

+ R,»jk(w) =0 (4)

where w = (p, pu, pE, pk, pw)T is the vector of conservative
variables, R is the residual with all of its components (inviscid,
viscous, and turbulent fluxes, boundary conditions, and artificial
dissipation), and the triad ijk represents the three computational
directions. The unsteady term of Eq. (4) is dropped out because only
the steady solution of the equation is of interest in this work.

C. Adjoint Equations

The adjoint equations can be derived using the approach in [10] or
[9]. A brief overview of the adjoint process for deterministic systems
is first provided and then described in the context of Euler (or Navier—
Stokes) equations that govern the evolution of fluid flow. The cost-
function vector is a function of the state variables w and the control
variables S, which may be represented by the function F. Then,

F =Fw,S(a)) ®)
and a change in S results in a change

oF oF

in the cost function. Using control theory, the governing equations for
the state variables are introduced as a constraint in such a way that the
final expression for the gradient does not require re-evaluation of the
state. To achieve this, w must be eliminated from Eq. (6). Suppose
that the governing equation R, which expresses the dependence of w
and S within the domain D, can be written as

R(w,S) =0 @
Then, dw is determined from the equation

oR [0R]

Next, introducing a Lagrange multiplier y yields

OF . oOF +(ToR] oR
OF == —6w+ =65~y (_ﬂ_ w + [ﬁ](ss)

_(9F _ 1[9R oF _ r[IR
= (aw v [aw])6w+ (as v [aSDéS ©)

To eliminate Sw implies

T
Ee-s
ow ow

resulting in
6F = G&S (11
where
_OF | IR
G=25V [as] (12)

This process allows for elimination of the terms that depend on the
flow solution with the result that the gradient with respect to an
arbitrary number of design variables can be determined without the
need for additional evaluations of the state. Now, the adjoint
equations can be written as

IR 1T oF
[%] v= [@] )

where y is the adjoint vector.

Because the CFD solver does not handle the geometric parameters
adirectly, but rather a computational mesh defined by the coordinates
of each node S, the chain rule of differentiation is used to express the
gradient of the cost function with respect to the design variables as

dF dFdS
— = 14
da dS da 14
being the total gradient of the cost function with respect to the grid
coordinates, based on the adjoint solution y, given by

dF oF ,0R
ds ~as 7 as (1>
The evaluation of the gradient of each cost or constraint function in
the optimization problem Eq. (1) requires solving Eq. (13) with a
new right-hand-side vector. If the optimization problem has con-
straints C, then an additional adjoint equation is solved for each C
(instead of F) and the gradient of the objective F and C used in the
optimizer. The optimizer enforces the constraint using the value C
and its constraints. On the other hand, the computational cost of the
total sensitivity Eq. (15) is almost independent of the number of grid
coordinates, which is the feature that makes the adjoint method so
attractive for gradient-based optimization involving a large number
of design variables and a few functions.

D. Interpreting the Adjoint Solutions

The key to reading the adjoint solution is the observation that the
product of the adjoint vector, y, and the variation in the constraint,
OR, determines the change to the objective function. This is just a
rewording of the statement that the adjoint vector is the Lagrange
multiplier. However, on closer inspection, this statement can be
strengthened in the context of the constraint equations being the
Navier—Stokes equations. A brief highlight is given in this paragraph,
and the subsequent material in this subsection derives the equations
that back the assertions. In this case, the adjoint solution at each grid
point, which is a vector counterpart to the flow solution at that grid
point, has a one-to-one correspondence to the flow solution. For
example, the adjoint counterpart for density can be interpreted as the
change required to be induced to the mass flux to cause an increase in
the objective function of interest. Similarly, the adjoint counterpart
for the turbulence quantities signifies the change required in the
turbulent flux to increase the objective function. It is common for many
problems to observe that the adjoint solution has positive or negative
signs at different points in the computational domain. In such cases, the
interpretation can be made stronger. Here, the design guidance that the
adjoint solution provides is to require that the designer induce changes
that increase density flux where the adjoint solution is positive and
decrease density flux where the adjoint solution is negative.

The reader is referred to the Appendix for a discussion on the
one-dimensional time-dependent linear equation, but the focus is
now on the flow equations represented by Euler and Navier—Stokes
equations. These equations being nonlinear and in coupled form
make it trickier to analyze. To ground the discussion, a turbine vane is
taken as example. Figure 1 shows the contours of the adjoint variable
corresponding to density for a turbine vane (the flow is from the
bottom of the page to the top) and the gradient vector plot on
the surface of the airfoil for the loss coefficient. The vector points in
the direction of surface movement that leads to increase in loss. The
range of the adjoint solution spans the positive and negative real axis,
suggesting that improvements in the metric (in this case, loss, which
ought to be reduced) can be obtained by decreasing the density over
the suction side of the airfoil while mostly increasing it over the fore
portion of the pressure side. In relative magnitude, the suggested
reduction in density near the tailing edge of the suction side is more
than over the same region on the pressure side.

The loss metric is defined as the drop in total pressure across the
domain, appropriately normalized. The boundary condition applied
at the inlet holds the total pressure to the prescribed value and
under the assumption that the static pressure variations at the inlet are
small (weak upstream traveling waves), the major contribution to the
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Fig.1 Two-dimensional vane adjoint and gradients (d7n/dx).

change in loss is the change to the exit total pressure. Any increase in
the exit total pressure leads to a reduction in the loss metric.

If geometry changes that alter the density flux are made as
suggested by the adjoint solution, the fore portion of the suction side
will decelerate the flow by reducing the curvature and the mid-to-aft
portion will accelerate the flow by changing the turning angle of the
metal. The former will increase the density, and the latter will
decrease the density. On the pressure side, the suggested geometry
changes push the axial location of the maximum pressure aft, while
simultaneously providing a steeper pressure gradient in the aft
portion. From a loss budget perspective, the suggested changes
increase the diffusion factor (ratio of peak Mach number to trailing
edge Mach number), and hence the reduction in loss has to be due to
the possible decrease in viscous profile losses.

Before a mathematical foundation is provided to interpret the
adjoint solution, a sketch of the thought process is presented using
the one-dimensional Euler equations. The sensitivity of the cost

functional with respect to changes in the geometry can be written
following Eq. (15) as

hadl Y 16
wx Vioa) Y (16)

ox

dF (0}" r d’R) r IR
dx

where R is the nominal residual, and R is the contribution to the
residual due to reduction in density flux. Typically, one computes
R =R, — D;, where the first term in the inviscid contribution, and
the second is the dissipation contribution.

One can write the discrete form of the numerical scheme and try
to perform the analysis. However, following this path of analysis
necessitates the need to consider changes to residual of the neigh-
boring cells requiring more assumptions to justify the premise of this
section. Instead, if one considers the possibility of adding a mass-flux
source (or equivalently a body force) term to increase the residual,
then one can proceed on a cell-by-cell basis. Consider the following
possibility: if one manages to introduce a mass-flux source (or body
force) term in a cell where the adjoint is positive, then the residual
in that cell will now increase. Because this is done for each cell, it
does not involve interactions from other neighboring cells in the
discretization stencil. Thus, in essence, when the adjoint is positive in
a cell, if one can induce a geometry change that increases the mass
flux in that cell (through a body force for mass), then the residual
increases and hence one can cause an overall increase in the variation
of F. After this brief overview, a stronger theoretical basis is now
provided.

The relationship between the body force (source terms) and the
geometric change is through the residual R. Let R(w, x) = 0 be the
operator form of the governing equations. When the geometry
changes by dx, then the residual R(w,x + dx) = %dx. Denote
this as resid. If the governing equations are solved on a perturbed
mesh, the change in flow, Sw, must satisfy R(w + dw,x + dx) =
R(w,x) + %dx + %dw =0 or %dw = —resid. This is special
because it will be seen that resid will be the appropriate body force
to use.

Suppose a “forced” governing equation is solved, on the un-
perturbed mesh, driven by —resid, for w! such that R(w',x) =
—resid. Then w' = w + dw. This means that the following two
equations have the same solution w':

R(w + dw, x) = —resid a7

R(w + dw,x +dx) =0 (18)

In other words, one can “simulate” the flow-field with the perturbed
geometry by using the original geometry but adding a forcing term
equal to —resid. Therefore, to calculate the “equivalent” forcing term
that can simulate a perturbed geometry, one needs to calculate the
residual of the original flowfield on the perturbed geometry.

To make the connection to our primary premise that the adjoint
field can provide information on how to change the geometry,
consider writing the governing equations in the following form with a
body force:

R(w,x) + B(x) =0 (19)

Assume that, for the unperturbed geometry, B(x) = 0. As B depends
on the geometry, after solving for the adjoint field, the gradient
expression can be written as

dF oF  ,0R 7 OB

—=|—-y'— ) -y = 20

dx (ax v ax) ox @0
Now, when the adjoint solution is positive, say, if a geometry change
is introduced such that B for the cell is increased then it will decrease
the cost function. Thus, if one introduces a body force in the domain
of the same sign as the adjoint, one can increase the cost function.
Please note that, as one is making changes to x to induce a particular
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change to R, one is in effect directly altering %. Similar arguments
can also be made with the adjoint field for the momentum, energy, and
turbulence quantities. For example, for the momentum equations, a
change in geometry that induces a body-force-like term for that cell
results in an increase (or decrease) in residual for that cell.

This approach of interpreting the adjoint solutions is particularly
useful when it is known a priori what geometry changes will help to
improve the overall metric. Although a similar conclusion can be
drawn from investigating the gradient vector plot, interpreting the
adjoint solution provides the designer a mechanism to relate the
geometry changes to changes in the flowfield. Hence, it provides a
form of design guidance for the designer while also allowing the
designer to be cognizant of changes to other metrics that are either
posed as constraints to the optimization problem or not posed at all.

III. Implementation

The development of the flow and adjoint solvers and the adjoint
treatment of the turbulence equations are described next.

A. Flow Solver

The flow solver for a steady-state solution is an explicit solver with
four- or five-stage Runga—Kutta scheme, using multigrid and residual
averaging for convergence acceleration. The spatial discretization is
second-order with a Jameson-Schmidt-Turkel (JST) scheme [21] for
artificial dissipation. The flow solver used in this work supports
three-dimensional, multi-block, structured grids, and it uses a finite-
volume formulation of the nonlinear and linear RANS equations.
Several turbulence models are available, such as k- [20,22], k-€
[23], and SST [24], having the option to use wall functions or wall
integration for boundary-layer resolution. This solver is typically
employed in the solution of turbomachinery blade rows, and it
is capable of efficiently performing three-dimensional analysis for
aeromechanics, aerodynamic design, parametric studies, and robust
design applications.

B. Adjoint Solver

The simple mathematical form of Eq. (13) can be very misleading
because, depending on the approach, its numerical implementa-
tion can be quite complex, if derived by manual differentiation, or
relatively costly, if derived using finite-differences. The latter also
brings issues in the accuracy of the derivatives and the choice of
step sizes.

When it comes to implementation, there are two main ways of
obtaining the adjoint equations Eq. (13) for a given system of PDEs.
These two adjoint formulations can be classified into continuous or
discrete. The continuous adjoint approach forms a continuous adjoint
problem from the governing PDEs and then discretizes this problem
to solve it numerically. The discrete adjoint approach first discretizes
the governing PDE and then derives an adjoint system for these
discrete equations. As such, there is freedom as how to discretize the
adjoint PDE using the continuous approach, whereas the adjoint
implementation in the discrete approach is fixed by the primal
discretization.

A discrete adjoint approach formulation is chosen because it can be
applied to any set of governing equations, and it can treat arbitrary
cost functions. As such, and in contrast to the continuous approach,
no simplifications have to be made during the derivation; the effects
of viscosity and heat transfer and the turbulence equations can be
easily handled when deriving the discrete adjoint.

But the most interesting feature of the discrete approach is that it
allows the use of AD tools [25] in its derivation, expediting con-
siderably the process of obtaining the differentiated form of the
discretized governing equations necessary to assemble the adjoint
system of equations.

As such, the approach used in this work is hybrid, and it follows the
work of [18,19]. The discrete adjoint solver is derived with the aid of
an automatic differentiation tool that is selectively applied to the CFD
source code that handles the residual and function evaluations. This
tool produces the routines that evaluate the partial derivative matrices

OR /ow, 0F [ow, 0F /ox, and 0R /ox that are necessary to compute
gradients [Eq. (15)] using the adjoint method [Eq. (13)]. This hybrid
approach retains the accuracy of the adjoint methods, while it adds
the ease of implementation of the automatic differentiation methods.
The AD tool chosen in this work is Tapenade [26] because it supports
Fortran 90, which is a requirement taking into account the pro-
gramming language used in the flow solver.
The sizes of the matrices involved in this process are

R oF
— (N, XN,), — Nz XN,),
aw( w X w) aw( F X )
oR o0F
E(NU)XNX)* E(N}'XNX) 21

where N £ is the number of cost functions, N, is the number of grid
coordinates and N,, is the size of the state vector. The size of the
vector w depends on the number of governing equations, N,, and
the number of cells of the computational mesh, N, that discretize
the physical domain, according to the relation N, = N, X N, which
for the solution of a large, three-dimensional problem involving a
system of conservation laws, can be very large. The size of the grid
coordinates vector x is given by dimensionality of the problem times
the number of vertices corresponding to the computational mesh
used, thatis N, = 3 X N,, for three-dimensional problems.

Because a discrete approach is used, the boundary conditions for
the adjoint equations are not explicitly enforced. However, the
current implementation corresponds to the imposition of the adjoint
counterpart of pressure for the one upstream boundary, and the other
four downstream conditions correspond to the conservative variables
P, pu, pv, and pw.

The adjoint linear system [Eq. (13)] has to be solved Nz times
because y is valid for all grid coordinates x but must be recomputed
for each function F. To solve this large sparse discrete adjoint
problem, the Portable, Extensible Toolkit for Scientific Computation
(PETSc) [27] is used. The adjoint system of equations is solved using
a PETSc built-in Krylov subspace method, more specifically, the
generalized minimum residual method [28] with the incomplete fac-
torization preconditioner with one level fill, ILU(1) preconditioner.

Once the adjoint solution y is found, the gradient of the cost func-
tion with respect to the grid coordinates is obtained from Eq. (15),
which implies a simple matrix-vector multiplication operation.

C. Constant-Eddy Viscosity Approximation

The full RANS adjoint solver described so far makes use of the
complete vector of conservative variables and handles the corre-
sponding seven governing equations [Eqgs. (2) and (3)].

The CEV approximation still solves the full RANS flow equations,
but it assumes that the variation of the turbulent eddy viscosity pr
can be neglected in the derivation of the adjoint equations. There-
fore, under the CEV assumption, only five equations [Eq. (2)] are
used to derive the adjoint, which significantly reduces the size of the
dual problem, as quantified in Eq. (21). The benefits are an easier
implementation, faster run time, and reduced memory requirements.
The authors’ primary interest in using this approximation is to reduce
the computational cost of the adjoint analysis, an important criterion
due to the memory requirements of the matrix solver. However, it has
also been noticed that, for problems where the steady flow solver fails
to converge to within numerical round-off, the convergence of the
adjoint can be improved using the constant eddy viscosity approach.
The reader is referred to [29,30] for a detailed description of the use of
constant eddy viscosity approaches for adjoint equations.

The matrix 0R/ow is reduced by a factor of 72/5? = 1.96, and
the vector dF /ow and matrix dR/ox are reduced by a factor of
7/5 =14.

In the present adjoint solver implementation, a single flag controls
whether CEV approximation is to be used. If so, the adjoint system
does not include the counterpart to the flow turbulent equations, and
the turbulent eddy viscosity is retrieved from the flow solution and
used in the adjoint system.
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Fig.2 Contours of adjoint field for density for efficiency. Nonlinear flow
is from bottom to top.

IV. Results

This section includes four examples, a commercial engine fan, a
compressor rotor, a compressor stator, and a low-pressure turbine
cascade. In each of these examples, the different uses of the adjoint
solution are highlighted.

Finally, the validity of the “physical insights” into the adjoint
solution are established, by using it on a turbine strut. In this case,
the goal is to induce end-wall treatments that result in improved
performance.

A. Commercial Fan

The first example is a commercial fan operating at design
conditions. The interest is in the adjoint solutions for the efficiency
and the mass flow. The former is a performance measure F that one
hopes to improve, and the latter is a constraint C that one wishes to
respect during the design optimization. The steady state of the flow
was computed using a two-equation model (k-w), and the adjoint
solution was computed using the constant-eddy viscosity approach.

Contours of the density field of the adjoint solution for efficiency
and mass flow are shown in Figs. 2 and 3. These contours are roughly
at midspan. The adjoint field for efficiency suggests the geometry
changes that induce larger reduction in density over the entire
pressure surface. This can be achieved through a reduction in camber.
On the suction surface, near the front portion of the airfoil, the
necessary reduction in density is smaller (than on the pressure
surface). Reducing camber to accommodate the design guidance for
the pressure surface will only lead to an increase in density over the
suction surface (assuming no flow separation due to off-incidence
conditions). Hence, to achieve the necessary reduction in density for
the leading edge portion of the suction surface, the camber changes
have to be offset by thickness increases. Toward the trailing edge, the
suction and pressure surface show a desire to reduce the density by
equal amounts. These overall changes can be induced by reducing
camber for the front portion of the airfoil along with half-thickness
increases to provide more curvature to the suction surface, while the
portion near the trailing edge requires a combination of camber
reduction and reduction in thickness.

The adjoint field for mass flow (drawn with same range as the
efficiency plots for clarity) shows a trend similar to the efficiency
plot. Hence, if one tries to achieve higher efficiency by lowering the
density for the suction surface and the pressure surface, then the mass
flow will also increase. If mass flow is a constraint (as is typically the
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Fig.3 Contours of adjoint field for density for mass flow. Nonlinear flow
is from bottom to top.

case to ensure fair comparison of the efficiency), then these plots
suggest that room for improvement in efficiency for this section of the
fan blade may be small.

To evaluate these insights, some design variables are used in an
optimization routine. Four design variables are chosen: 1) one that
alters the camber distribution in a linear fashion along the leading
edge from hub to midspan (X1), 2) one that alters the camber
distribution along the leading edge from midspan to tip in a linear
fashion (X2), 3) one that alters the camber distribution along the
trailing edge from hub to midspan (X3), and 4) one that alters the
camber distribution along the trailing edge from midspan to tip (X4).
A mesh with about 1 million grid points was used for the simulation
and the flow was converged with the k-@ turbulence model. The
adjoint equations were converged with the constant-eddy viscosity
approach.

Figure 4 shows the comparison of the components of the adjoint
and finite-difference gradient vector for efficiency, and the com-
parison is remarkably good. The maximum error is less than 0.2%.

Figure 5 shows the design space around the baseline. The contours
were obtained by performing a DOE, while the gradient vector was
obtained using the adjoint. White corresponds to regions of higher
efficiency, and black corresponds to regions of lower efficiency.
The design space shows that the design space between X1 and X2,

x1 x2 x3 x4

021 [ | finite-difference|

[ ] adjoint

-0.25
Fig. 4 Comparison of gradient components for efficiency with finite-
difference.
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Fig. 5 Directions in design space. The vector is the direction that the adjoint vector points in.

at (X3, X4) = (0, 0), is roughly quadratic, that between X1 and X3,
at (X2,X4) = (0,0), shows strong interaction. The small sign
inconsistency in the gradient for X4 is reflected in the nature of the
design space being relatively flat.

Finally, Fig. 6 shows the change in efficiency with iterations.
Opverall, there is about a tenth of a point in improvement in efficiency,
suggesting that this blade is already at around the optimum. This
improvement in efficiency has been obtained with a 0.13% change in
mass flow over the baseline.

B. Compressor Rotor

The next example is a compressor rotor blade. Again two metrics
are examined, efficiency and pressure ratio and the adjoint field are
produced using the constant-eddy viscosity model. In this case, these
metrics are considered as objective functions . The pressure ratio is
roughly the ratio of the pressure at the exit to the inlet of the domain.
Figure 7 shows the adjoint density contours on a cut through the
domain for efficiency and pressure ratio.

Change in efficiency with iterations
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o
o
53]
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o
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o
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1 15 2 25 3
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Fig. 6 Change in efficiency with iterations.
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b) Adjoint density for pressure ratio

Fig. 7 Adjoint density contours for efficiency and pressure ratio.
Nonlinear flow is from bottom to top.



Downloaded by UNIVERSITY OF VIRGINIA on December 2, 2013 | http://arc.aiaa.org | DOI: 10.2514/1.J052177

1740 MARTA ET AL.

The range in the plot of efficiency is rather narrow and all negative
on this plane. This suggests that all portions of the blade are equally
sensitive to the metric of interest. On the suction surface, reduction in
density is more near the leading-edge region and roughly around
midchord, suggesting a geometry change that increases thickness
and/or camber. The plot for pressure ratio is shown on a different
scale, suggesting that relative to efficiency the changes in density are
smaller to affect pressure ratio. The plot also suggests an overall
decrease of density over the entire suction surface to cause an increase
in pressure ratio. One way to achieve these changes is through a series
of localized changes to mean lines.

Figure 8 shows the perturbation produced by a set of bumps on the
blade camber-line angle, evenly distributed along the blade chord
(30, 50, and 70%) and span (30, 50, and 70%).

An unconstrained maximization optimization problem is run,
using the efficiency as the cost function and the previously described
nine Hicks—Henne bumps [31] on the camber-line angle used as
design variables, as shown in Fig. 8.

The relative evolution of the cost function using a gradient-based
optimizer based on the steepest descent method is illustrated in Fig. 9,
where the initial efficiency value is used as reference. As it can be

seen, in this unconstrained optimization there was the possibility to
improve the efficiency by about 0.16 points but a more realistic
exercise would have been to include constraints on the flow. The
improvement can be obtained with either the full-adjoint or the CEV
model for adjoint.

C. Compressor Stator

The next example is a compressor stator blade. Here, only one
metric is examined, namely the loss. Figure 10 shows contours of the
adjoint field for density.

Outside the vicinity of the boundary layer, the contours suggest
that on the suction side one should decrease the density flux to
decrease loss. The pressure side field suggests a similar change but of
smaller magnitude. Along the boundary layer, the adjoint field
suggests a increase in density flux for both the pressure and suction
side to cause a reduction in loss. This can be achieved by providing
more curvature to the suction side and reducing the curvature of the
pressure side. Both these changes will provide less blockage to the
flow leading to lower losses.

These changes are intuitive for a designer and not of immediate
value for this flow. In such cases, the value of the adjoint is in

F,—x

Fig. 8 Hicks-Henne bumps applied to the blade camber-line angle.
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Fig. 9 Optimization test: maximization of efficiency.
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Fig. 10 Contours of adjoint field for density for loss. Nonlinear flow is
from bottom to top.

providing quantitative estimates of the geometrical change for use
within an optimizer.

D. Low-Pressure Turbine Vane

This result has been discussed in Sec. II. Here, the focus is on
another metric of interest, namely the mass flow. Figure 11 shows the
adjoint density and pv, contours for mass flow (v, is the tangential
component of velocity).

These plots show three regions where increases in mass flow can
be achieved. The leading edge on the suction side can contribute to
increases in mass flow by increasing the camber and/or the thickness.
This will accelerate the flow even further, leading to a decrease in the
density and an increase in the tangential velocity. The midpassage
section on the suction surface can be altered to increase the mass flow
by making it thinner. As suggested by the contours, this will cause the
local increase in density and the decrease in local tangential velocity.
Near the trailing edge, reducing the metal angle (measured from the
vertical) will lead to a decrease in tangential velocity on the pressure
side and a corresponding increase on the suction side. Overall, these
effects can also be simulated by a variety of other geometric changes.
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Fig. 11 Two-dimensional vane adjoint solution for mass flow.

To evaluate this hypothesis, the adjoint solutions are used in an
optimization routine with two design variables. The engineering
design variables used in this test case are the stagger angle and the
overturning angle, as illustrated in Fig. 12.

A sample optimization application, an unconstrained minimiza-
tion optimization problem using the loss coefficient as the cost
function is performed. Two separate runs are performed, one using
the full RANS adjoint solver and another the CEV approximation
adjoint solver.

The relative evolution of the cost function using a gradient-based
optimizer based on the steepest descent method is illustrated in
Fig. 13, where the initial loss coefficient value is used as reference.

E. End-Wall Contouring

The adjoint solution is now used to study the effect of end-wall
contouring. This is a vane, and hence the loss across the vane is used
as the metric to improve. The geometry is skewed (for proprietary
reasons), but the plot in Fig. 14 shows the portions of the geometry
that the adjoint is suggesting to improve. Loss is most sensitive to the
portion of the blade where the adjoint density is dark gray, and an
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a) Stagger angle

b) Overturning angle
Fig. 12 Changes applied to the vane geometry.
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Fig. 13 Two-dimensional vane minimization of loss coefficient.

overall decrease is suggested by the adjoint field. The light gray
portions on the casing surface suggest that contouring the end wall to
decrease the density there helps improve the loss metric. However, as
the goal is to reduce loss, one needs to increase density. This increase
can be realized by opening the flow path through end-wall features
called troughs [32].
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Fig. 14 Contours of adjoint field for density for loss. Nonlinear flow is
from bottom to top.

The changes to the end-wall contouring were included in an opti-
mization routine. Typically, without prior knowledge of the impor-
tant design variables, one chooses a discrete set of shapes that alter the
end-wall shape and performs a DOE. The results of this DOE are used
to fita regression or metamodel representation of the design space. The
computational cost of this approach scales with the number of design
variables. Hence, any method that identifies the important variables
helps to reduce the computational cost. It is here that the adjoint
solution becomes handy. The adjoint solution and its guidance can be
used to determine the most important design variables.

One characterization of the design variables is a parametric (u, v)
representation of the design space; here, Bézier control points
positioned in (u, v) space can be used to alter the shape. It is not
uncommon for this parametrization to lead to design variables in the
order of a hundred. Typically, these Bézier control points produce
troughs and peaks on the casing, and these have been known to reduce
cross passage secondary flows, thus leading to reduced loss [32].

With the adjoint guidance, the design variables were reduced to
about four: two to control the light gray portion in midpassage
(suction and pressure), one around aft pressure side, and one around
the leading edge. These correspond to altering the shape in the
regions marked in light gray and dark gray in Fig. 14. Near the leading
edge, the adjoint solution suggests a rapid variation in density, which
will require finer control of the shape changes, which produces
valleys and troughs. With this reduced set of design variables, a DOE
was performed to determine the optimal shape. Although details of
the optimal shape cannot be reported, in an unconstrained design
space it was possible to identify shapes that resulted in close to 8%
reduction in loss, primarily by altering the midpassage contour,
leading-edge, and rear portion of pressure side features. It must be
pointed out that these shapes are not realizable due to manufacturing
constraints, but nevertheless it shows that the adjoint field can be used
for design guidance in new design spaces.

V. Conclusions

The results from this study show that it is possible to derive
physical understanding from the adjoint solution. Each adjoint
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variable quantifies the sensitivity of the corresponding conserved
flux quantity in the governing Navier—Stokes equations to the metric
of interest. Although this is not useful for regular design problems
(where the changes to be induced in the geometry are well known and
what is usually unknown is the amount of change that needs to be
applied), this is invaluable in the following two situations: 1) when
there is scant design guidance, and 2) when one needs to gain some
understanding into the changes in the flowfield. There are numerous
instances of the former and the latter in the turbomachinery design
world that will benefit from the study presented in this paper.

The use of adjoint guidance was demonstrated for single-objective
optimization problems; however, most relevant industrial problems
are multi-objective. Although more research needs to be done to
mathematically extended the formulation to multi-objective prob-
lems, a possible extension could be along the following lines: from a
multiple adjoint solutions for the objectives and constraints, the
relative impact of geometry modifications from each adjoint solution
can be used to determine if improvements in one objective lead to
concurrent improvements in other objectives or not. This implies that
all the metrics are scaled so that the different adjoint solutions can be
compared or care must be taken in quantitatively measuring the effect
of the adjoint solution.

Appendix: A Sample One-Dimensional Problem

Consider the one-dimensional constant coefficient wave equation.
This equation, valid over an (z, x) domain [0, T] X [0, /] along with the
initial condition, can be written as

Ju ou
E‘I—Ca—o M(O,)—MO (Al)

and a terminal cost function F(T) = %|u|dx. The adjoint equation
forug >0 Vuxis

oy oy
-———-c—=0 T,)=1 A2
3 o w(T..) (A2)
where 7 = —¢. At terminal time, 7, the adjoint solution over the

domain is a constant, and this is the initial condition for the adjoint
equation. The adjoint equation is similar to a wave equation with a
constant speed of propagation of c¢. As the boundary conditions at
x =0,/ do not change, the solution of the adjoint equation is a
constant (same as initial condition) over the interval [0, T]. Hence, the
adjoint solution suggests that for any time ¢ € [0, T, the solution u
has to be increased to increase the cost function. This agrees with the
form of the cost function. If the initial condition, u, is varied linearly
from 1 to —1 over the spatial interval (with a crossover between
positive and negative regions happening at //2), then the adjoint
solution for the same objective function will be the solution to the
backward propagating step-function whose form at time 7" has a
shock at //2. This would suggest that if changes are made to increase
u where the adjoint solution is positive and decrease it where u
is negative, then the objective function will be increased. As the
objective function is an absolute function, this interpretation of the
adjoint solution is also true.
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