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Following the renewed interest in hypersonic flight and the significant advances made recently, it is now
the time to start looking at ways to optimize hypersonic vehicle designs in an efficient manner. Since the
medium, in a hypersonic flow, can be locally ionized, it is possible to use electromagnetic actuators that
induce an acting force to optimally control the flow. The local injection of substances that have a consid-
erably lower ionization temperature than air into the airflow – flow seeding – leads to stronger local ion-
ization levels at relatively low hypersonic speeds, amplifying the magnetic effects for the same imposed
magnetic field intensity. Because much has been devoted to the analysis of such problems but no formal
design approach as been persued to date, the main motivation for this work is to provide an efficient
design framework built around high-speed magnetohydrodynamics (MHD) prediction capabilities that
can be used in hypersonic control applications using magnetic effects. In particular, the design framework
should provide information that leads to an optimal airflow seeding strategy in conjunction with an
imposed magnetic field. The proposed framework is based on control theory, which implies developing
an adjoint solver aimed to efficiently provide sensitivity analysis capability in arbitrary complex hyper-
sonics MHD flows. Automatic differentiation tools are selectively used to develop the discrete adjoint,
which make for a much shorter implementation time and greatly reduce the probability of programming
errors. A generic hypersonic vehicle is used to demonstrate the sensitivity analysis capability of the
implemented MHD adjoint solver. The precision of the computed adjoint-based sensitivities is estab-
lished and the performance of the adjoint solver is analyzed. A sample design problem is included using
a gradient-based optimizer.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Hypersonic flow

During the last few years, there has been renewed interest in
hypersonic flight. In July 2002, the world’s first experimental flight
of an air-breathing supersonic ramjet (scramjet) engine took place
in Australia, as a result of the HyShot research project led by the
University of Queensland. In March 2004, significant advances
were made with the successful flight test of the NASA X-43, a
hypersonic scramjet-powered research aircraft. The following year,
NASA released an integrated hypersonic technology demonstration
roadmap, which triggered a feasibility study on the X-43D, with
the objective of developing a baseline conceptual design, assessing
its performance, and identifying the key technical issues [12]. The
descendant of this effort is the current hypersonics program, the X-
51, being the demonstrator scheduled to fly by 2010. Simulta-
neously, a number of other efforts are being pursued at NASA
and elsewhere.
ll rights reserved.

).
The hypersonic regime still poses challenging problems in fluid
mechanics, propulsion, materials and structures, and stability and
control. There are still many technical and scientific obstacles to
overcome but the community is getting closer and closer to the
stage where sustained hypersonic flight may be possible. With that
in mind, it is now the time to start looking at ways to optimize such
designs in an efficient manner.

1.2. Magnetohydrodynamics flow control

Among all the phenomena in fluid mechanics, the one that trig-
gered this work was that of magnetohydrodynamics (MHD), in par-
ticular that of flow seeding.

Since the medium, in a hypersonic flow, can be locally ionized,
the possibility opens up to use electromagnetic actuators to opti-
mally control the flow. These actuators can generate magnetic
fields that induce an acting force on the flow, as given by the Lor-
entz force,

FLorentz ¼ qðEþ u� BÞ; ð1Þ
where FLorentz is the force exerted on a fluid particle moving with
velocity u, whose electric charge is q, subject to an electric field E
and a magnetic field B.

http://dx.doi.org/10.1016/j.compfluid.2010.05.009
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Several studies have already been made to evaluate the po-
tential use of this MHD phenomenon in hypersonic flow control
applications. As early as 1967, experimental observations were
made by Nowak et al. [19], revealing that the bow shock
stand-off distance and drag increased, in re-entry vehicles, with
the application of moderately strong magnetic fields. Four years
later, one of the first numerical analysis of the MHD blunt body
problem was performed by Coakley and Porter [4]. This problem
has been revisited recently but some of the results are contradic-
tory with respect to the possible to drag reduction, as seen on
the work of Agarwal and Augustinus [1]. Since then, many other
applications have been developed. The potential heat transfer
mitigation through magnetic control in a hypersonic blunt body
flow has also been analyzed by Poggie and Gaitonde [21]. Even
the replacement of movable control surfaces by the use of glow
discharges in plasma flows was evaluated in the work of Shang
et al. [24].

Despite reasonably matured MHD analysis tools, all of these
experiments have been based on either trial-and-error or paramet-
ric studies [13], no formal design approach has been employed yet
and very little effort has been devoted to automate these flow con-
trol processes. However, any of these applications can be viewed as
an optimization problem in which a cost function must be mini-
mized by varying a set of control variables, while satisfying a spe-
cific set of constraints.

1.3. Flow seeding

In order for the magnetic effects to be significant, it is often nec-
essary to produce relatively high magnetic fluxes, which imply
using heavy electromagnets, because of the low ionization level
of air (which translates into low electrical conductivity). This prob-
lem can be mitigated by seeding the airflow, which consists in the
addition of substances that have a considerably lower ionization
temperature than air. The most commonly used seed used is Potas-
sium. Studies have shown that seeded air leads to stronger local
ionization at relatively low hypersonic speeds, amplifying the mag-
netic effects, thus decreasing the required applied magnetic field
intensity [8].

As such, the main motivation for this work is to provide an effi-
cient design framework built around high-speed MHD prediction
capabilities that can be used in hypersonic control applications
using magnetic effects. In particular, the design framework should
provide information that leads to an optimal airflow seeding
strategy.

2. Control theory

2.1. Generic design problem

In the context of optimization, a generic design problem can be
posed as the minimization of a cost function, I (also called function
of interest or figure of merit) with respect to a vector of design
variables, x, while satisfying a set of linear or nonlinear constraints.
The cost function depends directly on the design variables and on
the state of the system, w, that may result from the solution of the
governing equations of the problem. Thus we can write the vector-
valued function I as

I ¼ Iðx;wðxÞÞ: ð2Þ

For a given input vector x, the solution of the governing equations
subject to appropriate boundary conditions yields a state vector,
w, thus establishing the dependence of the state of the system on
the design variables. We denote these governing equations by

Rðx;wðxÞÞ ¼ 0: ð3Þ
In mathematical terms, this design problem can be expressed as

Minimize Iðx;wðxÞÞ
w:r:t:x;
subject to Rðx;wðxÞÞ ¼ 0

Ciðx;wðxÞÞ ¼ 0; i ¼ 1; . . . ;m;

ð4Þ

where Ci(x,w(x)) = 0 represents m additional constraints that may
or may not involve the flow solution.

When using a gradient-based optimizer to solve the design
problem (4), the gradient (also designated as sensitivity or first
derivative) of both the cost function and the constraints with re-
spect to the design variables are required. That is, dI

dx and dCi
dx have

to be determined. The control theory approach, also called the ad-
joint method, emerges as an excellent candidate in achieving that
goal.

2.2. Adjoint method

Adjoint methods have been used to perform sensitivity analysis
of partial differential equations (PDEs) for over three decades.
These methods were first applied to optimal control problems
and thereafter used to perform sensitivity analysis of linear struc-
tural finite element models. The first application to fluid dynamics
was due to Pironneau [20]. The method was then used to perform
airfoil shape optimization by Jameson [10] and since then it has
been extended to three-dimensional problems, leading to applica-
tions such as aerodynamic shape optimization of wings [11] and
complete aircraft configurations [22]. The adjoint theory has since
been generalized for multi-disciplinary systems [17] and for MHD
problems [15].

The adjoint method is extremely valuable because it provides a
very efficient and accurate method to compute the sensitivity of a
given function of interest with respect to many parameters by
solving a system of equations of size equivalent to the governing
equations of the flow one time only, independently of the number
of design variables. These properties make a significant positive
impact on the overall performance of the optimization, when com-
pared to other methods to estimate sensitivities such as finite-
differences.

The adjoint method has already been mathematically well doc-
umented [6]. It provides a way for computing the function sensitiv-
ity by formulating the dual problem, given by

dI
dx
¼ @I
@x
� wT @R

@x
; ð5Þ

such that
@R

@w

� �T

w ¼ @I
@w

� �T

; ð6Þ

which result from the definition of the adjoint vector w as

wT ¼ @I
@w

@R

@w

� ��1

: ð7Þ

The adjoint vector obtained by solving the adjoint Eq. (6) is substi-
tuted into Eq. (5) to find the function sensitivity. In contrast with
other sensitivity analysis methods, the adjoint vector does not de-
pend on the design variables, x, but instead depends on the function
of interest, I.

The sizes of the sensitivity matrices involved in the adjoint
method are

@I
@x

ðNI � NxÞ;
@R

@x
ðNw � NxÞ; ð8Þ

@R

@w
ðNw � NwÞ;

@I
@w

ðNI � NwÞ; ð9Þ
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where NI is the number of functions of interest, Nx the number of
design variables and Nw the size of the state vector, which for the
solution of a large, three-dimensional problem involving a system
of conservation laws, can be very large.

2.3. Hybrid approach: merging the adjoint and AD methods

Given the value of adjoint methods, it seems odd that their
application to aerodynamic shape optimization is not more ubiqui-
tous. In fact, while adjoint methods have already found their way
into commercial structural analysis packages, they have yet to pro-
ceed beyond research CFD solvers. The main obstacle to the use of
adjoint methods is the complexity involved in the development
and implementation of the additional solver required.

This work employs a discrete adjoint formulation, that emerges
as the best suitable option to deal with the complex equations,
such those that govern MHD, and with the nature of the functions
of interest that may be used in relevant design problems.

To enable the development of a discrete adjoint, and taking
advantage of using a discrete adjoint formulation, the Automatic
Differentiation adjoint (ADjoint) approach is used [16].

In this approach, automatic differentiation tools are selectively
applied to the MHD solver to produce only the code that computes
the individual entries in the flux Jacobian matrix and the other par-
tial derivatives (8) and (9) that are necessary to compute sensitiv-
ities using an adjoint method.

The use of ADjoint method in the context of MHD brings several
advantages, namely, it is generic (applicable to any PDE solver and
governing equations), largely automatic, and exactly consistent
with the flow solver. Because the process of automatic differentia-
tion allows us to treat arbitrary expressions exactly, the sensitivi-
ties produced are perfectly consistent with those that would be
obtained from an exact numerical differentiation of the original
solver.

Details about the implementation of this approach are included
in Section 5.
3. Governing equations

The hypersonic flow simulations in this work are restricted to
the stratosphere so that the Knudsen number remains everywhere
small and the continuous mechanics assumption holds.

The equations governing the three-dimensional flow of a com-
pressible, conducting fluid with an externally imposed magnetic
field are obtained by coupling the Navier–Stokes equations to the
Maxwell equations. This coupling is strong, in the sense that the
velocity field given by the former equations shows in the convec-
tive terms of the latter, and the electromagnetic field modeled by
the latter appears as additional force and energy terms in the for-
mer equations. The resulting set of equations is designated as the
full magnetohydrodynamics (MHD) equations [5].

In order to cope with the extreme complexity of the full MHD
analysis, several simplified models have been developed. In this
paper, the fluid flow under the influence of magnetic fields has
been modeled with both the ideal and low Rer approximation
MHD equations. The gas is assumed to be in thermodynamic equi-
librium and to be calorically perfect. In addition, finite-rate chem-
istry models are not included, meaning that the flow is assumed to
be frozen.

3.1. Ideal MHD equations

The equations governing the three-dimensional flow of an
inviscid, compressible, perfectly conducting fluid in a magnetic
field are called the ideal MHD equations. Their derivation follows
that of the full MHD equations, obtained by coupling the Navier–
Stokes equations to the Maxwell equations, but additional assump-
tions are made. In particular, that the flow might be considered
inviscid, thus the viscous terms of the Navier–Stokes equations
vanish, and that the fluid is perfectly conducting, implying that
the dispersive terms of the induction equations can be neglected.

In the literature, several versions of the ideal MHD equations
can be found, all resulting from the inclusion of additional mag-
netic terms in the Navier–Stokes equations – the momentum equa-
tion gets an additional force per unit volume of matter (Lorentz
force), and the additional power delivered to matter is included
in the energy equation – and the additional magnetic field trans-
port equation, that is derived from the Faraday’s law.

In the present work, however, a different formulation, recently
derived by Marta [14], is used. It combines two features: the inclu-
sion of additional source terms that enforce the solenoidal condi-
tion of the magnetic field, r � B = 0, and the decomposition of the
total magnetic field into the background imposed field and the in-
duced field to achieve better numerical accuracy.

3.1.1. Magnetic field decomposition
Besides the issue of satisfying the solenoidal condition, there is

also the problem of having large imposed magnetic fields. Under
these circumstances, the ratio of induced to imposed components
of the magnetic field becomes extremely small and the magnetic
terms can dominate the system. Small errors in the magnetic field
solution can cause severe difficulties in the energy equation, be-
cause the magnetic energy becomes much greater than the kinetic
energy.

Following the work of Tanaka [25], this problem can be miti-
gated by decomposing the magnetic field into two components,
the background imposed field, B0, and the induced field, Bi,

B ¼ B0 þ Bi; ð10Þ
3.1.2. Flux vector form
Consequently, the conservative system of ideal MHD equations

used in this work was custom derived in order to obtain a stable
and accurate system, and its derivation is detailed in Marta [14].
The non-dimensional ideal MHD equations are then given by

@wi

@t
þ ðr �FiÞ þ ðr �FmÞ ¼ Si; ð11Þ

where

wi ¼

q
qu
qZi

Bi

0
BBB@

1
CCCA; Fi ¼

qu
quuþ pI
ðqEþ pÞu

0

0
BBB@

1
CCCA;

Fm ¼

0
RbðBi � BiÞI=ð2lmÞ � RbðBiBiÞ=lm

þRbðB0 � BiÞI=lm � RbðB0Bi þ BiB0Þ=lm

RbðBi � BiÞu=lm � Rbðu � BiÞBi=lm

þRbðB0 � BiÞu=lm � Rbðu � BiÞB0=lm

ðuBi � BiuÞ þ ðuB0 � B0uÞ

0
BBBBBBBB@

1
CCCCCCCCA

and

Si ¼ �ðr � BiÞ

0
RbB=lm

Rbðu � BiÞ=lm

u

0
BBB@

1
CCCA:

The inviscid and magnetic flux vectors are Fi and Fm, respectively.



A.C. Marta, J.J. Alonso / Computers & Fluids 39 (2010) 1562–1574 1565
The conservative variables composing w are the density, q, the
momentum density, qu, the total energy density, qZi, and the in-
duced magnetic field, Bi. The MHD total energy per unit volume
is composed of the usual total energy augmented by the induced
magnetic energy contribution, as

qZi ¼ qEþ Rb
Bi � Bi

2lm
; ð12Þ

where Rb is the magnetic force number (or pressure number)
Rb ¼ B2

qU2lm
and lm is the magnetic permeability.

This ideal MHD model allows for environments characterized
by a high magnetic force number, where the magnetic field in-
duced by the current is of comparable magnitude to the one im-
posed on the flow, since the three induction equations are solved
in the governing equations, as opposed to the low magnetic Rey-
nolds number model.

3.2. Low magnetic Reynolds number MHD model

In external aerodynamics, many of the encountered hypersonic
flow fields are characterized by relatively low levels of electrical
conductivity, r. The pertinent non-dimensional parameter deter-
mining the relative magnitude of r is the magnetic Reynolds num-
ber, Rer = LUlmr.

If the environment of interest is characterized by a low mag-
netic Reynolds number, then the magnetic field induced by the
current is much smaller than that imposed on the flow and, there-
fore, it can be neglected. By neglecting the distortion of the mag-
netic field by the flow and only assuming that the imposed field
has a significant influence on the flow, there is no need to solve
the three induction equations since the magnetic field is assumed
to be decoupled from the velocity field. Under this conditions, the
electromagnetic forces and energy show up as source terms in the
Navier–Stokes equations.

3.2.1. Flux vector form
Adopting the low Rer model approximation, the set of non-

dimensional governing equations may be written in compact form
as

@w
@t
þ ðr �FiÞ ¼ S; ð13Þ

where the vector of conservative variables and the inviscid flux vec-
tor are

w ¼
q
qu
qE

0
B@

1
CA; Fi ¼

qu
quuþ pI
ðqEþ pÞu

0
B@

1
CA;

respectively, and S is the source term includes the magnetic field
effects,

S ¼ Rb

0
j� B
j � E

0
B@

1
CA ¼ Q

0
rðEþ u� BÞ � B
rðEþ u� BÞ � E

0
B@

1
CA:

The electric current j was eliminated using the generalized Ohm’s
law in non-dimensional form, j = Rerr(E + u � B). The resulting
non-dimensional scalar defined as Q = RbRer is the magnetic inter-
action parameter. In the present simulations, there is no imposed
electrostatic field E.

3.3. Imposed magnetic field

In all MHD simulations made in this work, the magnetic field is
externally imposed by considering the existence of a set of electro-
magnetic circuits that create a dipole-like magnetic field on the
flow.

The magnetic field generated by a single dipole is given by the
vector function

B ¼ lmm
4pr3 ð2 cos hêr þ sin hêhÞ; ð14Þ

where B is the imposed magnetic field at a point located at a dis-
tance r from the origin of the dipole, of strength m, at an angle h
with respect to the dipole direction.
4. Flow solver

The flow solver used in this work was the Navier–Stokes Stanford
University Solver (NSSUS) flow solver. This solver is a finite-differ-
ence, higher-order solver that has been developed at Stanford Uni-
versity under the Advanced Simulation and Computing (ASC)
program sponsored by the Department of Energy.

This generic node-centered, multi-block, multi-processor solver
uses finite-difference operators and artificial dissipation terms fol-
low the work of Mattsson and Nordström [18] and the boundary
conditions are implemented by means of penalty terms, according
to the work of Carpenter et al. [3]. The additional magnetic induc-
tion equations and source terms were included in this solver so
that MHD computations could be performed.

The set of coupled ODEs that result from the spatial discretiza-
tion of (11) or (13) can be re-written in semi-discrete form as

dwijk

dt
þRijkðwÞ ¼ 0; ð15Þ

where w is the vector of the flow variables at the cell vertex. The
vector of residuals, RðwÞ, consists of all the physical and artificial
fluxes, boundary conditions and source terms.

An explicit five-stage, modified Runge–Kutta scheme was used
to integrate Eq. (15) in time and drive the solution to steady-state.
An adaptive local time step was used to increase the convergence
rate of the algorithm, being the time step computed for each cell
according to

Dt ¼ CFL
kn þ kg þ kf

; ð16Þ

where CFL is the Courant–Friedrichs–Lewy number and kn, kg, kf are
the maximum speed of propagation of information in each of the
three computational directions, that corresponds to the maximum
eigenvalue of the hyperbolic system of governing equations, also
designated by local spectral radii.

For the system of Eq. (11), the spectral radius corresponds to the
fast magneto-acoustic wave,

kmax ¼ jUnj þ cf ; ð17Þ

where Un is the normal fluid velocity and cf is the speed of the fast-
mode MHD wave, relative to the fluid which is given by

cf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

c2 þ B2

qlm
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ B2

qlm

 !2

� 4
c2B2

n

qlm

vuut
2
64

3
75

vuuuut : ð18Þ

The speed of sound, assuming a perfect gas, is defined as c ¼
ffiffiffiffi
cp
q

q
.

5. Adjoint solver

Automatic differentiation tools are used to generate code that
computes the several matrices of partial sensitivities (8) and (9),
according to the hybrid ADjoint approach introduced in Section 2.3.



1566 A.C. Marta, J.J. Alonso / Computers & Fluids 39 (2010) 1562–1574
5.1. Assembly of the adjoint matrix

The discrete adjoint matrix (or flux Jacobian), @R
@w, is independent

of the choice of the function of interest or the design variables – it
is simply a function of the governing equations, their discretization
and the problem boundary conditions.

To compute it, only the routines in the flow solver that evaluate
the residuals Rijk need to be considered. To make the implementa-
tion more efficient, it was necessary to re-write the flow residual
routine such that it computed the residual, including the proper
boundary condition handling, for a single specified node (i,j,k)

based on the computational stencil:

subroutineresidualAdjði;j;k;xAdj;wAdj;rAdjÞ

This routine returns the Nv residuals rAdj, given the stencil of grid
coordinates, xAdj, and flow variables, wAdj, for each node in each
block on each processor. For the ideal MHD equations, Nv = 8, while
for the low Rer model, Nv = 5. There are a total of (Nv � Ns) flow vari-
ables in the stencil, where Ns is the dimension of the computational
stencil used in the flow solver.

The adjoint matrix can then be assembled by taking the deriva-
tive of the residual R with respect to the flow variables w. The
automatic differentiation tool used was Tapenade [9], that sup-
ports Fortran 95, the programming language in which the MHD
solver was coded. The automatic differentiation process produced
the differentiated routine

subroutineresidualAdj Bði;j;k;xAdj;wAdj;
wAdjB;rAdj;rAdjBÞ

which is able to compute all the necessary derivatives for the flux
Jacobian matrix.

The Nv � (Nv � Ns) sensitivities that need to be computed for
each node, corresponding to Nv rows in the @R

@w
matrix, are readily

computed by this automatically differentiated routine in reverse
mode because it yields

wAdjBðii;jj;kk;nÞ ¼ @Rði; j; k;mÞ
@wðiþ ii; jþ jj; kþ kk; nÞ ; ð19Þ

where the triad (ii,jj,kk) spans the stencil, m spans the number
of governing equations Nv and n spans the Nv flow variables. The
number of non-zero blocks (m � n) matches the dimension of the
stencil.
5.2. Assembly of the adjoint RHS vector

The right-hand side (RHS) vector of the discrete adjoint system,
@I
@w

, is constructed by differentiating the discretized version of the
cost function with respect to the flow variables w. An approach
identical to the one described in Section 5.1 was used.
Fig. 1. Schematic of the adjoint-based optimization algorithm.
5.3. Solution of the adjoint system

The adjoint solver requires the solution of a system of
Nw = (Nc � Nv) Eq. (6). To solve this large sparse linear system,
the Portable, Extensible Toolkit for Scientific Computation (PETSc)
[2] was used.

Once the sparse data structures were filled, the adjoint system
of equations was solved using a PETSc built-in Krylov subspace
(KSP) method. More specifically, a Generalized Minimum Residual
(GMRES) algorithm [23] was used, preconditioned with the block
Jacobi method, with one block per processor, each solved with
ILU(0) preconditioning.
5.4. Total sensitivity

Once the adjoint solution, w, is found, the gradient of the cost
function is easily obtained from the sensitivity Eq. (5). This expres-
sion for the adjoint-based sensitivity requires the differentiation of
the flow solver residual R and cost function I evaluation routines
with respect to the design variables x. The resulting matrix @R

@x

has dimensions (Nc � Nv) � Nx, where Nx is the number of design
variables, whereas the right-hand side vector @I

@x
has length Nx.

Using AD tools, the re-engineered routines used for @R
@w

and @I
@w

earlier were again differentiated automatically, this time with re-
spect to x, thus providing @R

@x
and @I

@x
, respectively.

5.5. Adjoint-based optimization

The optimization problem (4) is solved by feeding the cost and
constraint function values, obtained by the flow solver, and their
gradients, obtained by the adjoint solver, into a gradient-based
optimizer, following the algorithm depicted in the block diagram
shown in Fig. 1. These values are used by the optimizer to find
the search direction and to determine the step size during the line
search.

The gradient-based optimizer used in this work is SNOPT [7],
which is a software package for solving large-scale optimization
problems (linear and nonlinear programs), developed in the Sys-
tems Optimization Laboratory at Stanford University. Among the
several methods available, the Sequential Quadratic Programing
(SQP) method was selected.

6. Results and discussion

6.1. Problem setup

The test case used to demonstrate the hybrid ADjoint sensitivity
analysis method was a generic hypersonic vehicle inspired by the
NASA X-43A experimental aircraft, and it is shown in Fig. 2. This
aircraft geometry includes most of the principal airframe compo-
nents, namely the vertical fins and the scramjet duct. Its total
length is 20.25 m and the origin of coordinates is located at the air-
craft nose.

Since the simulation was run without any side-slip angle, only
half of the body had to be modeled, with a symmetry boundary
condition imposed on the center plane. The body wall was set to
be an impermeable Euler wall, while the outer boundaries have
non-reflecting boundary conditions imposed on them. The free-
stream flow conditions chosen were Mach 5 and an angle of attack
of 5�.

To simulate the magnetohydrodynamics interaction, a collec-
tion of seven hypothetical dipoles was placed inside the body, at
the locations indicated in Table 1, which imposed a magnetic field
on the flow given by expression (14). The resulting field given by



Fig. 2. Generic hypersonic vehicle configuration.

Table 1
Location of dipoles.

Dipole # Location (m) Orientation

1 (0.7,0,0) (�1,0, 0)
2/3 (2,±1,0) (�0.3473,±0.9378,0)
4/5 (4,±1.5,0) (�0.3473,±0.9378,0)
6/7 (6,±2,0) (�0.3473,±0.9378,0)

Fig. 4. Mesh, bottom view (coarsened 3 levels).
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the superposition of dipoles is shown in Fig. 3. Despite the fact that
only half of the domain was modeled, all dipoles were taken into
account when calculating the imposed magnetic field. All dipoles
were set to the same strength, and the baseline electrical conduc-
tivity was such that a magnetic Reynolds number of Rer = 0.19 and
a magnetic pressure number of Rb = 0.11 were used, yielding a
magnetic interaction parameter of Q = 0.02.

The computational mesh consisted of 15 blocks. Two versions, a
coarser mesh with a total of 290,107 nodes, and a finer one with
550,109 nodes, have been used for the ideal MHD governing equa-
tions and the low Rer, respectively. For visualization purposes, the
smaller mesh is shown in Fig. 4 with three levels of coarsening
applied.

The aerodynamic coefficients were used as cost functions and
the electrical conductivity, r, in every computational node was ta-
ken as the design variables when running the low Rer MHD model.
As seen in the results that follow, this led to a total of 550,109 de-
sign variables for the computational mesh used.

Additional design variables were tested as well, specifically, the
vehicle attitude, defined by angle of attack, a, and side-slip angle, b,
Fig. 3. Imposed magnetic field.
and the properties of each dipole: strength m and orientation an-
gles h and /. These totaled 23 extra variables.

The results showed in the subsequent sections were made on a
parallel processor workstation, with four 3.2 GHz nodes, 2 MB L2
cache and 8 GB of RAM.

6.2. Flow and adjoint solutions

The system of ODEs (15) was integrated in time until the solu-
tion evolved to a steady-state. Convergence was assumed when the
density residual dropped 10 orders of magnitude.

Fig. 5 shows the pressure contours of the flow solution on the
body surface, as well as at the plane of symmetry, for the low
Rer and the ideal MHD models. As expected, there is a large pres-
sure increase close to the dipoles due to the imposed magnetic
field. This effect is caused by the additional magnetic terms in
the MHD equations.

The baseline cost function values are summarized in Table 2,
where the reference area was taken as 95.2 m2, the reference
length was 1 m, and the moment reference point was located
10 m behind the nose leading edge.

The assembly time of the Jacobian matrix was 32.53 s for the
low Rer solver running on the finer mesh, and 70.76 s for the more
expensive eight-equation ideal MHD solver on the coarser mesh.
These included all the calls to the automatically differentiated rou-
tines. The assembly times of the adjoint vectors were negligible for
both models. The detailed timings can be examined in Table 6.

Once the adjoint system of Eq. (7) was set up, the GMRES solver
provided by PETSc was used. To be consistent with the flow solver,
the adjoint solution residual convergence criterion was also set to
10�10. The iterative solver consistently showed very good robust-
ness and convergence properties. For the different function of



Fig. 5. Pressure contours.

Table 2
Baseline aerodynamic coefficients.

Model CL CD CMy

Low Rer 0.08265 0.02118 �0.10308
Ideal MHD 0.07809 0.02113 �0.10087

Fig. 6. Adjoint residual history (ideal MHD model).
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interest tested, convergence was typically achieved after about 120
iterations, which took 263.12 and 383.55 s to run the low magnetic
Reynolds number and ideal MHD models, respectively. The resid-
ual convergence history of the adjoint solution using PETSc for
the different aerodynamic coefficients is plotted in Fig. 6 for the
ideal MHD solver.

The adjoint solutions corresponding to the flow pressure for dif-
ferent cost functions, I, are shown in Fig. 7 for the ideal MHD solver.
The adjoint solution, for the cost functions used in this work,
resembles the flow solution, except that the flow direction looks
as if it had been reversed. This is a known characteristic of the dual
problem (6).

6.3. Adjoint-based sensitivities

The sensitivity of the pressure drag and pitching moment
coefficients with respect to vehicle attitude are shown in Figs. 8
and 9, respectively, for different physical models. The adjoint-
based values are compared with forward-FD values using a per-
turbation step of 10�3. The agreement is within 2.2%, which is
acceptable for the accuracy expected from the finite-difference
approximations.

Additional sensitivities of the lift coefficient with respect to
the dipole properties are summarized in Table 3, for the low
Rer MHD model. A perturbation step size study was conducted
for the finite-difference approximations, which showed how
dependent the gradient estimates were on their proper choice.
For brevity, only the step corresponding to 5 � 10�3 is shown.
The overall comparison lead to very satisfactory results; the small
discrepancies are mainly attributed to the lack accuracy of the
finite-difference approximations.

Similar results were also obtained using the ideal MHD model,
and have been included in Table 4. Once again, the matching is
very good, validating the sensitivities computed using the ideal
MHD adjoint solver.

When running the low Rer solver, the electrical conductivity, r,
was also taken as a design variable in each computational node.
The total sensitivity was computed for the different cost functions
and existed everywhere in the volume since the design variable r
spanned the entire problem domain. For visualization purposes,
the values are only shown at the body surface and symmetry plane.
Figs. 10–12 show the sensitivity of lift, drag and pitching moment
coefficients with respect to the electrical conductivity, respectively.

As expected, these sensitivities are greatest close to the location
of the dipoles, where the imposed magnetic field intensity is stron-
ger, and their sign depends on the cost function I. Since locally
increasing the electrical conductivity r generates stronger mag-
netic effects, for a given imposed magnetic field, then it also causes
the local pressure to increase. Consequently, the lift sensitivity
with respect to r is positive on the bottom surface and negative
on the top, the drag sensitivity is positive on the surface regions
facing the incoming flow and negative on the other ones, and the
pitching moment sensitivity is positive on the bottom surface be-
hind the reference moment point and negative otherwise.

These insights can be extremely useful if local flow seeding is
considered in conjunction with the imposed magnetic field. These
sensitivities give the designers the tools to find where, when and
how much seeding should be injected to accomplish the desired
flow control.
6.4. Verification of the sensitivities

Besides the comparisons performed for the gradients of the cost
functions with respect to the vehicle attitude and dipole properties
included in Tables 3 and 4, the sensitivities relative to the electrical
conductivity were also verified.

Because the adjoint-based sensitivities of the aerodynamic coef-
ficients with respect to the electrical conductivity showed in



Fig. 7. Adjoint solutions (ideal MHD model).
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Figs. 10–12 covered the whole computational domain, the results
were just spot-checked against finite-differences.
The comparison was made using five control nodes located on
the body surface over the magnetic dipoles location, as graphically
shown in Fig. 13.

The comparison results are summarized in Table 5 using a FD
perturbation step size of 5 � 10�3 of the baseline electrical conduc-
tivity, r. The values in Table 5 demonstrate that the agreement be-
tween the two different approaches is excellent, successfully
verifying the adjoint-based gradient values. This verification also
revealed that it would have been computationally prohibitive to
compute the sensitivities with respect to such large numbers of de-
sign variables using anything but the adjoint method: to get the
flow solver to converge (starting from the baseline solution) every
time the electrical conductivity was perturbed in a single node in
the domain, took roughly one and half hours. Extrapolating to all
nodes, corresponding to 550,109 design variables, it would have
taken almost 95 years to obtain the same results that took less than
six minutes (per cost function) for the ADjoint method.

6.5. Run-time and memory requirements

The detailed computational costs for the different MHD models
are summarized in Table 6. It is important to notice that the flow
solver has not been optimized for MHD computations yet and all
solutions started from a free-stream condition throughout the
domain.

The additional magnetic terms in the MHD equations make the
numerical solution much less stable, and because an explicit time
integration scheme was used, the runs had to be made at signifi-
cantly lower CFL numbers. Consequently, it took almost six hours
for the ideal MHD flow solver residual to converge 10 orders of
magnitude. This clearly rules out the use of finite-differences to
compute gradients and highlights the importance of an alternative
approach such as discrete adjoint-based gradients.

The solution of the adjoint equations was the component that
took most of the time in the adjoint solver, whereas the automatic
differentiation sections represented less than 15% of the time,
proving its efficiency. The total cost of the adjoint solver, including
the computation of all the partial derivatives and the solution of
the adjoint system, is less than 3% of the cost of the flow solution
for this case. Again, this is not truly representative of reality as
the flow solver can still be optimized for MHD, but it clearly shows
that the ADjoint approach is very efficient. Looking at the bottom
line of Table 6, it can be inferred that the ADjoint solver runtime
is proportional to the number of grid nodes Nc and the number
of flow variables Nv squared, as expected from the adjoint matrix
Jacobian structure.

The memory usage of the flow and adjoint solvers while run-
ning both MHD models (low Rer and ideal MHD) was monitored
and the information is summarized in Table 7. It shows that the
memory required for the adjoint solver is approximately 10 times
that required for the original flow solver, when solving only for five
governing equations (low Rer model), and increases to a sixteen
fold for the eight-equation model (ideal MHD). The ratios at the
bottom lines of Table 7 show that the memory usage of flow solver
is proportional to the number of grid nodes Nc and flow variables
Nv, whereas the adjoint solver depends on the number of grid
nodes and the number of flow variables squared. This is in line
with the explicit flow solver treatment, and the fully assembled ad-
joint matrix used in the adjoint solver.

A reduction in memory would be possible, at the expense of a
larger CPU cost, by handling the operations in PETSc as matrix-free,
eliminating the need to assemble the matrices.

Another comparison was made for the computational cost of
the ADjoint- and FD-based sensitivities. The values summarized
in Table 8 were gathered while performing the comparison of the
adjoint-based sensitivities with FD approximations shown previ-



Fig. 8. Sensitivity dCD/dx.

Fig. 9. Sensitivity dCM y/dx.

Table 3
Sensitivity of CL w.r.t. magnetic field (low Rer MHD).

Dipole# DV x Adjoint Finite-diff. (step 5 � 10�3) D

1 m �3.498E�2 �3.564E�02 �1.9%
h �2.337E�4 �2.345E�04 �0.3%
/ 1.354E�4 1.358E�04 �0.3%

2 m �1.065E�2 �1.123E�02 �5.4%
h �2.233E�5 �2.195E�05 1.7%
/ 5.589E�5 5.661E�05 �1.3%

3 m 4.882E�4 4.610E�04 5.6%
h 2.427E�5 2.427E�05 0.0%
/ 4.370E�6 4.444E�06 �1.7%

4 m �5.439E�3 �5.643E�03 �3.7%
h �1.732E�5 �1.716E�05 0.9%
/ 5.851E�6 6.318E�06 �8.0%

5 m 3.444E�4 3.364E�04 2.3%
h 1.008E�5 1.015E�05 �0.7%
/ 2.511E�6 2.457E�06 2.2%

6 m �1.912E�2 �1.931E�02 �1.0%
h �6.968E�5 �6.985E�05 �0.2%
/ 2.070E�5 2.129E�05 �2.8%

7 m 7.433E�5 7.250E�05 2.5%
h 3.515E�6 3.610E�06 �2.7%
/ 1.611E�6 1.574E�06 2.3%

Table 4
Sensitivity of CL w.r.t. magnetic field (ideal MHD).

Dipole# DV x Adjoint Finite-diff. (step 5 � 10�3) D

1 m �2.576E�1 �2.608E�1 �1.6%
h �3.322E�4 �3.246E�4 2.3%
/ 1.091E�3 1.091E�3 0.0%

2 m �1.344E�1 �1.367E�1 �1.8%
h �1.439E�4 �1.412E�4 1.9%
/ �9.153E�4 �9.098E�4 0.6%

3 m �3.734E�3 �3.853E�3 �3.2%
h 1.763E�5 1.838E�5 �4.3%
/ 8.434E�6 7.048E�6 16.4%

4 m �6.715E�2 �6.790E�2 �1.1%
h �3.764E�4 �3.757E�4 0.2%
/ �5.535E�5 �5.578E�5 �0.8%

5 m �4.637E�3 �4.612E�3 0.5%
h �3.293E�5 �3.312E�5 �0.6%
/ �8.589E�6 �8.780E�6 �2.2%

6 m �1.043E�1 �1.053E�1 �0.9%
h �6.896E�4 �6.909E�4 �0.2%
/ �2.577E�4 �2.617E�4 �1.6%

7 m �2.349E�3 �2.334E�3 0.6%
h �2.277E�5 �2.314E�5 �1.6%
/ �1.660E�5 �1.652E�5 0.5%
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Fig. 10. Sensitivity dCL/dr (low Rer model).

Fig. 11. Sensitivity dCD/dr (low Rer model).

Fig. 12. Sensitivity dCM y/dr (low Rer model).

Table 5
Verification of dI/dr.

Node # Func. I Adjoint Finite-diff. (step 5 � 10�3) D

1 CL �2.0799E�5 �2.0835E�05 �0.2%
CD 3.0044E�6 3.0007E�06 0.1%
CMy �1.0495E�4 �1.0462E�04 0.3%

2 CL 1.4367E�5 1.3960E�05 2.8%
CD 7.5052E�6 7.4295E�06 1.0%
CMy 2.5843E�4 2.6109E�04 �1.0%

3 CL 1.3471E�5 1.3223E�05 1.8%
CD 1.3559E�6 1.2954E�06 4.5%
CMy 1.5455E�4 1.5620E�04 �1.1%

4 CL 4.1276E�6 4.0171E�06 2.7%
CD 6.6961E�7 6.5858E�07 1.6%
CMy 3.5045E�5 3.5971E�05 �2.6%

5 CL 4.0768E�6 4.0112E�06 1.6%
CD 8.9999E�7 8.9586E�07 0.5%
CMy 2.5903E�5 2.6500E�05 �2.3%
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ously. The efficiency of the adjoint solver is again evident, outper-
forming tremendously the traditional finite-difference sensitivity
method. In this case, using a non-optimized MHD flow solver,
the adjoint-based sensitivity is roughly 30 times faster, per cost
function and design variable, than the FD sensitivity.

6.6. Sample design problem using the low Rer MHD solver

The low Rer MHD flow and adjoint solvers were tested on an
optimization application.

The design problem was a re-entry hypersonic vehicle in
the atmosphere, in which both the vehicle attitude and dipole



Fig. 13. Spot-check of dCD/dr (low Rer model)

Table 6
Computational cost breakdown.

Wall clock time (s)

Low MHD Ideal MHD
(550k) (290k)

Flow solver 15,353 20,614
ADjoint solver 322.90 476.15

Breakdown:
Setup PETSc variables 1.48 0.38
Assemble matrix @R

@w
32.53 70.76

Assemble vector @I
@w

0.01 0.01

Solve ADjoint system 263.12 383.55
Compute sensitivity 25.76 21.45

ADjoint system
#GridNodes�#FlowVars2

0.0191 0.0207

Table 7
Memory usage comparison (in MB).

Virtual memory (MB)

Low MHD Ideal MHD
(550k) (290k)

Flow solver 697 602
ADjoint solver 7349 9782
Ratio 10.5� 16.3�

Flow memory ðBÞ
#GridNodes�# FlowVars

253 259

ADjoint memory ðBÞ
#GridNodes�#FlowVars2

534 527

Table 8
Cost comparison of ADjoint and FD gradients.

Wall clock time (min)

Low MHD Ideal MHD
(550k) (290k)

Flow solution 255.9 343.6
Grad. ADjoint (per function) 5.4 7.9
Grad. FD (per variable) 146.3 210.2

Table 9
Baseline and optimized design variables.

Var. Lower bound Upper bound Baseline Optim.

Vehicle a �0.1745 0.1745 0.0349 0.0971
Attitude b 0.0000 0.0000 0.0000 0.0000

Dip. 1 m1 �0.0150 �0.0001 �0.0050 �0.0150
h1 �0.6981 0.6981 0.0000 �0.5357
/1 �0.3491 0.3491 0.0000 �0.3491

Dip. 2 m2 0.0001 0.0150 0.0050 0.0150
h2 �0.6981 0.6981 0.0000 0.6981
/2 1.5708 2.2689 1.9251 1.5708

Dip. 3 m3 0.0001 0.0150 0.0050 0.0150
h3 �0.6981 0.6981 0.0000 �0.4893
/3 �2.2689 �1.5708 �1.9251 �1.9112

Dip. 4 m4 0.0001 0.0150 0.0050 0.0150
h4 �0.6981 0.6981 0.0000 0.4662
/4 1.5708 2.2689 1.9251 1.5708

Dip. 5 m5 0.0001 0.0150 0.0050 0.0001
h5 �0.6981 0.6981 0.0000 0.0000
/5 �2.2689 �1.5708 �1.9251 �1.9251

Dip. 6 m6 0.0001 0.0150 0.0050 0.0150
h6 �0.6981 0.6981 0.0000 0.6981
/6 1.5708 2.2689 1.9251 1.5794

Dip. 7 m7 0.0001 0.0150 0.0050 0.0001
h7 �0.6981 0.6981 0.0000 0.0000
/7 �2.2689 �1.5708 �1.9251 �1.9251

Lift CL 0.0750 0.0900 0.0420 0.0900
Drag CD �/� �/� 0.0133 0.0224

1572 A.C. Marta, J.J. Alonso / Computers & Fluids 39 (2010) 1562–1574
properties were taken as control variables, x, with the objective of
maximizing the inviscid drag coefficient, I = CD. A total of 23 design
variables, x, were considered: angle of attack, side-slip angle, di-
pole strengths (7) and dipole orientations (14). Their upper and
lower bounds, and initial values are compiled in Table 9. The prob-
lem had a constraint on the lift coefficient, as indicated in the pre-
viously mentioned table.

The baseline flow conditions corresponded to the setup de-
scribed in Section 6.1.

The design was performed using the SNOPT optimizer and its
convergence history is shown in Fig. 14. To make the flow turn-
around time faster, a coarser mesh with 98,288 nodes was used,
and the relative L2-norm for convergence was lowered to 10�6.

The optimal design found after the optimizer converged to the
specified tolerances is described in the last column of Table 9. It
can be seen that the dipole strengths had their bounds active,
and that the lift constraint was satisfied at its upper bound.

The number of SNOPT major iterations and functions calls done
by the optimizer are included in Table 10, where the values ob-
tained while running the problem without any magnetic effects
(degenerating to the Euler equations model) were also included
as reference. Notice that a function call corresponds to one flow
and two adjoint (cost function CD and constraint on CL) solutions.
Table 10 shows an improvement of 6 drag counts using MHD
control.

The flow field pressure and the velocity streamlines for the opti-
mized configuration are shown in Fig. 15 for the low Rer model.



Fig. 14. Optimization problem history.

Table 10
Functions of interest of design problem.

Case Iter. F. Call CD CL

(Baseline) 0.0133 0.0420
Euler 1 3 0.0218 0.0894
Low Rer 5 9 0.0224 0.0900

Fig. 15. Pressure contours on optimized vehicle.
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The results shown for this test case clearly attest to the validity
and efficiency of the ADjoint approach to estimate gradient infor-
mation in large, complex problems modeled by the MHD equa-
tions. This provides a solid ground to even more complex MHD
flow control problems that have not been possible to grasp by
the scientific community yet.
7. Conclusions

This work has pioneered the extension of the discrete adjoint
approach to the control of a hypersonic flow in the presence of
magnetic fields, and successfully demonstrated its feasibility in
simple design problem governed by MHD governing equations
and using up to a half million design variables. It represents the
first step toward an automatic design framework for problems
involving hypersonic flow control using electromagnetic effects.

The implementation of the MHD adjoint solver has been largely
automated with the selective use of AD tools, which (1) speeds up
the derivation of the adjoint system of equations considerably; (2)
generates the numerically exact Jacobians (with no need for
approximations that may impact the accuracy of the sensitivities);
and (3) takes care of the boundary conditions automatically.

Regarding the main driver of this work, the approach described
here is particularly well suited to provide the designer with the
necessary information regarding the location and amount of seed-
ing that should be injected to optimally accomplish the desired
MHD flow control, since the sensitivity of any function of interest
with respect to the local electrical conductivity of the medium
can be easily assessed by means of the MHD adjoint solver.
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