
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gcfd20

International Journal of Computational Fluid Dynamics

ISSN: 1061-8562 (Print) 1029-0257 (Online) Journal homepage: https://www.tandfonline.com/loi/gcfd20

A methodology for the development of discrete
adjoint solvers using automatic differentiation
tools

A. C. Marta , C. A. Mader , J. R. R. A. Martins , E. Van der Weide & J. J. Alonso

To cite this article: A. C. Marta , C. A. Mader , J. R. R. A. Martins , E. Van der Weide & J. J.
Alonso (2007) A methodology for the development of discrete adjoint solvers using automatic
differentiation tools, International Journal of Computational Fluid Dynamics, 21:9-10, 307-327, DOI:
10.1080/10618560701678647

To link to this article: https://doi.org/10.1080/10618560701678647

Published online: 07 Dec 2007.

Submit your article to this journal

Article views: 449

View related articles

Citing articles: 5 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=gcfd20
https://www.tandfonline.com/loi/gcfd20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10618560701678647
https://doi.org/10.1080/10618560701678647
https://www.tandfonline.com/action/authorSubmission?journalCode=gcfd20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gcfd20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10618560701678647
https://www.tandfonline.com/doi/mlt/10.1080/10618560701678647
https://www.tandfonline.com/doi/citedby/10.1080/10618560701678647#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/10618560701678647#tabModule

A methodology for the development of discrete adjoint solvers
using automatic differentiation tools

A. C. MARTA†*, C. A. MADER‡, J. R. R. A. MARTINS‡, E. VAN DER WEIDE† and J. J. ALONSO†

†Stanford University, Stanford, CA 94305, USA
‡University of Toronto, Toronto, Ont., Canada M3H 5T6

(Received 16 May 2007; revised 29 August 2007; in final form 9 September 2007)

A methodology for the rapid development of adjoint solvers for computational fluid dynamics (CFD)
models is presented. The approach relies on the use of automatic differentiation (AD) tools to almost
completely automate the process of development of discrete adjoint solvers. This methodology is used
to produce the adjoint code for two distinct 3D CFD solvers: a cell-centred Euler solver running in
single-block, single-processor mode and a multi-block, multi-processor, vertex-centred, magneto-
hydrodynamics (MHD) solver. Instead of differentiating the entire source code of the CFD solvers using
AD, we have applied it selectively to produce code that computes the transpose of the flux Jacobian
matrix and the other partial derivatives that are necessary to compute sensitivities using an adjoint
method. The discrete adjoint equations are then solved using the Portable, Extensible Toolkit for
Scientific Computation (PETSc) library. The selective application of AD is the principal idea of this
new methodology, which we call the AD adjoint (ADjoint). The ADjoint approach has the advantages
that it is applicable to any set of governing equations and objective functions and that it is completely
consistent with the gradients that would be computed by exact numerical differentiation of the original
discrete solver. Furthermore, the approach does not require hand differentiation, thus avoiding the long
development times typically required to develop discrete adjoint solvers for partial differential
equations, as well as the errors that result from the necessary approximations used during the
differentiation of complex systems of conservation laws. These advantages come at the cost of
increased memory requirements for the discrete adjoint solver. However, given the amount of memory
that is typically available in parallel computers and the trends toward larger numbers of multi-core
processors, this disadvantage is rather small when compared with the very significant advantages that
are demonstrated. The sensitivities of drag and lift coefficients with respect to different parameters
obtained using the discrete adjoint solvers show excellent agreement with the benchmark results
produced by the complex-step and finite-difference methods. Furthermore, the overall performance of
the method is shown to be better than most conventional adjoint approaches for both CFD solvers used.

Keywords: Partial differential equations; Adjoint solver; Automatic differentiation; Discrete adjoint;
Sensitivities; Gradient-based optimization

1. Introduction

Adjoint methods have been used to perform sensitivity

analysis of partial differential equations (PDEs) for over

three decades. The first application to fluid dynamics was

due to Pironneau (1974). The method was then extended

by Jameson to perform aerofoil shape optimization

Jameson (1988) and since then it has been used to design

laminar flow aerofoils (Driver and Zingg 2006) and to

optimize aerofoils suitable for multi-point operation

(Nemec and Zingg 2004). The adjoint method has been

extended to 3D problems, leading to applications such as

the aerodynamic shape optimization of complete aircraft

configurations (Reuther et al. 1999a,b), as well as aero-

structural design (Martins et al. 2004). The adjoint theory

has since been generalized for multidisciplinary systems

(Martins et al. 2005) and for magneto-hydrodynamic

(MHD) problems, using both the ideal model (Marta and

Alonso 2006a) and the low magnetic Reynolds number

approximation (Marta and Alonso 2006b).

The adjoint method is extremely valuable because it

provides a very efficient method to compute the sensitivity

International Journal of Computational Fluid Dynamics

ISSN 1061-8562 print/ISSN 1029-0257 online q 2007 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/10618560701678647

*Corresponding author. Email: acmarta@stanford.edu

International Journal of Computational Fluid Dynamics, Vol. 21, Nos. 9–10, October–December 2007, 307–327

of a given function of interest with respect to many

parameters. When using gradient-based optimization

algorithms, the efficiency and accuracy of the sensitivity

computations have a significant effect on the overall

performance of the optimization. Thus, having an efficient

and accurate sensitivity analysis capability is very

important to construct high-fidelity (and possibly multi-

disciplinary) design capabilities.

Given the value of adjoint methods, it seems odd that

their application to aerodynamic shape optimization is not

more ubiquitous. In fact, while adjoint methods have

already found their way into commercial structural

analysis packages, they have yet to proceed beyond

research CFD solvers. One of the main obstacles is the

complexity involved in the development and implemen-

tation of adjoint methods for nonlinear PDEs. For

example, the development of an approximate, continuous

adjoint solver for the Reynolds-Averaged Navier–Stokes

equations can require well over a year of tedious work.

This is true even with significant approximations that have

been shown to have a detrimental effect on the accuracy of

the sensitivity derivatives (Dwight and Brezillon 2006).

The solution to this problem might be automatic

differentiation (AD) (Griewank 2000). The development

of AD tools has been done mainly in the computational

and applied mathematics field, in particular as extensions

to high-level programming language compilers (Horwedel

1991, Naumann and Riehme 2005). The AD approach

relies on a tool that, given the original solver, creates code

capable of computing the derivatives of quantities

computed by the solver with respect to a number of

parameters (that are typically inputs to the solver). There

are two different modes of operation for AD tools: the

forward and the reverse modes. The forward mode

propagates the required sensitivity at the same time as the

solution is being computed. To use the reverse mode

directly applied to the solver, this has to be run to

convergence first, with intermediate variable values stored

for every iteration. These intermediate variables are then

used by the reverse version of the code to find the

sensitivities. The forward mode is analogous to the finite-

difference method, but without problems of step-size

sensitivity. The reverse mode is similar to the adjoint

method and is also efficient when computing the

sensitivity of a function with respect to many parameters.

The direct application of AD to CFD solvers has been

tested for several years now. Forth and Evans (2002)

applied AD in forward mode to an Euler code to compute

sensitivities of a few functions with respect to over a dozen

variables. However, they addressed the need of using the

reverse mode to improve the run time if a large number of

design variables had to be handled. One drawback of the

reverse mode is that the memory requirements can be

prohibitively expensive in the case of iterative solvers,

such as those used in CFD, because they require a large

number of iterations to achieve convergence and many

intermediate results may need to be stored. Other

approaches include the incremental iterative method

(Sherman et al. 1996), that takes advantage of the

incremental solution algorithm of the original flow solver

to obtain higher computational efficiency. Although

efforts have been pursued to minimize the increase in

memory requirements arising from iterative solvers (Carle

et al. 1998, Fagan and Carle 2005), the fact remains that

given typical parallel computing resources, it is still very

difficult to directly apply reverse mode ideas to large-scale

problems. The reverse mode of AD has been applied to

iterative PDE solvers by a few researchers with limited

success (Mohammadi et al. 1996, Cusdin and Müller

2005, Giering et al. 2005, Heimbach et al. 2005). The

main problem in each of these applications was the

prohibitive memory requirements for the solution of 3D

problems.

Our goal is to turn the development of discrete adjoint

solvers into a routine and quick task that only requires the

use of pre-existing code to compute the residuals of the

governing equations and the cost functions (Martins et al.

2006a,b). The end goal of this effort is to enable the

development of discrete adjoint solvers in days, rather

than years, so that the adjoint information may be used in a

variety of applications including sensitivity analysis and

error estimation.

To achieve this goal, we propose the AD adjoint

(ADjoint) approach, where AD is used to compute only

certain terms of the discrete adjoint equations, and not to

differentiate the entire solver. These differentiated terms

are then used to populate the discrete adjoint system of

equations that, together with standard techniques for the

iterative solution of large linear systems such as the

preconditioned Generalized Minimum Residual

(GMRES) algorithm (Saad and Schultz 1986), allow for

sensitivity analysis. This selective and careful use of AD

in building the adjoint equations constitutes the novel

concept that the authors believe addresses the current

problems of using pure AD or adjoint methods to estimate

sensitivities.

The major advantages of the ADjoint method are that it

is almost entirely automatic, applicable to any PDE solver

and exactly consistent. Because the process of AD allows

us to treat arbitrary expressions exactly, we are able to

produce sensitivities that are perfectly consistent with

those that would be obtained with an exact numerical

differentiation of the original solver. Thus, typical

approximations made in the development of adjoint

solvers (such as neglecting contributions from the

variations resulting from turbulence models, spectral

radii, artificial dissipation and upwind formulations) are

not made here.

While the ADjoint method does not constitute a fully

automatic way of obtaining sensitivities like pure AD, it is

much faster in terms of execution time and drastically

reduces the memory requirements.

In the next section, we review the background material

that is relevant to our work, namely analytic sensitivity

analysis methods and AD. We then discuss how the

ADjoint approach was implemented in two distinct flow

A. C. Marta et al.308

solvers. In the results section, we establish the precision of

the desired sensitivities and analyse the performance of

the ADjoint method.

2. Background

2.1 Optimal design

In the context of optimization, a generic design problem

can be posed as the minimization of a function of interest,

I, (also called cost function or figure of merit) with respect

to a vector of design variables x, while satisfying a set of

constraints. The cost function depends directly on the

design variables and on the state of the system, w, that may

result from the solution of a governing equation. Thus, we

can write the vector-valued function I as

I ¼ Iðx;wÞ: ð1Þ

For a given vector x, the solution of the governing

equations subject to appropriate boundary conditions (BC)

yields a vector, w, thus establishing the dependence of the

state of the system on the design variables. We denote

these governing equations by

Rðx;wðxÞÞ ¼ 0: ð2Þ

In mathematical terms, this design problem can be

expressed as

Minimize Iðx;wðxÞÞ w:r:t x;

subject to Rðx;wðxÞÞ ¼ 0

Ciðx;wðxÞÞ ¼ 0 i ¼ 1; . . . ;m;

ð3Þ

where Ciðx;wðxÞÞ ¼ 0 represents m additional constraints

that may or may not involve the flow solution.

When using a gradient-based optimizer to solve the

design problem (3), the sensitivity of both the cost

function I and the constraints Ci with respect to the design

variables x are required, that is, dI=dx and dCi=dx have to

be determined.

2.2 Semi-analytic sensitivity analysis

Semi-analytic methods are usually capable of computing

derivatives with the same precision as the quantity that is

being differentiated and can also be very efficient.

Our intent is to calculate the sensitivity of the function

of interest (or vector of functions) with respect to a very

large number of design variables.

As a first step towards obtaining the derivatives that we

ultimately want to compute, we use the chain rule to write

the total sensitivity of the vector-valued function I as

dI

dx
¼

›I

›x
þ

›I

›w

dw

dx
; ð4Þ

where the sizes of the sensitivity matrices are

›I

›x
ðNI £ NxÞ;

›I

›w
ðNI £ NwÞ;

dw

dx
ðNw £ NxÞ; ð5Þ

NI is the number of functions of interest, Nx the number of

design variables and Nw the size of the state vector, which

for the solution of a large, 3D problem involving a system

of conservation laws, can be very large.

It is important to distinguish the total and partial

derivatives in these equations. The partial derivatives

can be directly evaluated by varying the denominator

and re-evaluating the function in the numerator with

everything else held constant. The total derivatives

however, require the solution of the governing equations.

Thus, for typical cost functions, all the terms in the total

sensitivity equation (4) can be computed with relatively

little effort except for dw=dx.

Since the governing equations must always be satisfied,

the total derivative of the residuals (2) with respect to

any design variable must also be zero. Expanding the total

derivative of the governing equations with respect to the

design variables we can write,

dR
dx

¼
›R
›x

þ
›R
›w

dw

dx
¼ 0: ð6Þ

This expression provides the means for computing the total

sensitivity of the state variables with respect to the design

variables, dw=dx. To this end, we rewrite equation (6) as

›R
›w

dw

dx
¼ 2

›R
›x

; ð7Þ

where we have defined the following sensitivity matrices,

›R
›w

ðNw £ NwÞ;
›R
›x

ðNw £ NxÞ: ð8Þ

Thus, the sensitivity analysis problem given by

equations (4) and (7) can be written as,

dI

dx
¼

›I

›x
þ

›I

›w

dw

dx
; such that

›R
›w

dw

dx
¼ 2

›R
›x

: ð9Þ

The final sensitivity can be also obtained by solving the

dual of this problem (Giles and Pierce 2000). The dual

problem can be derived as follows. If we substitute the

solution of the linear system (7) into the total sensitivity

equation (4) we obtain hl

dI

dx
¼

›I

›x
2

›I

›w

›R
w

� �21
›R
›x

: ð10Þ

Discrete adjoint solvers using automatic differentiation 309

Defining cT ¼ ð›IÞ=ð›wÞ½›R=›w�21, whose size is

ðNw £ NIÞ, we can write the problem as

dI

dx
¼

›I

›w
2 cT ›R

›x
;

such that
›R
›w

� �T

c ¼
›I

›w

� �T

:

ð11Þ

The most computationally intensive step for both of

these problems (9,11) is the solution of the corresponding

linear systems. In the case of the original problem (9)—the

direct method—we have to solve a linear system of Nw

equations Nx times. For the dual problem (11)—the

adjoint method—we solve a linear system of the same size

NI times. Thus, the choice of which of these methods to

use depends largely on how the number of design

variables, Nx, compares to the number of functions of

interest, NI . When NI .. Nx, the adjoint approach of

equation (11) is the logical choice. If, instead, Nx .. NI ,

then the direct method should be used.

When it comes to implementation, there are two main

ways of obtaining the adjoint equations (11) for a given

system of PDEs. The continuous adjoint approach forms a

continuous adjoint problem from the governing PDEs and

then discretizes this problem to solve it numerically. The

discrete adjoint approach first discretizes the governing

PDE and then derives an adjoint system for these discrete

equations. Each of these approaches results in a different

system of linear equations that, in theory, converge to the

same result as the mesh is refined.

The discrete approach has the advantage that it can be

applied to any set of governing equations, it can treat

arbitrary cost functions, and the sensitivities are consistent

with those produced by the discretized solver. Further-

more, it is easier to obtain the appropriate BC for the

adjoint solver in a discrete fashion. In this work, we adopt

the discrete approach. Although our automated way of

constructing discrete adjoint solvers will usually require

more memory than the continuous adjoint, it is our opinion

that the advantages mentioned earlier greatly outweigh

this disadvantage.

2.3 CFD adjoint equations

We will now derive the adjoint equations for the particular

case of our two distinct Euler and MHD flow solvers.

The governing PDEs for the 3D Euler equations are, in

conservation form,

›w

›t
þ

›E

›x
þ

›F

›y
þ

›G

›z
¼ 0; ð12Þ

where w is the vector of conservative variables and E, F
and G are the inviscid fluxes in the x, y and z directions,

respectively, defined as

w ¼

r

ru

rv

rw

rE

0
BBBBBBBB@

1
CCCCCCCCA
; E ¼

ru

ru2 þ p

ruv

ruw

rHu

0
BBBBBBBB@

1
CCCCCCCCA
;

F ¼

rv

rvu

rv2 þ p

rvw

rHv

0
BBBBBBBB@

1
CCCCCCCCA

and G ¼

rw

rwu

rwv

rw2 þ p

rHw

0
BBBBBBBB@

1
CCCCCCCCA
;

ð13Þ

where r is the density, u, v and w are the Cartesian

velocity components, p is the static pressure and H is the

total enthalpy, which is related to the total energy by

H ¼ E þ ð p=rÞ.
Our second solver implements a version of the MHD

equations. The equations governing the 3D flow of a

compressible conducting fluid in a magnetic field are

obtained by coupling the Navier–Stokes equations to the

Maxwell equations. If the environment of interest is

characterized by a low magnetic Reynolds number, then

the magnetic field induced by the current is much smaller

than that imposed on the flow and therefore it can be

neglected (Gaitonde 2005). In this way, there is no need to

solve the three induction equations in the governing

equations and the electromagnetic forces and energy show

up as source terms in the Navier–Stokes equations.

Furthermore, if the viscous effects and heat transfer are

neglected, the Navier–Stokes equations can be simplified

to the Euler equations. In this case, the non-dimensional

MHD equations governing the flow are given by equation

(12) with a source term S added to the right-hand side

(RHS). S includes the magnetic field terms and can be

shown to be

S¼

0

Qs ½BzðEyþwBx2uBzÞ2ByðEzþuBy2vBxÞ�

Qs ½BxðEzþuBy2vBxÞ2BzðExþvBz2wByÞ�

Qs ½ByðExþvBz2wByÞ2BxðEyþwBx2uBzÞ�

Qs ½ExðExþvBz2wByÞþEyðEyþwBx2uBzÞ

þEzðEzþuBy2vBxÞ�

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

ð14Þ

where B is the magnetic field, E is the electric field, s is the

electrical conductivity and Q is the magnetic interaction

parameter defined as Q ¼ ðsB2LÞ=ðrUÞ ¼ RbRes. The

other non-dimensional parameters found in this formulation

are the magnetic force number, Rb and the magnetic

A. C. Marta et al.310

Reynolds number, Res, given by

Rb ¼
B2

rU 2mm

and Res ¼ mmsUL; ð15Þ

where mm represents the magnetic permeability of the

medium.

It must be noted that the derivation presented here is for

both the Euler and the low magnetic Reynolds number

MHD equations, but since our approach is only based on

the existence of a computer program that evaluates the

residual of the governing equations, the procedure can be

extended to the full Reynolds-averaged Navier–Stokes

equations and the full MHD equations, respectively,

without modification. Note that the code for the residual

computation is assumed to include the application of the

required BC (however complex they may be) and any

artificial dissipation terms that may need to be added for

numerical stability.

A coordinate transformation from physical coordinates

Xi ¼ ðx; y; zÞ to computational coordinates jj ¼ ðj;h; zÞ is

used. This transformation is defined by the metrics

Kij ¼
›Xi

›jj

� �
; K21

ij ¼
›ji

›Xj

� �
; ð16Þ

J ¼ detðK21Þ; Sij ¼
1

J
K21

ij ; ð17Þ

where Sij represents the areas of the face in the ji direction

of each cell, projected on to each of the physical

coordinate directions Xj.

The governing equations in computational coordinates

can then be written as

› �w

›t
þ

› �E

›j
þ

› �F

›h
þ

› �G

›z
¼ �S; ð18Þ

where the state, the fluxes vectors and the source terms in

the computational coordinates are given by

�w ¼ w
J

�E ¼ 1
J
ðjxEþ jyFþ jzGÞ

�F ¼ 1
J
ðhxEþ hyFþ hzGÞ

�G ¼ 1
J
ðzxEþ zyFþ zzGÞ

�S ¼ 1
J
S

8>>>>>>>><
>>>>>>>>:

ð19Þ

In semi-discrete form the governing equations are

dwijk

dt
þRijkðwÞ ¼ 0; ð20Þ

where R is the residual described earlier with all of its

components (inviscid fluxes, BC, artificial dissipation,

etc.) and the triad ijk represents the three computational

directions.

The adjoint equations (11) can be re-written as

›R
›w

� �T

c ¼
›I

›w

� �T

: ð21Þ

where c is the adjoint vector. The total sensitivity (4) in

this case is

dI

dx
¼

›I

›x
2 cT ›R

›x
: ð22Þ

We propose to compute the partial derivative matrices

›R=›w, ›I=›w, ›I=›x and ›R=›x using AD instead of

manual differentiation or finite-differences. Where appro-

priate we will use the reverse mode of AD.

2.4 Adjoint-based optimization algorithm

By constructing the adjoint system of equations (21) and

solving for the vector of adjoint variables, c, the sensitivity

of the cost function is simply given by equation (22).

The exact manner in which the constraints are

incorporated in the design depends on the framework

used: the direct incorporation is typical for a few

constraints; however, if there is an extremely large number

of constraints, a lumped method is advisable to reduce the

number of necessary adjoint solutions. If any of the Ci

constraints is active in the design space during the

optimization, then an additional adjoint system has to be

solved for each additional constraint function, Ci, which

includes the computation of a new RHS for the system (21).

The sensitivity obtained from (22) can then be used to

find the search direction of any gradient-based optimization

algorithm as indicated in the block diagram in figure 1.

2.5 Automatic differentiation

AD, also known as computational differentiation or

algorithmic differentiation, is based on the application of

the chain rule of differentiation to computer programs.

The method relies on tools that automatically produce

Figure 1. Schematic of the adjoint-based optimization algorithm.

Discrete adjoint solvers using automatic differentiation 311

a program that computes user specified derivatives based

on the original program.

We denote the independent variables as t1; t2; . . . ; tn,

which, for our purposes, are the same as the design

variables, x. We also need to consider the dependent

variables, which we write as tnþ1; tnþ2; . . . ; tm. These are

all the intermediate variables in the algorithm, including

the outputs, I, that we are interested in. We can then write

the sequence of operations in any algorithm as

ti ¼ f iðt1; t2; . . . ti21Þ; i ¼ nþ 1; nþ 2; . . . ;m: ð23Þ

The chain rule can be applied to each of these

operations and is written as

›ti

›tj
¼

Xi21

k¼1

›f i

›tk

›tk

›tj
; j ¼ 1; 2; . . . ; n: ð24Þ

Using the forward mode, we choose one j and keep it

fixed. We then work our way forward in the index i until

we get the desired derivative. The reverse mode, on the

other hand, works by fixing i, the desired quantity we want

to differentiate, and working our way backwards in the

index j all the way down to the independent variables.

The two modes are directly related to the direct and

adjoint methods. The counterparts of the state variables in

the semi-analytic methods are the intermediate variables,

and the residuals are the lines of code that compute those

quantities.

There are two main approaches to AD: source code

transformation and operator overloading. Tools that use

source code transformation add new statements to the

original source code that compute the derivatives of the

original statements. The operator overloading approach

consists of defining a new user defined type that is used

instead of real numbers. This new type includes not only

the value of the original variable, but the derivative as

well. All the intrinsic operations and functions have to be

redefined (overloaded) in order for the derivative to be

computed together with the original computations. The

operator overloading approach results in fewer changes to

the original code but is usually less efficient.

There are AD tools available for a variety of

programming languages including Fortran, C/Cþþ and

Matlab. ADIFOR (Carle and Fagan 2000), TAF (Giering

and Kaminski 2002), TAMC (Gockenbach 2000) and

Tapenade (Hascoët and Pascual 2004, 2005) are some of

the tools available for Fortran. Of these, only TAF and

Tapenade offer support for Fortran 90, which was a

requirement in our case.

We chose to use Tapenade as it is the only non-

commercial tool with support for Fortran 90. Tapenade is

the successor of Odyssée (Faure and Papegay) and was

developed at INRIA. It uses source transformation and can

perform differentiation in either forward or reverse mode.

Furthermore, the Tapenade team is actively developing

their software and has been very responsive to a number

of suggestions towards completing their support of the

Fortran 90 standard.

In order to verify the results given by the ADjoint

approach applied to the cell-centred Euler solver we

decided to use the complex-step derivative approximation

(Martins et al. 2003) as our benchmark. Unlike finite-

differences, this method is not subject to subtractive

cancellation and enables us to make much more

conclusive comparisons when it comes to accuracy.

However, it requires the transformation of all the real

variables in the source code to complex numbers. This was

easily accomplished by running a custom made Python

script that automatically generated the transformed

Fortran code. The complex-step formula is given by

dI

dx
¼

Im½Iðxþ ihÞ�

h
; ð25Þ

where the design variable is perturbed by a small pure

complex-step, which is typically less than Oð10220Þ.

A point worth noting is that the complex-step method is

equivalent to the forward-mode using operator over-

loading (Martins et al. 2001).

However, the complex-step was not used to verify the

ADjoint approach applied to the vertex-centred MHD

solver because the script cannot handle the multi-

processor functionality correctly yet. For that case, we

were forced to use a forward-difference sensitivity

approximation given by

dI

dx
¼

Iðxþ hÞ2 IðxÞ

h
: ð26Þ

In this case, special care has to be taken when choosing the

perturbation step h.

3. Implementation on a cell-centred Euler solver

The first solver we used as a test bed is the Stanford

University multi-block (SUmb) flow solver (Van der

Weide et al. 2006) that has been developed at Stanford

University under the sponsorship of the Department of

Energy. SUmb is a completely generic, finite-volume, cell-

centred, multi-block solver for the Reynolds-averaged

Navier–Stokes equations (steady, unsteady, and time-

spectral) and it provides options for a variety of turbulence

models with one, two and four equations. Since this first

implementation is a proof-of-concept for the ADjoint

approach, only the single-block, single-processor, Euler

capabilities of the SUmb solver were tested.

For purposes of demonstration, the necessary steps that

need to be taken to compute the derivatives of the

coefficient of drag with respect to the free-stream Mach

number, i.e. I ¼ CD and x ¼ M1, are covered in the next

subsections.

A. C. Marta et al.312

3.1 Brief summary of the discretization

The spatial discretization for the SUmb solver is done on a

block by block basis, with each block surrounded by halo

cells to facilitate the communication between the different

blocks in the computational domain. Each block is

discretized using a cell-centred, finite-volume scheme.

The inviscid flux terms only require one level of adjacent

cells, while the artificial dissipation fluxes require two

levels of adjacent cells. Thus for a single cell residual

calculation, this leads to the stencil shown in figure 2. The

BC are enforced by altering the states in the halo cells.

3.2 Computation of ›R=›w

The flux Jacobian, ›R=›w, is independent of the choice of

function or design variable—it is simply a function of the

governing equations, their discretization, and the problem

BC. To compute it we need to consider the routines in the

flow solver that, for each iteration, evaluate the residuals

based on the values of the flow variables, w, within the

discretization stencil. The computation of the residual in

SUmb can be summarized as follows:

i) Compute inviscid fluxes: for our inviscid flux

discretization the only flow variables, w, that

influence the residual at a cell are the flow variables

at that cell and at the six cells that are adjacent to the

faces of the cell.

ii) Compute artificial dissipation fluxes: for this portion

of the residual, the flow variables in the current cell

and in 4 adjacent cells in each of the three directions,

a total of 12, need to be considered, as shown in

figure 2.

iii) Compute viscous fluxes: this computation requires a

stencil that includes all the cells directly surrounding

the cell in question, totaling 26 cells. It must be

noted, however, that in this work we have chosen not

to include the computation of the viscous fluxes.

iv) Apply BC.

In order to compute the flux Jacobian, a single cell

version of the residual computation code was generated,

based on the stencil shown in figure 2. Using this new

single cell routine, AD was used to generate code that

would compute the elements of the flux Jacobian related to

the residuals in that single cell. The development of the

single cell residual calculation code was straightforward

and took less than two working days to obtain, including

the proper BC handling. In this particular implementation,

Tapenade was used to produce reverse mode differentiated

code. This was done because for this stencil the number of

input variables, w, is significantly larger than the number

of output variables, R, a situation for which reverse mode

is far more efficient. Further, because of the sparse nature

of the flux Jacobian, this computation allows us to

generate an entire column of the flux Jacobian at one time.

A more detailed discussion as to why the reverse mode is

more efficient in this case was presented by Martins et al.

(2006b).

3.3 Computation of ›CD=›w and other partial
derivatives

The other partial derivative terms required for total

sensitivities, including ›I=›w, ›I=›x and ›R=›x are

calculated using a forward mode differentiation of

modified versions of the original SUmb. In this case the

forward mode was used for simplicity; however, for both

cost function sensitivities, the reverse mode would be

more efficient. In the case of the ›R=›x term, forward

mode is more efficient because there are fewer design

variables x than residuals R. A more detailed discussion

relating to these points can be found in Martins et al.

(2006b).

3.4 Adjoint solver

The adjoint equations (21) can be re-written for this

specific case as

›R
›w

� �T

c ¼
›CD

›w

� �T

: ð27Þ

As we have pointed out, both the flux Jacobian and the

RHS in this system of equations are very sparse. To solve

this system efficiently, and having in mind that we want to

have a parallel adjoint solver, we decided to use the PETSc

library (Balay et al. 1997, 2004, 2006). PETSc is a suite of

data structures and routines for the scalable, parallel

solution of scientific applications modeled by PDEs.

It employs the message passing interface (MPI) standard

MPI (1994) for all interprocessor communication, it has

several linear iterative solvers and preconditioners

available and performs very well, provided that a careful

object creation and assembly procedure is followed.

Using PETSc’s data structures, ›R=›w and 2›CD=›w
were stored as sparse entities. Once the sparse matrices areFigure 2. Stencil for the cell-centred residual computation.

Discrete adjoint solvers using automatic differentiation 313

filled, PETSc’s built-in preconditioned Krylov solver is

used to compute the adjoint solution.

3.5 Total sensitivity equation

The total sensitivity (22) in this case can be written as

dCD

dM1

¼
›CD

›M1

2 cT ›R
›M1

; ð28Þ

where we have chosen the free-stream Mach number, M1,

to be the independent variable. Thus, with the adjoint, c,

computed and the remaining partial terms computed, a

simple matrix multiplication is performed in PETSc to

compute the total derivative.

4. Implementation on a vertex-centred MHD solver

The second solver we have used is the NSSUS flow solver.

This solver is a new finite-difference, higher-order solver

that has been developed at Stanford University under the

ASC (2007) program sponsored by the Department of

Energy.

It is a generic node-centred, multi-block, multi-

processor solver, currently only for the Euler equations,

but soon to be extended to the Reynolds-Averaged

Navier–Stokes equations. The finite-difference operators

and artificial dissipation terms follow the work of

Mattsson and Nordström (2004a), Mattsson et al.

(2004b) and the BC are implemented by means of penalty

terms, according to the work of Carpenter et al. (1994,

1999). The additional magnetic source terms (14) had to

be included in this solver so that MHD computations could

be performed. Although the solver could perform

computations up to eight-order accuracy, the implemen-

tation of the adjoint solver was restricted to second-order

for simplicity. The extension should be straightforward to

accomplish. All the lessons learned from the previous

implementation were re-used. The two major differences

were the treatment of the BC and the multi-block

processing, both of which are described below.

In this implementation, the lift (CL) and drag (CD)

aerodynamic coefficients were used as the cost functions

and the electrical conductivity s in every computational

node was taken as the set of design variables. As seen in

the results section, this led to a total of 3,62,362 design

variables for the computational mesh used.

4.1 Brief summary of the discretization

This section summarizes the essence of the spatial

discretization, which is needed for the explanation

provided in section 4.2. For more details see Mattsson

and Nordström (2004a), Mattsson et al. (2004b) and

Carpenter et al. (1994, 1999).

The spatial part of equation (18) is discretized on a

block-by-block basis. The internal discretization is

straightforward and only requires the first neighbours in

each coordinate direction for the inviscid fluxes and the

first and second neighbours for the artificial dissipation

fluxes, see figure 3. However, the boundary treatment

needs to be explained in more detail.

As the finite-difference scheme only operates on the

nodes of a block, one-sided difference formulae are used

near block boundaries (be it a physical or an internal

boundary). Consequently, the nodes on internal bound-

aries are multiply defined, see figure 4. These multiple

instances of the same physical node are driven to the same

value (at convergence) by means of a penalty term, i.e. an

additional term is added to the residual R which is

proportional to the difference between the instances. This

reads

Ri
block A ¼ Ri

block A þ tðwi
block B 2 wi

block AÞ; ð29Þ

and a similar expression can be derived for Ri
block B. In

equation (29), t controls the strength of the penalty and is

a combination of a user defined parameter and the local

flow conditions (see (Mattsson and Nordström 2004a) for

more details). Hence, the residual of nodes on a internal

block boundary is a function of its local neighbours

in the block and the corresponding instance in the

neighbouring block.

The BC treatment is very similar to the approach

described above except that the penalty term used in

equation (29) is now determined by the BC.

Figure 4. Block-to-block boundary stencil.

Figure 3. Stencil for the vertex-centred residual computation.

A. C. Marta et al.314

4.2 Computation of ›R=›w

In order to compute the flux Jacobian, only the routines in

the flow solver that for each iteration, compute the

residuals based on the flow variables w were considered.

In the present case, the residual Rijk in equation (20) is

computed using the following steps:

i) Compute inviscid fluxes: for our inviscid flux

discretization the only flow variables, w, that

influence the residual at a node are the flow variables

at that node and at the six nodes that are first

neighbours to the node along each computational

direction.

ii) Compute artificial dissipation fluxes: for each of the

Nn nodes in the domain, compute the contributions

of the flow variables to the residual at that node. For

this portion of the residual, the flow variables in the

current node and in the first- and second-neighbour

nodes in each of the three coordinate directions need

to be considered.

iii) Compute magnetic source terms: these only depend

on the flow variables at the current node.

iv) Apply BC: additional penalty terms are added to

enforce the BCs, see section 4.1. Note that internal

block boundaries are also considered as boundaries.

Similarly to the SUmb solver, the baseline implemen-

tation of NSSUS computes the residual using nested loops

over the nodes of each computational block on each of the

processors used in the calculation. To make the

implementation of the discrete adjoint solver more

efficient, it was necessary to re-write the flow residual

routine such that it computed the residual for a single

specified node. These routines were developed by cutting

and pasting from the original flow solver routines, a

process which turned out to be straightforward and that

could be completed in roughly one day of work. The re-

engineered residual routine is a function with the residuals

at a given node, rAdj, is returned as an output argument,

and the stencil of flow variables, wAdj, that affect the

residuals at that node is provided as an input argument,

subroutine residualAdj (wAdj,rAdj,i,j,k),

for each node in each block on each processor. Any required

Fortran pointers were set before calling the routine due to

the current pointer handling limitations in Tapenade.

The stencil of flow variables wAdj that affects the

residualrAdj in a given node(i,j,k) extends two nodes

in each direction to allow for a second-order discretization

as described in section 4.1. In this case, the number of nodes

in the stencil whose variables affect the residual of a given

node is Ns ¼ 13. This re-engineered residual routine

residualAdj computes Nw residuals in a given node

that depend on all ðNw £ NsÞ flow variables in the stencil.

The BC penalty terms were moved to a separate routine,

subroutine residualPenaltyAdj (wAdj,rAdj,mm,
wDonorAdj,i,j,k).

This routine has two additional input parameters: the

boundary sub-face, mm and the penalty state of the

corresponding donor node, wDonorAdj. Naturally, this

penalty residual routine was only called when the given

node (i,j,k) was located on a boundary face, see

section 4.1.

In order to properly treat the multi-block grid, it was

necessary to setup a global node numbering scheme and

preserve the node connectivity. This allowed for the

proper block boundary treatment when assembling the

flux Jacobian matrix.

Having verified the re-written residual routines by

comparing the residual values to the ones computed with

the original code, these routines were then fed into

Tapenade for differentiation. For the same reasons as the

ones explained in the previous section, the AD was

performed using the reverse mode on the set of routines

residualAdj and residualPenaltyAdj that,

given a node location, compute the residuals of that node

only. The AD process produces the differentiated routines

subroutine residual_B (wAdj,wAdjB,rAdj,
rAdjB,i,j,k)

and

subroutine residualPenaltyAdj_B
(wAdj,wAdjB,rAdj,rAdjB,mm,wDonorAdj,
wDonorAdjB,i,j,k)

.

The Nw £ ðNw £ NsÞ sensitivities that need to be

computed for each node, corresponding to Nw rows in

the ð›RÞ=ð›WÞ matrix, are readily computed by these

automatically differentiated routines in reverse mode. This

is accomplished because all the derivatives in the stencil

can be calculated from one residual evaluation resi-
dualAdj_B since, for each node ði; j; kÞ and governing

equation m,

wAdjBðii; jj; kk; nÞ ¼
›Rði; j; k;mÞ

›wðiþ ii; jþ jj; k þ kk; nÞ
: ð30Þ

where the triad (ii,jj,kk) spans the stencil and n
spans the Nw flow variables. Similarly, the penalty term

contributions are given by the outputs wAdjB and

wDonorAdjB of residualPenaltyAdj_B.

This allows for an easy assembly of the flux Jacobian

matrix ð›RÞ=ð›wÞ as shown in the routine pseudo-code in

figure 5.

4.3 Computation of ›CD=›w

The RHS of the adjoint equations (21) for the functions of

interest CD and CL is easily computed for this flow solver.

Because this specific flow solver works with primitive

variables w ¼ ðr; u; v;w; pÞ and since, for inviscid flow,

CD and CL are simple surface integrations of the pressure,

then the derivatives ›CD=›w and ›CL=›w are always zero

except for w5ð¼ pÞ. Therefore, it became trivial to derive

analytically the expression for these partial derivatives

Discrete adjoint solvers using automatic differentiation 315

from the flow solver routine that calculated the functions

of interest.

4.4 Adjoint solver

With both the Jacobian flux matrix ð›RÞ=ð›wÞ and the

RHS ›CD=›w (or ›CL=›w) computed, we then solved the

adjoint equations (27).

Similarly to section 3.4, the large discrete adjoint

system of equations was solved using PETSc, taking

advantage of its seamless MPI implementation. All the

partial sensitivity matrices and vectors were created as

PETSc objects, and the adjoint system of equations (27)

was solved using a Krylov subspace method. More

specifically, a GMRES method was used, preconditioned

with the block Jacobi method, with one block per

processor, each of which solved with ILU(0)

preconditioning.

4.5 Total sensitivity equation

The total sensitivity (22) in this case can be written as

dCD

ds
¼

›CD

›s
2 cT ›R

›s
; ð31Þ

where we have chosen the electrical conductivity, s, to be

the independent variable. Thus, with the adjoint c

computed, it is necessary to evaluate two additional

terms to form the total sensitivity equation—›CD=›s and

›R=›s.

The first term is easy to evaluate since there is no direct

dependence on CD with respect to the electrical

conductivity s. As such, that term is identically zero.

The second term is also easy to obtain by looking at the

MHD governing equations, in particular to the magnetic

source term (14)—the residual R shows a linear

dependence of s through the source term S. Thus, this

term was computed analytically, the result being a very

sparse matrix, with non-zero entries only along the

diagonal since the residual at a given node depends only

on the conductivity of that same node.

The total sensitivity (31) was then computed using the

matrix-vector multiplication and the vector addition

routines provided in PETSc, as implemented in the

structure of the adjoint solver code, despite the simple

algebra involved in the present test case.

5. Results

The ADjoint approach is used in two different flow

solvers: a cell-centred Euler solver and a vertex-centred

MHD solver. Specific test cases are used to demonstrate

our method for each solver.

5.1 Cell-centred single-processor Euler solver

5.1.1 Description of test case. The test case solved with

SUmb is a 3D bump intended to simulate the top canopy of

a solar car. The mesh contains a pair of bumps in the

Figure 5. Flux Jacobian matrix assembly routine.

A. C. Marta et al.316

middle of a rectangular flow domain. The larger, flatter

bump represents the main body of the vehicle while the

smaller, more pronounced bump in the middle represents

the driver’s canopy. The bottom face of the flow domain is

set as an Euler (inviscid) wall, while the other five faces of

the flow domain are modeled with far-field BC. The free-

stream flow conditions are set at Mach 0.5 at sea level

standard conditions.

The mesh for this test case is shown in figure 6. This

case has a relatively small mesh of 72,000 cells

(30 £ 30 £ 80) for a total of 3,60,000 flow variables.

The run was made on a parallel processor machine, with

32 processors of 1.5 GHz each and a total of 32GB shared

RAM. Due to the adjoint solver implementation, the test

case was run only on a single-processor.

5.1.2 Flux Jacobian. As mentioned in section 3, to

reduce the cost of the AD procedure, we wrote a set of

subroutines that compute the residual of a single, specified

cell. This set of subroutines closely resembles the original

code used to compute the residuals over the whole domain,

except that it considers only a single cell at a time.

We differentiated the single cell residual calculation

routines with Tapenade using the reverse mode, with the

residuals specified as the outputs and the flow variables

specified as the inputs. The resulting code computes the

sensitivity of one residual of the chosen cell with respect

to all the flow variables in the stencil of that cell, i.e. all the

nonzero terms in the corresponding row of ›R=›w. To

obtain the full flux Jacobian, a loop over each of the

residual and cell indexes in each of the three coordinate

directions is necessary.

5.1.3 Other partial derivative terms. In the process of

developing our adjoint solver we visualized the various

partial derivative terms that appear in the adjoint and total

sensitivity equations. Figure 7 shows the sensitivity of a

force coefficient with respect to the density, a state

variable, on the surface of the bump. Only the surface is

shown because the only non-zero terms in the grid are

located in the two layers of cells adjacent to the Euler wall

surface, which is what we expected.

The term ›R=›M1, which is needed for the total

sensitivity equation (28), is shown in figure 8. The figure

shows the sensitivity corresponding to the residual of the

continuity equation. Since the flow is purely in the x

direction, M1 affects only the cells near the inflow and

outflow planes.

5.1.4 Lift and drag coefficient sensitivities. The

benchmark sensitivity results were obtained using the

complex-step derivative approximation (25), which is

numerically exact. That is to say that the precision of the

Figure 6. Mesh for 3D bump test case.

Discrete adjoint solvers using automatic differentiation 317

sensitivity is of the same order as the precision of the

solution. The derivative in this case is given by,

dCD

dM1

¼
Im½CDðM1 þ ihÞ�

h
; ð32Þ

where h represents the magnitude of the complex-step, for

which a value of h ¼ 10220 was used. The sensitivities

given by the complex-step were spot-checked against

finite-differences by doing a step size study.

Table 1 shows the sensitivities of the force coefficients

with respect to free-stream Mach number, at an inlet angle

of 08. We can see that the adjoint sensitivities are

extremely accurate, yielding nine and seven digits

agreement, respectively, when compared to the complex-

step results. This is consistent with the convergence

tolerance that was specified in PETSc for the adjoint

solution—in this test case, both the flow and adjoint

solvers were converged ten orders of magnitude.

The timing results for the ADjoint solver on the 3D

bump case are shown in table 2. The total cost of the

adjoint solver, including the computation of all the partial

derivatives and the solution of the adjoint system, is

approximately one fifth of the cost of the flow solution for

the bump case. This is even better than what is usually

observed in the case of adjoint solvers developed by

conventional means, showing that the ADjoint approach is

indeed very efficient.

When it comes to comparing the performance of the

various components in the adjoint solver, we found that

most of the time was spent in the solution of the adjoint

equations, thus showing that the AD sections are very

efficient. The costliest of the AD routines was the

computation of the flux Jacobian. When one takes into

consideration the number of terms in this matrix, spending

only 3% of the flow solution time in this computation is

very impressive.

The computation of the RHS (›CD=›w) is not much

cheaper than computing the flux Jacobian. However, this is

likely due to the use of forward mode instead of reverse

mode differentiation in the computation of this term. We

expect to improve the computation of this term

significantly in the future.

The measurement of the memory requirements of this

code, shown in table 3, indicate that the memory required

for the ADjoint code is approximately twenty times that

required for the original flow solver. No special care

was taken regarding this issue at this point but, as seen

in the multi-processor implementation this ratio can be

considerably improved.

Figure 7. Partial sensitivity of CD with respect to density.

A. C. Marta et al.318

5.2 Vertex-centred multi-processor MHD solver

5.2.1 Description of test case. The hypersonic vehicle

geometry used for the second test case is a generic vehicle

inspired by the NASA X-43A aircraft (NASA 2006),

which is a scramjet-powered research aircraft capable of

flying at Mach 10 and is shown in figures 9 and 10.

Since the simulation was run without any side-slip

angle, only half the body had to be modeled, with a

symmetry BC imposed on the centre plane. The body wall

was set to be an impermeable Euler wall and the inflow

and outflow surfaces of the surrounding domain had

supersonic BC imposed on them. The free-stream flow

conditions chosen were Mach 5 and an angle of attack of

five degrees.

To simulate the MHD interaction a collection of five

hypothetical dipoles was placed inside the body, at the

locations indicated in table 4, which imposed a magnetic

field on the flow. The vehicle is 20 m long and the

coordinate origin is located at the nose of the vehicle, as

shown in figure 12. Each dipole produced a magnetic field

given by B ¼ ðmmmÞ=ð4pr
3Þ½2 cos uer þ sin ueu�, where r

and u define the dipole orientation and m is the dipole

Figure 8. Partial sensitivity of the continuity residual with respect to M1.

Table 1. Sensitivities of drag and lift coefficients with respect to M1.

Coefficient ADjoint Complex step

CD 1.1211866278 1.1211866250
CL 20.82534905650 20.82534904598

Table 2. ADjoint computational cost breakdown (times in seconds):
bump test case.

Flow solution 946.039

Adjoint 205.567
Breakdown

Setup PETSc variables 0.022
Compute flux Jacobian 29.506
Compute RHS 14.199
Solve the adjoint equations 154.551
Compute the total sensitivity 7.289

Table 3. Memory usage comparison (in MB): bump test case.

Flow Adjoint Ratio

62 1326 21.4 £

Discrete adjoint solvers using automatic differentiation 319

strength. The resulting field given by the superposition of

dipoles is shown in figure 11. Even though only half the

domain was simulated, all of the dipoles were taken into

account when computing the imposed magnetic field. All

the dipoles were set to the same strength and the baseline

electrical conductivity was such that a magnetic Reynolds

number of Res ¼ 0:57 and a magnetic interaction

parameter Q ¼ 0:3 were used.

The mesh for this test case consisted of 14 blocks and a

total of 3,62,362 nodes and is shown in figure 12. The

multi-block computational domain is shown in figure 13.

The runs were made on a parallel processor workstation,

with four 3.2 GHz nodes and 8GB of RAM.

Figures 14 and 15 show the pressure contours for the

flow solution on the top and bottom body surfaces,

respectively, as well as on the plane of symmetry. As

expected there is a large pressure increase close to the

dipoles due to the imposed magnetic field. This effect is

caused by the additional source terms in the MHD

equations. The baseline cost function values are CL ¼

0:07753 and CD ¼ 0:02038, where the reference area was

taken as 96:6 m2.

5.2.2 Flux Jacobian. Similarly to the previous test case,

the ADjoint approach was used on a set of subroutines that

compute the residual of a single, specified node, obtained

mainly through “cut-and-paste” from the original flow

solver code.

5.2.3 Other partial derivative terms. The assembly time

of the Jacobian matrix was 20.34 s, including all the calls

to the automatically differentiated routines and PETSc

matrix functions, whereas the adjoint vector assembly

time was negligible.

Once the adjoint system of equation (27) was set up,

the GMRES solver provided by PETSc was used. To be

Figure 9. Generic hypersonic vehicle: top view.

Figure 10. Generic hypersonic vehicle: bottom view.

Table 4. Dipole locations.

Dipole # Location Orientation

1 (0.5,0,0) (21,0,0)
2/3 (1.5, ^ 0.96,0) (0, ^ 1,0)
4/5 (3.5, ^ 1.24,0) (0, ^ 1,0)

A. C. Marta et al.320

consistent with the flow solver, the adjoint solution

residual convergence criterion was also set to 10210. Side

tests showed that even when the convergence was relaxed

to 4–6 orders of magnitude, the total sensitivities

computed with the ADjoint hardly changed. This becomes

particularly useful if this tool is to be used in a design

engineering framework, where fast turnaround time is

crucial. The iterative solver consistently shows very good

robustness and convergence properties. For the different

cost functions tested, the convergence was typically

achieved after about 100 iterations, which took 187 s to

run. It is relevant to note that no restart was used in the

GMRES solver, meaning all 100 Krylov subspaces were

stored during the iterative procedure. The residual history

of the adjoint solution using PETSc for both I ¼ CL and

I ¼ CD is illustrated in figure 16.

Figure 11. Imposed magnetic field.

Figure 12. Mesh: bottom view (coarsened three levels for visualization).

Discrete adjoint solvers using automatic differentiation 321

The adjoint solution corresponding to the flow pressure

for I ¼ CD is shown in figures 17 and 18. It is interesting

to point out that the adjoint solution, for the cost functions

used in this work is similar to the flow solution, except that

the flow direction is reversed. This occurrence has already

been observed in other works involving the adjoint method

(Lee et al. 2006).

5.2.4 Lift and drag coefficient sensitivities. Once the

adjoint solution is obtained, the total sensitivity can then

be computed using equation (28), thus requiring the

calculation of the partial derivatives ›R=›a and ›I=›a.

However, since the design variables chosen were the

electrical conductivity in each computational node, these

partial derivatives were computed analytically: R depends

linearly on s due to its MHD source term and the

aerodynamic coefficients used as cost function I do not

depend explicitly on s.

The total sensitivity was then computed for the

different cost functions and exists everywhere in the

volume since the design variable s spanned the entire

problem domain. For visualization purposes, the values

are shown only at the body surface and symmetry plane.

Figure 13. Multi-block domain.

Figure 14. Contour plot of pressure: top view.

A. C. Marta et al.322

Figures 19 and 20 show the drag coefficient sensitivity

with respect to the electrical conductivity ðdCD=dsÞ. As

expected, these sensitivities are greatest close to the

location of the dipoles, where the imposed magnetic field

is stronger.

A performance analysis was also conducted for this

multi-block implementation and the detailed compu-

tational costs are summarized in table 5. It is important to

notice that the flow solver has not been optimized for

MHD computations yet. The additional source terms in

the MHD equations make the numerical solution much

less stable, and because we used an explicit 5-stage

Runge–Kutta time integration scheme, the runs had to be

made at significantly lower CFL numbers (0.1). Conse-

quently, it took almost 6 h for the flow solver residual

to converge ten orders of magnitude. This clearly rules out

the use of finite-differences to compute cost function

gradients and highlights the importance of an alternative

approach such as the discrete adjoint-based gradients.

Moreover, the slow convergence highlights the need for an

implicit treatment of the source terms in the MHD solution

that we intend to pursue in the near future.

The total cost of the adjoint solver, including the

computation of all the partial derivatives and the solution

of the adjoint system, is only one tenth the cost of the flow

solution for this case. Again, this is not truly representative

of reality as the flow solver can still be optimized for

MHD, but it clearly shows once again that the ADjoint

approach is very efficient. Considering the fact that this

test case is approximately 30 times larger than the

previous one and that it runs on four processors, the

adjoint solver cost scales roughly linearly with problem

size and number of processors, which is a much desired

property. Once again, the solution of the adjoint equations

was the component that took most of the time in the

adjoint solver, whereas the AD sections represented less

than 10% of the time, proving once again its efficiency.

The memory usage running this multi-processor test

case was assessed by monitoring the virtual memory used

by each processor. The observations summarized in table 6

confirm that the ADjoint solver required approximately

ten times more memory than the original flow solver. The

point is that our current computations use 1/10 of the

memory available because we (and all designers) want to

decrease the turnaround time. Also, given the pattern of

use on most parallel computers, this is well within the

acceptable limits for an adjoint code.

The sensitivities obtained using the discrete adjoint

approach were matched against values obtained using the

forward finite-difference solution. The comparison was

made using two control nodes located on the body surface,

Figure 15. Contour plot of pressure: bottom view.

Figure 16. Adjoint residual convergence history.

Discrete adjoint solvers using automatic differentiation 323

Figure 18. Adjoint of pressure for I ¼ CD: bottom view.

Figure 19. Drag coefficient sensitivity with respect to s : top view.

Figure 17. Adjoint of pressure for I ¼ CD: top view.

A. C. Marta et al.324

over the magnetic dipoles location, the first control node

located at coordinates (0.26, 0.14, 0.12) and the second at

(1.35, 1.22, 0.25). The results are summarized in table 7

using two different finite-difference perturbation step

sizes: 0.05 and 0.1%.

The values in table 7 demonstrate two things: firstly, the

agreement between the two different approaches is

excellent, successfully verifying the adjoint-based gradi-

ent values; secondly, it shows how the finite-difference

approach is sensitive to the chosen perturbation step. This

verification also revealed that it would have been

computationally prohibitive to compute the sensitivities

with respect to such large numbers of design variables

using anything but the adjoint method—to get the flow

solver to converge (starting from the baseline solution)

every time the electrical conductivity was perturbed in a

single node in the domain, took roughly 2 h. Extrapolating

to all nodes, corresponding to the 3,62,362 design

variables, it would have taken over eighty years to obtain

the same results that took less than 4 min for the adjoint

method described. However, in realistic design problems

with optimized flow and adjoint solvers, 5–10 cost

functions and about 100 design variables, the automatic

discrete adjoint-based gradients are expected to be at least

20–50 times faster compared with finite-difference

approximations.

6. Conclusions

We have presented a new methodology for developing

discrete adjoint solvers for arbitrary governing equations.

The implementation of the ADjoint method was largely

automatic, since no hand differentiation of the equations

or adjoint BC was necessary.

This approach has the advantage that it uses the reverse

mode of differentiation on the code that computes the

residuals on a cell-per-cell (or node-per-node) basis for

the governing equations and it is therefore time-efficient.

The automatically differentiated code is used to populate

only the non-zero entries of the large discrete adjoint

system, treating one complete row at the time, given the

stencil of dependence of the flow residual.

The timings presented show that the ADjoint approach

is much faster than pure AD, and even “manual adjoint”

solvers, even though our codes have yet to be fully

optimized. In multi-processor test cases up to Oð105Þ

nodes, the linear solve in the adjoint equations took

approximately one tenth of the flow solve time itself and is

shown to scale well with both problem size and number of

processors.

The major advantage of the ADjoint approach when

compared to traditional approaches is the fact that it

drastically reduces the implementation time—while the

typical development of an adjoint solver could take up to a

year of work, the ADjoint can take as little as a week,

Figure 20. Drag coefficient sensitivity with respect to s : bottom view.

Table 5. ADjoint computational cost breakdown (wall clock time in
seconds): hypersonic test case.

Flow solution 20,812

Adjoint 208.27
Breakdown

Setup PETSc variables 0.83
Compute flux Jacobian 20.34
Compute RHS 0.01
Solve the adjoint equations 186.76
Compute the total sensitivity 0.33

Table 6. Memory usage comparison (in MB): hypersonic test case.

Proc. Flow Adjoint Ratio

1 102 1295 12.7 £
2 97 1063 11.0 £
3 93 1040 11.2 £
4 86 856 10.0 £
Total 378 4254 11.2 £

Discrete adjoint solvers using automatic differentiation 325

provided a well written flow solver is already available.

However, if this approach is to be used with legacy CFD

codes (typically found in industry), it is crucial that a

complete knowledge of the subroutine call structure of the

CFD solver is acquired prior to any attempt to use AD.

Once a re-engineered node-based residual routine is built,

as exemplified in section 4.2, the ADjoint approach can

then be rapidly implemented.

Besides expediting the development time, this method

also produces gradients that are exactly consistent with the

flow solver discretization and permits the use of arbitrary

cost functions and design variables.

The ADjoint approach was successfully applied to two

distinct flow solvers—a cell-centred single-block Euler

solver and a vertex-centred multi-block MHD solver—and

the total sensitivities obtained from the corresponding

discrete adjoint solvers showed excellent agreement with

the benchmark results produced by complex-step and

finite-difference methods. This also highlighted the large

computational savings that result from using the discrete

adjoint method when compared to other methods, such as

finite-differences and complex-stepping.

The ADjoint approach described is particularly well

suited to compute the gradients of any cost function in an

optimization problem involving any set of governing

equations that can be cast in the form Rðx;wðxÞÞ ¼ 0,

when the number of design variables considerably

outnumbers the number of cost functions or when the

solution of the governing equations is computationally too

expensive to allow the use of finite-differences.

Currently, few research groups have been able to

develop adjoint codes, largely due to the sheer effort

required. It is our opinion that the ADjoint approach will

facilitate the implementation of adjoint methods and that it

will be a popular choice among researchers wishing to

perform efficient sensitivity analysis and optimization.

The benefits of the ADjoint approach outweigh its

drawbacks and the increased memory requirement is

definitely worthwhile.

Acknowledgements

We would like to thank San Gunawardana for providing

the generic hypersonic vehicle multi-block mesh. The first

and fifth authors are grateful for the Air Force Office of

Scientific Research contract No. FA9550-04-C-0105

under tasks monitored by John Schmisseur. The first

author also acknowledges the support of the Fundação

para a Ciência e a Tecnologia from Portugal. In addition,

the second and third authors are grateful for the funding

provided by the Canada Research Chairs program and the

Natural Sciences and Engineering Research Council.

References

ASC, Advanced simulation and computing, http://www.llnl.gov/asc
(accessed in March 2007).

Balay, S., Gropp, W.D., McInnes, L.C. and Smith, B.F., Efficient
management of parallelism in object oriented numerical software
libraries. In Proceedings of the Modern Software Tools in Scientific
Computing, edited by E. Arge, A.M. Bruaset and H.P. Langtangen,
pp. 163–202, 1997 (Birkhäuser Press: Boston).

Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D.,
Knepley, M.G., McInnes, L.C., Smith, B.F. and Zhang, H., PETSc
user manual, Technical report ANL-95/11—Revision 2.3.0, Argonne
National Laboratory. 2004.

Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,
McInnes, L.C., Smith, B.F. and Zhang, H., PETSc: web page, http://
www.mcs.anl.gov/petsc (accessed in April 2006).

Carle, A. and Fagan, M., ADIFOR 3.0 overview, Technical report
CAAM-TR-00-02, Rice University 2000.

Carle, A., Fagan, M. and Green, L.L., Preliminary results from the
application of automated adjoint code generation to CFL3D. AIAA
Paper 1998–4807, pp. 1998–4807, 1998 (7th AIAA/USAF/NA-
SA/ISSMO Symposium on Multidisciplinary Analysis and Optim-
ization: St. Louis, MO).

Carpenter, M.H., Gottlieb, D. and Abarbanel, S., Time-stable BC for
finite-difference schemes solving hyperbolic systems: methodology
and application to high-order compact schemes. J. Comput. Phys.,
1994, 111(2), 220–236.

Carpenter, M.H., Nordström, J. and Gottlieb, D., A stable and
conservative interface treatment of arbitrary spatial accuracy.
J. Comput. Phys., 1999, 148(2), 341–365.

Cusdin, P. and Müller, J.D., On the performance of discrete adjoint CFD
codes using automatic differentiation. Int. J. Numer. Methods Fluids,
2005, 47(6–7), 939–945.

Driver, J. and Zingg, D.W., Optimized natural-laminar-flow airfoils.
Proceedings of the 44th AIAA Aerospace Sciences Meeting and
Exhibit, AIAA 2006-0247, January 2006 Reno, NV).

Dwight, R.P. and Brezillon, J., Proceedings of the 44th AIAA Aerospace
Sciences Meeting and Exhibit, 2006-0690, January 2006 Reno, NV).

Fagan, M. and Carle, A., Reducing reverse-mode memory requirements
by using profile-driven check-pointing. Future Generation Comp.
Syst., 2005, 21(8), 1380–1390.

Faure, C. and Papegay, Y., Chapter title, Odyssée Version 1.6: The
Language Reference Manual, INRIA Rapport Technique 211.

Forth, S.A. and Evans, T.P., Aerofoil optimisation via automatic
differentiation of a multigrid cell-vertex Euler flow solver. In
Automatic Differentiation: From Simulation to Optimization, edited
by G. Corliss, C. Faure, A. Griewank, L. Hascoet and U. Naumann,
pp. 153–160, 2002 (Springer-Verlag: New York).

Gaitonde, D.V., Simulation of local and global high-speed flow control
with magnetic fields.Proceedings of the 43rd AIAAAerospace Sciences
Meeting and Exhibit, AIAA 2005-0560, Janaury 2005 Reno, NV).

Giering, R. and Kaminski, T., Applying TAF to generate efficient
derivative code of Fortran 77–95 programs. Proceedings of the
GAMM 2002, 2002 (Augsburg: Germany).

Giering, R., Kaminski, T. and Slawig, T., Generating efficient derivative
code with TAF: adjoint and tangent linear Euler flow around an
airfoil. Future Generation Comp. Syst., 2005, 21(8), 1345–1355.

Table 7. Electrical conductivity sensitivity verification: ðdI=daÞ.

Control Node Cost function J Adjoint Finite-difference (5 £ 1024) D (%) Finite-difference (1 £ 1023) D (%)

1 CL 21.4850 £ 1025 21.4906 £ 1025 0.38 21.5041 £ 1025 1.29
CD 2.0896 £ 1026 2.0652 £ 1026 21.16 2.0646 £ 1026 21.19

2 CL 29.8145 £ 1026 29.8914 £ 1026 0.78 21.0037 £ 1025 2.26
CD 1.5272 £ 1026 1.5066 £ 1026 21.35 1.5053 £ 1026 21.44

A. C. Marta et al.326

Giles, M.B. and Pierce, N.A., An introduction to the adjoint approach to
design. Flow Turb. Comb., 2000, 65, 393–415.

Gockenbach, M.S., Understanding Code Generated by TAMC, IAAA
Paper TR00-29 2000 (Department of Computational and Applied
Mathematics, Rice University: Texas, USA).

Griewank, A., Evaluating Derivatives, 2000 (SIAM: Philadelphia).
Hascoët, L. and Pascual, V., TAPENADE 2.1 user’s guide, Technical

report 300, INRIA 2004.
Hascoët, L. and Pascual, V., Extension of TAPENADE towards Fortran

95. In Automatic Differentiation: Applications, Theory, and Tools,
Lecture Notes in Computational Science and Engineering edited by
H.M. Bücker, G. Corliss, P. Hovland, U. Naumann and B. Norris,
2005 (Springer-Verlag: New York).

Heimbach, P., Hill, C. and Giering, R., An efficient exact adjoint of the
parallel MIT general circulation model, generated via automatic
differentiation. Future Generation Comp. Syst., 2005, 21(8),
1356–1371.

Horwedel, J.E., GRESS: a preprocessor for sensitivity studies on Fortran
programs. In Automatic Differentiation of Algorithms: Theory,
Implementation and Application, edited by A. Griewank and G.F.
Corliss, pp. 243–250, 1991 (SIAM: Philadelphia, PA).

Jameson, A., Aerodynamic design via control theory. J. Sci. Comput.,
1988, 3(3), 233–260.

Lee, K.H., Alonso, J.J. and Van der Weide, E., Mesh adaptation criteria
for unsteady periodic flows using a discrete adjoint time-spectral
formulation. Proceedings of the 44th AIAA Aerospace Sciences
Meeting and Exhibit, AIAA 2006-0692, January 2006 Reno, NV).

Marta, A.C. and Alonso, J.J., Discrete adjoint formulation for the ideal
MHD equations. Proceedings of the 3rd AIAA Flow Control
Conference, AIAA 2006-3345, Junuary 2006a San Francisco, CA).

Marta, A.C. and Alonso, J.J., High-speed MHD flow control using
adjoint-based sensitivities. Proceedings of the 14th AIAA/AHI
International Space Planes and Hypersonic Systems and Technol-
ogies Conference, AIAA 2006-8009 November 2006b Canberra,
Australia).

Martins, J.R.R.A., Sturdza, P. and Alonso, J.J., The connection between
the complex-step derivative approximation and algorithmic differen-
tiation. Proceedings of the 39th Aerospace Sciences Meeting, AIAA
2001-0921 2001 Reno, NV).

Martins, J.R.R.A., Sturdza, P. and Alonso, J.J., The complex-step
derivative approximation. ACM Trans. Math. Softw., 2003, 29(3),
245–262.

Martins, J.R.R.A., Alonso, J.J. and Reuther, J.J., High-fidelity
aerostructural design optimization of a supersonic business jet.
J. Aircraft, 2004, 41(3), 523–530.

Martins, J.R.R.A., Alonso, J.J. and Reuther, J.J., A coupled-adjoint
sensitivity analysis method for high-fidelity aero-structural design.
Optim. Eng., 2005, 6(1), 33–62.

Martins, J.R.R.A., Alonso, J.J. and Van der Weide, E., An automated
approach for developing discrete adjoint solvers. Proceedings of the
2nd AIAA Multidisciplinary Design Optimization Specialist Con-
ference, AIAA 2006-1608 2006a Newport, RI).

Martins, J.R.R.A., Mader, C.A. and Alonso, J.J., ADjoint: an approach
for rapid development of discrete adjoint solvers. Proceedings of the
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, AIAA 2006-7121 2006b Portsmouth, VA).

Mattsson, K. and Nordström, J., Summation by parts operators for finite
difference approximations of second derivatives. J. Comput. Phys.,
2004a, 199(2), 503–540.

Mattsson, K., Svärd, M. and Nordström, J., Stable and accurate artificial
dissipation. J. Sci. Comput., 2004b, 21(1), 57–79.

Mohammadi, B., Malé, J.M. and Rostaing-Schmidt, N., Automatic
differentiation in direct and reverse modes: application to optimum
shapes design in fluid mechanics. In Computational Differentiation:
Techniques, Applications, and Tools, edited by M. Berz, C.H.
Bischof, G.F. Corliss and A. Griewank, pp. 309–318, 1996 (SIAM:
Philadelphia, PA).

MPI, A message-passing interface standard. Int. J. Supercomputer Appl.
High Perform. Comput., 1994, 8(3/4), 159–416.

NASA, X-43A hypersonic scramjet-powered research aircraft, http://www.
nasa.gov/missions/research/x43-main.html Accessed in October 2006.

Naumann, U. and Riehme, J., A differentiation-enabled Fortran 95
compiler. ACM Trans. Math. Softw., 2005, 31(4), 458–474.

Nemec, M. and Zingg, D.W., Multipoint and multi-objective aero-
dynamic shape optimization. AIAA J., 2004, 42(6), 1057–1065.

Pironneau, O., On optimum design in fluid mechanics. J. Fluid Mech.,
1974, 64, 97–110.

Reuther, J., Alonso, J.J., Jameson, A., Rimlinger, M. and Saunders, D.,
Constrained multipoint aerodynamic shape optimization using an
adjoint formulation and parallel computers: part I. J. Aircraft, 1999a,
36(1), 51–60.

Reuther, J., Alonso, J.J., Jameson, A., Rimlinger, M. and Saunders, D.,
Constrained multipoint aerodynamic shape optimization using an
adjoint formulation and parallel computers: part II. J. Aircraft, 1999b,
36(1), 61–74.

Saad, Y. and Schultz, M.H., GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat.
Comput., 1986, 7(3), 856–869.

Sherman, L.L., Arthur, C., Taylor, I., Green, L.L., Newman, P.A., Hou,
G.W. and Korivi, V.M., First- and second-order aerodynamic
sensitivity derivatives via automatic differentiation with incremental
iterative methods. J. Comput. Phys., 1996, 129(2), 307–331.

Van der Weide, E., Kalitzin, G., Schluter, J. and Alonso, J.J., Unsteady
turbomachinery computations using massively parallel platforms.
Proceedings of the 44th AIAA Aerospace Sciences Meeting and
Exhibit, AIAA 2006-0421 2006 Reno, NV).

Discrete adjoint solvers using automatic differentiation 327

