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Summary

The bending frequencies of an unswept wing are calculated based on the model of a beam clamped
at the root and free at the tip. For a tapered wing with straight leading- and trailing-edges, the
chord is a linear function of the span; the same linear function of the span applies to thickness, in
the case of constant thickness-to-chord ratio. The latter is usually small, so that the beam differs
from the more frequent cases of a conical beam with a circular cross-section or a prismatic beam
with a square cross-section. Thus, the bending modes of a non-uniform beam are considered, with
mass and area moment of inertia which are respectively quadratic and quartic functions of the
span. There is no exact solution expressible in finite terms using elementary functions, and thus
power series expansions are used. The bending frequencies are calculated for a delta wing and
compared with a rectangular wing, with the same span, mean chord and thickness, mass density
and Young’s modulus. It is shown that the fundamental frequency is higher by a factor 4.96 for
the delta wing; it is also shown that the general case of the tapered wing is intermediate between
the delta and the rectangular wing. Lastly, the analytical results obtained for the bending modes
are compared with numerical modal analyses of general tapered wing beams using high-fidelity
finite-element model software.

1. Introduction

The representation of a wing as a beam of constant cross-section is adequate for a rectangular wing,
with airfoil section and material properties constant along the span. Retaining the latter case of
an homogeneous wing, but with non-uniform chord and/or thickness, the mass and area moment of
inertia of the section vary along the span. Thus the model must be extended to a beam of non-uniform
cross-section, for example, for a tapered unswept wing whose cross-sections are orthogonal to the
mid-line. For a sweptback wing, whose cross-sections are not orthogonal to the line of centroids, a
more sophisticated approach is needed, such as plate rather than beam theory. The model of a beam
of variable cross-section applies to a delta wing and also to a truncated tapered wing. A particular
case of tapered wing is the delta wing, for which the mass and area moment of inertia vanish at the
tip. The study of beam bending in general, and its natural vibration frequency in particular, has been
of interest since many years and it is a standard topic of elasticity, vibrations and aeroelasticity.
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Fig. 1 Comparison of different beam geometries with linearly varying cross-sections for vertical z vibrations.

This article considers the bending vibrations of a pyramidal beam (Fig. 1(a)) whose rectangular
cross-section decreases linearly with axial distance y both in the vertical z and horizontal x directions.
This is distinct from a wedge for which the rectangular cross-section is constant in one direction and
decreases linearly with axial distance in the other direction; the horizontal wedge was considered for
vertical z vibrations (Fig. 1(b)) by (1), and the vertical wedge was considered for vertical z vibrations
(Fig. 1(c)) by (2). The wedge (Fig. 1(b) and (c)) applies only to wings with rectangular planform,
whereas the pyramidal beam includes other shapes like the delta wing.

All of the preceding are particular cases of tapered beams, first considered by (3), in more detail
for the conical beam with circular cross-section with radius r decreasing linearly with axial distance
y up to the vertex (Fig. 1(d)). The closest analogue for a pyramidal beam is the case of square cross-
section (Fig. 1(e)) decreasing linearly with axial distance y up to the vertex. In the case of a wing
with span in the y direction, the chord c(y) in the x direction is much larger than the thickness e(y)
in the z direction, and thus the cross-section is a slim rectangle, far from a square. The equations
describing the vibrations of a beam of variable cross-section are compared in Appendix A for the
horizontal (1) and vertical (2) wedges and for the present case of a rectangular pyramidal beam.

Thus, the vibrations of a pyramidal beam are distinct from those of other tapered beams, like
wedges or cones, and more suited for application to wings, like the delta wing. The pyramidal
beam may be truncated before the vertex, allowing for non-rectangular wings with non-sharp tips.
The pyramidal beam model is used to obtain exact analytical solutions for the natural frequencies
and modes of vibration of wings, in comparison with other approximate or numerical approaches
mentioned next.

The transverse vibration of homogeneous Euler–Bernoulli beams with variable cross sections has
received wide attention since Kirchhoff’s work (3) where the fundamental frequency of cantilever
conical beams with circular cross-section was first tackled. Since then, the study of non-uniform
beams continued with emphasis on truncated beams and more general shaped beams. In the present
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case, the beam differs significantly from a conical beam, in that the cross-section is rectangular,
with the chord in one direction usually much larger than the thickness in the other direction. While
many combinations of height and width variations are possible, it is common to consider a power
function lengthwise. In any case, it results in a fourth order linear differential equation with variable
coefficients and with a regular singularity, for which analytical solutions may be possible in terms of
Bessel functions, hypergeometric functions or power series for a few particular types of non-uniform
beams. In general, numerical methods based on Rayleigh–Ritz, Galerkin, finite difference and finite
element procedures have been used to obtain an approximate solution.

In 1922, Wrinch (4) studied the lateral vibrations of conical beams, under the same clamped-free
boundary conditions as Kirchhoff’s work, where she used Bessel functions of the second and third
kind to find the first three vibration modes of sharp ended (complete) conical beams. A few years
later, Ono (5) pioneered the investigation of truncated beams, but assuming constant thickness and
linear tapering width. He used an approximate methods, the Rayleigh’s method, to solve the elastic
line equation in integral form to estimate lower and upper bounds of the vibration frequencies. The
analysis of frequencies of truncated cone cantilever beams subject to different boundary conditions
was conducted by Conway et al. (6). Approximate methods of solutions were used where the Bessel
functions were replaced by their polynomial approximations in the numerical evaluation of the
determinant in the eigenvalue problem of the vibration differential equation. That work was later
extended by Lau (7) to include an end mass on the tapered beam. Gaines and Volterra (8) presented
numerical computations of the upper and lower natural frequencies for transverse vibrations for the
first three natural frequencies of cone and wedge cantilever beams, both complete and truncated,
using the approximate Rayleigh–Ritz method. Also around that time, Wang (9), still considering the
differential equation for the mode functions of tapered vibrating beams using the Euler beam theory,
presented the analytic solution as a linear combination of generalized hypergeometric functions (10),
having also noted that they could also by obtained by the standard series method—the Frobenius
method—as used in the work presented here. The obtained comprehensive numerical approximate
solutions for natural frequencies and nodes for transverse vibration using a restricted number of terms
in coefficients of the determinant, as here defined in (51), were summarized in tabular form for both
complete and truncated beams, considering cross-section lengthwise variations of arbitrary powers,
under different boundary conditions (10). Later, Sato (11) improved the Rayleigh–Ritz method in
the study of transverse vibrations of linearly tapered beams under axial load with ends elastically
supported.

Downs (12) extended the analysis of tapered beams considering not only the Euler theory but
also the Timoshenko theory to account for significant shear deformation. Instead of the analytical
approach followed by his predecessors, he used a numerical method similar to the finite element
formulation but then employed a dynamic discretization technique that directly used the elastic
properties of beam segments of variable length along the span and chord, resulting in high accuracy
compared with exact solutions and other numerical results.

In spite of the development of powerful numerical approximation methods, the direct solution of
the mode shape equations were still tough for other tapered beam cases. Naguleswaran (2) studied the
analytic solution of the mode shape equation for the case of the Euler–Bernoulli beam of constant
height and linearly varying width. The direct solution to the mode shape equation, based on the
Frobenius method, was expressed as the superposition of four independent solution functions, three
of which are power series and the fourth is a series with logarithmic terms. The roots of the resulting
frequency equations, given by 2 × 2 and 4 × 4 determinants respectively for the complete (sharp
end) and the truncated beams, were then evaluated numerically using an iterative method. Then,
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Chen (13) numerically evaluated the natural vibration frequencies of a truncated beam, using the
Runge-Kutta method to solve the analytic bending differential equation, subject to different boundary
conditions. Amabili and Garziera (14) found solutions for a simply supported beam of rectangular
cross-section of constant height and linearly varying width using the approximation Rayleigh–Ritz
method. One year later, Zhou and Cheung (15) studied tapered beams with continuously varying
rectangular cross-section of arbitrary power function using the same method. More recently, Bayat
et al. (16) tackled the nonlinear, large amplitude, free vibration of tapered beams using the max–min
approach and the homotopy perturbation method to quickly find approximate solutions. Later, using
a similar numerical method to determine the natural frequencies, Wang (17) extended the study of
the vibration of a cantilever beam with constant height and linearly tapered width to include tip mass
and base flexibility.

The proper and detailed mechanical characterization of the tapered cantilever beam is fundamental
for many structural applications, in particular aircraft wings, whose complex structure can be
idealized as a tapered beam. The accurate study of the aeroelastic response of wings, being them fixed
as in aircraft or rotating as in helicopters, is of major relevance regarding not only flight dynamics
and stability but also vibration and fatigue. This is even more important as more and more flexible
structures are being used, often made of composite materials.

The study of flexible aircraft wings is often made by means of beam finite elements, where a modal
analysis identifies the natural frequencies (eigenvalues) and vibration modes (eigenmodes), using
nonlinear elements (18) and coupled bending-torsion (19). The coupled nonlinear flight dynamics
and aeroelasticity of highly flexible flying wings have also been tackled by means of finite element
formulation (20) dealing with complex phenomena such as variable wing torsional stiffness due
to skin wrinkling and unsteady aerodynamics with stall models. A similar problem have also been
solved in the frequency domain using the fully coupled linearized formulation around aeroelastic
trim conditions, with a state-space representation including rigid-body, elastic and aerodynamic
variables (21).

The study of physical phenomena involving any combination of solid mechanics, dynamics and
fluid mechanics are becoming more and more recurrent in aerospace, namely in the study of airplanes.
For example, the usage of an aeroelastic analytical model for the bending-torsion dynamics of a
slender high aspect-ratio wing in inviscid subsonic airflow, that comprised both a cantilever beam
model as structural model and a potential field model as linear aerodynamic model, to study the
aeroelastic modes and flutter instability in two-dimensions (22). When considering the full three-
dimensional effects in flexible wing configurations, it is necessary to consider both aeroelasticity and
flight dynamics coupled, as the frequencies of rigid-body motions and elastic modes are closer (23).

Regarding helicopter blades, the accurate prediction of the natural frequencies and mode shapes
are critical to ensure that resonance conditions due to the periodic passage by the fuselage are
avoided, and multibody dynamics is typically used in these cases (24). The helicopter blades are
often modelled as cantilever rotating beams and, for some particular classes, exact solutions exist
which are expressed in terms of hypergeometric functions (25). For general classes, only approximate
solutions exist, such as those found using the Rayleigh–Ritz method for rotating cantilever beams (26)
and rotating tapered beams with attached inertia elements (27).

Analytical studies of mechanical vibration problems, regardless of the simplifications often
deemed necessary to obtain approximate solutions, constitute an important knowledge base. There
are already many approximate analytical solutions available, including cases as diverse as simple
supported composite and sandwich plates (28), cracked beams in bending (29), nonlinear functionally
graded plates (30) and beams (31), and carbon nanotubes using beam models (32) or shell models (33).
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As such, the knowledge of exact analytical solutions of dynamic response of rather simplistic wing
structures offers valuable data. It can be used as benchmark to validate high-fidelity computational
fluid-structure interaction models, that upon validation, can then be used to tackle complex wing
configurations. The work presented here intends to provide such reference data for tapered wings and
can be seen as an extension to the work by Naguleswaran (2), where the direct solution to the mode
shape equation based on the Frobenius method is given for a linearly tapered beam, in both width
and height, including the limit cases of delta (complete sharp ended) and rectangular planforms, as
well as any general intermediate planform case (truncated beam).

The Frobenius power series has already seen usage in the solution of several mechanical problems
governed by linear differential equations that are regular in the neighbourhood of a singular point,
for which solutions based on Bessel function do not exist, assuming a set of specific material
or geometry conditions. Examples include the free vibrations of infinitely long orthotropic solid
and hollow cylinders (34), the propagation of cylindrical waves in composite cylinders made
of homogeneous coaxial layers (35), radially inhomogeneous materials with arbitrary cylindrical
anisotropy (36), rotating inclined beams (37) and stress analysis in thick-walled functionally graded
cylindrical pressure cylinders assuming radial exponential material properties for the stationary (38)
and rotating (39) cases. Power series have also been used in the study of the dynamic response of
non-uniform rotating Euler–Bernoulli wedge and cone beams with rotational and flexible ends (40).

This article is divided into seven main sections. Section 2 lays out a few basic geometric and
physical function definitions for straight leading- and trailing-edges wings. The equation of transverse
vibrations is applied to such wings and general expressions of amplitude and frequency of oscillation
are derived in section 3. The analytical solution of natural bending frequency of tapered wings, in the
form of an eigenvalue problem, is determined in section 4, while the particular cases of rectangular
and delta wings are included in sections 5 and 6, respectively. The dimensionless frequency is
evaluated for general tapered wings in section 7. In section 8, the analytical solutions are compared
with some numerical finite-element models. The article ends with some remarks about the use of
exact analytical solutions versus finite element numerical methods.

2. Spanwise distribution of mass and area moment of inertia

Different wing configurations can be found in aircraft design, depending on the flight characteristics,
such as rectangular, elliptic, tapered, delta, trapezoidal or swept wings. This work focuses on unswept
tapered wings with straight leading- and trailing-edges, as represented in Fig. 2. A Cartesian reference
frame with y along the span, x along the chord c(y) and z along the thickness e(y) is used; the latter
specifies for a given mass density ρ(y), the mass per unit length m(y) and the moment of inertia of
the cross-section I(y) used in the non-uniform beam model of the wing.

In the case of a tapered unswept wing with straight leading and trailing edges in Fig. 2, the chord
at spanwise section y is given by

c(y) = cr + (ct − cr)
y

L
, 0 ≤ y ≤ L , (1a, b)

where L is the semi-span and cr , ct are the chord at the root and tip, respectively. The latter are
related to the mean chord (1c), and taper ratio (1d),
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Fig. 2 Planform view of (unswept) tapered wing with straight leading- and trailing-edges, with semi-span L,
root chord cr and tip chord ct .

c̄ = cr + ct

2
, 0 ≤ λ ≡ ct

cr
≤ 1 , (1c, d)

leading to

c(y) = 2c̄

1 + λ

[
1 + (λ− 1)

y

L

]
, (2)

as the function of the spanwise coordinate. If the wing sections have a constant thickness-to-chord
ratio, then (2) also applies to the thickness distribution along the span,

e(y) = 2ē

1 + λ

[
1 + (λ− 1)

y

L

]
, (3)

where ē is the mean thickness; in such case, the thickness-to-chord ratio is e(y)/c(y) = ē/c̄ = const.
Using the expressions (2) and (3) results for the wing cross-sectional area,

A(y) = c(y)e(y) = A0

[
1 + (λ− 1)

y

L

]2
, A0 = 4c̄ē

(1 + λ)2
. (4)

Assuming that the section is homogeneous with mass density ρ, the mass per unit span is given
by a quadratic function (5) using the expression (4),

m(y) = ρ A(y) = m0

[
1 + (λ− 1)

y

L

]2
, (5a)

m0 ≡ m(0) = ρA0 = 4ρc̄ē

(1 + λ)2
, (5b)

where m0 would be the constant value for a rectangular wing. Likewise, the area moment of inertia
per unit span relative to the z-axis, for a rectangle with height equal to the mean thickness of the
airfoil e(y) and length equal to the chord c(y), as illustrated in Fig. 3, is given by

I(y) = 1

12
c(y)

[
e(y)
]3
. (6)
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Fig. 3 Arbitrary cross-section at spanwise position y with height equal to the mean thickness of the airfoil
e(y) and length equal to the chord c(y).

Substituting (2) and (3) in (6) leads to a quartic function (7a),

I(y) = I0

[
1 + (λ− 1)

y

L

]4
, I0 ≡ I(0) = 4

3

c̄ē3

(1 + λ)4
, (7a, b)

where (7b) would be the constant value for a rectangular wing. The Kirchhoff conical beam (3)
corresponds to the linearly tapered wing with thickness equal to chord, specifying the radius of the
cross-section e(y) = c(y) = r(y), mass per unit length m(y) = ρπ [r(y)]2 and area moment of inertia
I(y) = π

4 [r(y)]4.

3. Transverse vibrations of beam with non-uniform cross-section

The transverse or vertical displacement X(y, t) of an elastic beam, with Young’s modulus E(y), mass
per unit span m(y) and area moment of inertia I(y), satisfies the equation of bending waves,

−m(y)
∂2X(y, t)

∂t2
= ∂2

∂y2

[
E(y)I(y)

∂2X(y, t)

∂y2

]
. (8)

For a homogeneous wing, the Young’s modulus is constant, and for a tapered wing with straight
leading- and trailing-edges and constant thickness-to-chord ratio, the substitution of the mass (5) and
area moment of inertia (7) in (8) leads to the linear partial differential equation with non-uniform
coefficients,

−
[
1 + (λ− 1)

y

L

]2 ∂2X(y, t)

∂t2
= EI0

m0

∂2

∂y2

{[
1 + (λ− 1)

y

L

]4 ∂2X(y, t)

∂y2

}
. (9)

Since the coefficients do not depend on time, there are sinusoidal oscillations with frequency ω
expressed as

X(y, t) = F(y) cos(ωt) , (10)

whose amplitude satisfies a linear ordinary differential equation with variable coefficients,

d2

dy2

{[
1 + (λ− 1)

y

L

]4 d2F(y)

dy2

}
− ω2m0

EI0

[
1 + (λ− 1)

y

L

]2
F(y) = 0 . (11)
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The change of independent variable, with λ �= 1,

ξ ≡ 1 + (λ− 1)
y

L
, F(y) ≡ G(ξ ) , (12a, b)

implies (12c,d),

0 ≤ ξ < 1 ,
d

dy
= λ− 1

L

d

dξ
(12c, d) ,

and transforms the coefficients in (11) to powers in (13),

d2

dξ2

[
ξ4 d2G

dξ2

]
−�2ξ2G = 0 , (13)

where the only parameter is the dimensionless frequency,

� ≡ ωL2

(λ− 1)2

√
m0

EI0
= ωL2

ē

√
3ρ

E

λ+ 1

(λ− 1)2
, (14a)

which involves the frequency of oscillation ω, material properties through the Young’s modulus E
and density ρ, and wing geometry through the semi-span L, mean thickness ē and taper ratio λ. It
should be noted that the usual form of the eigen or characteristic value considers the properties at
the cantilever end, for example, the wing root,

�̃ ≡ ωL2
√

m0

EI0
= ωL2

ē

√
3ρ

E
(λ+ 1) , (14b)

thus holding the relationship
�̃ = �(λ− 1)2 . (14c)

As such, the results presented in sections 6–8 will include both definitions (14a) and (14b) to allow
for the direct comparison with previous results found in the literature.

Upon the expansion of (13), the resulting linear fourth-order ordinary differential equation with
power coefficients (15),

ξ4G′′′′ + 8ξ3G′′′ + 12ξ2G′′ −�2ξ2G = 0 , (15)

has no exact solution which can be expressed in finite terms using only elementary functions. Since
the only singularities are ξ = 0,∞, and ξ = 0 is a regular singularity, there are solutions (16) as
Frobenius–Fuchs series (41),

Gσ (ξ ) =
∞∑

n=0

an(σ )ξn+σ , (16)

which has infinite radius of convergence, 0 < ξ <∞, and thus covers the region of interest λ ≤ ξ ≤ 1
in (12a) corresponding to 0 ≤ y ≤ L. Thus the solution (16) will be needed at most only in the unit
interval 0 ≤ ξ ≤ 1, in the case of the delta wing with zero taper ratio (λ = 0) and tip chord (ct = 0).
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Substituting the Frobenius–Fuchs series (16) in the differential equation (15), and equating to zero
the coefficients of the powers of ξ , leads to the recurrence formula:

(n + σ )(n + σ − 1)[12 + (n + σ − 2)(n + σ + 5)]an(σ ) −�2an−2(σ ) = 0 . (17)

Note that (17) implies that the coefficients decay like an ∼ o(n−4), ensuring the uniform and absolute
convergence of the series (16) for finite ξ < ∞.

Substituting the series (16) with the recurrence formula for the coefficients (17) in the differential
equation (15) leaves only the lowest order n = 0 term,{

L
(

d

dξ

)}
Gσ (ξ ) = [(σ − 1)σ (σ + 1)(σ + 2)] a0(σ ) , (18)

where the non-uniform bending operator (19) is linear,

L
(

d

dξ

)
= ξ4 d4

dξ4
+ 8ξ3 d3

dξ3
+ 12ξ2 d2

dξ2
−�2ξ2 . (19)

The coefficient (20a) cannot be zero, otherwise by (17) all coefficients would vanish and by (16)
a trivial solution would result. Thus a non-trivial (20a) solution (20b) is possible only for the four
values of the index (20c–f) that are roots of the term in square brackets on the r.h.s. of (18),

a0(σ ) �= 0 =
{
L
(

d

dξ

)}
Gσ (ξ ) : σ1 = 1, σ2 = 0, σ3 = −1, σ4 = −2. (20a-f)

To each index (20c–f) corresponds a linearly independent particular integral, and the general integral
is their linear combination,

G(ξ ) = C1H1(ξ ) + C2H2(ξ ) + C3H3(ξ ) + C4H4(ξ ) , (21)

with arbitrary constants C1, C2, C3 and C4. The constants a0(σn) may be incorporated in the Cn,
and thus set to unity (22ca) when using (17) in (22cb,c),

a0(σ ) = 1 : (22a)

an(σ ) = �2

fn(σ )
an−2(σ ) , (22b)

fn(σ ) = (n + σ + 2)(n + σ + 1)(n + σ )(n + σ − 1) . (22c)

Using (22cb,c) by recurrence specifies all coefficients of even order,

a2n(σ ) = �2n

f2n(σ )f2n−2(σ )...f2(σ )
(23a)

= �2n[
(2n + σ + 2)(2n + σ + 1)(2n + σ )2(2n + σ − 1)2...(σ + 4)2(σ + 3)2(σ + 2)(σ + 1)

] . (23b)
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The coefficients (23b) are all finite for the largest index (20c) leading (16) to the first particular
integral (24a),

H1(ξ ) ≡ G1(ξ ) = ∞∑
n=0

�2nξ2n+1

(2n + 3)(2n + 2)(2n + 1)2(2n)2...52 · 42 · 3 · 2
= O(ξ ) , (24a,b)

that is a function of the first kind specified by a power series (24b). The coefficients (23b) are also
all finite for the second largest index (20d) leading (16) to another particular integral (25a),

H2(ξ ) ≡ G0(ξ ) = ∞∑
n=0

�2nξ2n

(2n + 2)(2n + 1)(2n)2(2n − 1)2...42 · 32 · 2 · 1
= O(1) . (25a,b)

Substituting (22ca,23b) in (16), the leading terms are

Gσ (ξ ) = ξσ
{

1 + �2ξ2

(σ + 1)(σ + 2)(σ + 3)(σ + 4)
+

+ �4ξ4

(σ + 1)(σ + 2)(σ + 3)2(σ + 4)2(σ + 5)(σ + 6)
+ ...

+ �2nξ2n

(σ + 1)(σ + 2)(σ + 3)2(σ + 4)2...(σ + 2n − 1)2(σ + 2n)2(σ + 2n + 1)(σ + 2n + 2)
...

}
. (26)

It can be checked that (26) leads to (24a) for the index σ = 1 in (20c) and to (25a) for the index
σ = 0 in (20d). For the index σ = −1 in (20e) all terms in (26) have a simple pole since σ + 1 = 0
in the denominator. The pole is removed multiplying the coefficients (27a) by σ + 1 so that the new
solution (27b),

an(σ ) = (σ + 1)an(σ ) , Gσ (ξ ) =
∞∑

n=0

ξn+σ an(σ ) , (27a,b)

satisfies (18) with the extra factor σ + 1 on the r.h.s. leading to (28),{
L
(

d

dξ

)}
Gσ (ξ ) =(σ − 1)σ (σ + 1)(σ + 2)a0(σ ) (28a)

=(σ − 1)σ (σ + 1)2(σ + 2)a0(σ ) . (28b)

To the index (20e) correspond two (29b,c) solutions (29a),{
L
(

d

dξ

)}
Gσ (ξ ) = 0 : lim

σ→−1

{
Gσ (ξ ),

∂

∂σ

[
Gσ (ξ )

]}
. (29a-c)

The first solution (29b) starts with the power ξσ1+1 = ξ0 = 1 and coincides with (25a). The second
solution (29c) provides a particular integral,

G−1(ξ ) = lim
σ→−1

∂

∂σ
[(σ + 1)Gσ (ξ )] = lim

σ→−1

∂

∂σ

[
(σ + 1)

∞∑
n=0

ξ2n+σ a2n(σ )

]
. (30a,b)
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that is shown next to be linearly independent from (24a) and (25a). Substituting (23b) in (30b) leads
to

H3(ξ ) ≡ G−1(ξ ) = lim
σ→−1

∂

∂σ

{
(σ + 1)

∞∑
n=0

�2nξ2n+σ [(2n + σ + 2)(2n + σ + 1)

(2n + σ )2(2n + σ − 1)2...(σ + 4)2(σ + 3)2(σ + 2)(σ + 1)
]−1
}
. (31)

The factor σ + 1 in the numerator cancels with the same factor σ + 1 in the denominator, except for
the first term n = 0, so now the limit σ → −1 exists,

H3(ξ ) = lim
σ→−1

∂

∂σ

{
(σ + 1)ξσ

∞∑
n=1

�2nξ2n [(2n + σ + 2)(2n + σ + 1)

(2n + σ )2(2n + σ − 1)2...(σ + 4)2(σ + 3)2(σ + 2)
]−1
}
. (32)

Differentiating the power leads to a logarithmic term (33a) and differentiation of the inverse powers
leads to (33b),

∂

∂σ

(
ξσ
) = ξσ log ξ ,

∂

∂σ

(
1

κ + σ

)
= − 1

(κ + σ )2
. (33a,b)

In the first term of the r.h.s. of (32), the differentiation must be applied to (σ + 1) otherwise it gives
zero,

lim
σ→−1

∂

∂σ

[
(σ + 1)ξσ

] = lim
σ→−1

ξσ
[
1 + (σ + 1) log ξ

] = lim
σ→−1

ξσ = 1

ξ
; (34)

using (34) for the first term on the r.h.s. of (32), and applying (33a,b) to the remaining leads to

H3(ξ ) = 1

ξ
+ lim
σ→−1

ξσ
∞∑

n=1

�2nξ2n [(2n + σ + 2)(2n + σ + 1)

(2n + σ )2(2n + σ − 1)2...(σ + 4)2(σ + 3)2(σ + 2)
]−1

{
log ξ − 1

2n + σ + 2
− 1

2n + σ + 1
− 2

2n + σ

− 2

2n + σ − 1
...− 2

σ + 4
− 2

σ + 3
− 1

σ + 2

}
; (35)

The third particular integral is thus (36a),

H3(ξ ) = 1

ξ
+

∞∑
n=1

�2nξ2n−1
[
(2n + 1)(2n)(2n − 1)2(2n − 2)2...32 · 22 · 1

]−1
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log ξ − 1

2n + 1
− 1

2n
− 2

2n − 1
− 2

2n − 2
...− 2

3
− 2

2
− 1

1

}
= O(ξ−1) . (36a, b)

The particular integral (36a) has a simple pole (36b) and thus is linearly independent from (24a,b)
and (25a,b). A similar analysis applies to the fourth index (20f) leading to

H4(ξ ) ≡ G−2(ξ ) = lim
σ→−2

∂

∂σ

{
(σ + 2)ξσ +

∞∑
n=1

�2nξ2n [(2n + σ + 2)(2n + σ + 1)

(2n + σ )2(2n + σ − 1)2...(σ + 4)2(σ + 3)2(σ + 1)
]−1
}
. (37)

An evaluation similar to (33a,b;34;35;36a,b) leads to

H4(ξ ) = 1

ξ2
+

∞∑
n=1

�2nξ2n−2
[
(2n)(2n − 1)(2n − 2)2(2n − 3)2...22 · 12 · (−1)

]−1

{
log ξ − 1

2n
− 1

2n − 1
− 2

2n − 2
− 2

2n − 3
...− 2

2
− 2

1
− 1

−1

}
= O(ξ−2) , (38a, b)

that has a double pole. The leading terms in (24b,25b,36b,38b) confirm that the four particular
integrals (24a,25a,36a,38a) in the general integral (21) are linearly independent. The first two
integrals (24a,b;25a,b) are functions of the first kind and the last two (36a,b;38a,b) functions of
the second kind, respectively with a simple and a double pole.

The two solutions of the first kind (24a) and (25a) involve only factorials,

H1(ξ ) = 3!ξ
∞∑

n=0

(�ξ )2n

(2n + 3)!(2n + 1)! , (39)

H2(ξ ) = 2!
∞∑

n=0

(�ξ )2n

(2n + 2)!(2n)! , (40)

that are particular cases of the Gamma function (42). The Digamma function (42),

ψ(1 + ν + n) − ψ(1 + ν) =
n∑

m=1

1

ν + m
, (41)

appears in the two solutions (36a) and (38a) of the second kind,

H3(ξ ) = 1

ξ

{
1 +

∞∑
n=1

(�ξ )2n

(2n + 1)!(2n − 1)!
[
log ξ − ψ(2n + 2) + ψ(2) − ψ(2n) + ψ(1)

]}
, (42)
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H4(ξ ) = 1

ξ2

{
1 −

∞∑
n=1

(�ξ )2n

(2n)!(2n − 2)!
[
log ξ − ψ(2n + 1) + ψ(2) − ψ(2n − 1) + ψ(1)

]}
. (43)

Substituting n = m + 1, the sum in m starts at m = 0 leading to

H3(ξ ) =1

ξ

{
1 +

∞∑
m=0

(�ξ )2m+2

(2m + 3)!(2m + 1)!
[
log ξ − ψ(2m + 4) + ψ(2) − ψ(2m + 2) + ψ(1)

]}

= 1

ξ
+ �2

3! log ξ · G1(ξ ) −�

∞∑
n=0

(�ξ )2n+1

(2n + 3)!(2n + 1)! [ψ(2n + 4) − ψ(2) + ψ(2n + 2) − ψ(1)] , (44)

H4(ξ ) = 1

ξ2

{
1 −

∞∑
m=0

(�ξ )2m+2

(2m + 2)!(2m)!
[
log ξ − ψ(2m + 3) + ψ(2) − ψ(2m + 1) + ψ(1)

]}

= 1

ξ2
+ �2

2! log ξ · G2(ξ ) −�2
∞∑

n=0

(�ξ )2n

(2n + 2)!(2n)! [ψ(2n + 3) − ψ(2) + ψ(2n + 1) − ψ(1)] . (45)

Thus the solutions of the second kind (44,45) equal the sum of: (i) the solutions of the first kind (39)
and (40) multiplied by a logarithm; (ii) a complementary function involving Digamma functions.
The term ψ(2) in square brackets in (42) and (43) can be omitted because it is a constant times (39)
and (40), and can be incorporated in the arbitrary constants C1 and C2 in (21). In conclusion, the
general solution (21) of the differential equation (13)≡(15) is a linear combination (21)≡(46b) of
four functions, namely two of the first (39,40) and two of the second (44,45) kind,

a0(σm) = 1 : G(ξ ) =
4∑

m=1

CmHm(ξ ) , (46a,b)

where the arbitrary constants in (46b) are determined by boundary conditions, and incorporate the
coefficients (46a) that can be set to unity (22ca).

4. Clamped-free boundaries and natural frequencies

The general solution (46b) must satisfy boundary conditions, which will specify the natural
frequencies. The four boundary conditions are determined by setting the beam:

(i) clamped at the root y = 0, ξ = 1, that is, zero displacement (47a) and slope (47b):

I : X(0, t) = 0 ⇒ F(0) = 0 ⇒ G(1) = 0 , (47a)

II : ∂X(0, t)

∂y
= 0 ⇒ F′(0) = 0 ⇒ G′(1) = 0 ; (47b)

where the definitions (10) and (12a) have been used.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/74/1/1/6126085 by 00800 U

niversidade Técnica de Lisboa user on 04 M
arch 2021



Copyedited by: ES MANUSCRIPT CATEGORY: Research article

[19:35 24/2/2021 OP-QJMA200017.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 14 1–00

14 L. M. B. C. CAMPOS AND A. C. MARTA

(ii) free at the tip y = L, ξ = λ, that is, zero bending moment (48a) and transverse force (48b):

III : M(y → L) = lim
y→L

EI(y)
∂2X(y, t)

∂y2
= 0

⇒ lim
ξ→λ

h(ξ )G′′(ξ ) = 0 , (48a)

IV : V (y → L) = ∂M

∂y
= lim

y→L

∂

∂y

[
EI(y)

∂2X

∂y2

]
= 0

⇒ lim
ξ→λ

λ− 1

L

d

dξ

[
h(ξ )G′′(ξ )

] = 0 , (48b)

where

h(ξ ) = EI0ξ
4
(

dξ

dy

)2

= 4c̄ē3

3
E

(
ξ

1 + λ

)4 (λ− 1

L

)2

. (48c)

In addition to the definitions mentioned above, (7b) has also been used.
The boundary conditions at the wing root (47a,b) readily apply to (46b),

I : G(1) =
4∑

m=1

CmHm(1) = 0 , (49a)

II : G′(1) =
4∑

m=1

CmH ′
m(1) = 0 . (49b)

Concerning the boundary conditions (48a,b) at the wing tip ξ → λ, the case of the delta wing λ = 0
will be excluded (it will be addressed subsequently in section 6), so that

III : lim
ξ→λ

h(ξ )G′′(ξ ) = h(λ)G′′(λ) = h(λ)
4∑

m=1

CmH ′′
m(λ) = 0 , (50a)

IV : lim
ξ→λ

λ− 1

L

d

dξ

[
h(ξ )G′′(ξ )

] = λ− 1

L
h(λ)

4∑
m=1

CmH ′′′
m (λ) = 0 ; (50b)

in the derivation of

lim
ξ→λ

d

dξ

[
h(ξ )G′′(ξ )

] = h(λ)
4∑

m=1

CmH ′′′
m (λ) + h′(λ)

4∑
m=1

CmH ′′
m(λ) = 0 , (50c)

the last term vanishes by (50a), and thus (50c) reduces to (50b). The four boundary conditions (49a,b)
and (50a,b) form a linear homogeneous system of equations in (C1,C2,C3,C4) �= (0, 0, 0, 0), which
cannot be all zero. Hence the determinant of coefficients must vanish,∣∣∣∣∣∣∣∣

H1(1) H2(1) H3(1) H4(1)
H ′

1(1) H ′
2(1) H ′

3(1) H ′
4(1)

H ′′
1 (λ) H ′′

2 (λ) H ′′
3 (λ) H ′′

4 (λ)
H ′′′

1 (λ) H ′′′
2 (λ) H ′′′

3 (λ) H ′′′
4 (λ)

∣∣∣∣∣∣∣∣ = 0 . (51)
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For fixed variable ξ = 1 or ξ = λ, the particular solutions (39,40,44,45) depend through the
coefficients (17) only on the dimensionless frequency defined by (14a). Thus, for each taper ratio λ,
the roots of the determinant (51) specify the natural frequencies �n(λ), of which the real root with
smaller modulus is the fundamental frequency �1(λ).

Before proceeding to calculate the natural frequencies, the case of the delta wing λ = 0,
excluded from (50a,b), is considered. The two boundary conditions at the wing root (47a,b) are
unchanged (49a,b) for the delta wing, but at the wing tip, the condition of zero bending moment (48a)
leads to

III : lim
ξ→0

h(ξ )H ′′
m(ξ ) = lim

ξ→0
h(ξ )

d2

dξ2

∞∑
n=0

an(σm)ξn+σm

∼ lim
ξ→0

ξ4 d2

dξ2
ξσm = lim

ξ→0
σm(σm − 1)ξσm+2 = 0 , (52a)

where the leading term of (16) was considered by setting n = 0, a0(σm) = 1, and h(ξ ) ∼ o(ξ4)
in (48c). Using (20c–f), this expression tends to zero for m = 1, 2, 3 or σm = 1, 0,−1, but to a finite
value for m = 4 or σm = −2, so the solution H4 must be excluded by setting C4 = 0; the condition
of zero transverse force (48b) leads to

IV : lim
ξ→0

λ− 1

L

d

dξ

[
h(ξ )H ′′

m(ξ )
] = − 1

L
lim
ξ→0

d

dξ

[
h(ξ )

d2

dξ2

∞∑
n=0

an(σm)ξn+σm

]

∼ lim
ξ→0

d

dξ

[
ξ4

(
d2

dξ2
ξσm

)]
= lim
ξ→0

σm(σm − 1)(σm + 2)ξσm+1 = 0 , (52b)

where the leading term of (16) was considered as in (52a). Using (20c–f), this expression tends to
zero for σm = 1, 0 corresponding to m = 1, 2, to a finite value for σm = −1 corresponding to m = 3,
and to infinity for σm = −2 corresponding to m = 4, so the solutions H3 and H4 are excluded by
setting C3 = 0 and C4 = 0; Thus, in the case of a delta wing (53a) the condition (51) is replaced
by (53b,c),

λ = 0 : C3 = 0 = C4,

[
H1(1) H2(1)
H ′

1(1) H ′
2(1)

] [
C1
C2

]
= 0 . (53a-c)

There are at most two non-zero constants of integration (C1,C2) �= (0, 0), and since they cannot
both vanish, the determinant in (53c) must vanish,

0 = H1(1)H ′
2(1) − H2(1)H ′

1(1) ≡ J(�, 0) = 0 , , (54a,b)

that is the Wronskian J(�, λ) of [H1(ξ ),H2(ξ )] at ξ = 1, defined by (54a), specifies through its
roots �n(0) the natural frequencies �n(λ) in the case λ = 0 (53a) of a delta wing.

5. Comparison with the corresponding rectangular wing planform

The particular case, distinct from the preceding, which is the simplest, is the rectangular wing (λ= 1),
with the same mean chord and thickness,

c̄ = c(y) = const , ē = e(y) = const , (55a,b)

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

am
/article/74/1/1/6126085 by 00800 U

niversidade Técnica de Lisboa user on 04 M
arch 2021



Copyedited by: ES MANUSCRIPT CATEGORY: Research article

[19:35 24/2/2021 OP-QJMA200017.tex] QJMAM: The Quarterly Journal of Mechanics & Applied Mathematics Page: 16 1–00

16 L. M. B. C. CAMPOS AND A. C. MARTA

for which the mass per unit span and area moment of inertia are constant,

m = ρc̄ē , Ī = 1

12
c̄ē3 . (56a,b)

In this case, the equation of transverse vibrations (8) has constant coefficients,

−m
∂2X

∂t2
= EĪ

∂4X

∂y4
, (57)

and in the case (10) of constant frequency ω, it leads to

d4F

dy4
− ω2m

EĪ
F = 0 . (58)

The change of independent variable

s ≡ y

L
, F(y) ≡ Q(s) , (59a, b)

which implies that d
dy = 1

L
d
ds and d2

dy2 = 1
L2

d2

ds2 , leads to

Q′′′′ −�
2
Q = 0 , (60a)

where the dimensionless frequency,

� ≡ ωL2

√
m

EĪ
= ωL2

ē

√
12ρ

E
, (60b)

replaces (14a), which is not valid for λ = 1; note that the change of variable (12a) also does not apply
for λ = 1, and was replaced by (59a). Notice that this definition of dimensionless frequency (60b)
is equivalent to (14b) since the rectangular wing has constant section properties from root to tip.

The case of the rectangular wing is the simplest because (60a) has elementary solutions,

α ≡
√
� : Q(s) = B1 cos(αs) + B2 sin(αs) + B3 cosh(αs) + B4 sinh(αs) . (61)

The boundary conditions of clamping at the root y = 0, s = 0 (47a,b) can be expressed as

I : X(0, t) = 0 ⇒ F(0) = 0 ⇒ Q(0) = B1 + B3 = 0 , (62a)

II : ∂X(0, t)

∂y
= 0 ⇒ F′(0) = 0 ⇒ Q′(0) = α(B2 + B4) = 0 , (62b)

which leaves two out of four constants of integration independent,

Q(s) = B1[cos(αs) − cosh(αs)] + B2[sin(αs) − sinh(αs)] . (63)
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Fig. 4 Natural dimensionless frequencies �n = α2
n of rectangular wing determined by the intersections of

sech α and − cosα.

The boundary conditions at the tip y = L, s = 1 in (48a,b) lead to

III : ∂
2X(L, t)

∂y2
= 0 ⇒ F′′(1) = 0

⇒ Q′′(1) = −B1(cosα + cosh α) − B2(sin α + sinh α) = 0 , (64a)

IV : ∂
3X(L, t)

∂y3
= 0 ⇒ F′′′(1) = 0

⇒ Q′′′(1) = B1(sin α − sinh α) − B2(cosα + cosh α) = 0 , (64b)

form a linear homogeneous system, which has a non-trivial solution if the determinant of coefficients
vanishes,

(B1,B2) �= (0, 0) :
∣∣∣∣ cosα + cosh α sin α + sinh α
sinh α − sin α cosα + cosh α

∣∣∣∣ = 2(1 + cosα cosh α) = 0 . (65a)

Thus the natural frequencies for the rectangular wing are the roots of

λ = 1 : sech
(√
�
)

= − cos
(√
�
)
, (65b)

and are illustrated in Fig. 4.
The fundamental dimensionless frequency and higher harmonics, solution of (65b), were

computed numerically using the software Mathematica® Version 11.0.1 and are summarized in
Table 1. It yields for the dimensionless frequency of the fundamental mode α1 = 1.8751, leading to
�1 = α2

1 = 3.5160, which matches the well-known values of long, thin, cantilever beams (12) as
expected.
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Table 1 Fundamental dimensionless frequency and higher harmonics �n of a rectangular wing
(λ = 1), where �n = α2

n : f (αn) = sech αn + cosαn = 0.

α1 α2 α3 α4 α5 α6 α7 α8
1.8751 4.6941 7.8548 10.996 14.137 17.279 20.420 23.562

�1 �2 �3 �4 �5 �6 �7 �8
3.5160 22.034 61.697 120.90 199.86 298.56 416.99 555.17

6. Natural frequencies for delta wing

The calculation of the fundamental frequency of bending oscillations is less simple for a non-
rectangular wing because it involves the four non-elementary functions (39,40,44,45), of which only
two are needed in the case (54b) of a delta wing (54a).

The first fundamental solution (39) has leading term ξ ,

H1(ξ ) = 3!ξ
[

1

3! + (�ξ )2

5!3! + (�ξ )4

7!5! + O((�ξ )6)

]
= ξ + �2ξ3

120
+ �4ξ5

100800
+ O(�6ξ7) . (66)

The second fundamental solution (40) has leading term unity,

H2(ξ ) = 2!
[

1

2! + (�ξ )2

4!2! + (�ξ )4

6!4! + O((�ξ )6)

]
= 1 + �2ξ2

24
+ �4ξ4

8640
+ O(�6ξ6) . (67)

In the case of delta wing (53a)≡(68a), the other two fundamental solutions (44) and (45) do not
appear (53b,c) in the general solution (21) that simplifies to (68b),

λ = 0 : G(ξ ) = C1H1(ξ ) + C2H2(ξ ) . (68a,b)

The condition (54b) specifying the natural frequencies for the delta wing also involve the derivatives
of the fundamental solutions (39) and (40),

H ′
1(ξ ) = 3!

∞∑
n=0

(�ξ )2n

(2n + 3)!(2n)!

= 3!
[

1

3! + (�ξ )2

5!2! + (�ξ )4

7!4! + O((�ξ )6)

]
= 1 + �2ξ2

40
+ �4ξ4

20160
+ O(�6ξ6) , (69)

H ′
2(ξ ) = 2!�

∞∑
m=1

(�ξ )2m−1

(2m + 2)!(2m − 1)! = 2!�
∞∑

n=0

(�ξ )2n+1

(2n + 4)!(2n + 1)!

= 2!�
[
�ξ

4! + (�ξ )3

6!3! + (�ξ )5

8!5! + O((�ξ )7)

]
= �2ξ

12
+ �4ξ3

2160
+ �6ξ5

2419200
+ O(�8ξ7) . (70)

The condition (54b) that specifies the natural frequencies of the delta wing (54a) can then be used.
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Table 2 Calculation of the fundamental dimensionless frequency and higher harmonics �n of a
delta wing (λ = 0), to successively higher orders in �(2N).

N ±�(N)
1 ±�(N)

2 ±�(N)
3 ±�(N)

4 ±�(N)
5 ±�(N)

6 ±�(N)
7 ±�(N)

8

5 8.7193 21.066 — — — — — —
10 8.7193 21.146 38.454 60.673 — — — —
15 8.7193 21.146 38.454 60.680 87.834 119.92 — —
20 8.7193 21.146 38.454 60.680 87.834 119.92 156.94 198.89
...

...
...

...
...

...
...

...
...

50 8.7193 21.146 38.454 60.680 87.834 119.92 156.94 198.89

The simplification of condition (54b) is detailed in Appendix B, and its numerical evaluation
using Mathematica® for the fundamental and higher order approximations are included in Table 2.
It yields for the dimensionless fundamental frequency for the delta wing �1(0) = 8.7193, which is
higher than for the rectangular wing, because the delta wing is stiffer, that is, it has a larger fraction
of the mass near the root. Notice that for the delta wing (λ = 0), (14c) yields �̃(0) = �(0).

7. Natural frequencies for general tapered wings

For the general tapered wing case, the evaluation of the natural bending frequencies implies the
solution of a four by four determinant (51). The proper boundary conditions were applied to
the four independent solutions (39, 40, 44, 45) and the first five roots of (51) were computed
numerically using Mathematica® for different values of wing taper ratio. Based on the convergence
observed in the delta wing case, only the first 50 terms in the series were used (nmax = 50). These
results are summarized in Table 3, where for completeness the rectangular wing case was added
in the last column from Table 1. It can be observed a near perfect agreement with the available
corresponding analytic and numerical results included in the literature (12). The entries nc represent
non-converged numerical solutions, that resulted from the poor conditioning of the system (51) as
λ → 1.

As expected, the dimensionless frequency�n(λ), expressed in (14a), is a monotonically increasing
function in λ, bounded below but unbounded above,

0 ≤ λ < 1 : �n(0) ≤ �n(λ) < ∞ . (71)

In contrast, the usual definition of the dimensionless frequency �̃n(λ) (14b) exhibits a different
behavior, as graphically observed in Fig. 5. The fundamental frequency �̃1(λ) is a monotonically
decreasing function of taper ratio λ, differently from other modes which either exhibit a minimum
as a function of λ (�̃2(λ) and �̃3(λ), respectively modes 2 and 3), or are monotonically increasing
functions of λ (�̃4(λ) and �̃5(λ), respectively modes 4 and 5).

The results in Table 3 can be converted from dimensionless � to dimensional ω frequency
using (14a) and (60b). For illustration, considering only the fundamental frequency, yields
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Table 3 Fundamental dimensionless frequency as function of taper ratio λ.

λ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

�1(λ) 8.7193 8.8949 9.6819 11.243 13.914 18.501 26.992 45.188 93.304 367.62
�̃1(λ) 8.7193 7.2049 6.1964 5.5093 5.0090 4.6252 4.3188 4.0669 3.8522 3.6762 3.5160

�2(λ) 21.145 23.062 28.727 38.043 52.958 78.186 123.47 227.56 527.50 2150.7
�̃2(λ) 21.145 18.680 18.386 18.641 19.065 19.547 19.757 20.481 21.100 21.507 22.034

�3(λ) 38.454 45.832 62.240 87.368 126.52 193.67 319.48 598.12 1410.7 nc
�̃3(λ) 38.454 37.124 39.834 42.810 45.547 48.418 51.116 53.831 56.426 nc 61.697

�4(λ) 60.680 78.401 111.32 159.47 237.12 367.36 626.84 1155.3 nc nc
�̃4(λ) 60.680 63.505 71.242 78.141 85.362 91.839 100.29 103.98 nc nc 120.90

�5(λ) 87.834 121.19 176.12 255.81 383.38 598.37 nc nc nc nc
�̃5(λ) 87.834 98.166 112.72 125.35 138.02 149.59 nc nc nc nc 199.86

Fig. 5 Natural vibration dimensionless frequencies �̃n(λ), corresponding to the first five bending modes n,
for general tapered wings with taper ratios λ ranging from 0 (delta wing) to 1 (rectangular wing).
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λ = 1 : ω1 = �1 ē

L2

√
E

12ρ

= 3.5160 × 0.1

62

√
70 × 109

12 × 2700
= 14.356 rad s−1 = 2.2848 Hz , (72a)

λ = 0 : ω1 = �1(0) ē

L2

√
E

3ρ

= 8.7193 × 0.1

62

√
70 × 109

3 × 2700
= 71.201 rad s−1 = 11.332 Hz , (72b)

0 < λ < 1 : ω1 = �1(λ) ē

L2

√
E

3ρ

(λ− 1)2

λ+ 1
, (72c)

where the values (72a) and (72b) were calculated for an aluminium wing with Young’s modulus
E = 70 GPa, density ρ = 2700 kg m−3, semi-span L = 6 m and mean thickness ē = 0.1 m. The
fundamental frequency varies most between the delta and rectangular wing,

�1

�1
= �1(0)

�1(1)
= 2.48 ,

ω1

ω1
= 2

�1

�1
= 4.96 . (73a,b)

Even though the two definitions of dimensionless frequencies (14a) and (60b) are not continuous
at λ = 1, when converted to dimensional frequency, it becomes monotonically decreasing and
continuous in λ, bounded below and above, as physically expected, and as observed considering
the usual definition �̃ (14b). For the particular example above, it can be seen that the fundamental
natural bending frequency of a tapered wing lies between the two extreme conditions, the delta
(upper bound) and the rectangular (lower bound) wings,

0 ≤ λ ≤ 1 : 71.201 rad s−1 = ω1(0) ≥ ω1(λ) ≥ ω1 = ω1(1) = 14.356 rad s−1 . (74)

and for a wing with intermediate taper ratio,

λ = 1/2 : ω = �1(1/2) ē

L2

√
E

108ρ

= 18.500 × 0.1

62

√
70 × 109

108 × 2700
= 25.178 rad s−1 = 4.0072 Hz , (75)

lies in the range (74).

8. Comparison with numerical models

To compare analytical solutions with numerical models, a total of eleven cases ranging from λ = 0
to λ = 1 in 0.1 increments were modelled using a finite element model created in ANSYS ® Version
2019, where the material and geometric properties matched those used in the example in section 7.
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Fig. 6 Perspective view of some of the ANSYS ® models using beam188 element type. Modal analyses
performed with meshes ranging from 10 to 320 elements (20 element mesh shown), assuming clamped root
(upper left end)—free tip (bottom right end) boundary conditions.

Emphasis is given to three cases: the two extreme cases of tapered wing spar geometries, a rectangular
(λ = 1) and a delta beam (λ = 0), replicating the conditions used in (72a) and (72b), respectively, and
an intermediate tapered beam (λ = 1/2) replicating the conditions in (75), as illustrated in Fig. 6(a),
(e) and (c), respectively.

Since the analysis was restricted to unswept tapered wings, where all cross-sections are
perpendicular to the beam axis, a 1D beam element was found appropriate for the numerical
simulation since it mimics the standard beam theory used in (8). The linear finite strain beam
beam188 element type was used due to its capability to model both constant (uniform) and varying
(tapered) cross-sections, required for the rectangular and tapered wings, respectively, of which the
delta wing is a particular case of the latter.

The beam element has two nodes and it was set as a linear element (quadratic or cubic was also
possible) to suit the linear case study. Since the degrees of freedom at each beam element node include
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Fig. 7 Linearly tapered beam, both in thickness (height) and chord (width), modelled in ANSYS ® models using
beam188 element type, assuming clamped root (left end) –free tip (right end) boundary conditions. Illustration
of intermediate tapered wing (λ = 0.5) with 20 element mesh.

Table 4 First 8 natural frequencies of the rectangular wing using ANSYS ®.

f [Hz] No. of elements �n

Mode 10 20 40 80 160 320

1* 2.2862 2.2847 2.2844 2.2843 2.2843 2.2843 3.5153
2 11.370 11.363 11.361 11.361 11.361 11.361 17.483
3* 14.611 14.375 14.316 14.301 14.297 14.297 22.001
4* 42.580 40.586 40.104 39.984 39.954 39.946 61.472
5 48.640 48.599 48.590 48.587 48.587 48.586 74.768
6 70.412 69.322 69.052 68.984 68.967 68.963 106.13

7* 88.883 80.597 78.663 78.188 78.070 78.041 120.10
8* 147.11 135.66 130.22 128.91 128.58 128.50 197.75

translation and rotation in all directions, the modal analyses capture all vibration modes: bending,
torsion and axial. The modal analyses covered only the first eight vibration modes, of which it was
concluded by observation of the modes shapes that five correspond to transverse bending. It should
be noted that, despite the nonlinear finite strain beam model capability, the modal analysis conducted
in ANSYS ® is linear, being the stiffness matrix and mass matrix computed for the undeformed beam
shape, so the same behaviour and results as those of the analytical analyses shown in Fig. 5 were to
be expected.

An increasing number of finite-elements was used until a good convergence of the vibration
frequencies are obtained for the bending modes. This implied beam meshing ranging from 10 to
320 elements. The spanwise linear distribution of chord (beam width) (2) and thickness (beam
height) (3) can be observed in Fig. 7, where the intermediate taper beam ANSYS ® model is shown as
illustration.

Figure 6(a) shows the rectangular beam model (λ = 1) and Table 4 summarizes the results for
different number of finite elements. The dimensional frequency corresponding to the most refined
discretization has been made non-dimensional using expression (60b). By observing the mode shapes
in ANSYS ®, it was possible to identify the (vertical) transverse bending modes, which correspond
to modes 1, 3, 4, 7 and 8 and are marked with asterisk in Table 4. The modes 2 and 6 correspond
to horizontal bending, and mode 5 to torsion. The solution for the first mode, corresponding to the
fundamental transverse bending frequency, converges to the expected value (72a). The same can be
said of the higher transverse bending modes that converge to the analytical values in Table 1.
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Table 5 First 8 natural frequencies of the tapered wing using ANSYS ®.

f [Hz] No. of elements �n

Mode 10 20 40 80 160 320

1* 3.9939 4.0029 4.0051 4.0057 4.0058 4.0059 18.494
2* 17.171 16.976 16.925 16.913 16.910 16.909 78.063
3 19.794 19.838 19.849 19.852 19.852 19.852 91.650

4* 44.341 42.533 42.080 41.967 41.939 41.932 193.59
5 78.136 78.143 78.144 78.145 78.145 78.145 360.77

6* 82.594 81.455 79.611 79.154 79.040 79.012 364.77
7 89.061 81.691 81.460 81.401 81.837 81.383 375.72
8* 157.42 134.95 129.74 128.47 128.15 128.07 591.26

Figure 6(c) shows the tapered beam model (λ = 1/2) and Table 5 summarizes the results for
different number of finite elements. The dimensional frequency corresponding to the most refined
discretization has been made non-dimensional using expression (14a). In this case, the mode shapes
indicated that the (vertical) transverse bending modes correspond to modes 1, 2, 4, 6 and 8, marked
with asterisk in Table 5. The modes 3 and 7 correspond to horizontal bending, and mode 5 to torsion.
The five transverse bending modes are illustrated in Fig. 8. Again, the solution for the fundamental
transverse bending frequency converges to the expected value (75). The second to fifth bending modes
also converge to the analytical values in the corresponding taper ratio column found in Table 3.

Figure 6(e) shows the delta beam model (λ = 0), and Table 6 summarizes the results for
different number of finite elements. The dimensional frequency corresponding to the most refined
discretization has been made non-dimensional using expression (14a). The (vertical) transverse
bending correspond to modes 1, 2, 3, 5 and 6, which are marked with asterisk in Table 6, modes
4 and 7 correspond to horizontal bending, and mode 8 to torsion. Once again, the solution for the
fundamental transverse bending frequency converges to the expected value (72b). The same can
be said of the higher transverse bending modes that converge to the numerical evaluations of the
analytical expression in Table 2.

Compiling the 11 cases run for the complete taper ratio range, a graphical comparison between
transverse bending frequencies obtained by both the analytical approach outlined in this paper and
by the numerical simulations using ANSYS ® is shown in Fig. 9 for the first three bending modes
of vibration. The analytical values obtained for the dimensionless frequency were converted to
dimensional using (14a) and (60b) for the tapered (0 ≤ λ < 1) and rectangular (λ = 1) beams,
respectively.

In Fig. 9, it can be observed an excellent agreement between these two fundamentally distinct
analyses, with a registered maximum difference of 0.1%, 1.3% and 0.4% for the first, second and
third bending modes, respectively. Given the proven validation of the numerical model used in the
finite-element software, this result proves the correct analytical development presented in this article.

It should be noted that, had a swept wing been modelled (either sweptback or sweptforward),
these results would not apply since the boundary cross-sections would not be perpendicular to the
beam axis, as assumed in the beam equation (8) and the applied clamped wing root and free wing
tip boundary conditions, respectively through (47) and (48).
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Fig. 8 Bending shape modes for mid-tapered wing (λ = 0.5) using ANSYS ®. The five bending modes
correspond to the modes numbers with asterisk in Table 5.

Table 6 First 8 natural frequencies of the delta wing obtained using ANSYS ®.

f [Hz] No. of elements �n

Mode 10 20 40 80 160 320

1* 11.108 11.270 11.307 11.316 11.319 11.319 8.7093
2* 25.160 27.096 27.356 27.406 27.417 27.420 21.098
3* 38.631 47.572 49.511 49.739 49.783 49.793 38.313
4 54.179 54.924 55.095 55.137 55.147 55.150 42.435
5* 63.546 68.039 77.227 78.271 78.407 78.435 60.351
6* 107.97 94.727 108.17 112.81 113.23 113.30 87.178
7 121.32 129.11 130.14 130.34 130.39 130.40 100.34
8 138.56 136.27 138.96 138.98 138.98 138.99 106.94

9. Discussion and conclusions

The natural bending frequency of a tapered wing was derived using the governing differential equation
for the unsteady deflection of a beam. The frequencies were obtained by casting the problem in the
form of an eigenvalue problem, which translated into a root finding problem, H(�, λ) = 0, once the
proper expressions were derived for the tapered wing.

As expected, for wings with the same span and mean chord (and thus area) and material, the
fundamental natural bending frequency is higher for a delta planform, when compared to a rectangular
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Fig. 9 Validation of numerical simulations with the analytical solutions. Overlap of first three bending
frequencies obtained from both approaches show a visually perfect match regardless of the taper ratio wing
configuration.

planform, by a factor of 4.96. A tapered planform exhibits a frequency that lies within these two
cases.

The analytical theory was compared with a widely used commercial finite element code in the
three cases of: (a) rectangular (i) or delta (ii) wing; (b) intermediate case (iii) of tapered form. It was
demonstrated that the analytical theory presented closely agrees with the ANSYS ® finite element
code as concerns the natural frequencies of the bending modes for either (i) the rectangular wing, (ii)
the delta wing and (iii) any intermediate tapered wing. The very small discrepancies can be attributed
both to the numerical errors, related to the finite-element theory and the computation itself and to
the finite number of the terms in (39, 40, 44, 45) considered when analytically solving (51).

In conclusion, the analytical theory developed in this article covers all solutions of the wing
bending equation, namely: (a) the regular solutions for (i) rectangular and (ii) delta wings; (b) the
singular solutions for the intermediate cases of (iii) tapered wings.

The elastic vibration equation (8) applies to a wing with arbitrary planform and thickness
distributions along the span. The detailed solution in the case of equation (9) applies for: (i) chord
varying linearly along the span; (ii) constant thickness-to-chord ratio, implying that the thickness
also varies linearly along the span. The simplest case of (i) chord varying linearly along the span is
a wing planform with straight leading and trailing edges. The general method presented applies to
arbitrary wing planforms and spanwise thickness distributions, with corresponding modification of
the details of the analysis. In the examples chosen, the beam was far removed from a prismatic beam
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with square cross-section, since the chord is usually much larger than the thickness by more than an
order of magnitude.
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APPENDIX

A. Comparison of different tapered beams

The transverse vibration of an Euler–Bernoulli beam satisfies the equation of bending waves (8), here rewritten
for constant Young’s modulus as

∂2

∂y2

[
EI(y)

∂2X(y, t)

∂y2

]
= −m(y)

∂2X(y, t)

∂t2
. (A.1)

Limiting to the analysis of the vibration modes using (10), yields the ordinary differential equation

d2

dy2

[
I(y)

d2F(y)

dy2

]
= ω2m(y)

E
F(y) . (A.2)

Following Kirchhoff’s work (3), it is assumed a change in the cross-section given by

x ∼ yμ , z ∼ yν , (A.3a, b)

whereμ and ν are constants which respectively define the change in the height (transverse) and width directions
(see Fig. 3). The moment of inertia and the mass per unit length can then be expressed, respectively, as

I(y) = I1

( y

L

)3μ+ν
, m(y) = m1

( y

L

)μ+ν
, (A.4a, b)

where I1 and m1 are the moment of inertia and the mass per unit length at the tip of the beam (y = L). Substituting
(A.4) in (A.2), making the change of independent variable ζ ≡ y/L, and using F(y) ≡ K(ζ ) leads to the ordinary
differential equation (ODE)

d2

dζ 2

[
ζ 3μ+ν d2K(ζ )

dζ 2

]
= ω2m1L4

EI1
ζμ+ν K(ζ ) . (A.5)

The analytical study of the transversal vibration of a pyramidal, linearly tapered, Euler–Bernoulli beam has
already been tackled for different possible cases based on the ODE (A.5).

Assuming constant height (μ = 0) and linearly varying width (ν = 1) (see Fig. A.1(a)), the moment of
inertia is a linear function (I(ζ ) ∼ ζ ) and the mass per unit span is also a linear function (m(ζ ) ∼ ζ ), and the
ODE (A.5) is written as

d2

dζ 2

[
ζ

d2K(ζ )

dζ 2

]
= ω2m1L4

EI1
ζ K(ζ ) , (A.6)

which was presented as (9) in (2) and solved for different boundary conditions (clamped, pinned, sliding and
free) for both complete and truncated beams.
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Fig. A.1 Different cases of a sharp tapered beam with linearly varying cross section

In contrast, assuming linearly varying height (μ = 1) and constant width (ν = 0) (see Fig. A.1(b)), the
moment of inertia is now a cubic function (I(ζ ) ∼ ζ 3) and the mass per unit span is still a linear function
(m(ζ ) ∼ ζ ), so the ODE (A.5) becomes

d2

dζ 2

[
ζ 3 d2K(ζ )

dζ 2

]
= ω2m1L4

EI1
ζ K(ζ ) , (A.7)

which was expressed as Equation (B.19) in (1) and solved for the clamped-free boundary conditions following
Kirchhoff’s work (3).

The present article handles the combination of both linearly varying height and width (μ = 1 = ν) (see Fig.
A.1(c)), maintaining a constant height-to-width ratio for a rectangular cross-section. Such beam taper implies
that the moment of inertia is a quartic function (I(ζ ) ∼ ζ 4) and the mass per unit span is a quadratic function
(m(ζ ) ∼ ζ 2), thus yielding

d2

dζ 2

[
ζ 4 d2K(ζ )

dζ 2

]
= ω2m1L4

EI1
ζ K(ζ ) . (A.8)

This equation is equivalent to (13) in which the change of variable (12a,b) is used.
Notice that, even though Fig. A.1 illustrates sharp end beams, Equations (A.6), (A.7) and (A.8) also apply

to truncated beams by properly handling the tip boundary conditions.

B. Calculation of eigenvalues for the delta wing

Substituting (66,67,69,70) in the condition (54b) specifying the eigenvalues leads to the equality of the products
of two series,

∞∑
n=0

(�)2n

(2n + 3)!(2n + 1)!
∞∑

m=0

(�)2m+1

(2m + 4)!(2m + 1)! =

∞∑
n=0

(�)2n

(2n + 2)!(2n)!
∞∑

m=0

(�)2m

(2m + 3)!(2m)! .
(B.9)
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Using the Cauchy rule for the summation of double series by diagonals,⎛⎝ ∞∑
n=0

bn

⎞⎠⎛⎝ ∞∑
m=0

cm

⎞⎠ =
∞∑

n=0

n∑
m=0

bmcn−m , (B.10)

leads to the single series

0 =
∞∑

n=0

dn�
2n ≡ P∞(�2) = �∞

k=1

(
�2 −�2

k

)
, (B.11)

with coefficients

dn ≡
n∑

m=0

{
1

(2m + 1)!(2m + 3)!(2n − 2m + 1)!(2n − 2m + 4)!

− 1

(2m)!(2m + 2)!(2n − 2m)!(2n − 2m + 3)!
}
.

(B.12)

The roots of (B.11) are ±�k , where �k are the natural frequencies.
The successive approximations to the eigenvalues can be obtained by considering the series (B.11) truncated

after N + 1 terms, which is a polynomial of degree N in �2,

PN (�2) ≡
N∑

n=0

dn�
2n = dN�

N
m=1

[
�2 − (�(N)

m )2
]

= 0 , (B.13)

whose roots ±�(N)
1 , ...,±�(N)

N are approximations to the first 2N eigenvalues. By increasing the degree of the
polynomial, N = 1, 2, ..., more eigenvalues are found, and better approximations are obtained, for example,
the successive approximations to the fundamental frequency are �(1)

1 , �
(2)
1 , �

(3)
1 , ..., which tend to the exact

value
�1 ≡ lim

N→∞�
(N)
1 . (B.14)

This process of successive approximations is illustrated in Table 2, for the fundamental frequency and next five
harmonics. For a given N , the estimate is more accurate for the fundamental frequency�(N)

1 than for the higher
harmonics.
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