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a b s t r a c t

The noise of jet and rocket engines involves the coupling of sound to swirling flows and

to heat exchanges leading in the more complex cases of triple interactions to acoustic-

vortical-entropy (AVE) waves. The present paper presents the derivation of the AVE equation

for axisymmetric linear non-dissipative, compressible perturbations of a non-homentropic,

swirling mean flow, with constant axial velocity and constant angular velocity for a perfect

gas with constant density. The axisymmetric AVE wave equation is obtained for the radial

velocity perturbation, specifying its radial dependence for any frequency and axial wavenum-

ber. The AVE wave equation in the case of zero axial wavenumber, corresponding to cylin-

drical AVE waves, has no singularities for finite radius, including the sonic radius, where the

isothermal Mach number for the swirl velocity is unity. The exact solution of the AVE wave

equation for the fundamental axisymmetric mode with zero axial wavenumber is obtained

without any restriction on frequency, as series expansions of Gaussian hypergeometric type:

(i) covering the whole flow region; (ii) specifying the wave field at the sonic radius; (iii) speci-

fying near-axis and asymptotic scaling for small and large radius. Using polarization relations

among wave variables specifies exactly and allows the plotting of the perturbations of: (i,ii)

the radial and azimuthal velocity; (iii,iv) pressure and mass density; (v,vi) entropy and tem-

perature. Thus the extension of cylindrical acoustic waves, that are specified by Bessel func-

tions, to cylindrical acoustic-vortical-entropy waves, is specified by Gaussian hypergeometric

functions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The noise of aircraft engines is a major limitation on airport operations, and the subject of ever more stringent certification

rules, aiming to limit the total noise exposure as air traffic grows. The noise of the rocket engines of space launchers is sufficiently

high to cause structural damage and require payloads like satellites to be tested for acoustic fatigue in reverberant chambers.

The literature on aircraft and rocket engine noise usually considers purely acoustic waves, although coupling with other modes

occur in: (i) inlet ducts due to the shear flow in the wall boundary layers; (ii) in turbine exhausts due to the downstream

swirling flow; (iii) in the combustion chambers and other heat generation and exchange processes involving non-isentropic

flows. The simplest mean flow for which there are interacting acoustic, vortical and entropy perturbations is an axisymmetric

non-homentropic flow with uniform axial velocity and rigid body swirl; this sample problem is of interest in itself relating to
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waves in nozzles with swirl and heat exchange.

There are [1–3] three types of waves in a fluid in the absence of external restoring forces [4,5], namely: (i) sound waves that

are longitudinal and compressive; (ii) vortical waves that are transversal, hence incompressible; (iii) entropy modes associated

with heat exchanges, hence non-homentropic flow. The acoustic modes receive most attention because for an homogeneous

uniform mean flow: firstly, the acoustic modes satisfy the convected wave equation for uniform motion and the classical wave

equation in a medium at rest [6–13]; secondly, by the Kelvin circulation theorem the circulation along a loop convected with

the mean flow is constant [14–18]; thirdly, in homentropic conditions there are no entropy modes. The most general conditions

for the existence of purely acoustic modes, decoupled from vortical-entropy modes, is a potential homentropic mean flow, that

may be compressible, and leads to the high-speed wave equation [19–21] that reduces to the convected wave equation [22–24]

in two cases: (i) uniform flow; (ii) low Mach number steady non-uniform flow. The presence of vorticity leads to acoustic-

vortical waves [25–30], in a compressible sheared [31–44] or swirling [45–57] mean flow. The present paper considers a further

extension to acoustic-vortical-entropy waves [57] that specify the stability of a compressible, vortical and non-homentropic

mean flow.

The acoustic, vortical and entropy modes [1–3] are decoupled in a medium at rest and become coupled in sheared and/or

swirling non-homentropic mean flows. The first derivation of the acoustic-vortical (AV) wave equation [46] used a decomposi-

tion of the velocity perturbation into an irrotational and a vortical part. The AV waves were considered for specific swirl profiles

[47–49] such as rigid body and potential vortex. These two profiles were also considered as particular cases of AV waves in an

axisymmetric mean flow with shear and swirl arbitrary functions of the radius, assuming constant density [49]; the latter condi-

tion can be replaced by that of an homentropic mean flow [30]. Besides the propagation [30,45–52], also the generation [53–56]

of AV waves has been considered. The more general case of AVE waves has been considered [57] as isentropic non-axisymmetric

longitudinally propagating perturbations of a non-homentropic mean flow with shear and swirl arbitrary functions of the radius

in the WKB approximation of high-frequency, which excludes critical layers. The present paper derives the AVE wave equation

also for isentropic perturbations of a non-homentropic mean flow, restricting to a uniform axial flow and rigid body swirl and

axisymmetric modes, without restriction of frequency, showing that a critical layer exists for isothermal sound speed equal to

the phase speed based on the Doppler shifted frequency. The critical layer does not exist for zero axial wavenumber, that is for

cylindrical AVE waves, in which case the exact solution valid for all frequencies and distances is obtained in terms of Gaussian

hypergeometric functions.

The linearized Euler equations (LEE) contain all these modes, but consist of one vector (momentum) and three scalar (con-

tinuity, energy and state) equations with six variables (velocity vector, pressure, density and entropy). In this formulation, the

‘wave operator’ is a 6 × 6 matrix that cannot be readily compared to a scalar wave equation for one variable like the pressure

perturbation. This paper presents a scalar wave equation for a single wave variable (the radial velocity) that generalizes the

classic wave equation for sound and the acoustic-vortical wave equation in a swirling flow. This derivation involves elimination

among the 6 LEE equations for one variable only, namely the radial velocity, that determines through polarization relations all

other variables, namely the perturbations of the density, pressure, temperature, entropy and axial and azimuthal components of

the velocity. There is substantial evidence in the literature of the presence of non-acoustic perturbations in nozzle flows, and the

derivation of an acoustic-vortical-entropy (AVE) equation aims to address this limitation of current wave equations, by allowing

the interaction of all three effects.

The radial dependence of the fundamental axisymmetric mode of non-dissipative AVE waves, in a uniform mean flow with

rigid body swirl of a perfect gas with constant density is specified exactly, without any restriction on frequency, by a linear

second-order differential equation with four regular singularities, of which one is a critical layer. The critical layer does not

exist for zero axial wavenumber, corresponding to cylindrical AVE waves that depend only on time and radial distance. The

radial dependence of the cylindrical AVE equation is thus specified by a linear second-order differential equation with three

regular singularities, whose solution is (Section 3) specified by Gaussian hypergeometric functions [58–60]. These replace the

Bessel functions [61–63] that specify acoustic cylindrical waves in an homentropic medium at rest or in uniform motion but

without swirl. The three singularities of the cylindrical AVE wav equation are firstly the origin specifying the inner wave field,

secondly the point at infinity specifying the asymptotic wave field, and thirdly the sonic point where the swirl velocity equals

the isothermal sound speed. The latter is an apparent singularity of the differential equation [64–66] since the wave field is finite

at the sonic condition. The solution around the sonic condition matches continuously the inner and asymptotic wave fields.

Since both the cylindrical AVE wave equation and its solutions are exact, they specify the wave field for all frequencies and

radial distances. The cylindrical AVE wave equation is an exact linearization of the equations of motion, and thus its solutions

specify the stability of the non-homentropic, non-dissipative uniform flow with rigid body swirl of a perfect gas with constant

density. Since the dependence on time is sinusoidal with fixed frequency, the stability for cylindrical perturbations can only be

considered in the radial direction. It is shown (Fig. 1) that as the radial distance tends to infinity the perturbations are waves

with finite amplitude if the frequency exceeds the angular velocity (with a factor of order unity); conversely, if the frequency is

less than the angular velocity, the perturbations grow radially and are unbounded. These conclusions broadly agree with earlier

results [67–69] on the stability of vortical flows. The distinction between cylindrical AVE waves with finite radial amplitude and

radially unbounded perturbations of the mean flow is illustrated by plotting the radial dependence of the first six modes in a

rigid cylindrical duct (Section 4) for the perturbations of the radial and azimuthal velocities, pressure, density, temperature and

entropy (Figs. 2–7).
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2. The acoustic-vortical-entropy wave equation

The acoustic-vortical-entropy waves are considered as small axisymmetric perturbations of a non-dissipative, non-

homentropic mean flow (Subsection 2.1) with uniform axial velocity and rigid body swirl (Subsection 2.2) of a perfect gas

with constant mass density. Elimination for the radial velocity perturbation leads to the acoustic-vortical-entropy wave equa-

tion, its solutions specify through polarization relations also the perturbations of azimuthal velocity, pressure, mass density,

temperature and entropy (Subsection 2.3).

2.1. Compressible, vortical, isentropic, non-homentropic flow of a perfect gas

The fundamental equations of fluid mechanics are written in cylindrical coordinates (r, 𝜑, z) in axisymmetric form without

𝜑-dependence (∂∕∂𝜑 = 0):

(i) mass conservation:

DΓ∕dt = −Γ𝛁 · V = −Γ
r

𝜕
𝜕r

(
rVr

)
− Γ𝜕Vz

𝜕z
; (1)

(ii) inviscid momentum:

Γ
(

DVr∕dt − r−1V2
𝜑

)
+ 𝜕rP = 0, (2a)

Γ
(

DV𝜑∕dt + r−1VrV𝜑
)
= 0, (2b)

ΓDVz∕dt + 𝜕zP = 0; (2c)

(iii) energy neglecting dissipative effects, namely heat conduction and viscosity:

DS∕dt = 0 ; (3)

(iv) state:

DP∕dt = c2DΓ∕dt + 𝛽DS∕dt ; (4)

where Γ is the mass density, P the pressure, V the velocity, T the temperature, S the entropy, the material derivative is denoted

by

D∕dt = 𝜕∕𝜕t + V · 𝛁 = 𝜕∕𝜕t + Vr𝜕r + Vz𝜕z (5a,b)

and the equation of state in the form (6a) specifies the coefficients in (4),

P = P(Γ, S) ∶ c2 ≡
(
𝜕P

𝜕Γ

)
S

, 𝛽 =
(
𝜕P

𝜕S

)
Γ
, (6a-c)

namely the adiabatic sound speed (6b) and the non-isentropic coefficient (6c). Chemical reactions are not considered explicitly

and appear through the entropy coefficient. The adiabatic sound speed (6b) is sufficient for acoustic-vortical (AV) waves and the

non-isentropic coefficient (6c) may be necessary for acoustic-vortical-entropy (AVE) waves.

In the sequel is considered the case of a perfect gas, with the equations of state (7a) and entropy (7b),

P = RΓT, S = CV log P − CP log Γ + const, (7a,b)

involving the gas constant R and specific heats at constant volume CV and pressure CP that are related by (8a,c,d) involving the

adiabatic exponent (8b),

R = CP − CV , 𝛾 = CP

CV

∶ CV = R

𝛾 − 1
, CP = 𝛾R

𝛾 − 1
. (8a-d)

From the entropy equation (7b) it follows

dS = CV
dP

P
− CP

dΓ
Γ

; (9a)

in the adiabatic case (9b) the sound speed is given by (9c),

dS = 0 ∶ c2 =
(
𝜕P

𝜕Γ

)
S

= CP

CV

P

Γ
= 𝛾

P

Γ
= 𝛾RT . (9b,c)

The non-isentropic coefficient (6c) may be calculated (10b) from the specific heat at constant volume (10a),

CV = T

(
𝜕S

𝜕T

)
Γ
∶ 𝛽 =

(
𝜕P

𝜕T

)
Γ
∕
(
𝜕S

𝜕T

)
Γ
= T

CV

(
𝜕P

𝜕T

)
Γ
; (10a,b)
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in the case of a perfect gas (7a) follows (11a,b),

𝛽 = T

CV

RΓ = P

CV

= 𝛾 − 1

R
P, (11a-c)

and also (11c) using (8c).

2.2. Linear perturbation of a uniform flow with rigid body swirl

The mean flow (subscript zero) is assumed to consist (12a) of a uniform axial velocity plus a rigid body swirl,

V0 = ezU + e𝜑Ωr, 𝝕 = 𝛁 × V0 = ez2Ω, (12a,b)

so that the vorticity (12b) is twice the angular velocity. The linearized material derivative (5a) for the axial mean flow (12a) is

(13a),

𝛿∕dt ≡ 𝜕∕𝜕t + U𝜕∕𝜕z, 𝛁 · V0 = 0, (13a,b)

and the mean flow velocity (12a) has zero divergence (13b). Applying the fundamental equations to the mean flow (12a) it

follows that: (i-ii) the mass density (1) and entropy (3) can depend only on the radius (14a,b); (iii) there is a radial pressure

gradient (2a) due to the centrifugal force (14c),

𝜌0 = 𝜌0(r) s0 = s0(r) ∶ p′
0
≡ dp0∕dr = 𝜌0Ω

2r . (14a-c)

The mean flow has a solenoidal (13b) velocity (12a), and thus causes no compression, even in an compressible fluid. The dis-

tinction should be made between incompressible flow and incompressible fluid. The fluid is compressible, the mean flow (12a)

causes no compression (13b), and thus the compressions are entirely due to the wave perturbations, for which the adiabatic or

isothermal sound speeds could be relevant. A similar situation applies to an unidirectional shear flow that causes no compres-

sion to a compressible fluid, so that compressions are solely due to acoustic-vortical wave perturbations of shear type [25–44].

A particular case of (14a) is a constant mean flow mass density (15a) that leads to the pressure (15c) where (15b) is the pressure

on axis,

𝜌0 = const, p00 = p0(0) ∶ p0(r) = p00 +
1

2
𝜌0Ω2r2 . (15a-c)

The adiabatic sound speed (9c) and non-isentropic coefficient (11b) are given in the mean flow respectively by (16b) and (16c),

where (16a) is the adiabatic sound speed on the axis,

c2
00

= 𝛾
p00

𝜌0

∶
[
c0(r)

]2 = 𝛾
p0(r)
𝜌0

= c2
00

+ 𝛾
2
Ω2r2, 𝛽0(r) =

p0(r)
CV

. (16a-c)

The adiabatic sound speed (16b) can also be written in the form (17a) where (17b) is the reference radius,

[c0(r)]2 = c2
00
[1 + (r∕r0)2], r0 = (c00∕Ω)

√
2∕𝛾 . (17a,b)

The entropy in the mean flow (18a),

s0 = CV log p0 − CP log𝜌0 + const, (18a)

has radial gradient (18b),

s′
0
= CV

p′
0

p0

=
p′

0

𝛽0

= 𝜌0Ω2r

𝛽0

= CV

𝜌0Ω2r

p0

= CV𝛾
Ω2r

c2
0

= CP
Ω2r

c2
0

. (18b)

Thus the uniform axial flow with rigid body swirl (12a) and a constant mass density (15a) implies the radial dependences of the

pressure (15b,c), adiabatic sound speed (17a,b) and also the existence of an entropy gradient (18b). The linear perturbation of

this mean flow is considered next.

The total flow is assumed to consist of the mean flow plus a perturbation depending on time t, radial r and axial z coordinate,

but not on the azimuthal coordinate 𝜑, thus excluding circumferential modes,

Vr(r, z, t) = vr(r, z, t), V𝜑(r, z, t) = Ωr + v𝜑(r, z, t), Vz(r, z, t) = U + vz(r, z, t), (19a-c)

P(r, z, t) = p0(r) + p(r, z, t), Γ(r, z, t) = 𝜌0 + 𝜌(r, z, t), S(r, z, t) = s0(r) + s(r, z, t) . (19d-f)

Since the mean flow properties, that appear as coefficients in the linearization, depend on r but not (z, t), the Fourier transform

is made (20) with frequency 𝜔 and axial wavenumber k,

f (r, z, t) = ∫
+∞

−∞
dk∫

+∞

−∞
d𝜔, ei(kx−𝜔t)̃f (r, k, 𝜔) ; (20)
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for example the linearized material derivative for the axial flow (13a) leads (21a) to the frequency (21b) Doppler shifted by the

axial mean flow,

𝛿∕dt → −i𝜔∗ ∶ 𝜔∗ = 𝜔 − kU . (21a,b)

Substituting (19a–f) in (1,2a–c,3,4) and linearizing leads to

i𝜔∗r𝜌 − 𝜌0(rṽr)′ − i𝜌0krṽz = 0, (22a)

i𝜌0𝜔∗ṽr + 2Ω𝜌0ṽ𝜑 +Ω2r𝜌 − p̃′ = 0, (22b)

i𝜔∗ṽ𝜑 − 2Ωṽr = 0, (22c)

𝜌0𝜔∗ṽz − kp̃ = 0, (22d)

i𝜔∗ s̃ = s′
0
ṽr = CP

Ω2

c2
0

rṽr, (22e)

p̃ = c2
0
𝜌 + 𝛽0 s̃, (22f)

where prime denotes derivative with regard to the radius. The last equation (22f) follows from linearization of (6a) using (6b,c).

The equation of energy (3) implies that the mean flow is isentropic (23a), that is consistent with the entropy being a function of

the radius (14b),

𝛿s0

dt
= 0 ∶ 0 = D(s + s0)

dt
− 𝛿s0

dt
, (23a,b)

subtracting the mean state (23a) from the exact (3) energy equation leads to (23b), that is linearized (24a),

0 = Ds

dt
+ Ds0

dt
− 𝛿s0

dt
= 𝛿s

dt
− V · 𝛁s0 ; (24a)

from (24a) follows (24b),

𝛿s

dt
= −

(
V · 𝛁s0

)
, i𝜔∗ s̃ = s′

0
ṽr , (24b,c)

proving (24c)≡(22e).

2.3. Wave equation for the radial velocity and polarization relations

Of the six variables in (22a–f) four (̃vr, ṽ𝜑, 𝜌, s̃) are expressible (22d,c,e,a) in terms of (p̃, ṽr),

ṽz =
k

𝜌0𝜔∗
p̃, ṽ𝜑 = −i

2Ω
𝜔∗

ṽr, s̃ = −iCP
Ω2

c2
0
𝜔∗

rṽr . (25a-c)

𝜌 = −i
𝜌0

𝜔∗r
(rṽr)′ +

k2

𝜔2
∗

p̃ . (25d)

Substituting (25c,d) in (22f) leads to

ĩp
(
𝜔∗ − k2c2

0
∕𝜔∗

)
= 𝜌0

(
Ω2r + c2

0
∕r

)
ṽr + 𝜌0c2

0
ṽ′

r
, (26)

the pressure in terms of the radial velocity spectrum.

Substituting (25b,d) in (22b) leads to a relation between p̃ and ṽr distinct from (26), namely

i𝜌0

[(
𝜔2
∗ − 5Ω2

)
ṽr −Ω2rṽ′r

]
= 𝜔∗p̃′ − k2Ω2r

𝜔∗
p̃ . (27)

Substituting p̃ from (26) in (27) leads to the acoustic-vortical-entropy wave equation for the radial velocity perturbation spec-

trum,

c2
0

ṽ′′r + Aṽ′r + Bṽr = 0, (28)

with coefficients

X ≡ 1 − k2c2
0
∕𝜔2

∗ ∶ A = c2
0
∕r + X

[
c2

0
∕X

]′
, (29a,b)
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B =
(
𝜔2
∗ − 5Ω2

)
X − k2Ω2

(
Ω2r2 + c2

0

)
∕𝜔2

∗ + X
[(

Ω2r + c2
0
∕r

)
∕X

]′
. (29c)

In conclusion the linear, non-dissipative axisymmetric compressive, vortical, non-adiabatic perturbations of a non-homentropic

uniform axial flow with rigid body swirl (12a) of a perfect gas with constant mass density, with frequency 𝜔 and axial wavenum-

ber k, lead (20) to the acoustic-vortical-entropy wave equation (28) with coefficients (29a–c) satisfied by the radial velocity

perturbation spectrum.

The other wave variables are specified by the following polarization relations: (i–iii) the pressure (26), entropy (25c) and

azimuthal velocity (25b) perturbation spectra; (iv–v) the axial velocity (25a) and mass density (25d) perturbation spectra lead,

by (26), respectively to (30a) and (30b),

ṽz = −ik
[(

Ω2r + c2
0
∕r

)
ṽr + c2

0
ṽ′

r

]
∕
(
𝜔2
∗ − k2c2

0

)
, (30a)

i𝜌∕𝜌0 = ṽ′r∕𝜔∗ + ṽr∕(𝜔∗r) + k2
[(

Ωr + c2
0
∕r

)
ṽr + c2

0
ṽ′r

]
∕
(
𝜔3
∗ − k2c2

0
𝜔∗

)
. (30b)

The temperature perturbation spectrum follows from the equation of state (7a),

RT̃ = p̃

𝜌0

− p0

𝜌2
0

𝜌 =
ic2

0

𝜔∗𝛾

(
ṽ′

r
+ ṽr∕r

)
− i

𝜔∗ − k2c2
0
∕𝛾𝜔∗

𝜔2
∗ − k2c2

0

[(
Ω2r + c2

0
∕r

)
ṽr + c2

0
ṽ′

r

]
, (31a,b)

using (30b) and (26).

3. Exact wave field at al radial distances

In the particular case of purely radial modes or cylindrical waves (Subsection 3.1) excluding axial propagation, the radial

dependence in the AVE wave equation leads to a Gaussian hypergeometric differential equation (Subsection 3.2) specifying

without further approximation the wave field in all space.

3.1. Particular case of purely radial modes

The wave equation (28) has four regular singularities: (i) on axis r = 0; (ii) at infinity r = ∞; (iii) for zero sound speed (32a)

that is (16b)≡(17b) imaginary radius (32b),

c0(rs) = 0 ∶ rs = ±i
c00

Ω

√
2

𝛾
= ±ir0 ; (32a,b)

(iv) for zero (29a) that is at the critical layer (33a) at (21b) the radius (33b),

(𝜔∗∕k)2 = [c0(rc)]2 ∶ rc = ±
√

2∕𝛾
Ω

√
𝜔2
∗

k2
− c2

00
= ±r0

√(
𝜔∗
c00r

)2

− 1, (33a,b)

where the adiabatic sound speed equals the phase speed based on the Doppler shifted frequency. A linear differential equa-

tion of second-order with four regular singularities is reducible to a Heun equation [70,71]. The simpler case of three regular

singularities leads to the Gaussian hypergeometric differential equation [58–60]. The latter applies suppressing one singularity,

e.g., the critical layer (33a,b) by setting the axial wavenumber to zero k = 0 so that X = 1 in (29a) and the singularity (33a,b)

corresponding to X = 0 is excluded. This particular case corresponds to cylindrical acoustic-vortical-entropy waves depending

only on the radius and time, and generalizes cylindrical acoustic waves [2,3,6,7].

If the axial wavenumber is not zero, the vanishing of (29a) introduces a critical layer in the AVE wave equation (28). The

condition X = 0 corresponding to±kc0 = 𝜔∗ = 𝜔 − kU leads to a singularity of the wave equation similar to those that occur

for adiabatic acoustic-shear [31–44] and acoustic-vortical [45–57] waves and will be addressed subsequently. The present paper

concentrates on non-homentropic effects, in the simpler case of zero axial wavenumber (34a), that is neglecting axial depen-

dence, when there is (21b) no Doppler shift (34b) and the coefficients of the wave equation (29a–c) simplify respectively to

(34d–f),

k = 0, 𝜔∗ = 𝜔, (c2
0
)′ = 𝛾Ω2r, X = 1 ∶ A = c2

0
∕r + (c2

0
)′ = 𝛾Ω2r + c2

0
∕r, (34a-e)

B = 𝜔2 − 5Ω2 +
(
Ω2r + c2

0
∕r

)′
= 𝜔2 − 4Ω2 + 𝛾Ω2 − c2

0
∕r2, (34f)

where the radial dependence of the sound speed (16b) was used (34c). Thus the acoustic-vortical-entropy wave equation (28)

for (34a–f) a cylindrical wave of frequency 𝜔 simplifies to

c2
0
ṽ′′

r
+

(
𝛾Ω2r + c2

0
∕r

)
ṽ′

r
+

[
𝜔2 + (𝛾 − 4)Ω2 − c2

0
∕r2

]
ṽr = 0 . (35)
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The first author is indebted to the referee of an earlier paper for the derivation of this particular form (35) of the more general

wave equation (28); (29a-c). Substituting (17a) in the wave equation (35) leads to

r2
(

1 + r2∕r2
0

)
ṽ′′r + r

(
1 + 3r2∕r2

0

)
ṽ′r +

{[
(𝜔∕c00)2 + (1 − 8∕𝛾)∕r2

0

]
r2 − 1

}
ṽr = 0 . (36)

Using (34a) and (17a,b), the remaining wave variables are the azimuthal velocity (25b), mass density (30b), temperature (31a),

entropy (25c) and pressure (26) perturbation spectra specified respectively by (37a–e),

ṽ𝜑 = −i
2Ω
𝜔

ṽr, 𝜌 = −i(𝜌0∕𝜔)
(

ṽ′r + ṽr∕r
)
, T̃∕T0 =

[
(𝛾∕c2

0
)p̃ − 𝜌

]
∕𝜌0, (37a-c)

s̃ = −i
2

𝜔

CV rṽr

r2 + r2
0

, p̃ = −i
𝜌0𝛾Ω

2

2𝜔

[(
r + 2r∕𝛾 + r2

0
∕r

)
ṽr +

(
r2 + r2

0

)
ṽ′

r

]
, (37d,e)

in terms of the radial velocity perturbation spectrum.

The adiabatic exponent for a perfect gas is given by (38b) where (38a) is the number of degrees of freedom of a molecule,

N = 3, 5, 6 ∶ 𝛾 = 1 + 2

N
= 5

3
,

7

5
,

4

3
, (38a,b)

namely: (i) three for monoatomic gas; (ii) five for a diatomic gas or polyatomic gas with molecules in a line; (iii) six for a three-

dimensional polyatomic molecule. The ratio of the azimuthal velocity of the mean flow at the reference radius (17b) to the sound

speed on axis given by

r0Ω
c00

=
√

2

𝛾
=

√
2N

N + 2
=

√
6

5
,

√
10

7
,

√
3

2
, (39)

that is of order unity and plays the role of swirl Mach number at the axis, bearing in mind that the sound speed (17a,b) is not

constant. Using the sound speed (17a) at the sonic radius (40a) leads to (40b),

c0(r0) = c00

√
2 ∶ r0Ω = c0(r0)√

𝛾
=

√
RT0(r0) = c0(r0), (40a,b)

showing that the sonic radius corresponds to azimuthal velocity equal to the isothermal sound speed, that is isothermal swirl

Mach number unity. For purely acoustic waves in an homentropic medium without swirl, the Mach number should be based on

the adiabatic sound speed; for purely vortical waves in an incompressible homentropic flow, the Mach number should be based

on the isothermal sound speed. The coupling of sound with vorticity leaves for acoustic-vortical-entropy waves unclear which

of the two sound speeds should be used or even a combination of them; the acoustic-vortical coupling to non-homentropic

conditions could also possibly change the adiabatic or isothermal sound speeds. It turns out from the analysis that the singularity

of the AVE wave equation occurs at the Mach number unity based on the azimuthal velocity of swirl and the isothermal sound

speed, as would be the case for purely vortical modes. The singularities of the AVE wave equation for purely radial modes or

cylindrical waves are, besides the axis r = 0 and infinity r = ∞, the points (32b) on the imaginary axis rs = ±ir0 at a distance

equal to the sonic radius (39). Thus there is no singularity of the AVE wave equation for real, finite, non-zero radius, and the

wave field is finite everywhere, including at the sonic radius, that is rs is an apparent singularity of the differential equation

[66] for real variable that is not a singularity of the solution. Nevertheless, the singularities |rs| = r0 lie on a circle of radius

r0 in the complex r-plane and limit the radius of convergence of the solution around the axis. Other solutions will be used to

cover the whole range of radial distances 0 ≤ r < ∞ including across the sonic radius r = r0. This will be confirmed from the

exact solution of the AVE wave equation, that has three regular singularities, and thus must be expressible in terms of Gaussian

hypergeometric functions (Subsection 3.2).

3.2. Transformation to a Gaussian hypergeometric differential equation

The independent variable is chosen to be the square of the radius divided by the reference radius (41a),

𝜂 ≡ r2

r2
0

= Ω2𝛾r2

2c2
00

= Ω2𝛾r2[
c0(r0)

]2
= Ω2r2

RT0(r0)
, ṽr(r, 𝜔) = J(𝜂, 𝜅), (41a,b)

that is the square of the isothermal swirl Mach number, that is the square of the ratio of the swirl velocity to the isothermal

sound speed. The acoustic-vortical-entropy wave equation (36) becomes

𝜂2(1 + 𝜂)J′′ + 𝜂(1 + 2𝜂)J′ + [(𝜅2𝜂 − 1)∕4]J = 0, (42)

that involves as parameter only the dimensionless radial wavenumber (43a,b), that includes all compressibility, vorticity and

non-isentropic effects,

𝜅2 = 𝜔2 + 1 − 8∕𝛾, 𝜔 ≡ 𝜔r0∕c00 . (43a,b)
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The dimensionless radial wavenumber (43a) differs by constant terms from the dimensionless frequency or reference Helmholtz

number (43b) calculated from: (i) the wave frequency 𝜔; (ii) the sonic radius (39); (iii) the adiabatic sound speed on axis (16a).

The order of the polynomial coefficients may be reduced from cubics in the differential equation (42) to quadratic via the

change of dependent variable (44a) in (42) leads to (44b),

J(𝜂) = 𝜂𝛼K(𝜂) ∶ (44a)

𝜂2(1 + 𝜂)K′′ + 𝜂[1 + 2𝛼 + 2(1 + 𝛼)𝜂]K′ + [(𝛼2 + 𝛼 + 𝜅2∕4)𝜂 + 𝛼2 − 1∕4]K = 0, (44b)

where the constant 𝛼 may be chosen at will. Choosing (45a) allows (44b) to be divided through 𝜂, depressing the degree of the

coefficients from three in (44b) to two in (45b),

𝛼 = 1

2
∶ 𝜂(1 + 𝜂)K′′ + (2 + 3𝜂)K′ + [(𝜅2 + 3)∕4]K = 0 . (45a,b)

The differential equation (45b) is similar to the Gaussian hypergeometric type reversing the sign of the independent variable,

that is using a change of independent variable (46a,b) that leads to (46c),

u = −𝜂, K(𝜂) = Q(u) ∶ u(1 − u)Q′′ + (2 − 3u)Q′ − [(𝜅2 + 3)∕4]Q = 0 . (46a-c)

The latter is indeed a Gaussian hypergeometric differential equation [59],

u(1 − u)Q′′ + [C − (A + B + 1)u]Q′ − ABQ = 0, (47)

with parameters satisfying (48a-c),

C = 2, A + B = 2, AB = 𝜅2 + 3

4
, (48a-c)

and implying (48d,e),

A, B = 1 ± 1

2

√
1 − 𝜅2 = 1 ± 𝜈

2
, 𝜈 ≡ √

1 − 𝜅2, (48d,e)

where 𝜈 may be zero, real or imaginary respectively for 𝜅2 = 1, 𝜅2 < 1 and 𝜅2 > 1 in (43a,b). These three cases will be consid-

ered in the sequel.

The Gaussian hypergeometric differential equation (47) transforms into itself with different parameters by the changes of

independent variable [58] in the Schwartz group,

u, 1 − u,
1

u
, 1 − 1

u
,

u − 1

u
,

u

u − 1
(49)

that interchange between themselves the three regular singularities: u = 0, 1,∞. Since 𝜂 > 0 in (41a) and u < 0 in (46a), the

variable (50a) does not exceed unity,

𝜉 ≡ u

u − 1
= 𝜂

𝜂 + 1
= r2

r2 + r2
0

< 1, 0 ≤ r < ∞, (50a,b)

and the corresponding series solution converges for (50b) that is for all finite values of the radius, including the origin and

possibly excluding only the point at infinity since 𝜉 → 1 as r → ∞. The solutions of the Gaussian hypergeometric differential

equation in terms of the variable (50a) are [72]

Q+(u) = (1 − u)−AF(A, C − B;C;u∕(u − 1)), (51a)

Q−(u) = u1−C(1 − u)C−A−1F(A − C + 1, 1 − B;2 − C;u∕(u − 1)) . (51b)

Substituting (48a,d), (50a) and (46a,b; 45a; 44ba; 41a,b) leads to (52a,b) with ṽr± corresponding to Q±(u) in (51a,b),

ṽr+(r, 𝜔) =
r

r0

(
r2

0

r2
0
+ r2

)1+𝜈∕2

F

(
1 + 𝜈

2
, 1 + 𝜈

2
;2; r2

r2
0
+ r2

)
, (52a)

ṽr−(r, 𝜔) = − r0

r

(
r2

0

r2
0
+ r2

)𝜈∕2

G

(
𝜈
2
,
𝜈
2
;0; r2

r2
0
+ r2

)
, (52b)

where a function of the second kind appears because the third parameter is zero in (52b). The radial velocity perturbation

spectrum is a linear combination (53b) of (52a,b) with coefficients C±(𝜔) that can depend on the frequency,

0 ≤ r < ∞ ∶ ṽr(r, 𝜔) = C+ṽr+(r, 𝜔) + C−ṽr−(r, 𝜔), (53a,b)



397L.M.B.C. Campos and A.C. Marta / Journal of Sound and Vibration 437 (2018) 389–409

that is valid for all values of the radius (50b) excluding only (53a) the asymptotic approximation at infinity that is discussed in

the sequel.

The point at infinity (54a) corresponds (50a) to the point unity (54b) and the convergence of the Gaussian hypergeometric

series (54c) at this point depends [18,73,74] on the value of (54d),

r → ∞, 𝜉 → 1, F(a, b; c; 𝜉) ∶ Y = Re(a + b − c) . (54a-d)

The parameters of the Gaussian hypergeometric functions (52a,b) are respectively (55a,b) both leading to (55c),

{a, b, c} = {1 + 𝜈∕2, 1 + 𝜈∕2, 2}, {𝜈∕2, 𝜈∕2, 0} ∶ Y = Re(𝜈) . (55a-c)

The parameter 𝜈 is given by (48a) implying that it is real (56b) for (56a) and imaginary (56d) for (56c),

0 ≤ 𝜅2 ≤ 1 ∶ 1 ≥ 𝜈 ≥ 0 ; 𝜅2 > 1 ∶ 𝜈 = ±i|𝜈| . (56a-d)

At the point unity 𝜉 = 1 on the circle of convergence |𝜉| = 1, the hypergeometric series has [18,73,74] the following properties:

(i) diverges if Y > 0 that is if 𝜅2 < 1; (ii) also diverges if a + b = c that implies by (55a,b) that 𝜈 = 0 or 𝜅 = 1; (iii) oscillates

for Y = 0 with a + b ≠ c, that the case (56c,d); (iv) converges absolutely for Y < 0 that does not occur in the present case.

Thus both solutions (52a,b) diverge (56a,b) or oscillate (56c,d) asymptotically (54a,b). The asymptotic solution for large radius

will be obtained subsequently by analytic continuation using Gaussian hypergeometric functions of another variable from the

Schwartz group (49). The AVE wave field (52b) is singular on the axis r → 0 on account both of the factor r0∕r and the logarithmic

singularity log[r2∕(r2
0
+ r2)] in the Gaussian hypergeometric function of the second kind [58]. Thus for a finite wave field on the

axis, the second term on the r.h.s. of (53b) must be excluded for a cylindrical duct (57b) setting (57a) and leading to (57c),

C−(𝜔) = 0, 0 ≤ r < ∞ ∶ (57a,b)

ṽr(r, 𝜔) = C+(𝜔)(r∕r0)(1 + r2∕r2
0
)−1−𝜈∕2F

(
1 + 𝜈

2
, 1 + 𝜈

2
;2; r2

r2 + r2
0

)
. (57c)

Using [58–60] the property (58a), it follows that the radial velocity perturbation spectrum vanishes on the axis (58b),

F(a, b; c;0) = 1 ∶ ṽr(0, 𝜔) = 0 . (58a,b)

The constant C+ in (57c) is determined (59c) by the velocity perturbation spectrum at the sonic radius (59a,b),

r = r0, 𝜉 = 1

2
∶ ṽr(r0, 𝜔) = C+(𝜔)2−1−𝜈∕2F

(
1 + 𝜈

2
, 1 + 𝜈

2
;2; 1

2

)
. (59a-c)

The radial velocity perturbation spectrum (57c) vanishes on the axis as O(r), that is the same as the azimuthal velocity

Ωr ∼ O(r) of the mean flow with rigid body swirl. Their ratio specifies the relative radial velocity perturbation spectrum (60b),

0 ≤ r < ∞ ∶ (60a)

W+(r, 𝜔) ≡ ṽr(r, 𝜔)
Ωr

= C+(𝜔)
Ωr0

(1 + r∕r0)−1−𝜈∕2F

(
1 + 𝜈

2
, 1 + 𝜈

2
;2; r2

r2 + r2
0

)
, (60b)

that holds for finite radius (60a) and takes finite values on axis (61a) and at the sonic radius (61b),

W+(0, 𝜔) =
C+(𝜔)
Ωr0

, W+(r0, 𝜔) = W+(0, 𝜔)2−1−𝜈∕2F
(

1 + 𝜈
2
, 1 + 𝜈

2
;2; 1

2

)
. (61a,b)

The asymptotic wave field is obtained next.

3.3. Wave fields inside, outside and at the sonic radius

Replacing the variable (50a) by (62a) would map all radial distances outside the origin up to and including infinity (62b) into

the unit interval (62c),

𝜁 ≡ r2
0

r2
0
+ r2

∶ 0 < r ≤ ∞ ∶ 0 ≤ 𝜁 < 1 . (62a-c)

The variable (50a) is mapped to (62a) by the transformation (63a) as can be confirmed from (63b),

𝜁 =

(
1 + r2

r2
0

)−1

=
(

1 + 𝜉

1 − 𝜉

)−1

= 1 − 𝜉, 1 − r2

r2 + r2
0

=
r2

0

r2 + r2
0

. (63a,b)
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The transformation (63a) belongs to the Schwartz group (49) and leads [72] from the hypergeometric function (54c) to

F(a, b; c, 𝜉) = Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

F (a, b; a + b − c + 1;1 − 𝜉) +

+ (1 − 𝜉)c−a−bΓ(c)Γ(a + b − c)
Γ(a)Γ(b)

F (c − a, c − b; c − a − b + 1;1 − 𝜉) , (64)

where Γ is the Gamma function [18,75]. Substituting (64) with the variable (63b) and parameters (55a) in the radial velocity

perturbation spectrum (57c) that is non-singular at the origin leads to (65a,b)

0 ≤ r < ∞ ∶ ṽr(r, 𝜔) = C+(𝜔)
[̃

v+r (r, 𝜔) + ṽ−r (r, 𝜔)
]
, (65a,b)

where

ṽ±
r
(r, 𝜔) = 1

r∕r0 + r0∕r

(
r2

0

r2 + r2
0

)±𝜈∕2

Γ(±𝜈)
[Γ(1 ± 𝜈)]2

F

(
1 ± 𝜈

2
, 1 ± 𝜈

2
;1 ± 𝜈;

r2
0

r2
0
+ r2

)
. (66)

From (58a) follows the asymptotic limit for large radius,

lim
r→∞

ṽ±
r
(r, 𝜔) =

(
r0

r

)1±𝜈 Γ(±𝜈)
[Γ(1 ± 𝜈)]2

. (67)

From (48c) follows that in the case (56a,b) both solutions are asymptotically evanescent and non-oscillating (68a,b),

0 ≤ 𝜅2 ≤ 1 ∶ lim
r→∞

ṽ±
r
(r, 𝜔) = 0 ; (68a,b)

from (56c,d) follows that for (69a) there are inward and outward propagating modes (69b) with decaying amplitude,

𝜅2 > 1 ∶ ṽ±
r
(r, 𝜔) ∼ Γ(±i|𝜈|)

[Γ(1 ± i|𝜈|)]2

r0

r
exp

[
±i|𝜈| log

(
r0

r

)]
. (69a,b)

At the origin (66) would vanish in agreement with (58b) provided that the hypergeometric series (70a) converges for 𝜁 = 1,

F
(

1 ± 𝜈

2
, 1 ± 𝜈

2
;1 ± 𝜈;1

)
∶ {a, b, c} =

{
1 ± 𝜈

2
, 1 ± 𝜈

2
;1 ± 𝜈

}
, a + b = c, (70a-c)

the parameters (70b) lead to (70c), and thus [18,73,74] the hypergeometric series (70a) at the point 𝜁 = 1 on the radius of

convergence |𝜁 | = 1 diverges. Thus the conclusion (58b) cannot be drawn from the limit 0 × ∞ in (66) as r → ∞, although it

can be proved from (57c).

Thus the finite wave field at the origin is given for the radial velocity perturbation spectrum: (i) by (57c) valid for all finite

radial distances (57b); (ii) by (65b,66) for all radial distances including infinity and excluding the origin. The wave field vanishes

at the origin (58b), where the relative wave field (60aa,b) is finite (61a). Both the absolute (57c) and relative (60b) radial velocity

perturbation spectra are finite at the sonic radius taking respectively the values (59c) and (61b). The asymptotic radial velocity

perturbation spectrum (67) decays both for monotonic (68a,b) and oscillating (69a,b) conditions. In the propagating case (69a,b)

the modes (66) are complex conjugate (71a,b) implying (71c),

𝜅2 > 1 ∶ {̃v−r (r, 𝜔)}
∗ = ṽ+r (r, 𝜔) ∶ ṽr(r, 𝜔) = 2C+(𝜔)ℜ[̃v±r (r, 𝜔)] . (71a-c)

Thus for real C+(𝜔) the radial velocity perturbation spectrum,

𝜅2 > 1 ∶ ṽS
r
(r, 𝜔) = 2C+(𝜔)

r∕r0 + r0∕r
ℜ

{
Γ(±i|𝜈|)

[Γ(1 ± i|𝜈|)]2
F

(
1 ± i

|𝜈|
2
, 1 ± i

|𝜈|
2
;1 ± i|𝜈|; r2

0

r2
0
+ r2

)
exp

[
±i

|𝜈|
2

log

(
r2

0

r2
0
+ r2

)]}
,

(72)

corresponds to standing modes vanishing both on axis and at infinity,

lim
r→0

ṽS
r
(r, 𝜔) = 0 = lim

r→∞
ṽS

r
(r, 𝜔) . (73a,b)

The application of rigid or impedance wall boundary conditions specifies the eigenvalues and eigenfunctions of AVE modes

(Section 4).

4. Velocity, pressure, density, entropy and temperature perturbations

The solutions of the AVE wave equation are considered (Subsection 4.1) for a cylinder. The boundary conditions at the wall(s),

e.g. rigid or impedance, specify the eigenvalues and eigenfunctions (Subsection 4.2) that are plotted for all wave variables (Sub-

section 4.3) over a range of radial distances including the sonic radius (Figs. 2–7).
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4.1. AVE wave inside or outside a cylinder and in an annulus

All wave variables, namely the azimuthal velocity, mass density, pressure, temperature and entropy perturbations spectra

can be calculated from the radial velocity perturbation spectrum (Section 2). The latter satisfies the acoustic-vortical-entropy

wave equation whose solution has been obtained (Section 3) for all radial distances, including the predominantly acoustic modes

inside and vortical modes outside the sonic radius where the isothermal swirl Mach number is unity and the radial velocity

perturbation is finite, showing a smooth transition between the acoustically and vortically dominated propagation regimes. The

calculation of eigenvalues and eigenfunctions is illustrated in the simplest case of a cylinder (74a) of radius R and the simplest

boundary condition of a rigid wall (74b) leading (57c) to (74c),

0 ≤ r ≤ R , ṽr(R, 𝜔) = 0 ∶ F(1 + 𝜈∕2, 1 + 𝜈∕2;2;R2∕(r2
0
+ R2)) = 0 . (74a-c)

The Gaussian hypergeometric function in (57c) can be calculated most efficiently [76,77] summing the series (75b,a) with the

recurrence formula for the successive terms (75c) starting at (75b),

H(𝜉; 𝜈) ≡ F(1 + 𝜈∕2, 1 + 𝜈∕2;2; 𝜉) = 1 +
∞∑

n=1

fn(𝜉), (75a)

f0(𝜉) = 1, fn+1(𝜉) = fn(𝜉)
(n + 1 + 𝜈∕2)2

(n + 1)(n + 2)
𝜉 . (75b,c)

The eigenvalues for the radial wavenumber are the roots of (76),

0 = H

(
1

1 + (r0∕R)2
;
√

1 − 𝜅2

)
= H0

∞∏
l=1

(𝜅 − 𝜅l), (76)

where H0 is a constant. To each eigenvalue corresponds (57c) an eigenfunction,

vl(r∕r0) = (r∕r0)(1 + r2∕r2
0
)−1−𝜈∕2H

(
1

1 + (r0∕r)2
;
√

1 − 𝜅2
l

)
. (77)

The eigenvalues 𝜅 l for the radial wavenumber specify the eigenfrequency (43b) by (43a) with the adiabatic exponent 𝛾 = 1.4
for a diatomic perfect gas, and 𝜈 is given by (48e). Thus for (56a,b) the factor in (77) is real, whereas for (56c,d)≡(78a) there is

an oscillating factor (78b),

𝜅2 > 1 |𝜈| = |𝜅2 − 1|1∕2 ∶ (78a)

(1 + r2∕r2
0
)−1−𝜈∕2 = (1 + r2∕r2

0
)−1 exp

{
∓i

|𝜈|
2

log(1 + r2∕r2
0
)
}
. (78b)

Before proceeding to plot (Figs. 2–7) the eigenvalues and eigenfunctions for all variables (Subsections 4.2-4.3), the only param-

eter in the problem, namely the dimensionless wavenumber (43a) is interpreted in a simple way.

If the radius is small compared with the reference radius (79a), that is for small swirl isothermal Mach number, the wave

equation (36) simplifies to (79b),

r2 ≪ r2
0
∶ r2ṽ′′

r
+ rṽ′

r
+

(
𝜅2r2 − 1

)
ṽr = 0, (79a,b)

in the passage from (35) to (79b) the approximation (79a) was made in the coefficient of ṽ
′
r
, but not in the coefficient of ṽr,

because the frequency (43b) could be large in the radial wavenumber (43a). Thus the approximation of small radius (79a)

leads to the Bessel [61–63] equation (79b) where (43a) is the dimensionless radial wavenumber involving the dimensionless

frequency (43b). The Bessel equation has oscillatory solutions for real wavenumber and monotonic increasing solutions for

imaginary wavenumber. Although the preceding result was obtained only for small radius (79a), it suggests the following inter-

pretation. The condition specifying wave fields with oscillatory dependence on the radius (80a) is expressed by (80b) in terms

of the dimensionless frequency (43b),

𝜅2 > 0 ∶ 𝜔r0

c00

>

√
8

𝛾
− 1 =

√
7N − 2

N + 2
=

√
19

5
,

33

7
, 5 . (80a,b)

Using (17b) the condition for radially oscillatory AVE waves is written in terms of the angular velocity,

𝜔 >
c00

r0

√
8

𝛾
− 1 = Ω

√
𝛾
2

(
8

𝛾
− 1

)
= Ω

√
4 − 𝛾

2
= Ω

√
7

2
− 1

N
= Ω

√
19

6
,

33

10
,

10

3
. (81)

Using the sound speed (40a) at the reference radius the oscillatory condition (80b) becomes

𝜔r0

c0(r0)
= 𝜔r0

c00

√
2
>

√
4

𝛾
− 1

2
=

√
8 − 𝛾

2𝛾
=

√
7N − 2

2N + 4
=

√
19

10
,

33

14
,

5

2
. (82)
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Bearing in mind that the modulus of the vorticity is twice the angular velocity (12b) the oscillatory condition (81) becomes

𝜔|𝜛| = 𝜔

2Ω
>

√
1 − 𝛾

8
=

√
7

8
− 1

4N
=

√
7N − 2

8N
=

√
19

24
,

33

40
,

5

6
≡ 𝜇 . (83)

Of the four forms of the oscillatory condition (80b), (81), (82) and (83) the last is independent of the geometry and may be

the most general: a vortical, non-homentropic flow has perturbations with oscillatory dependence on the radial distance if the

frequency is larger than the maximum of the modulus of the peak vorticity 𝜛 multiplied by the factor 𝜇 in (83).

The solutions of the linearized equations of motion of a fluid may alternatively be interpreted as waves if the amplitude

is finite or as unbounded motions if the amplitude diverges. For cylindrical AVE waves that depend only on radius and time,

and are sinusoidal in time with constant frequency, unboundedness can be considered only in the radial direction. Asymp-

totically for large radius a ‘wave’ would have finite amplitude and an ‘unbounded motion’ would have diverging amplitude.

Thus the oscillatory condition excluding monotonic growth of perturbations could be equivalent to a boundedness condition

for the mean flow. This conjecture can be applied (Fig. 1) to the growth of combustion perturbations in a confined space: (i)

if the natural frequencies exceed the product 𝜇𝜛 there is no growth (Fig. 1a), and only the fundamental frequency needs

to be considered 𝜔1 > 𝜇𝜛; (ii) if the fundamental frequency and other modes lie below 𝜇𝜛 those modes lead to growth

(Fig. 1b). The passage from oscillatory to the monotonic case could be due to: (i) increasing the vorticity of the mean flow, e.g. to

achieve better mixing for ‘lean’ fuel saving combustion; (ii) increasing the size of the enclosure, so that the natural frequencies

reduce, and fall below 𝜇𝜛 . The remark (i) agrees with the observation that lean combustion tends to be unstable; the remark

(ii) agrees with the observation that larger rocket motors are more prone to large amplitude oscillations. The criterion for no

growth

𝜔1 > 𝜇𝜛max , 𝜇 = 0.890, 0.908, 0.913, (84a,b)

that the fundamental frequency must be larger than the modulus of the peak vorticity times the factor (83) can be tested

for more complex geometries using numerical codes. Similar conditions were obtained before for the stability of an inviscid

boundary layer [67,68] and for sound in vortical flows [69]. It has a simple interpretation: (i) acoustic modes with frequency

𝜔 are bounded; (ii) vortical modes with vorticity 𝜛 are unbounded; (iii) there is boundedness if the acoustic modes do not

excite vortical modes 𝜔 > |𝜛|; (iv) there is unboundedness if the vortical modes are excited by acoustic modes 𝜇|𝜛| > 𝜔.

The factor (83) involving the adiabatic exponent appears because the vortical modes are incompressible and the acoustic modes

are adiabatic and thus the ratio of frequency to vorticity is close to but not exactly unity bearing in mind the coupling with

entropy effects.

The preceding results are comparable to the stability theory [78–81] in a spatial rather than a temporal domain; they hold

for distance from the axis small compared with the sonic radius (79a), and are complemented by (77;78a,b) asymptotically for

radial distance large compared with the sonic radius. In the latter case, the asmptotic scaling is specified by the dimensionless

wavenumber (43a,b): (i) oscillatory for 𝜅2 > 0 and monotonic decaying or increasing for 𝜅2 < 0; (ii) real factor in (77) for

𝜅2 ≤ 1 and complex (78b) for (78a). The initial (57c) and asymptotic (53b,66) wave fields are valid for all radial distances

except respectively infinity (57b) and the origin (53a) and thus overlap and can be matched for all radii except at these two

points 0 < r < ∞. The waveforms are not sinusoidal and thus an interpretation in terms of dimensionless wavenumber (43a)

or frequency (43b) is local. For small radius compared with the sonic radius, the condition (80a) for oscillatory wave field leads

to (85b), (81), (82) and (83) that are equivalent to (84a,b). In the opposite (85a) asymptotic limit (53a,b), the condition for

oscillatory motion (85b) leads (43b) to (85c) for the frequency

r >> r0 ∶ 𝜅2 = 𝜛2 + 1 − 8∕𝛾 > 1, 𝜛 >
√

8∕𝛾 . (85a-c)

The condition (85c) is similar to (80b) with substitution (86a)√
8

𝛾
− 1 →

√
8

𝛾
,

𝜔
𝜛

= c00𝜛

2Ωr0

= 𝜛
2

√
𝛾
2
> 1, (86a,b)

and implies (86b) instead of (84a,b). Thus the factor (84b) for the initial wave field, that depends on the number of degrees of

freedom of a molecule, is replaced asymptotically by (86b) implying𝜔 > 𝜛 that does not depend on the atomic composition of

Fig. 1. The compressible, vortical, non-isentropic flow is oscillatory if the peak vorticity multiplied by (83) is less than the fundamental frequency (a) and monotonic

otherwise (b).



401L.M.B.C. Campos and A.C. Marta / Journal of Sound and Vibration 437 (2018) 389–409

a molecule of perfect gas. The spatial growth of acoustic-vortical perturbations [50,51] may appear an alternative to the temporal

growth [52] as an indicator of instability. There is no restriction on the radius or frequency in the exact solutions (75a-c) for the

eigenvalues (76) and eigenfunctions (77) that will be used for plotting the radial dependencies of all wave variables thus showing

the boundedness or unboundedness of all acoustic-vortical-entropy wave modes.

4.2. Eigenvalues for the wavenumber and frequency and eigenfunctions for six wave variables

The AVE waves are considered inside a cylinder with radius (87a) for the four cases (87b),

0 ≤ r ≤ R ∶ R∕r0 = 0.4, 0.8, 1.2, 1.6, (87a,b)

of which the first (last) two do not (do) contain the sonic radius. For each cylinder the roots of (76) specify the first six eigen-

values 𝜅 l of the radial wavenumber ordered by non-decreasing modulus in Table 1; the corresponding dimensionless natural

frequencies 𝜔l follow from (43b) and appear in Table 2. The eigenfunctions (77) are calculated from (75a-c) that converges

(57c) for any finite value of the radius (57b) in a cylinder that may thus contain the sonic radius. To each pair of dimensionless

eigenvalues (𝜅l, 𝜔l) correspond six dimensionless eigenfunctions for distinct wave variable spectra, namely the dimensionless:

(i) radial velocity (77) with magnitude unity at the origin apart from the factor r∕r0,

Dl ≡ G

(
0;

√
1 − 𝜅2

l

)
∶ vl(r∕r0) =

ṽr(r, 𝜔)
Dl

, (88a,b)

that is plotted in Fig. 2; (ii) azimuthal (37a) velocity (89),

wl(r∕r0) ≡ c00

Ωr0

ṽ𝜑(r, 𝜔)
Dl

= −i
2

𝜔l

vl(r∕r0), (89)

that is plotted in Fig. 3; (iii) the mass (37b) density (90),

𝜌l(r∕r0) ≡ c00

Dl

𝜌

𝜌0

= − i

𝜔l

[v′
l
+ (r0∕r)vl], (90)

that is plotted in Fig. 4; (iv) the (37d) entropy (91),

sl(r∕r0) ≡ c00

Dl

s̃(r, 𝜔)
CV

= − 2i

𝜔l

1

r∕r0 + r0∕r
vl, (91)

that is plotted in Fig. 5; (v) the (37e) pressure (92),

pl(r∕r0) ≡ p̃(r, 𝜔)
𝜌0c00Dl

= − i

𝜔l

{[
(1 + 2∕𝛾) r∕r0 + r0∕r

]
vl +

(
1 + r2∕r2

0

)
v′

l

}
, (92)

that is plotted in Fig. 6.

The temperature perturbation (37c) follows (94) from those of the density (90) and pressure (92),

Table 1

First six eigenvalues of the radial wavenumber for acoustic-vortical-entropy waves in a cylinder 0 ≤ r ≤ r1

with rigid wall with radius r1 smaller or larger than the sonic radius r0 .

0 ≤ r ≤ r1 r1 = 0.4r0 r1 = 0.8r0 r1 = 1.2r0 r1 = 1.6r0

𝜅1 9.874 5.322 3.895 3.217

𝜅2 18.015 9.626 6.974 5.700

𝜅3 26.103 13.920 10.061 8.203

𝜅4 34.175 18.212 13.150 10.712

𝜅5 42.240 22.502 16.241 13.027± i14.338

𝜅6 50.302 26.791 18.195± i27.868 15.588± i7.640

Table 2

As Table 1 for the corresponding values of the dimensionless frequency.

0 ≤ r ≤ r1 r1 = 0.4r0 r1 = 0.8r0 r1 = 1.2r0 r1 = 1.6r0

𝜔1 10.110 5.748 4.460 3.881

𝜔2 18.145 9.868 7.304 6.100

𝜔3 26.193 14.089 10.293 8.485

𝜔4 34.244 18.341 13.329 10.930

𝜔5 42.296 22.606 16.386 13.109± i14.248

𝜔6 50.349 26.879 18.234± i27.809 15.710± i7.581
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Tl(r∕r0) ≡ c00

Dl

T̃(r, 𝜔)
T0

= c00

𝜌0Dl

[
𝛾

p̃(r, 𝜔)
[c0(r)]2

− 𝜌(r, 𝜔)
]
= (93)

=
𝛾c2

00

[c0(r)]2
pl(r∕r0) − 𝜌l(r∕r0) =

r2
0

2r2
[M(r)]2pl(r∕r0) − 𝜌l(r∕r0),

that is plotted in Fig. 7. It involves the isothermal swirl Mach number,

𝛾
c2

00

[c0(r)]2
=

𝛾2Ω2r2
0

2[c0(r)]2
=

r2
0

2r2

𝛾2Ω2r2

[c0(r)]2
=

r2
0

2r2

Ω2r2

RT0

=
r2

0

2r2
[M(r)]2, (94)

where were used (17a,b). In (90) and (92) appear the derivative with regard to its argument (95) of the radial velocity (88b),

v′
l
(r∕r0) ≡ d[vr(r, 𝜔)]

d(r∕r0)

= d

d(r∕r0)

⎡⎢⎢⎣ r

r0

(
1 + r2
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0

)−1−𝜈∕2

F
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1 + 𝜈

2
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2
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0
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(
1 + r2

r2
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)−2−𝜈∕2 {[
1 − (1 + 𝜈) r2

r2
0

]
F

(
1 + 𝜈

2
, 1 + 𝜈

2
;2; r2

r2
0
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)

+

(
1 + r2
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0

)(
1 + 𝜈∕2

r∕r0 + r0∕r

)2

F

(
2 + 𝜈

2
, 2 + 𝜈

2
;3; r2

r2
0
+ r2

)}
, (95)

where was used (96a) the derivative (96b) of the Gaussian hypergeometric function in (75b,a),

d𝜉

d(r∕r0)
=

2r3
0

r

(r2
0
+ r2)2

, (96a)

d

d𝜉

[
F (1 + 𝜈∕2, 1 + 𝜈∕2;2; 𝜉)

]
= (1 + 𝜈∕2)2

2
F (2 + 𝜈∕2, 2 + 𝜈∕2;3; 𝜉) . (96b)

The Gaussian hypergeometric series in (96b) is calculated as (75a–c) replacing 𝜈 by 1 + 𝜈. The fundamental and first five har-

monics are plotted in Figs. 2–7 respectively for the dimensionless radial (88a,b) and azimuthal (89) velocity, mass density (90),

Fig. 2. Modulus (a) and phase (b) versus radial distance normalized to the sonic radius, for dimensionless radial velocity perturbation spectrum, of the first six modes of

acoustic-vortical-entropy waves in a rigid cylinder with radius equal to 1.6 of the sonic radius.
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Fig. 3. Modulus (a) and phase (b) versus radial distance normalized to the sonic radius, for dimensionless azimuthal velocity perturbation spectrum, of the first six modes

of acoustic-vortical-entropy waves in a rigid cylinder with radius equal to 1.6 of the sonic radius.

Fig. 4. Modulus (a) and phase (b) versus radial distance normalized to the sonic radius, for dimensionless mass density perturbation spectrum, of the first six modes of

acoustic-vortical-entropy waves in a rigid cylinder with radius equal to 1.6 of the sonic radius.

entropy (91), pressure (92) and temperature (94) perturbation spectra, as basis for the following discussion (Subsection 4.3).

The radius of the cylindrical duct is taken as the largest R∕r0 = 1.6 of the values in (87b) to show the variation of the AVE wave

variables across the sonic radius.

4.3. Waveforms for the fundamental and stable and unstable harmonics

Figs. 2–7 concern AVE wavemodes in a cylindrical duct with rigid wall at a radius R = 1.6r0 that is 60% larger than the sonic
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Fig. 5. Modulus (a) and phase (b) versus radial distance normalized to the sonic radius, for dimensionless entropy perturbation spectrum, of the first six modes of acoustic-

vortical-entropy waves in a rigid cylinder with radius equal to 1.6 of the sonic radius.

Fig. 6. Modulus (a) and phase (b) versus radial distance normalized to the sonic radius, for dimensionless pressure perturbation spectrum, of the first six modes of acoustic-

vortical-entropy waves in a rigid cylinder with radius equal to 1.6 of the sonic radius.

radius, thus containing in its interior the radius of isothermal swirl Mach number unity, with subsonic (supersonic) swirl inside

(outside). Since the mean flow has a solenoidal (13b) velocity (12a), it causes no compression in a compressible fluid that can

support sound waves, and thus there is no restriction on Mach number. The first six modes are considered with dimensionless

frequency (43b) indicated in Table 2, with the corresponding dimensionless radial wavenumbers (43a) in Table 1. The modulus

and phase of the six corresponding eigenfunctions are plotted versus radial distance in Fig. 2 for the radial velocity (88b), in

Fig. 3 for the azimuthal velocity (89), in Fig. 4 for the mass density (90), in Fig. 5 for the entropy (91), in Fig. 6 for the pressure

(92) and in Fig. 7 for the temperature (93); for all six wave variables are considered as dimensionless perturbation spectra using

the amplitude Dl of the radial velocity perturbation spectrum at the axis. For this reason, the waveforms or eigenfunctions for
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Fig. 7. Modulus (a) and phase (b) versus radial distance normalized to the sonic radius, for dimensionless temperature perturbation spectrum, of the first six modes of

acoustic-vortical-entropy waves in a rigid cylinder with radius equal to 1.6 of the sonic radius.

the radial velocity start with the value unity on the axis in Fig. 2.

The dimensionless radial velocity perturbation spectra in Fig. 2 all start with the value unity on axis due to the normalization

and all finish with zero at the rigid wall at r = 1.6r0 = R. The fundamental mode v1 has no other zero, and decays smoothly

from the axis to the wall. As typical of eigenvalue problems, the harmonics vn of order n = 2, 3, 4 have n − 1 zeros of the

amplitude (Fig. 2 top) between the axis and the wall, corresponding to phase jumps of 𝜋 (Fig. 2 bottom). The fifth and sixth

harmonics n = 5, 6 have complex radial wavenumbers in Table 1, leading to radially decaying or divergent modes; the divergent

modes are unbounded perturbations of the mean flow as can be seen from the increasing amplitudes of v+
5

and v+
6

(Fig. 2 top).

The dimensionless azimuthal velocity perturbation spectrum (Fig. 3) also vanishes at the rigid wall for the fundamental w1

and next three harmonics w2, w3, w4 (Fig. 3 top), again with phase jumps of 𝜋 at the zeros of the amplitude or nodes (Fig. 3

bottom). The fifth and sixth harmonics w+
5

, w+
6

are unbounded modes both for the radial (Fig. 2 top) and azimuthal (Fig. 3 top)

velocity perturbations spectra. The amplitude of the dimensionless azimuthal velocity perturbation spectrum on axis (Fig. 3 top)

decreases from the fundamental to the higher harmonics.

The perturbation spectrum of the mass density (Fig. 4) leads to eigenfunctions that are quite different from those of the radial

(Fig. 2) and azimuthal (Fig. 3) velocity perturbation spectra. The mass density perturbation spectra do not vanish at the rigid wall

(Fig. 4 top) although their magnitude decreases from the fundamental 𝜌1 to the next three bounded harmonics 𝜌2, 𝜌3, 𝜌4. The

fundamental 𝜌1 almost vanishes at r = 0.48r0 leading to rapid phase change of 𝜋 (Fig. 4 bottom). Whereas the fundamental 𝜌1

has one dip, the next three n = 2, 3, 4 harmonics 𝜌n have n dips, and the fifth and sixth harmonics 𝜌+
5

, 𝜌+
6

are unbounded as

before. The dimensionless entropy perturbation spectrum (Fig. 5) vanishes on axis for all harmonics, including the unbounded

harmonics s+
5

, s+
6

, and vanishes also at the rigid wall for the fundamental s1 and the first three bounded harmonics s2, s3, s4. The

fundamental s1 has no zeros and exhibits a single peak at r = 0.5r0 far from the sonic radius. The first three harmonics sn with

n = 2, 3, 4 have n peaks and n − 1 nodes. The peaks are lower when: (i) passing from the fundamental n = 1 to the harmonics

n = 2, 3, 4; (ii) for a given harmonic n, the successive n peaks become lower farther from the axis.

The dimensionless pressure perturbation spectra (Fig. 6) are broadly similar to those of the mass density (Fig. 4), with similar

features, such as a non-zero pressure at the rigid wall with amplitude decreasing from the fundamental p1 to the first three

bounded harmonics p2, p3, p4. The fifth and sixth harmonics p+
5

, p+
6

are again unbounded. The fundamental p1 has one dip of the

amplitude (Fig. 6 top) broader than for the mass density (Fig. 4 top) and approximately at the same location r = 0.48r0. The next

three bounded harmonics pn with n = 2, 3, 4 have n dips and n peaks (Fig. 6 top) with phase jumps (Fig. 6 bottom) indicating

that the dips are actually zeros or nodes. The dimensionless temperature perturbation spectra (Fig. 7) have eigenfunctions

broadly similar to the entropy (Fig. 5), with: (i) zero on axis for all modes, bounded T1, T2, T3, T4 or unbounded T+
5

, T+
6

; (ii) the

bounded modes are also zero at the wall; (iii) the fundamental mode T1 has a single maximum between the axis and the wall;

(iv) the bounded harmonics n = 2, 3, 4 have n maxima and n − 1 zeros.

Thus besides the unbounded diverging spectra, there are three kinds of bounded spectra for the fundamental mode n = 1

(first three harmonics n = 2, 3, 4): (i) monotonic (oscillatory) decay for the dimensionless radial (Fig. 2) and azimuthal (Fig. 3)

velocity perturbation spectra, that are non-zero on axis and zero at the wall; (ii) non-zero at the wall for the dimensionless mass
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density (Fig. 4) and pressure (Fig. 6) perturbation spectra with a single dip (n dips and n − 1 maxima); (iii) zero on axis and at

the wall for the dimensionless entropy (Fig. 5) and temperature (Fig. 7) perturbation spectra with a single maximum (n maxima

and n − 1 zeros).

5. Conclusions

The consideration of entropy modes requires that the equation of state (6a) following the motion be written as

DP

dt
= c2 dΓ

dt
+ 𝛽

dS

dt
, (97)

involving both the adiabatic sound speed (6b) and the non-adiabatic coefficient (6c). For the mean state (97) simplifies to

𝛿p0

dt
= c2

0

𝛿𝜌0

dt
+ 𝛽0

𝛿s0

dt
, (98)

where the exact material derivative (5a,b) is replaced by the form (13a) for the mean flow. Subtracting (98) from (97) and

linearizing leads to the perturbation equation

𝛿p

dt
+ v · 𝛁p0 = c2

0

(
𝛿𝜌

dt
+ v · 𝛁𝜌0

)
+ 𝛽0

(
𝛿s

dt
+ v · 𝛁s0

)
, (99)

where v is the velocity perturbation. Thus, to allow for the existence of entropy modes, the second terms on the r.h.s. of (98) and

(99) should be considered, corresponding to non-adiabatic perturbations of a non-homentropic mean flow. For non-dissipative

total flow (3), the second term on the r.h.s. of (97) can be omitted; for an isentropic mean flow (23a), this leads to entropy

perturbations (24b) if the mean flow is non-homentropic.

The omission of the second terms on the r.h.s. of (97–99) in most of the literature on waves in fluid implies the exclu-

sion of entropy modes. For example, the assumptions of homentropic mean flow and adiabatic perturbations in the presence

of axisymmetric shear and swirl with arbitrary radial dependence [30,45,49–56] lead to acoustic-vortical waves, rather than

acoustic-vortical-entropy waves [57]. There is not much additional literature concerning non-adiabatic waves. An exception is

the consideration of waves in an homenergetic (rather than isentropic) shear flow with a linear velocity profile [41,42]. In the

present paper, the vorticity of the mean flow is associated with swirl rather than shear. The entropy effects appear for internal

waves, for example in a stable stratified atmosphere that is not an homentropic medium. In the case of acoustic-gravity waves

[9,82–84], the stratification relates to gravity, unlike the present case of interaction of acoustic-entropy modes with a swirling

flow. The assumptions of uniform axial flow and rigid body swirl imply that the velocity is a solenoidal vector, and causes no

compression; hence there is no restriction on the Mach number and the first term on the r.h.s. of (98) can be omitted, relating

pressure and entropy changes in the mean flow. For a compressible fluid, the compressions are entirely due to the wave per-

turbations. For constant mean flow mass density, the first term on the r.h.s of (99) is simplified. With these simplifications, the

mean flow remains non-homentropic and the entropy perturbations also remain and interact with sound and vorticity.

In the present paper is derived a scalar wave equation with a single variable combining the interactions of the three types

of waves in a fluid not subject to external force fields, hence the designation acoustic-vortical-entropy (AVE) waves. A delib-

erate choice was made of one of the simplest baseline flows that could support AVE waves, namely the non-dissipative, non-

homentropic uniform flow with rigid body swirl of a perfect gas with constant density, leading to a mean flow pressure and

sound speed varying radially due to the centrifugal force. The linear compressive perturbation of this mean flow leads in the

axisymmetric case to the AVE wave equation (28); (29a-c) that is of the second-order. The extension to non-axisymmetric

modes is known for acoustic-vortical waves [30,49,53–56] and acoustical-vortical-entropy waves [57] leading to a sixth-order

wave equation whose analytical solution requires approximations such as the WKB limit of high-frequency leading to a second-

order differential equation. In the axisymmetric case, the AVE wave equation can be solved exactly, and simplifies further for

zero axial wave number, corresponding to cylindrical waves. Nothing is implied on whether the non-axisymmetric modes of

AVE waves would be cut-off or cut-on. Thus the extension from acoustic cylindrical waves specified by Bessel functions to cylin-

drical acoustic-vortical-entropy waves leads to exact solutions in terms of Gaussian hypergeometric functions. This result may

be of some fundamental interest, and may also serve as an original simplified model which could be used to validate a simplified

numerical simulation. The six wave variables in this case are the frequency spectra of the perturbations of the (i) radial and (ii)

azimuthal velocity, (iii) mass density, (iv) entropy, (v) pressure and (vi) temperature.

An important feature of the problem is the existence of a sonic radius where the swirl velocity equals the isothermal sound

speed. It is shown that this condition of isothermal swirl Mach number unity corresponds to a finite wave field, and is neither

a singularity of the AVE wave equation nor a singularity of the wave field. The singularity of the wave equation outside the

origin and infinity occurs for imaginary radius and limits the radius of convergence of some solutions: this does not prevent the

use of analytic continuation to obtain exact solutions valid for all radial distances and frequencies. The linear non-dissipative

compressible vortical perturbations of the non-isentropic uniform flow with rigid swirl may be interpreted alternatively as (i)

acoustic-vortical entropy (AVE) waves or (ii) radially bounded or unbounded modes of the mean flow. This dual interpretation

is demonstrated for a cylindrical duct with rigid wall at the radius a = 1.6r0, that is 60% larger than the sonic radius, for: (a) the

eigenvalues for the wavenumber (Table 1) and frequency (Table 2); (b) the eigenfunctions for the radial (Fig. 2) and azimuthal

(Fig. 3) velocity, mass density (Fig. 4), entropy (Fig. 5), pressure (Fig. 6) and temperature (Fig. 7). These confirm that the wave



407L.M.B.C. Campos and A.C. Marta / Journal of Sound and Vibration 437 (2018) 389–409

field is finite at the sonic radius in this as well as in all other cases; in this particular case, the fundamental and first three

harmonics are bounded and the fifth and sixth harmonics are unbounded. The general theory applies to all cases of cylindrical

or annular ducts or cylindrical cavities containing or not the sonic radius.

The analysis could be extended from the wave equation (35) with zero axial wavenumber to the wave equation (28); (29a-c)

allowing for axial propagation; the non-zero axial wavenumber leads to an additional propagating variable, namely the axial

velocity perturbation. The wave equation has two additional singularities (100a) for (100b):

X = 0 ∶ ±c0k = 𝜔∗, 𝜔 = k[U ± c0(r)], (100a-c)

corresponding (100c) to an axial phase velocity 𝜔∕k equal to the group velocity for axial propagation in the positive or negative

z-direction. The additional extension to non-axisymmetric or spinning AVE waves would modify the linearized Euler equation

(22fa-f) complicating the elimination for a scalar wave equation in one variable. The condition of oscillating motion, of frequency

exceeding the vorticity in the far-field (86b) or (84a,b) in the near field could be modified by dissipative effects, like shear

viscosity or thermal conductivity, not considered here. The rigid wall boundary condition (74b) could be replaced by impedance

boundary conditions leading to other waveforms besides Figs. 2–7. These additional aspects are all worthy of consideration,

and beyond the scope of the present paper, aimed at obtaining the simplest scalar acoustic-vortical-entropy wave equation for

cylindrical modes and its exact solution in all space-time. The next step could be to allow for axial propagation described by the

AVE wave equation (28;29a-c).
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