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The linear magneto-acoustic-gravity (MAG) wave equation is considered for a non-isothermal at-
mosphere under a non-uniform external magnetic field. The starting point is a magnetohydrostatic
equilibrium with an arbitrary profiles of temperature and horizontal magnetic field as a function of
altitude; this specifies the profiles of gas pressure, mass density and sound and Alfvén speeds. The
wave equation is solved exactly in the case of an isothermal atmosphere with horizontal magnetic
field decaying exponentially with altitude on twice the scale height. The solution for the vertical
velocity perturbation is represented by confluent hypergeometric functions specifying the effect of the
magnetic field in modifying the amplitude and phase of acoustic-gravity waves. It is shown that (i) in
the physical conditions corresponding to the solar corona, the decrease in Alfvén speed with height
leads to a decreasing spacing of nodes; this agrees with observations of ratios of periods p2/p1 less
than two in solar arches or loops; also (ii) the dissipation of these magnetosonic-gravity modes in
the solar transition region is sufficient to heat the corona by compensating for energy losses in solar
radiation. (i) and (ii) are set in the context of a tentative global picture of the possible role of MAG
waves in establishing the mass and energy balances in the solar atmosphere.

Keywords: Magnetohydrodynamics; Waves; Sun; Stellar atmospheres

1. Introduction

The original suggestion that the dissipation of acoustic (Biermann 1948, Schwarzschild 1948)
or hydromagnetic (Alfvén 1947, Alfvén 1950) waves could heat the solar atmosphere started a
large body of research of magneto-atmospheric waves (see reviews by Thomas 1983, Campos
1987, Roberts 2000) related to ground-based and satellite observations (e.g. Banerjee et al.
2007, Fujimura and Tsuneta 2009, De Moortel and Nakariakov 2012). The three types of
magnetohydrodynamic (MHD) waves are Alfvén, slow and fast modes; there are torsional,
sausage and kink modes in magnetic flux tubes. The solar atmosphere is inhomogeneous, with
the magnetic field concentrated at intergranular lanes in the photosphere, that fan out with
height and merge in the transition region to the corona. In addition, there are strong magnetic
fields in pores and sunspots (Bruzek and Durrant 1977, Athay and Holzer 1982). In the corona
are observed spicules, loops and holes unrelated to the sunspots in the photosphere. Oscillations
have been observed in all of these solar magnetic structures.
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MHD waves in atmospheric stratification and non-uniform magnetic field 169

The solar mass balance is established by spicules (Beckers 1968) that may be interpreted
(Campos 1984) as slow modes or acoustic-gravity waves that become non-linear as they
propagate upward in an atmosphere of decreasing density since the density profiles match;
this agrees with the observation of oscillating upflows (De Pontieu et al. 2004, De Pontieu
and McIntosh 2010, Tian, McIntosh and De Pontieu 2011) that have been interpreted as slow
magnetoacoustic waves (Verwichte et al. 2010); in the corona, where the magnetic pressure
exceeds the gas pressure, the acoustic-gravity waves follow magnetic field lines and spicules
act as tracers of the solar magnetic field. The nonlinear acoustic-gravity waves grow into
shocks, and their mass flux breaks out of the magnetic flux tube with a small part supplying
the mass flux to the solar wind (Beckers 1972) and most of the rest causing downflows in the
transition region (Pneumann and Kopp 1977, Engvold et al. 1985). There are numerous recent
observations of longitudinal sausage, kink or higher modes (Ofman et al. 1997, DeForest and
Gurman 1998, De Moortel et al. 2002, Srivastava et al. 2008, Yuan and Nakariakov 2012).

The observations of horizontal velocities in the low solar chromosphere (Beckers and
Canfield 1975) can be interpreted as Alfvén-gravity waves (Ferraro and Plumpton 1958, Leroy
1980, Campos 1983) since they fit the growth of the amplitude of the velocity with altitude
(Campos 1998). Alfvén or torsional modes are observed in the low solar chromosphere (Jess
et al. 2009) and have for a long time been observed in the solar wind (Belcher and Davis
1971, Burlaga and Turner 1976, Campos 1998, Campos et al. 1999, Campos and Isaeva
2004). The observation of transversal motions in the corona (Aschwanden et al. 1999, De
Pontieu et al. 2007, McIntosh et al. 2011, Tian, McIntosh, Habbal et al. 2011, Singh et al.
2011, Kuridze et al. 2012) have been given different interpretations either transversal torsional
waves or longitudinal kink modes (Van Doorsselaere, Brady et al. 2008); as a result there is
no consensus on the observation of Alfvén waves in the corona, although their observation
both in the chromosphere and solar wind suggests they should also be present in the corona.
The coupling of compressibility for longitudinal waves and transversal magnetic waves can
lead for magneto-acoustic-gravity (MAG) waves to differential equations of the second (Nye
and Thomas 1976, Adam 1977, Campos 1988), fourth (Campos 1985, Campos and Saldanha
1991) and sixth (Zhugzhda and Dzhalilov 1984) order. In contrast,Alfvén, slow and fast modes
in magnetic flux tubes (Spruit 1981, 1982) are always decoupled and satisfy second-order
differential equations due to the neglect of gravity.

The preceding references show two major influences on MHD waves in the solar atmosphere:
(i) stratification in the sense of variation of the atmospheric properties with height; (ii) magnetic
field structures, that is non-uniform magnetic fields. The present paper combines these two
essential elements (i) and (ii) in the simplest possible way by considering one-dimensional
magnetohydrostatic equilibrium (section 2) as the background state. This is consistent with zero
divergence of a magnetic field varying with height, only it it is horizontal with fixed direction
(section 2.1). This leads to a one-dimensional magnetohydrostatic equilibrium depending only
on altitude for a perfect gas with arbitrary temperature profile and horizontal magnetic field with
fixed direction and magnitude an arbitrary function of altitude (section 2.2). A particular case
is an isothermal atmosphere under an horizontal magnetic field with fixed direction decaying
with altitude on twice the scale height (section 2.3) leading to a constant sound speed and
Alfvén speed decaying with altitude.

The MAG wave equation (section 3) is obtained for linear non-dissipative waves in a non-
isothermal atmosphere under an arbitrary non-uniform magnetic field (section 3.1). In the
case of vertical waves (i.e. that depend only on time and altitude, and an horizontal magnetic
field with fixed direction and arbitrary dependence on altitude) the only possible mode is
a magnetosonic-gravity wave with vertical velocity perturbation coupled to an horizontal
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170 L. M. B. C. Campos and A. C. Marta

magnetic field perturbation parallel to the external magnetic field (section 3.2). In the case of
an isothermal atmosphere under an horizontal magnetic field with fixed direction and decaying
with altitude on twice the scale height, the exact solution of the magnetosonic-gravity wave
equation is obtained in terms of confluent hypergeometric functions (section 3.3).

The preceding exact solution is applied to the solar atmosphere (section 4) for the typical
conditions in the photosphere and transition region to the corona to demonstrate the effects
of changes in mass density and magnetic field strength in these regions (section 4.1). These
effects lead to a non-uniform propagation, and two consequences are: (i) whereas waves with
constant propagation speed have sinusoidal waveforms with equally spaced nodes, a variable
wave speed leads (section 4.2) to a deformation of the waveform with nodes more (less) spaced
where the propagation speed increases (decreases) with altitude, as shown in figures 1–3; (ii)
the deformation of the waveform affects the velocity and magnetic field gradients, and hence
viscous and resistive heating, by dissipation of magnetosonic-gravity waves (section 4.3) that
is not (is) sufficient to compensate the radiative losses of the chromosphere (corona) as shown
in table 2.

The concluding discussion (section 5) distinguishes four kinds of theories of magneto-
atmospheric waves : (i) those that neglect stratification and assume a uniform magnetic field
as for ordinary MHD waves; (ii) current theories of wave modes in magnetic flux tubes
neglect gravity and assume a magnetic field with different magnitude inside and outside,
so that the magnetic field has an horizontal jump; (iii) theories of MAG waves that allow for
the exponential decrease of density with height due to gravity in an isothermal atmosphere
retaining hydrostatic equilibrium by assuming an uniform external magnetic field; (iv) theories
combining atmospheric stratification due to gravity with non-uniform magnetic field in a
background state of magnetohydrostatic equilibrium where MAG waves propagate. MAG The
present theory of magneto-atmospheric waves is of type (iv) and thus the starting point is the
simplest possible one-dimensional magnetohydrostatic equilibrium (section 2) that determines
the wave speeds that appear as non-uniform coefficients in the wave equation.

2. Magnetohydrostatic equilibrium with horizontal magnetic field

A magnetohydrostatic equilibrium is considered for a non-isothermal atmosphere of a perfect
gas under an horizontal magnetic field with fixed direction and arbitrary dependence on altitude
(section 2.1). A particular case is an horizontal magnetic field decaying exponentially with
altitude (section 2.2). The simplest case is an isothermal atmosphere, that is constant scale
height, and horizontal magnetic field decaying exponentially with altitude on twice the scale
height (section 2.3).

2.1. Non-isothermal atmosphere under a non-uniform magnetic field

In the case of a magnetic field B depending only on altitude z, the Maxwell equation

0 = ∇· [B(z)] = ∂Bz/∂z, (1)

which states that B it has zero divergence, requires that the vertical component of the magnetic
field be constant and allows the horizontal components to be arbitrary functions of altitude:

B(z) = ez Bz + ex Bx (z)+ ey By(z). (2)
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MHD waves in atmospheric stratification and non-uniform magnetic field 171

The magnetohydrostatic equilibrium of an atmosphere is specified by the balance of the
gradient of the gas pressure against the weight and magnetic force:

∇ p = ρg + μ

4π
(∇ × B)× B, (3)

where ρ is the mass density and g is the acceleration of gravity. The magnetic permeability μ
is retained in the Lorentz force in (3) so that it applies for any choice of unit system. A uniform
magnetic field would lead to zero Lorentz force and hydrostatic equilibrium. In order to have
one-dimensional magnetohydrostatic equilibrium, the magnetic field must depend on altitude
and can have only one non-zero horizontal component (4a):

B = ex B(z) ; g = −ezg, (4a,b)

the acceleration of gravity (4b) is assumed to be uniform and directed vertically downwards.
The magnetic field (4a) implies an electrical current (5a) normal to the plane of gravity
and the magnetic field, where prime denotes derivative with respect to altitude and c0 is
the speed of light in vacuum:

J = c0

4π
∇ × B = ey

c0

4π
B ′; (5a)

Fm = μJ × B
c0

= −ez
μB B ′

4π
= −ez P ′, (5b)

the Lorentz force (5b) equals minus the vertical gradient of the magnetic pressure (6a):

P(z) = μ

8π
[B(z)]2, (p + P)′ = −ρg, (6a,b)

and thus magnetohydrostatic equilibrium (3) balances the weight against the vertical gradient
of the total gas plus magnetic pressure (6b).

2.2. Isothermal atmosphere and exponentially decaying magnetic field

The equation of state for a perfect gas (7a), where T is the temperature and R is the gas constant,
leads to (7b):

p = ρRT, p′ = − pg

RT
− P ′. (7a,b)

In (7a,b) the temperature may vary with altitude and the scale height (8a) is specified by the
temperature:

L(z) = R

g
T (z), p′ = − p

L
− P ′, (8a,b)

and applies only to the gas pressure (8b). In the case of a uniform magnetic field (9a) the
hydrostatic equilibrium leads to the pressure (9b) valid for a non-isothermal atmosphere:

B = const., p(z) = p(0) exp

[
−

∫ z

0

dξ

L(ξ)

]
. (9a,b)

In the presence of a non-uniform horizontal magnetic field (4a), the gas pressure is sought
in the same form (9b) replacing the constant p(0) by a function Q(z):

p(z) = Q(z) exp

[
−

∫ z

0

dξ

L(ξ)

]
, (10)
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172 L. M. B. C. Campos and A. C. Marta

determined by substituting into (8b). That leads to

Q′ exp

[
−

∫ z

0

dξ

L(ξ)

]
= −P ′; (11a)

Q(z) = p(0)−
∫ z

0
P ′(η)

[
exp

∫ η

0

dξ

L(ξ)

]
dη, (11b)

the primitive of (11a) is (11b) and substituted in (10) specifies the gas pressure. The profile of
the pressure as a function of altitude follows from (11b) and (10):

p(z) = p(0) exp

[
−

∫ z

0

dξ

L(ξ)

]
− exp

[
−

∫ z

0

dξ

L(ξ)

] ∫ z

0
P ′(η) exp

[∫ η

0

dξ

L(ξ)

]
dη, (12)

for: (i) arbitrary temperature profile appearing in the scale height (8a); (ii) arbitrary profile of
the strength of the magnetic field with fixed horizontal direction (4a) appearing in the magnetic
pressure (6a).

The first term on the right-hand side of (12) corresponds to hydrostatic equilibrium (9b)
under uniform magnetic field (9a), and the second term on the right-hand side of (12) is the
effect of the non-uniform magnetic field.

The latter term may be integrated by parts:∫ z

0
P ′(η) exp

[∫ η

0

dξ

L(ξ)

]
dη (13)

= P(z) exp

[∫ z

0

dξ

L(ξ)

]
− P(0)−

∫ z

0

P(η)

L(η)
exp

[∫ η

0

dξ

L(ξ)

]
dη.

Substituting (13) into (12) leads to

p(z)+ P(z) = [p(0)+ P(0)] exp

[
−

∫ z

0

dξ

L(ξ)

]
(14)

+ exp

[
−

∫ z

0

dξ

L(ξ)

] ∫ z

0

P(η)

L(η)
exp

[∫ η

0

dξ

L(ξ)

]
dη,

which specifies the total, gas plus magnetic, pressure profile.
The preceding expressions simplify for an isothermal atmosphere (15a) and magnetic field

decaying exponentially with altitude (15b) on scale l:

T (z) = const. = T0, B(z) = B0e−z/ l , (15a,b)

so that the magnetic pressure (6a) decays on half the scale from the value (16b) at altitude zero:

P(z) = P(0)e−2z/ l , P(0) = μB2
0

8π
. (16a,b)

Substitution of (15a) and (16a) into (12) leads to

p(z)− p(0)e−z/L = P(0)
2

l
e−z/L

∫ z

0
eη(1/L−2/ l)dη, (17)

which specifies the profile of the gas pressure as a function of altitude:

l �= 2L , p(z) = p(0)e−z/L + P(0)
2L

l − 2L

(
e−2z/ l − e−z/L

)
, (18a,b)

which involves two length scales, namely: (i) the scale height (8a) for hydrostatic equilibrium
(9b); (ii) the length scale l/2 for the magnetic pressure (16a). The profile of the gas pressure
is given by (18b) when the two scales (i) and (ii) are unequal (18a). The case of coincidence
of the two length scales is considered next.
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MHD waves in atmospheric stratification and non-uniform magnetic field 173

2.3. Horizontal magnetic field decaying on twice the scale height

In the case of a magnetic field (15b) decaying with height on twice the scale height (8a), the
second term on the right-hand side of (18b) may be evaluated as the limit:

lim
l→2L

2L

l − 2L
e−z/L

[
ez(1/L−2/ l) − 1

]
(19)

= lim
l→2L

e−z/L 2L

l − 2L

[
(1/L − 2/ l) z + O

(
(1/L − 2/ l)2 z2

)]
= lim

l→2L
e−z/L

[
2z/ l + O

(
l − 2L

Ll2
z2

)]
= z

L
e−z/L .

Substituting (19) into (18b) leads to the profile of the gas pressure (20b) in the case of coincident
length scales (20a):

l = 2L : p(z) =
[

p(0)+ P(0)
z

L

]
e−z/L . (20a,b)

This result can be checked by using (20a) in the magnetic field (15b) and pressure (16a) leading,
respectively, to (21a,b):

B(z) = B0e−z/(2L), P(z) = −P(0)e−z/L , p′ = − p

L
+ P(0)

L
e−z/L , (21a–c)

and (7b) to the magnetohydrostatic equilibrium condition (21c). Seeking a gas pressure profile
of the form (22a) leads by substitution in (21c)–(22b):

p(z) = Q(z)e−z/L , Q′(z) = P(0)

L
; Q(z) = p(0)+ P(0)

z

L
. (22a–c)

The primitive of (22b) is (22c), which upon substitution into (22a) confirms (20b).
The sound speed c is constant for an isothermal atmosphere (23a), where γ is the adiabatic

index:

c2 = γ
p0

ρ0
= γ RT0; a2 = μB2

0

4πρ0
= 2P0

ρ0
, (23a,b)

the Alfvén speed at an altitude z = 0 is given by (23b), and their ratio squared specifies (24a)
the wave speed parameter

ε ≡ a2

c2
= 2P0

γρ0
= 2

γβ
, β ≡ p0

P0
= p(0)

P(0)
, (24a,b)

which is related to the plasma-β defined (24b) as the ratio of gas to magnetic pressures at
altitude zero. The latter appears in the profiles of gas pressure and mass density:

p(z)

p0
= ρ(z)

ρ0
=

(
1 + z

βL

)
e−z/L , (25a,b)

which are the same for a perfect gas (7a) in an isothermal atmosphere (15a). The profile of the
gas pressure (25a) is distinct from that of the magnetic pressure (21b), and thus although the
sound speed is constant (23a), the Alfvén speed (26a) is not:

[A(z)]2 = μ[B(z)]2

4πρ(z)
= μB2

0

4πρ0

1

1 + z/βL
= a2

1 + z/βL
, (26a,b)
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174 L. M. B. C. Campos and A. C. Marta

and decays with altitude (26b). The coefficients in the MAG wave equation involve the inverse
length scales (27a,b) respectively of the magnetic field (21a) and mass density (25b):

B ′(z)
B(z)

= − 1

2L
,

ρ′(z)
ρ(z)

= − 1

L
+ 1

z + βL
, (27a,b)

besides the sound (23a) and Alfvén (26b), (23b) speeds.

3. Magnetosonic-gravity waves in a non-uniform magnetic field

Our starting point is the linear MAG wave equation for a non-isothermal atmosphere under
a non-uniform magnetic field (section 3.1). In the particular case of an horizontal external
magnetic field, the MAG waves reduce to magnetosonic-gravity wave mode described by
a second-order differential equation, instead of differential systems of orders 4 or 6 for
general MAG waves in an oblique external magnetic field. In the case section 2.3 of an
isothermal atmosphere under an horizontal magnetic field with fixed direction and strength
decaying exponentially with altitude on twice the scale height for vertical waves depending
only on altitude and time: (i) the horizontal components of the velocity perturbation are
conserved; (ii) only the vertical velocity propagates corresponding to magnetosonic-gravity
waves (section 3.2). The exact solution of the vertical magnetosonic-gravity wave equation is
obtained in terms of confluent hypergeometric functions (section 3.3).

3.1. MAG wave equation with non-uniform temperature and magnetic field

The fundamental equations of non-dissipative MHDs in the presence of a gravity field are: (i)
the magnetic induction equation

∂H
∂t

+ ∇ × (H × V ) = 0, (28)

where V is the velocity and H the total (background B plus perturbation h) magnetic field;
(ii) the equation of continuity

∂Γ

∂t
+ ∇ · (Γ V ) = 0, (29)

where Γ is total the mass density; (iii) the momentum equation

Γ

[
∂V
∂t

+ (V · ∇) V
]

+ ∇ p = Γ g − (μ/4π)H × (∇ × H) , (30)

where p is the total gas pressure and g the acceleration of gravity; (iv) the adiabatic equation

∂ p

∂t
+ V · ∇ p = c2

(
∂Γ

∂t
+ V · ∇Γ

)
, (31)

where c is the adiabatic sound speed. The total state of the fluid is assumed to consist of
an inhomogeneous mean state of rest upon which are superimposed unsteady non-uniform
perturbations:

H(x, t) = B(x)+ h(x, t), V (x, t) = 0 + v(x, t) , (32)

Γ (x, t) = ρ(x)+ ρ′(x, t), p(x, t) = p(x)+ p′(x, t).
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MHD waves in atmospheric stratification and non-uniform magnetic field 175

The MAG wave equation is obtained (Campos 1987) by linearisation followed by elimination
for the velocity.

Substituting of (32a–d), subtracting the mean state and linearising leads from (28)–(31) to

∂h
∂t

+ ∇ × (B × v) = 0, (33a)

∂ρ′

∂t
+ v · ∇ρ + ρ (∇ · v) = 0, (33b)

ρ
∂v

∂t
+ ∇ p′ = ρ′ g − (μ/4π) [B × (∇ × h)+ h × (∇ × B)] , (33c)

∂p′

∂t
+ v · ∇ p = c2

(
∂ρ′

∂t
+ v · ∇ρ

)
. (33d)

Substituting (33b) on the right-hand side of (33d) and (3) on the left-hand side leads to

∂p′

∂t
= −ρc2 (∇ · v)− ρv · g − μ

4π
v · [(∇ × B)× B] . (34)

Applying ∂/∂t to (33c) and substituting (33a), (33b), (34) leads to the linear non-dissipative
MAG wave equation

ρ
∂2v

∂t2
−∇

{
ρc2 (∇ · v)+ ρv · g + μ

4π
v · [(∇ × B)× B]

}
= −g [∇ · (ρv)] + μ

4π
B × {∇ × [∇ × (B × v)]}

+ μ

4π
[∇ × (B × v)] × (∇ × B) , (35)

with the velocity perturbation as variable:

ρ
∂2v

∂t2
−∇

[
ρc2 (∇ · v)

]
− ∇ [ρ (v · g)] + g [∇ · (ρv)]

= μ

4π
B × {∇ × [∇ × (B × v)]} + μ

4π
[∇ × (B × v)] × (∇ × B)

+ ∇
{ μ

4π
v · [(∇ × B)× B]

}
, (36)

valid for a non-isothermal atmosphere under non-uniform gravity and magnetic fields. The
seven terms in the linear non-dissipative MAG wave equation (36) are interpreted as follows
from left to right: (i) second-order time dependence allowing propagation in opposite directions
and superposition into standing waves; (ii) acoustic propagation involving the sound speed c
and dilatation ∇ · v; (iii) gravity waves involving the acceleration of gravity g; (iv) acoustic-
gravity coupling through ρ, g and ∇ · v; (v) hydromagnetic waves for uniform magnetic field;
(vi)–(vii) the case of non-uniform magnetic field adds the last two terms. The MAG wave
equation (36) simplifies in the case of an isothermal atmosphere (37a) and uniform magnetic
field (37b)–(37c):

c = const., B = const. : (37a,b)

∂2v

∂t2
− c2∇ (∇ · v)− ∇ (v · g)− (γ − 1) g (∇ · v)+ μ

4πρ
B × {∇ × [∇ × (B × v)]} = 0,

(37c)
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176 L. M. B. C. Campos and A. C. Marta

which is well known (McLellan and Winterberg 1968, Bray and Loughhead 1974). In the
passage from (36) to (37c) we have used

− 1

ρ
∇

[
ρc2 (∇ · v)

]
− 1

ρ
∇ [ρ (v · g)] + g

ρ
[∇ · (ρv)]

= −c2∇ (∇ · v)− ∇ (v · g)+ (∇ · v)

[
g − ∇ (

ρc2
)

ρ

]
− (v · g)

∇ρ
ρ

+ g
ρ
(v · ∇ρ),

(37)

where: (i) the first two terms appear in (37c); (ii) using the sound speed and condition of
hydrostatic equilibrium, the next two terms combine as

g − ∇ (
ρc2

)
ρ

= g − ∇ (γ p)

ρ
= g (1 − γ ), (37e)

which also appears in (37c); (iii) the last two terms in (37d) cancel because g and ∇ρ are
both vertical downward and hence parallel. In the absence of gravity, (37c) is the MHD wave
equations (Herlofson 1950, Alfvén and Falthammar 1962, Campos 1977) in an homogeneous
isothermal medium under a uniform magnetic field.

Next we consider the case of a non-uniform horizontal magnetic field with fixed direction
(38a):

B(x) = ex B(z) , v(x, t) = exvx (z, t)+ eyvy(z, t)+ ezvz(z, t), (38)

for vertical waves (38b) depending only on altitude and time. Denoting by dot time derivative
(39a) and prime the derivative with regard to altitude (39b), it follows from (36) that both
horizontal components of the velocity perturbation are conserved (39c,d):

ḟ ≡ ∂ f/∂t, f ′ ≡ ∂ f/∂z : v̈x = 0, v̈y = 0, (39)

because: (i) in both cases the horizontal gradients in the second and third terms on the left-hand
side of (36) are zero and there is no acoustic propagation; (ii) in the fourth term on the left-hand
side of (36) there is no gravity effect (4b) in the horizontal direction; (iii) the horizontal velocity
is orthogonal to the vertical external magnetic force (5b) in the last term of the right-hand side
of (36); (iv) the external magnetic field in the x-direction (38a) does not act on the velocity
perturbation vx in the same direction in the first two terms on the right-hand side of (36); (v)
the preceding (i) to (iv) confirm (39c); (vi) concerning (39d) the same arguments (i) to (iii)
apply except (iv); (vii) concerning the first two terms on the right-hand side of (36) they cancel
for the velocity perturbation vy out of the plane of gravity g and the external magnetic field B
because it would correspond to Alfvén waves propagating along the horizontal magnetic field,
but horizontal propagation is excluded by (38b); (viii) this confirms (39d).

3.2. Vertical magnetosonic-gravity waves

Thus only vertical velocity perturbation can propagate vertically and it satisfies (36), the
magnetosonic-gravity wave equation

ρv̈z −
(
ρc2v′

z

)′ + (ρgvz)
′ − g (ρvz)

′ = μ

4π

[
B (Bvz)

′′ + B ′ (Bvz)
′ − (

B ′ Bvz
)′]
. (40)
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MHD waves in atmospheric stratification and non-uniform magnetic field 177

The last two terms on the left-hand side of (40) cancel for a uniform gravity field (41a) and
the remaining terms simplify to (41b):

g = const. : v̈z −
(

c2v′
z

)′ − c2 ρ
′

ρ
v′

z = μ

4πρ

(
B2v′′

z + 2B ′Bv′
z

)
. (41a,b)

Since the atmospheric mean state does not depend on time, the vertical velocity perturbation
may be expressed as the Fourier integral

vz(z, t) =
∫ +∞

−∞
V (z;ω)e−iωt dω, (42)

where the vertical velocity spectrum for a wave of frequency ω at altitude z satisfies(
c2 + A2

)
V ′′ +

(
c2 ρ

′

ρ
+ 2c′c + 2A2 B ′

B

)
V ′ + ω2V = 0, (43)

using the Alfvén speed (26a). In an isothermal atmosphere, the sound speed is constant (44a),
and for a uniform magnetic field (44b) the mass density decays on the scale height (44c):

c = const., B = const. : ρ′

ρ
= − 1

L
= − g

RT
= −γ g

c2
; (44a–c)

in this case the magnetosonic-gravity wave equation for vertically propagating waves in a
isothermal atmosphere under an uniform horizontal magnetic field reduces to(

c2 + A2
)

V ′′ − γ gV ′ + ω2V = 0, (44d)

whose exact solution can be obtained in terms of Gaussian hypergeometric functions (Campos
1983, Campos 1985); the extension to horizontal propagation has also been considered (Nye
and Thomas 1976, Adam 1977, Campos 1988). In the absence of magnetic field, omission of
the Alfvén speed leads to the acoustic-gravity wave equation (Campos 1983, Pedlosky 1990).

In an isothermal atmosphere with horizontal magnetic field decaying exponentially with
altitude on twice the scale height (27a), the magnetosonic-gravity wave equation (43) becomes(

c2 + A2
)

V ′′ −
(

c2

L
− c2

z + βL
+ A2

L

)
V ′ + ω2V = 0, (45a)

using (27b). Substituting the Alfvén speed (26b) leads to(
1 + 2L/γ

z + βL

)
V ′′ −

(
1

L
− 1 − 2/γ

z + βL

)
V ′ + ω2

c2
V = 0, (45b)

where (24a) was used:

a2

c2
β = βε = 2

γ
: A2

L
= c2ε

L + z/β
= c2εβ

z + βL
= 2c2/γ

z + βL
, (46)

involving the parameter ε that is related to the plasma-β the ratio of gas and magnetic pressures
(24b) at altitude zero. Introducing the dimensionless altitude (47a) and frequency (47b) using
the scale height :

ζ ≡ z

L
, Ω ≡ ωL

c
: V (z;ω) = U (ζ ;Ω, γ, β), (47)

the vertical velocity perturbation (47c) satisfies a linear second-order differential equation with
variable coefficients:(

1 + 2/γ

ζ + β

)
U ′′ −

(
1 − 1 − 2/γ

ζ + β

)
U ′ +Ω2U = 0, (48a)
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178 L. M. B. C. Campos and A. C. Marta

involving three dimensionless parameters: (i) the Helmholtz number or frequency made di-
mensionless using the sound speed and scale height (47b); (ii) the plasma-β or ratio of gas to
magnetic pressure at zero altitude (24b); (iii) the parameter (24a) that is the ratio of Alfvén
to sound speed squared at zero altitude that is related to the plasma-β through the adiabatic
index γ in the sound speed (23a). The differential equation (48a) is linear of second-order
with coefficients that are linear functions of the independent variable ζ and hence is reducible
(Kamke 1944) to the confluent hypergeometric type.

The differential equation (48a) for magnetosonic-gravity waves, in the form

(β + 2/γ + ζ )U ′′ + (1 − β − 2/γ − ζ )U ′ +Ω2(β + ζ )U = 0, (48b)

is reducible to the confluent hypergeometric type (Erdélyi 1953) with parameters (b, d) and
variable η that can take any real or complex values:

ηT ′′ + ( f − η)T ′ − bT = 0, (49)

via three changes of variable with a clear physical interpretation. The first change uses the
coefficient of U ′′ in (48a) as a new independent variable (50a):

ξ = β + 2/γ + ζ, U (ζ,Ω, γ, β) = G(ξ), (50a,b)

leading (50b) to the differential equation (51):

ξG ′′ + (1 − ξ)G ′ +Ω2 (ξ − 2/γ )G = 0; (51)

the first terms of (49) and (51) coincide. The physical interpretation is that the independent
variable (50a) vanishes (52a) at the critical layer or singularity corresponding to the altitude
(52a,b):

ξc = 0 : zc

L
= −β − 2

γ
= − 2

γ

(
1 + 1

ε

)
= − 2

γ

(
1 + c2

a2

)
, (52a,b)

where was used (24b) the plasma-β and (24a) the ratio of the squares of the Alfvén and
sound speeds at altitude z = 0. Bearing in mind that the sound speed is constant (23a) in
an isothermal atmosphere and the Alfvén speed (26a) decays with altitude (26b) for the non-
uniform external magnetic field (21a), it follows that: (i) far below the critical level z � zc, the
Alfvén speed predominates and the waves are mainly hydromagnetic-gravity waves modified
by compressibility; (ii) far above the critical layer z 	 zc, the sound speed predominates
and the waves are mainly acoustic-gravity waves modified by the magnetic field; (iii) across
the critical layer z ∼ zc, the magnetosonic-gravity waves are converted gradually between
predominantly hydromagnetic below and acoustic above.

3.3. Exact solutions in terms of confluent hypergeometric functions

The differential equation (51) differs from the confluent hypergeometric type (49) mainly in
that the variable ξ appears in the coefficient of G. This may be dealt with via a change of
dependent variable (53a) leading to (53b):

G(ξ) = eϑξ S(ξ) : (53a)

ξ S′′ + [1 − (1 − 2ϑ) ξ ] S′ +
[(
ϑ2 − ϑ +Ω2

)
ξ + ϑ − 2Ω2/γ

]
S = 0, (53b)
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MHD waves in atmospheric stratification and non-uniform magnetic field 179

where the constant ϑ can be chosen at will. It is chosen to be the root of (54a) so as to cancel
the coefficient ξ S in (53b) leading to (54b):

ϑ2 − ϑ+Ω2 = 0 : (54a)

ξ S′′ + [1 − (1 − 2ϑ) ξ ] S′ +
(
ϑ − 2Ω2/γ

)
S = 0. (54b)

The roots of (54a) are given by

2ϑ± = 1 ±
√

1 − 4Ω2 = 1 ± iκ, κ ≡
√

4Ω2 − 1; (55a,b)

substituting (55a) in the exponential factor in (53a) and using (50a), (47a) gives

exp(ϑξ) = exp

[
1 ± iκ

2

(
β + 2

γ
+ z

L

)]

= exp

[
1 ± iκ

2

(
β + γ

2

)]
exp

( z

2L
± iκ

z

2L

)
. (56)

The first factor in (56) is a constant of no interest and the second gives the physical interpretation
of the change of dependent variable (53a), namely: (i) exp(z/2L) ∼ 1/

√
ρ(z) specifies the

increase of amplitude with altitude for acoustic-gravity waves in an isothermal atmosphere;
(ii) the role of effective vertical wavenumber in (56) is played by

k ≡ κ

2L
= 1

2L

√
4ω2L2

c2
− 1 = ω

c

√
1 − c2

4ω2L2
= ω

c

√
1 −

(ω∗
ω

)2
, (57a)

where

ω∗ = c

2L
(57b)

is the cut-off frequency; (iii) above the cut-off frequency ω > ω∗, the effective vertical
wavenumber is real, corresponding to propagating waves, and below ω < ω∗, it is imaginary,
corresponding to evanescent modes. Thus the factor (56) in (53a) corresponds to acoustic-
gravity waves that dominate the magnetosonic-gravity wave field at high-altitude when the
Alfvén speed (26b) speed is small compared with the sound speed (23a). The solution of (53b)
specifies the effect of the magnetic field that is important at lower altitudes, closer to and below
the critical level (52b).

Substituting (55a) into (53b) leads to the differential equation

ξ S′′ + (1 ± iκξ) S′ +
(

1 ± iκ

2
− 2Ω2

γ

)
S = 0, (58)

which reduces to the confluent hypergeometric type (49) via a third and final change of variable
that is the simple re-scaling

η ≡ ∓iκξ, S(ξ) = T (η). (59a,b)

The change of independent variable (59a) leads from (58) and (59b) to the differential
equation

ηT ′′ + (1 − η)T ′ −
(

1

2
± 1

2iκ
∓ 2Ω2

iκγ

)
T = 0. (60)
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180 L. M. B. C. Campos and A. C. Marta

The latter is of the confluent hypergeometric type (49) with parameter (b, f ) where f = 1
and b is given by (61b) using (55b) (equivalent to (61a)):

4Ω2 = 1 + κ2 : b = 1

2
± 1

2iκ
∓ 1 + κ2

2iκγ
= 1

2
∓ i

2κ
± i

2κγ
± iκ

2γ
. (61a,b)

One solution of the confluent hypergeometric equation (49) with second parameter f = 1 is
a function of the first kind (Campos 2012):

F(b; 1; η) = 1 +
∞∑

n=0

ηn

n! b(b + 1)...(b + n − 1), (62)

which is unity for ηc = 0, corresponding (59a) to the critical layer (52a,b). The choice of two
signs in (55a) leads to two linearly independent solutions of the wave equation specified by
confluent hypergeometric functions of the first kind (62) leading through (59a,b), (53a), (56),
(50a,b), (47a,c) to the vertical velocity perturbation spectrum

V±(z;ω) = ez/2Le±ikz F

(
1

2
∓ i

2κ
± i

2κγ
± iκ

2γ
; 1; ∓iκ

(
β + 2

γ
+ z

L

))
, (63)

where: (i) the exponential factors (56) correspond to upward V+ and downward V− propa-
gating acoustic-gravity waves that dominate asymptotically at high-altitude; (ii) the confluent
hypergeometric function accounts for the effects of the magnetic field that are more significant
close to or below the critical layer (52a,b). The general wave field is a linear combination of
both, with arbitrary amplitudes A±:

V (z;ω) = A+V+(z;ω)+ A−V−(z;ω). (64)

Since V± are complex conjugates (65a), a standing wave field (65c) is obtained for real equal
amplitudes (65b):

V ∗−(z;ω) = V+(z;ω), A+ = A− ≡ A, V (z;ω) = 2A Re{V±(z;ω)}.
(65a–c)

Since the confluent hypergeometric equation (60) (eqivalent to (49)) has parameters (b, 1) be-
sides the confluent hypergeometric function of the first kind (62), another linearly independent
solution is a confluent hypergeometric function of the second kind (appendix A). Each of the
confluent hypergeometric functions of the first and second kinds leads to two solutions of the
wave equation (45b) choosing ± sign in (56), leading to a total of four solutions. All four
solutions have comparable asymptotic scaling at low z → −∞ and high z → +∞ altitude
(appendix B). The main difference is that (a) the confluent hypergeometric functions of the
first kind are finite everywhere and those (b) of second kind are singular at the critical layer.
The general integral can be chosen as a linear combination of any two of the four solutions.
The solutions finite everywhere are chosen for application to the solar atmosphere.

4. Oscillations in the solar corona and heating of the transition region

The application of the preceding theory of magnetosonic-gravity waves (section 3) in a non-
uniform magnetic field (section 2) to the solar atmosphere (section 4) specifies the values of
physical parameters (section 4.1) that: (i) demonstrate the decreasing spacing nodes (figures
1–3) due to the decrease of Alfvén speed with altitude (section 4.2); (ii) the large waveform
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MHD waves in atmospheric stratification and non-uniform magnetic field 181

gradients and intense dissipation in the transition region (section 4.3) that leads by evaporation
to high coronal temperatures.

4.1. Physical parameters in the solar atmosphere

Table 1 summarises solar data (Athay 1976, Bruzek and Durrant 1977) relevant to the present
problem of magneto-atmospheric waves. The temperature varies from T1 = 6.4 × 103 K in
the photosphere through a minimum in the chromosphere to a maximum of T2 = 1.8 × 106 K
in the corona. The mass density decays from ρ1 = 3.0 × 10−7 g cm−3 in the photosphere to
ρ2 = 1.3 × 10−13 g cm−3 in the corona. The intense magnetic field B1 = 1.5 × 103 G is
concentrated in flux tubes at intergranular lanes in the photosphere that fan out with altitude
leading to the average solar magnetic field B2 = 20 G in the corona. The temperature, mass
density and external magnetic field specify all the atmospheric parameters needed to describe
the propagation of MAG waves using the gas constant R = 8.3 × 107 g cm2 s−2 K−1 mol−1.
Considering non-ionised diatomic hydrogen with adiabatic index γ1 = 7/5 at the photosphere
leads to (23a) the sound speed c1 = √

γ1 RT1 = 8.6 × 105 cm s−1; the adiabatic index
γ2 = 5/3 for fully ionised monatomic hydrogen at the coronal temperature T2 leads to a
much larger sound speed c2 = √

γ2 RT2 = 1.6 × 107 cm s−1. The Alfvén speed (23b)
at granulation boundaries in the photosphere a1 = B1

√
μ/4πρ1 = 7.7 × 105 cm s−1 is

comparable to the sound speed, though much smaller elsewhere; in the corona, theAlfvén speed
a2 = B2

√
μ/4πρ2 = 1.6×107 cm s−1 is again comparable to the sound speed. Thus parameter

(24a) does not vary too much between ε1 = (a1/c1)
2 = 0.8 at the granulation boundaries in

the photosphere and ε2 = (a2/c2)
2 = 1.0 in the corona, as the magnetic flux tubes expand

from 1.5% of the solar surface to the whole solar disk. The corresponding plasma-β or (24b)
ratios of gas to magnetic pressure are β1 = 2/(γ1ε1) = 1.8 at the granulation boundaries in
the photosphere and much smaller elsewhere compared to β2 = 2/(γ2ε2) = 1.2 in the corona.
All these values are orders of magnitude since the solar photosphere, chromosphere, corona
and transition region have properties varying with altitude, most rapidly in the last named
(transition region).

The decay of the magnetic field with altitude from granulation boundaries in the photosphere
to the corona B1/B2 = 1.5×103/20 = 75 is smaller than the decay of the square root of mass
density

√
ρ1/ρ2 = √

3.0 × 10−7/1.3 × 10−13 = 1.5 × 103 and the increase in temperature
T2/T1 = 1.8×106/6.4×103 = 2.8×102 is intermediate. Besides the sound (23a) and Alfvén
(23b) speeds, the scale height (8a) and cut-off frequency (57b):

ω∗ = c

2L
=

√
γ RT

2RT/g
= g

2

√
γ

RT
, (66)

also vary with altitude. Using the solar gravity g = 2.7 × 104 cm s−2, the scale height
varies from a minimum L1 = RT1/g = 2.0 × 107 cm in the chromosphere to a much
larger value L2 = RT2/g = 5.5 × 109 cm in the corona. The cut-off frequency decreases
from ω∗

1 = (g/2)
√
γ1/RT1 = 2.2 × 10−2 s−1 to ω∗

2 = (g/2)
√
γ2/RT2 = 1.4 × 10−3 s−1,

corresponding to an increase in the cut-off period from τ ∗
1 = 2π/ω∗

1 = 2.9 × 102 s to
τ ∗

2 = 2π/ω∗
2 = 4.4 × 103 s. Since the propagation is possible above the cut-off frequency„

that is below the cut-off period, the most restrictive value is close to the 5 min oscillation
τ = 3.0×102 s, suggesting that higher frequency waves are strongly attenuated by dissipation,
leading to atmospheric heating (section 4.3). The 5 min oscillation τ = 3.0×102 s corresponds
to the frequency ω = 2π/τ = 2.1 × 10−2 s, and to the dimensionless frequency (47b) or
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182 L. M. B. C. Campos and A. C. Marta

Table 1. Physical conditions in the solar atmosphere.

Physical quantity Symbol Equation Photosphere Corona Unit

Temperature T – 6.4 × 103 1.8 × 106 K
Mass density ρ – 3.0 × 10−7 1.3 × 10−13 g cm−3

Magnetic field B – 1.5 × 103 2.0 × 10 G
Adiabatic index γ (70a,b) 1.4 1.67 −
Scale height L (8a) 2.0 × 107 5.5 × 109 cm

Sound speed c (23a) 8.6 × 105 1.6 × 107 cm s−1

Alfvén speed a (26a) 7.7 × 105 1.6 × 107 cm s−1

Plasma-β β (24b) 1.8 1.2 −
Wavespeed parameter ε (24a) 0.8 1.0 −
Magnetosonic wave speed u (75b) 1.2 × 106 2.2 × 107 cm s−1

Cut-off frequency ω∗ (66) 2.2 × 10−2 1.4 × 10−3 s−1

Cut-off period τ 2π/ω 2.9 × 102 4.4 × 103 s

Viscous dissipationa Ėη (84b) 3.0 × 103 3.8 × 10−2 g cm−3 s−1

Resistive dissipationb Ėσ (84c) 4.1 × 102 6.6 × 10−8 g cm−3 s−1

Total dissipation Ė Ėη + Ėσ 3.4 × 103 3.8 × 10−2 g cm−3 s−1

Dissipation per 5-min periodc E Ėτ 1.0 × 106 1.1 × 10 g cm−3

Energy flux F Eu 1.2 × 1012 2.5 × 107 g cm−2 s−1

Ratio to solar radiative fluxd F/F0 − 2.4 × 10 5.7 × 10−3 −
aViscous diffusivity: 1.1 × 102 cm2 s−1.
bResistive diffusivity: 1.0 × 104 cm2 s−1.
c5 min period: τ = 3.0 × 102 s, ω = 2.1 × 10−2 s−1.
dSolar radiative loss: D = 3.0 × 1033 g s−1.
Solar radius: r = 7.0 × 1010 cm.
Solar radiative flux: F0 = D/(4πr2) = 4.9 × 1010 g cm−2 s−1.

Helmholtz number:

Ω = ωL

c
= ωRT/g√

γ RT
= ω

g

√
RT

γ
, (67)

that varies fromΩ1 = (ω/g)
√

RT1/γ1 = 0.48 at the photosphere toΩ2 = (ω/g)
√

RT2/γ2 =
7.3 in the corona. These order of magnitude estimates guide the choice of physical parameters
(section 4.2) for the plotting of waveforms of MAG waves (figures 1–3).

4.2. Reduction of spacing of nodes of the waveforms

The vertical velocity perturbation of magnetosonic-gravity waves involves three dimensionless
parameters. The first is the dimensionless frequency that is given three values (68b) spanning
two orders of magnitude:

Ω∗ = 0.5 : Ω = 0.1, 1, 10, (68a,b)

the first below the cut-off (68a) for evanescent waves, the second corresponding roughly to the
photosphere and the third to the corona. The range of values (69b) of the wave speed parameter
spans one order of magnitude, for comparable sound and Alfvén speeds, or one much larger
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MHD waves in atmospheric stratification and non-uniform magnetic field 183

than the other:

β = p0

P0
= 2

γ ε
: ε ≡ (a/c)2 = 0.25, 1, 4. (69a,b)

The plasma-β or ratio (69a) of gas and magnetic pressures at altitude zero, also involves the
adiabatic exponent (70b) for a perfect gas whose molecules have N degrees of freedom (70a):

N = 3, 5, 6 : γ = 1 + 2

N
= 5

3
,

7

5
,

4

3
. (70a,b)

The values chosen correspond to: (i) fully ionised hydrogen in the corona with three degrees
of freedom; (ii) non-ionised hydrogen in the photosphere with diatomic molecules with five
degrees of freedom; (iii) for reference multiatomic molecules with atoms not in a row with
six degrees of freedom. The altitude is plotted in dimensionless form (47a) over up to 11 scale
heights (71a):

0 ≤ ζ = z

L
≤ 11 : W (ζ ) = Re{V±(z;ω)/V±(0;ω)}, (71a,b)

and vertical velocity perturbation (63) is normalised to the value at zero altitude (71b) and the
real part (63) taken:

W (ζ ) = eζ/2 Re

{
e±iκζ/2 G(ζ )

G(0)

}
, (72)

in which appears: (i) the confluent hypergeometric function (62) of the first kind

G(ζ ) = F

(
1

2
∓ i

2κ
± i

2κγ
± iκ

2γ
; 1; ∓iκ

(
β + 2

γ
+ ζ

))
; (73)

(ii) the adiabatic exponent γ (70b), the plasma-β (69a) through (69bb) and the dimensionless
frequency Ω (68b) through (55b).

The baseline case is taken as the values (74a–c) in (68b), (69b), (70b) that correspond to an
Alfvén wave speed a = 2c twice the sound speed at altitude z = 0, so that the magnetic field
has a strong effect on propagation:

Ω = 10, ε = 4, γ = 5/3 : κ = √
399, β = 0.3, (74a–e)

corresponding to (74d,e). Each parameter is varied in turn in figures 1–3.
In figure 1, the plasma-β is fixed (74e) and also the adiabatic exponent (74c) and the

dimensionless frequency is given three values (68b). The lowest Ω = 0.1 < Ω∗ corresponds
to an evanescent wave that does not oscillate; the amplitude increases with altitude more slowly
than 1/

√
ρ so that the energy ρV 2 decreases and vanishes as z → +∞. In the case Ω = 1 of

propagating waves, there are oscillations with nodes progressively closer as the Alfvén speed
reduces with altitude (75a) until the magnetosonic wave speed tends to the sound speed (75b):

lim
z→+∞ A(z) = 0, lim

z→+∞ u(z) = lim
z→+∞

√
[A(z)]2 + c2 = c. (75a,b)

For higher frequency Ω = 10, the nodes are closer, leading to larger waveform gradients
and stronger dissipation (section 4.3). In figure 2, the dimensionless frequency (74a) and
adiabatic exponent (74c) are kept, and the plasma-β at zero altitude is given three values (69a)
corresponding to the wave speed parameter (69b) including cases of: (i) Alfvén speed equal
to a = c or smaller than c = 2a the sound of speed at altitude z = 0; (ii) corresponding
larger values of the plasma-β, respectively β = 1.2 and β = 5, with the intermediate value
representative of solar conditions. For comparable sound and Alfvén speeds, the acoustic
oscillations predominate as the altitude increases with constant sound speed and decreasing
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184 L. M. B. C. Campos and A. C. Marta

Figure 1. Vertical velocity perturbation W (normalised to the value at zero altitude) plotted against a dimensionless
altitude ζ (z normalised to the scale height L) for an altitude range of 11 scale heights. The plots illustrate the effect
of dimensionless frequency Ω , for a fixed wave speed parameter (ε = 4) and adiabatic exponent (γ = 5/3).

Alfvén speed; a large plasma-β leads to a dominant acoustic propagation at lower altitude,
whereas a small plasma-β delays it to higher altitudes.

In figure 3, the dimensionless frequency (74a) and wave speed parameter (74b) are kept and
the adiabatic exponent is given three values (70b) corresponding to plasma-β value respectively
β = 0.3, 0.358, 0.375. There is little difference between monatomic, diatomic and poliatomic
perfect gases; for example, magnetosonic-gravity waves are not much affected by the ionisation
of hydrogen across the chromosphere, from diatomic in the photosphere to monatomic in the
transition region to the corona.

Figures 1–3 demonstrate the main prediction made in the introduction that the Alfvén speed
decreasing with altitude leads to a closer spacing of nodes. The altitudes of the nodes of the
waveform, where the velocity perturbation is zero (76a), are denoted by zn and are ordered in
a sequence (76b) of increasing altitude. The decrease in the propagation speed with altitude
implies a closer spacing of nodes, for example the ratio of the altitude difference between the
third and second and second and first nodes (76c) is less than unity:
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MHD waves in atmospheric stratification and non-uniform magnetic field 185

Figure 2. Vertical velocity perturbation W (normalised to the value at zero altitude) plotted against a dimensionless
altitude ζ (z normalised to the scale height L) for an altitude range reduced from 11 scale heights in the figure 1 to
1.25 scale heights in the figure 2 to show in detail the first three nodes of the wave form. The plots illustrate the effect
of the wave speed parameter at zero altitude, for a fixed dimensionless frequency (Ω = 10) and adiabatic exponent
(γ = 5/3).

V (zn;ω) = 0 ; 0 < z1 < z2 < · · · < zn < · · · : ψ = z3 − z2

z2 − z1
< 1 , (76a–c)

as can be confirmed from table 2. The assumption of an isothermal atmosphere (15a) implies
that the sound speed is constant, whereas the horizontal magnetic field decaying exponentially
with altitude (21a) leads to an Alfvén speed (26b) decaying with altitude. If the plasma-β is
large (24a); (i) then the wave speed parameter ε in (24a,ba) is small and the Alfvén speed
(26b) decays slowly with altitude; (ii) also the sound speed dominates the Alfvén speed in the
magnetosonic wave speed (75b). Thus, for large β, the propagation is at nearly constant speed
and the ratio (76c) is close to unity at all frequencies, as can be seen from table 2 and figure
2(a). Conversely for small β or large wave speed parameter ε in (24a,ba), the Alfvén speed
dominates the sound speed and decays more rapidly with height leading to a closer spacing
of nodes as seen in table 2 and in figures 1(c), equivalent to 2(b), equivalent to 3(a) (that are
the same with different scales). Ultimately at high altitude, as the Alfvén speed decays to zero
(75a) and the magnetosonic wave speed tends to the constant sound speed (75b), the spacing
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186 L. M. B. C. Campos and A. C. Marta

Figure 3. Vertical velocity perturbation W (normalised to the value at zero altitude) plotted against a dimensionless
altitude ζ (z normalised to the scale height L) for the same altitude range of 1.25 scale heights as in figure 2, reduced
relative to figure 1, to emphasise the first three nodes of the waveform in figure 3. The plots illustrate the effect of
adiabatic exponent γ , for a fixed dimensionless frequency (Ω = 10) and plasma-β (β = 4).

Table 2. Ratio of the spacing of the first three nodes: ψ = (z3 − z2)/(z2 − z1).

ψ
ε

0.25 1 4 9 16 25 36 49 64 81 100

Ω

0.7 0.998 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
1 0.988 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972 0.972
2 0.984 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944
3 0.986 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929 0.929
5 0.991 0.954 0.910 0.910 0.910 0.910 0.910 0.910 0.910 0.910 0.910
10 0.994 0.961 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887
20 0.997 0.971 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868 0.868
30 0.998 0.978 0.917 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858
50 0.999 0.985 0.909 0.848 0.848 0.848 0.848 0.848 0.848 0.848 0.848
100 0.999 0.991 0.946 0.901 0.838 0.838 0.838 0.838 0.838 0.838 0.838
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MHD waves in atmospheric stratification and non-uniform magnetic field 187

of nodes becomes constant. Table 2 also shows that the spacing of nodes stabilises for large
ε ≥ 0 and that the effect of the Helmholtz number is weaker and non-monotonic going through
a minimum atΩ = 10 for ε = 4. The waveforms illustrated in figure 1 may be relevant to the
observations of low-frequency compressive modes in the corona (Yuan et al. 2011). Figure 1
also demonstrates large waveform gradients at high frequencies, leading to strong dissipation
that is considered next (section 4.3).

4.3. Wave dissipation in the transition region and heating of the corona

The vertical magneto-sonic-gravity wave propagates: (i) a vertical velocity perturbation vz

satisfying (40) whose solution is (63), (64); (ii) an associated horizontal magnetic field pertur-
bation hx related by (33a) leading to (77b):

hx (z, t) =
∫ +∞

−∞
H(z, ω)e−iωt dω : iωH = (BV )′, (77a,b)

where (V, H) denote respectively the spectra of (vz, hx ) in (42) and (77a). The dissipation of
MAG waves is mainly due to the shear viscosity times the square of the rates of strain (78a):

Ėη = ηV ′2, Ėσ = 1

σ
J 2, (78a,b)

and the Joule effect (78b) of the Ohmic resistivity 1/σ times the electric current; relating (5a)
the electric current to the magnetic field (79a) and using the magnetic diffusivity (79b) leads
(78b)–(79c) for the Ohmic resistive dissipation:

J = c

4π
H ′, χ = c2

4πμσ
: Ėσ = c2

16π2σ
H ′2 = μχ

4π
H ′2. (79a–c)

Substituting (77a) into (79c) specifies the Ohmic resistive dissipation

Ėσ = μχ

4π

[(BV )′′]2

ω2
∼ μχ

4π

(
BV ′′

ω

)2

(80)

in terms of the velocity, that may be compared with the shear viscous dissipation (78a).
Using the differentiation formula (Abramowitz and Stegun 1964) for the confluent hyper-

geometric function (62):

d

dη
F(b; 1; η) = bη F(b + 1; 2; η), (81)

specifies the rate-of-strain associated with the vertical velocity perturbation spectrum:

V ′±(z;ω) = ez/2Le±ikz
[(

1

2L
± iκ

)
F(b; 1; η)+ b

dη

dz
F(b + 1; 2; η)

]
, (82)

where b is a constant (61b) and η depends on altitude (59a), (50a), (47a):

η = ∓iκ

(
β + 2

γ
+ z

L

)
,

dη

dz
= ∓ iκ

L
= ∓i2k, (83)

and the effective vertical wavenumber (57a) was used. The product of (61b) and (83) that
appears in the rate-of-strain (82) leads for κ 	 1 to the scaling (84a):

V ′ ∼ κ2V

2γ L
: Ėη ∼ η

(
κ2V

2γ L

)2

, Ėσ ∼ μχ

4π

(
κ4 BV

4ωγ 2L2

)2

, (84a–c)
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188 L. M. B. C. Campos and A. C. Marta

that is applied to the viscous (78a) and resistive (80) dissipation leading respectively to (84b)
and (84c). For gradual dissipation on the scale of a wave period, it is permissible to use
the non-dissipative waveform (63) to calculate the rates of viscous (84b) and resistive (84c)
dissipation.

The previous value of the dimensionless frequency Ω = 7.2 for magnetosonic-gravity
waves corresponds (55b) to the dimensionless vertical effective wavenumber κ = 1.4 × 10.
Using η = 1.1×102 cm2 s−1 for the shear viscosity (Campos 1984) and V ∼ 1.0×106 cm s−1

for the typical velocities in the transition region, the rate of viscous dissipation (84b) varies
between Ėη1 ∼ η(κ2V/2L1)

2 = 3.0 × 103 g cm−3 s−1 in the photosphere and Ėη2 ∼
Ėη1(L1/L2)

2 = 3.8 × 10−2 g cm−3 s−1 in the corona. Using χ = 1.0 × 104 cm2 s−1 for
the resistive diffusivity (Cowling 1980), the rate of resistive dissipation (84c) varies from
Ėσ1 ∼ (μχ/4π)(κ4 B1V/4ωγ 2L2

1)
2 = 4.1 × 102 g cm−3 s−1 in the photosphere to Ėσ2 ∼

Ėσ1(L1/L2)
4 = 6.6×10−8 g cm−3 s−1 in the corona. Thus the energy dissipation is dominated

by viscosity in the corona Ė2 ∼ Ėη2 = 3.8×10−2 g cm−3 s−1 where the magnetic field is weak
B2 = 20 G and resistive diffusivity makes a contribution in the photosphere Ė1 = Ėη1+ Ėσ1 =
3.4 × 103 g cm−3 s−1. The use of constant viscous and resistive diffusivity implies that these
dissipation rates are orders of magnitude.The dissipated energy in a 5 min period τ = 3.0×102 s
is E1 = τ Ė1 = 1.0 × 106 g cm−3 in the photosphere and E2 = τ Ė2 = 1.1 × 10 g cm−3

in the corona. The magnetosonic wave speed u = √
a2 + c2 varies from u1 =

√
a2

1 + c2
1 =

1.2×106 cm s−1 at the photosphere to u2 =
√

a2
2 + c2

2 = 2.2×107 cm s−1 in the corona. The

corresponding energy flux is F1 = E1u1 = 1.2 × 1012 g cm−2 s−1 in the photosphere or low
transition region and F2 = E2u2 = 2.5 × 107 g cm−2 s−1 in the high transition region and
corona. The total solar radiative loss D = 3.0 × 1033 g s−1, divided over the solar disk with
radius r = 7.0 × 1010 cm, leads to the energy flux F = D/(4πr2) = 4.9 × 1010 g cm−2 s−1.
It follows that: (i) local dissipative heating in the corona is insufficient to compensate for solar
radiative losses F2/F = 5.2 × 10−4; (ii) the dissipation in the low transition region is more
than sufficient to compensate for solar radiative losses F1/F = 2.4 × 10. Thus the dissipation
of magnetosonic-gravity waves can heat the transition region. The higher temperatures in the
corona cannot be explained by thermal conduction from the transition region since heat cannot
pass from a colder to a hotter body with supply mechanical work.

5. Discussion

When considering magneto-atmospheric waves, it is convenient to distinguish four types of
theories, depending on the combination of two criteria, namely whether: (a) stratification due
to gravity is or is not taken into account; (b) the external magnetic field is assumed to be
uniform or not. The four types of theories I–IV are briefly discussed in the sequence: (I) MHD
waves in an homogeneous medium under a uniform magnetic field; (II) flux tube modes in
a discontinuous magnetic field; (III)–(IV) MAG waves in an atmosphere stratified by gravity
in the presence of an uniform (III) or non-uniform (IV) external magnetic field. The simplest
theory (I) assumes a uniform magnetic field and an homogeneous medium (in the sense that
the mass density and sound speed are constant), leading to MHD waves. This neglects both the
magnetic structures observed in the solar atmosphere and the variation of physical properties
with altitude. It does serve to identify three modes (Alfvén and Falthammar 1962, Campos
1977): decoupled transverse Alfvén waves and coupled compressive slow and fast modes in
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MHD waves in atmospheric stratification and non-uniform magnetic field 189

adiabatic conditions; a fourth entropy mode exists in the presence of heat exchanges. It shows
that the slow and fast modes become a second-order magnetosonic wave if the magnetic field
is orthogonal to the direction of propagation. It also shows that if the magnetic pressure is
much larger than the gas pressure, the slow modes are acoustic waves guided along magnetic
field lines.

The last result points to the next theory (II), namely modes in magnetic flux tubes
(Spruit 1981, 1982). This kind of theory is supported by the observation of magnetic structures
in the solar atmosphere, such as flux tubes in intergranular lanes in the photosphere, spicules
in the corona and loops crossing from the chromosphere through the transition region to the
corona, where they are most visible as bright structures. Current theories of flux tube modes
assume a magnetic field with different magnitudes inside and outside; taking into account field-
aligned non-uniformity allows the consideration of the ratios of the periods of the wavemodes
P2/P1 on coronal loops opening the promising subject of magnetohelioseismology (Andries
et al. 2009). The non-integral ratios of the first four periods of Alfvén-gravity waves (Campos
1989a) had earlier been found to agree with the observations of sunspot umbral oscillations
(Bhatnagar et al. 1972, Balthasar and Wiehr 1984).

In the theories of type I and type II without stratification: (a) the sound and Alfvén speeds
are constant, and hence all other wave speeds, e.g. the magnetosonic or the tube speed, are
constant; (b) since all wave speeds are constant, the waves are sinusoidal functions of altitude,
there is equipartition of energies (e.g. kinetic and magnetic), the energy flux equals the energy
density times the wave speed. The properties (b) generally do not hold if the wave speed is
non-uniform. In the solar atmosphere, the sound speed varies (table 1) from about 9 km/s in
the chromosphere to 160 km/s in the low corona. The Alfvén speed varies from about 8 km/s in
intergranular lanes to 160 km/s in the transition region, and is higher in the corona as the density
decreases. This calls into question the consideration of constant wave speeds. A third type of
theory (III) assumes a uniform magnetic field in an isothermal atmosphere under uniform
gravity, so that the sound speed is constant and the Alfvén speed increases with altitude on
twice the scale height A(z) ∼ aez/2L . This horizontally homogeneous model averages out all
magnetic structures but does retain a significant altitude dependence, leading to MAG waves
(Scheuer and Thomas 1981, Campos 1987).

The MAG waves are sinusoidal and are completely described by a dispersion relation (Stein
and Leibacher 1974) in theWKB-approximation that the wavelength is small compared with the
lengthscale of variation of properties of the medium, that is the scale height for an atmosphere.
For a wave period of 5 min, or 300 s, the sound or Alfvén speed of 8 km/s in the chromo-
sphere would correspond to a “wavelength” λ = 2400 km, about ten times the scale height
L = 200 km. It is clear that the WKB approximation and the assumption of sinusoidal waves
with a constant wave speed fail by about an order of magnitude in the solar photosphere and
chromosphere; a “wavelength” less than the scale height L = 200 km would correspond to
periods of less than τ ≤ 30 s, that are a small part of the energy spectrum of solar radiation.
In conclusion, the theories of type I and II without stratification are of limited use in the low
solar atmosphere since for periods of 1 min or more the local vertical wavelength is larger than
the atmospheric scale height and the waveforms are far from sinusoidal in altitude.

In the low corona, the sound or Alfvén speed of 160 km/s for a wave with a 5 min or
300 s period would correspond to a “wavelength” of 48, 000 km comparable to the scale
height L = 55, 000 km, and therefore at the limits of WKB theory. This suggests that the
consideration of variable wave speed, and non-sinusoidal waveforms, is essential in the solar
atmosphere, in particular for magnetic modes affected by the strong variations of the Alfvén
speed with altitude. The theories of type I and II apply best in the corona since the large scale
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190 L. M. B. C. Campos and A. C. Marta

height L ∼ 55, 000 km allows for sinusoidal waves over wavelengths λ2 > L2 of up to
λ ≤ 15, 000 km. Thus the theories of flux tube modes without stratification may model the
coronal part of magnetic flux tubes but will be more limited if extended to the foot points in
the chromosphere. Similarly sinusoidal waves with constant wave speeds are not an adequate
model for wave propagation across the whole solar atmosphere from the photosphere to the
corona. It is not surprising that these theories predict that neither acoustic nor Alfvén waves
can heat the chromosphere, due to the effects of cut-off frequencies and strong reflections
(Osterbrock 1961).

The hydrodynamic turbulence and ionised inhomogeneities in the solar chromosphere can
act as wave sources (Kulsrud 1955, Campos 2008), both for the sun and stars (Campos 2011b,
Campos 2011c). As mentioned in the introduction, the acoustic modes can be associated with
spicules and the mass balance including mass supply to the solar wind and return downflows
through the transition region (Beckers 1972, Campos 1984, De Pontieu et al. 2004). The
magnetic modes should be responsible for the solar energy balance since regions of strong
magnetic field are observed to be hotter and brighter; the alternative to heating of the atmosphere
by wave dissipation is magnetic reconnection (Parker 1979, Priest 1982) and other mechanisms
involving change of the topology of the magnetic field and release of magnetic energy. The
heating of the solar chromosphere by viscous and resistive dissipation of Alfvén-gravity
waves becomes feasible (Campos and Mendes 1995) if it is taken into account that (i) due
to the fast increase of the Alfvén speed with altitude, the waves are not sinusoidal or periodic
vertically, and the waveforms are stretched leading to significant waveform gradients; (ii) the
associated velocity and magnetic field gradients, that is rates-of-strains and electric currents,
in the presence of viscous and resistive dissipation lead to atmospheric heating sufficient
to compensate for chromospheric radiative losses. These conclusions would not be possible
assuming sinusoidal Alfvén waves.

The same arguments suggest that the dissipation of Alfvén waves is a less effective mech-
anism to heat the transition region to the corona (Campos and Mendes 1999), because the
waveform gradients are too small as the waveform becomes too stretched by the large Alfvén
speed. An Alfvén speed of 8 km/s implies that the distance D = 2, 000 km from the
photosphere to the transition region is covered in about 250 s; the same distance in the corona
is covered in 13 s at an Alfvén speed of 160 km/s. There must be a significant energy flux of
Alfvén waves across the solar corona, at least a part of which goes to the solar wind where
waves are observed with large amplitudes (Belcher and Davis 1971, Campos et al. 1999).
However, the reported observations of a large energy flux of Alfvén waves in the solar corona
(Tomczyk et al. 2007) have been contested on two grounds that: (i) the observed transversal
motions are due to kink rather than torsional modes (Van Doorsselaere, Nakariakov et al.
2008); (ii) the energy flux is overestimated (Goossens et al. 2013). Coronal heating theories
not based on wave dissipation include nano-flares (Parker 1979) and magnetic reconnection
(Priest 1982).

A different mechanism may be needed to heat the solar corona, bearing in mind that closed
regions like loops are bright and hot, and open regions like coronal holes are dark and cool. A
distinction is that closed regions have an horizontal magnetic field where occurs critical layer
conversion between hydrodynamic and hydromagnetic modes (Adam 1977, Campos 1988),
and intense dissipation. The magnetic field is nowhere horizontal in a coronal hole and critical
layer absorption of magnetosonic waves does not occur ; instead fourth-order hydromagnetic
waves (Scheuer and Thomas 1981, Campos and Saldanha 1991) propagate out of coronal holes
and transfer energy to the solar wind causing high-speed particle streams.
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MHD waves in atmospheric stratification and non-uniform magnetic field 191

Table 3. Role of MAG waves in the solar mass and energy balances.

Region/Wave Acoustic-gravity Alfvén-gravity Magnetosonic-gravity Hydromagnetic-gravity

Flares/CMEs MHD shock waves

Solar Wind mass flux Convection
with the wind

Thermal expan-
sion

High-speed
streams

Corona Spicules guided by
the magnetic field

fast
propagation

Heating of
loops

Acceleration of
particles

Transition region Decoupled propagation Dissipation at
critical layer

Mode
conversion

Chromosphere Growth to nonlinear
amplitude

Dissipative
heating

Filtering Coupled propa-
gation

Photosphere Wave generation by hydromagnetic turbulence and ionised inhomogeneities

These considerations suggest a simple assignment of roles for each MHD wave mode
in the solar mass and energy balances (table 3): (i) hydromagnetic turbulence and ionised
inhomogeneities generate all modes in the photosphere; (ii) acoustic modes leak to the corona
and appear as spicules leading to the mass balance and average solar wind; (iii) Alfvén-gravity
waves can heat the chromosphere if the non-sinusoidal waveform shearing due to the fast
increase in Alfvén speed with altitude is taken into account; (iv) the closed magnetic regions,
like loops in the corona, are bright and hot due to critical layer absorption of magnetosonic-
gravity waves in nearly horizontal magnetic fields; (v) critical layers do not occur in open
magnetic regions like coronal holes, that are dark and cold since hydromagnetic-gravity waves
are not absorbed and propagate outward to accelerate high-speed particle streams in the solar
wind; (vi) the MAG waves in the solar wind have an additional effect of convection, in the
sense that they propagate in a moving medium with background velocity that is non-negligible,
and may be comparable to or larger than the wave speed; (vii) the coronal mass ejections and
large energy eruptions associated with solar flares would generate MHD waves with large
amplitude or MHD shock waves. The preceding simple global picture of the role of waves
in the solar atmosphere: (i) can be challenged by any specific theory of local phenomena,
making a consensus difficult or unlikely; (ii) does attempt to bring some order to multiplicity
of explanations of partial phenomena.

For example, the heating of coronal loops by waves can be explained in two alternative way in
the context of: (i) magnetic flux tubes by modes propagating longitudinally and reflected from
the footpoints several times, thus repeatedly heating the plasma until substantially dissipated;
(ii) magneto-atmospheric waves because the mode conversion at the critical layer and associ-
ated intense energy exchange with the atmosphere occur only for a horizontal magnetic field,
that exists near the top of a magnetic loop and not in a coronal hole. Both theories (i) and (ii) can
explain the difference between bright, hot, coronal loops and dark, cold, coronal holes.Also the
two physical mechanisms are compatible and complementary since (ii) critical layer absorbtion
near the top of a magnetic loop can enhance the (i) dissipation of wave modes with multiple
reflections between the footpoints. The MAG waves in the solar wind are affected by convection
with the mean flow since the background velocity of the solar wind can be comparable to or
larger than the wave speed. Critical layers involving the absorption, amplification, reflection or
mode conversion can occur for linear and nonlinear waves (Bretherton 1966, Lighthill 1978),
hydrodynamic and hydromagnetic waves (Adam 1977, Campos 1985, Campos 1988), viscous
and resistive dissipation (Yanowitch 1977, Campos 1989b, Campos 1993) and moving media
(Campos and Gil 1999, Campos and Isaeva 1999).
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All the MHD wave modes can lead to oscillations in reflecting conditions, and the large
gradients in mass density and magnetic field act as gradual reflectors; this relates to the fourth
type of wave theories (IV) including effects of stratification and non-uniform magnetic fields.
Wave-like oscillations are observed in most magnetic structures in the solar atmosphere, for
example in sunspot umbras and coronal loops. The natural frequencies of harmonics are not
multiples of the fundamental frequency, proving that the waves are not sinusoidal and the wave
speeds are not constant. In the case of sunspot umbral oscillations, the periods of harmonics
are larger than multiples of the fundamental (Bhatnagar et al. 1972, Schroeter and Soltau
1976, Balthasar and Wiehr 1984); this implies that the wave speed increases with altitude,
and the profile corresponding to Alfvén-gravity waves in an isothermal atmosphere under a
uniform magnetic field leads to the correct wave periods (Campos 1989a). The harmonics
of oscillations in coronal loops have lower periods than the multiples of the fundamental
mode (Van Doorsselaere et al. 2007, Srivastava et al. 2008); this shows that the wave speed
decreases with altitude, as is the case for the Alfvén speed (26b) in an isothermal atmosphere
(15a) under an horizontal magnetic field decaying exponentially with altitude on twice the
scale height (21a). If the wave speed is constant, the frequencies of the harmonics or overtones
are multiples of the fundamental. If the wave speed increases with altitude, the frequencies
of the harmonics are less than multiples and they are larger than multiples if the wave speed
decreases with altitude.

The contrast between oscillations in sunspot umbras and coronal loops, that have harmonics
respectively higher and lower than the fundamental, shows how sensitive wave properties are to
non-uniform wave speed profiles. The sound speed depends on temperature and composition,
and the Alfvén speed on mass density and magnetic field. The MAG wave equation is a partial
differential equation whose coefficients depend on the sound and Alfvén speeds and on the
scale heights of variation of the mass density and magnetic field. Analytical solutions can be
obtained only for relatively simple forms of the variable coefficients of the wave equation;
since sinusoidal solutions do not exist, special functions are needed. There are sophisticated
two (Gabriel 1976) and three (Stix 1989) dimensional models of the magnetic field in the
solar atmosphere, leading to numerical solutions for waves. The analytical solutions could
be used as simpler, particular benchmark cases for numerical codes. The critical element
in helioseismology is the dependence of the sound speed with depth, that is related to the
internal structure of the sun (Gough 1985). The quality and quantity of observational data
on the solar atmosphere opens the prospect of heliomagnetoseismology. The critical factor in
its implementation is the dependence on the sound and Alfvén speeds on altitude (or other
relevant coordinate in the direction of inhomogeneity) because the wave speeds: (i) determine
the wave properties, like waveforms for propagating waves and periods for standing modes;
(ii) are related to the atmospheric properties and magnetic fields. In this context, the best wave
diagnostic is the variation with altitude of wave speeds, amplitudes and phases. The variation
with altitude of horizontal velocities in the chromosphere (Beckers and Canfield 1975) allowed
the identification of Alfvén-gravity waves (Campos 1998). Modern satellite observations can
provide more altitude dependences as wave mode diagnostic and magnetohelioseismology
tool (Andries et al. 2009).
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Appendix A. Solutions involving the confluent hypergeometric function of the second
kind

The text has discussed the magnetosonic-gravity waves as a linear superposition (64) of two
linearly independent solutions (63) expressible in terms of confluent hypergeometric functions
of the first kind. Thus there was no need to consider the confluent hypergeometric of the second
kind, that are also solutions of (60). For the sake of completeness, the solutions of (60) in terms
of confluent hypergeometric functions of the second kind are considered in this appendix, and
compared with the functions of the first kind. The confluent hypergeometric equation (49) with
parameters (1, b) has confluent hypergeometric function of the first kind (62) as one solution.
Another linearly independent solution is (Carathéodory 1950, Lighthill 1977) the confluent
hypergeometric function of the second kind:

�(b)G(b; 1; η) = F(b; 1; η) log η + �(b)

η
+ H(b; 1; η), (A.1)

that consists of the sum of: (i) the function of the first kind (62) multiplied by a logarithmic
singularity; (ii) another singular term corresponding to a pole with residue �(b) where �(...)
is a Gamma function (Whittaker and Watson 1927, Campos 2014); (iii) a complementary
function

H(b; 1; η) =
∞∑

n=0

ηn

n!
b(b + 1)...(b + n − 1)

n! [ψ(b + n)− 2ψ(1 + n)], (A.2)

where ψ(...) is the digamma function (Copson 1935, Campos 2011a). Using (59a,b),
(53a), (56), (50a,b) and (47a,c) leads to the vertical velocity perturbation spectrum of the
magnetosonic-gravity waves

V ±(z;ω) = ez/2Le±ikzG

(
1

2
∓ i

2κ
± i

2κγ
± iκ

2γ
; 1;∓iκ

(
β + 2

γ
+ z

L

))
, (A.3)

which is similar to (63) replacing the confluent hypergeometric of the first by the second kind.
Thus four solutions of the magnetosonic-gravity wave equation (45a,b) have been obtained,
namely two involving confluent hypergeometric functions of the first (63) and second (A.3)
kinds. Any two of the four functions V± in (63) and V ± in (A.3) are linearly independent, and
the general integral is a linear combination, justifying (64) as a legitimate choice involving
only confluent hypergeometric functions of the first kind. Since these solutions are expansions
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around the only singular point (52a,b), they have infinite radius of convergence and cover the
whole altitude range, including the critical layer and the asymptotic limits at low and high
altitude. In (63) and (A.3) were omitted some constant factors independent of z that can be
absorbed in the constants of integration A± in (64). The critical layer corresponds, via (52a,b)
and (59a), to the origin of the η-plane, where the confluent hypergeometric function of the first
kind is unity (A.4a) and that of the second kind has a logarithmic singularity:

F(b; 1; η) = 1 + O(η), G(b; 1; η) = �(b)

η
+ log η[1 + O(η)] + O(η).

(A.4a,b)

Thus a general solution finite at the critical layer is given by a linear combination (64) of
confluent hypergeometric functions of the first kind. The asymptotic scaling at high z → +∞
and low z → −∞ altitude is considered next (appendix B) for both cases of solutions in terms
of confluent hypergeometric functions of the first and second kinds.

Appendix B. Asymptotic wave fields at low and high altitude

The asymptotic form of the confluent hypergeometric function of the second kind isAbramowitz
and Stegun (1964)

G(b; 1; η) = η−b
N−1∑
n=0

b(b + 1)...(b + n − 1)(−η)−n + O(|η|−N ) ≡ J1(b; 1; η), (B.1)

that may be designated first asymptotic function. The scaling at high z → +∞ or low z → −∞
altitude is given by

η−b = (±iq)−1/2∓ih, q ≡ β + 2

γ
+ z

L
, h = 1

2κ
− 1

2κγ
− κ

2γ
. (B.2a–c)

The complex expression (B.2a) (equivalent to (B.3)), namely

η−b ≡ exp
[
log(η−b)

]
= exp(−b log η) = exp

[(
−1

2
∓ ih

)
log(±iq)

]
(B.3)

= exp

[(
−1

2
∓ ih

)
log

(
|q| ± i

π

2

)]

= exp

[
−1

2
log |q| + hπ

2
∓ i

(π
4

+ h log |q|
)]
,

has modulus

|η−b| = |q|−1/2 exp

(
hπ

2

)
∼

∣∣∣∣ L

z

∣∣∣∣
1/2

, (B.4)

showing that the waves are evanescent both at low z → −∞ and high z → +∞ altitude. Thus
the solutions in terms of confluent hypergeometric functions of the second kind correspond
to magnetosonic-gravity waves singular at the critical layer and vanishing at high and low
altitude. The presence of a critical layer implies (Ince 1956) that the Sturm (1836) theorem
does not apply, and a complete set of orthogonal eigenfunctions may not exist over the whole
altitude range ] − ∞,+∞[. The extension to Klein and Körper (1881) theorem shows that
two complete sets of orthogonal eigenfunctions exist in ] − ∞, 0[ below and ]0,+∞[ above
the critical layer, but they may not match across the critical layer.
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The confluent hypergeometric function of the first kind has Slater (1960) the asymptotic
expansion

F(b; 1; η) ∼ exp(±iπb)

�(1 − b)
J1(b; 1; η)+ J2(b; 1; η), (B.5)

involving the first asymptotic function (B.1) and also the second asymptotic function,

J2(b; 1; η) = eηηb−1

�(b)

N−1∑
n=0

(1 − b)(2 − b)...(n + 1 − b)η−n . (B.6)

The exponential term in the second asymptotic function (B.6) corresponds to upward and
downward propagation:

eη = e±iq = exp

[
±i

(
β + 2

γ
+ z

L

)]
, (B.7)

and does not affect the amplitude that is determined asymptotically by

ηb−1 ≡ exp [(b − 1) log η] = exp

[(
−1

2
± ih

)
log(±iq)

]
(B.8)

= exp

[
−1

2
log |q| − hπ

2
∓ i

(π
4

− h log |q|
)]
,

whose modulus scales:

|ηb−1| = |q|−1/2 exp

(
−hπ

2

)
∼

∣∣∣∣ L

z

∣∣∣∣
1/2

, (B.9)

as (B.4) to within a constant factor. In conclusion: (i) the exponential amplitude growth
and upward and downward propagation (56) apply to the vertical velocity perturbation of
magnetosonic-gravity waves for all four solutions, namely the pairs (63) and (A.3) involving
respectively confluent hypergeometric functions of the first (62) and second (A.2) kinds; (ii)
any pair of the four solutions (V±, V ±) is linearly independent, and the choice V± was made in
the general integral (64); (iii) the choice of confluent hypergeometric functions of the first kind
leads to finite wave fields at all altitudes whereas the second kind is singular at the critical layer;
(iv) asymptotically at high z → +∞ and low z → −∞ altitude both confluent hypergeometric
functions decay as |z|−1/2 that is dominated by the exp(z/2L) factor in (63).

D
ow

nl
oa

de
d 

by
 [

b-
on

: B
ib

lio
te

ca
 d

o 
co

nh
ec

im
en

to
 o

nl
in

e 
U

T
L

] 
at

 0
6:

13
 1

6 
N

ov
em

be
r 

20
15

 


	Abstract
	1. Introduction
	2. Magnetohydrostatic equilibrium with horizontal magnetic field
	2.1. Non-isothermal atmosphere under a non-uniform magnetic field
	2.2. Isothermal atmosphere and exponentially decaying magnetic field
	2.3. Horizontal magnetic field decaying on twice the scale height

	3. Magnetosonic-gravity waves in a non-uniform magnetic field
	3.1. MAG wave equation with non-uniform temperature and magnetic field
	3.2. Vertical magnetosonic-gravity waves
	3.3. Exact solutions in terms of confluent hypergeometric functions

	4. Oscillations in the solar corona and heating of the transition region
	4.1. Physical parameters in the solar atmosphere
	4.2. Reduction of spacing of nodes of the waveforms
	4.3. Wave dissipation in the transition region and heating of the corona

	5. Discussion
	Acknowledgements
	Disclosure statement
	ORCID
	References
	Appendix A. Solutions involving the confluent hypergeometric function of the second kind
	Appendix B. Asymptotic wave fields at low and high altitude



