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a b s t r a c t

The present paper considers the use of linear or rotary transverse springs to: (i) prevent the buckling of
beams by raising the critical buckling load and thus allow a larger axial tension; (ii) provoke the buckling
of beams, by lowering the critical buckling load, facilitating the demolition of a structure. The prevention
or facilitation of buckling depends on the positioning of the linear and/or rotary springs to oppose or
favour bending, for example: at the tip of a (i) cantilever or clamped–free beam; at the middle of a
(ii) clamped–clamped, (iii) pinned–pinned or (iv) clamped–pinned beam. In all eight of the four beam
supports (i)–(iv) with either linear or rotary springs, the relation between the critical buckling load and
the resilience of the spring is obtained.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The buckling of beams is the simplest elastic instability, first
studied shortly after the theory of the elastica was established
[1,2]. The linear theory of the buckling of beams assuming small
slope of the elastica is a textbook subject [3]. The non-linear
theory of the buckling of beams, allowing for large slope of the
elastica, has been presented elsewhere [4]. The prevention of
buckling, by raising the critical buckling load, is desirable to allow
most structures to withstand a larger axial load. Conversely to
demolish more easily an existing structure, the critical buckling
load may be reduced so that a smaller axial load can lead to failure.
Buckling together with the collapse and displacement and twist
are four simple instabilities of elastic beams [5]. The displacement
(twist) instabilities are caused by linear (rotary) springs placed
transversely on one side of the beam and are prevented by placing
the springs transversely on the other side of the beam.

The present paper addresses the prevention (provocation) of
the buckling of beams using a linear (Section 2) or rotary (Section
3) spring placed transversely on one side so as to raise (Fig. 1)
[lower (Fig. 2)] the critical axial buckling load. The spring is placed
at the tip [Fig. 1a (Fig. 2a) and Section 2.1 (Section 3.1)] on one side
to raise (lower) the critical buckling load for a (i) cantilever beam,
that is with one clamped and one free end. The spring is placed at
the mid position on one side to raise (lower) the critical buckling

load for the other three classical supports, namely: (ii) clamped–
clamped in Fig. 1b (Fig. 2b) and Section 2.2 (Section 3.2);
(iii) pinned–pinned in Fig. 1c (Fig. 2c) and Section 2.3 (Section
3.3); (iv) clamped–pinned in Fig. 1d (Fig. 2d) and Section 2.4
(Section 3.4). In all eight cases combining the four supports (i)–(iv)
with linear (Section 2) or rotary (Section 3) springs, the relation
between the resilience of the spring and the critical buckling load
is obtained. This relation is analysed for all values of the two
parameters (Section 4) for all buckling modes (Section 4.1) both
analytically(Section 4.2) and graphically (Sections 4.3 and 4.4), for
a cantilever beam with a rotary (linear) spring at the tip [Table 2
(Table 3) and Figs. 5 and 6 (Figs. 7 and 8)]. The main result namely
the resilience of the linear or rotary that (a) placed transversely on
one side prevents buckling under a larger axial load and by raising
the critical buckling load makes the structure safer; (b) placed
transversely on the opposite side causes buckling by a smaller
axial load by decreasing the critical buckling load, providing a
simpler alternative to explosive demolition of structures.

2. Effect of a linear spring on buckling

The buckling of a beam may be shifted to a higher (lower)
critical load by positioning a transverse spring so as to oppose
(Fig. 1) [favour (Fig. 2)] bending. The spring is placed at the free
end [Fig. 1a (Fig. 2a)] for a cantilever beam (Section 2.1), and at
mid-position for the other classical combinations of support:
(Section 2.2) clamped–clamped [Fig. 1b (Fig. 2b)]; (Section 2.3)
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pinned–pinned [Fig. 1c (Fig. 2c)]; (Section 2.4) clamped–pinned
[Fig. 1d (Fig. 2d)].

2.1. Cantilever beam with spring support

The linear equation of the elastica of a beam valid for small
slope (1a) is (1b):

ζ0251 : EIζ⁗þTζ″ ¼ 0; ð1a;bÞ

specifying ζðxÞ the transverse displacement ζ as a function of the
longitudinal coordinate x; the product of the Young modulus E of
the material and moment of inertia I of the cross-section is the
bending stiffness, assumed to be constant. The longitudinal ten-
sion T is a uniform compression, whose ratio to the bending
stiffness (2a) is the only parameter in the equation of the elastica
(1b) � (2b):

p¼
ffiffiffiffiffi
T
EI

r
¼ const : ζ⁗þp2ζ″ ¼ 0: ð2a;bÞ

The general integral of (2b) is

ζðxÞ ¼ AþBxþC cos ðpxÞþD sin ðpxÞ; ð3Þ

where ðA;B;C;DÞ are arbitrary constants. The clamping conditions
at one end x¼0:

0¼ ζð0Þ ¼ AþC; 0¼ ζ0ð0Þ ¼ BþDp; ð4a;bÞ

eliminate two of the constants of integration in (3) leading to

ζðxÞ ¼ A½1� cos ðpxÞ�þD½ sin ðpxÞ�px�; ð5Þ

for the shape of the elastica.
The boundary conditions at the free end state the vanishing of

the bending moment (6a) and that the transverse force is balanced
by the force of the spring (6b):

ζ″ðLÞ ¼ 0; EIζ‴ðLÞþTζ0ðLÞ ¼ kζðLÞ; ð6a;bÞ

where k40 ðko0Þ if the spring opposes (favours) buckling, that
may be expected to increase (decrease) the critical buckling load
for instability. The boundary condition (6b) � (7b) involves two
parameters:

q¼ k
EI

: ζ‴ðLÞþp2ζ0ðLÞ ¼ qζðLÞ; ð7a;bÞ

namely (2a) and the ratio of the resilience of the spring to the
bending stiffness (7a). Substituting the shape of the elastica in
the boundary conditions (6a) and (7b) at the free end leads to the

Fig. 1. Spring placement to raise the critical buckling load. (a) Cantilever, (b) clamped–clamped, (c) pinned–pinned, (d) clamped–pinned.

Fig. 2. Spring placement to lower the critical buckling load. (a) Cantilever, (b) clamped–clamped, (c) pinned–pinned, (d) clamped–pinned.
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system of equations:

cos ðpLÞ � sin ðpLÞ
q½ cos ðpLÞ�1� �p3þq½pL� sin ðpLÞ�

" #
A

D

� �
¼ 0: ð8Þ

A non-trivial solution (5) requires that (A, D) do not vanish
simultaneously, and implies that the determinant of the matrix
vanishes, leading to

p3 cos ðpLÞ ¼ q½pL cos ðpLÞ� sin ðpLÞ�: ð9Þ
This is the relation T(k) between the critical buckling load (2a) and
the resilience of the spring (7a).

In the absence of a spring (10a), the smallest root of (10b) is (10c):

q¼ 0 : cos ðpLÞ ¼ 0; pL¼ π
2
; T1ð0Þ ¼

π2

4
EI

L2
; ð10a–dÞ

and specifies the well-known critical buckling load (10d).
The critical buckling load (10d) is modified by the presence of the
spring because (10b) is not a root of (9) if qa0. In the presence of the
spring, the critical buckling load is given by (9) � (11):

p3 ¼ q½pL� tan ðpLÞ�: ð11Þ
The buckling relation (11) relating the axial tension (2a) to the
resilience of the spring (7a) will be discussed subsequently
(Section 4) for all values of parameters (p, q); a few examples for
particular values of (p, q) are given next. An example far removed
from the case (10a–d) is a critical buckling load four times larger
(12a) implying (12b):

T1ðkaÞ ¼ π2EI

L2
; pL¼ π; q¼ p2

L
¼ π2

L3
; ka ¼ π2EI

L3
; ð12a–dÞ

this implies (11) by (12c) a spring resilience (7a) that is positive
(12d) because the spring opposes bending. Another example far

removed from (10a–d) is the case of critical buckling load four
times smaller (13a) implying (13b):

T1ðkbÞ ¼
π2

16
EI

L2
; pL¼ π

4
; ð13a;bÞ

q¼ p3

pL�1
¼ 1

16L3
π3

π�4
; kb ¼ � π3EI

16ð4�πÞL3
; ð13c;dÞ

this corresponds (11) to (13c) leading (7a) to a negative spring
resilience (13d) showing that the spring favours the bending.

The relation between the buckling load and spring resilience
(11) can be put into a dimensionless form:

α� pL¼ L

ffiffiffiffiffi
T
EI

r
; β� qL3 ¼ kL3

EI
: α3 ¼ βðα� tan αÞ; ð14a–cÞ

that is plotted in Fig. 3a. Using the leading terms of the power
series [6] for the tangent (15a) implies (15b):

tan α¼ αþα3

3
þOðα5Þ : lim

α-0
β¼ lim

α-0

α3

α� tan α
¼ �3: ð15a;bÞ

This proves that the beam will buckle without an axial load (16a)
corresponding to (15b)� (16a,b):

T1ðkcÞ ¼ 0 : α¼ 0; β¼ �3; kc ¼ �3EI

L3
; ð16a–dÞ

if the critical spring resilience (7a) is (16d). The plot of (14c) in
Fig. 3a includes the preceding 3 cases (10a–d), (13a–d) and (16a–d)
as well as intermediate values, and concerns a cantilever beam; it
is a part of the complete plot for all values of (p, q) discussed
subsequently (Section 4.4). The shape of the elastica of the buckled
clamped–free beam with linear spring at the free end is given, to

Fig. 3. Relation between the critical buckling load and spring resilience. (a) Cantilever (linear spring), (b) clamped–clamped (linear spring), (c) pinned–pinned (linear
spring), (d) cantilever (rotary spring).
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within a multiplying constant, by (17b):

D¼ A cotðpLÞ : ζðxÞ ¼ A 1� cos ðpxÞþ sin ðpxÞ�ðpxÞ
tan ðpLÞ

� �
; ð17a;bÞ

that is obtained substituting (17a) in (5); the first line of (8)
coincides with (17a). The same method applies to other cases of
support, for example clamped at both ends that is considered next.

2.2. Clamped–clamped beam with spring at the middle

Since the beam is clamped at the end x¼0, the equation of the
elastica (5) remains valid. The shape of the elastica is symmetric
and thus the slope vanishes at the middle (18a) where the spring
is applied (18b):

ζ0
L
2

� �
¼ 0; ζ‴

L
2

� �
þp2ζ0

L
2

� �
¼ qζ

L
2

� �
: ð18a;bÞ

Substituting the shape of the elastica (5) in the boundary condi-
tions (18a,b) leads to the system of equations:

sin ðpL2 Þ cos ðpL2 Þ�1

q½ cos ðpL2 Þ�1� �p3þq½pL2 � sin ðpL2 Þ�

2
4

3
5 A

D

� �
¼ 0: ð19Þ

The relation between the critical buckling load and spring resi-
lience is specified by the vanishing of the determinant of the
matrix in (19), leading to

p3 sin
pL
2

� �
¼ q

pL
2

sin
pL
2

� �
þ2 cos

pL
2

� �
�2

� �
: ð20Þ

In the absence of spring (21a), the smallest root of (21b) is (21c),
leading to the well known critical load buckling load (21d) for a
clamped–clamped beam:

q¼ 0 : sin
pL
2

� �
¼ 0; pL¼ 2π; T2ð0Þ ¼ 4π2EI

L2
¼ 16T1ð0Þ; ð21a–dÞ

that is 16 times that of the cantilever beam (10d).
An example far removed from (21a–d) is a critical buckling load

four times smaller (22a) implying (22b):

T2ðkdÞ ¼ π2EI

L2
; pL¼ π; ð22a;bÞ

q¼ 2p3

π�4
¼ 2π3

ðπ�4ÞL3
; kd ¼ � 2π3EI

ð4�πÞL3
; ð22c;dÞ

this corresponds (20) to (22c) leading (7a) to a negative spring
resilience (21d) implying that the spring favours bending. Using
(14a,b), the relation (20) between the critical buckling load (14a)
and the resilience of the spring (14b) can be put in the dimension-
less form:

α3 sin
α
2

� �
¼ β

α
2

sin
α
2

� �
þ2 cos

α
2

� �
�2

h i
: ð23Þ

Using [7] the power series:

sin
α
2

� �
¼ α

2
� 1
3!

α
2

� �3
þOðα5Þ; ð24aÞ

cos
α
2

� �
¼ 1�1

2
α
2

� �2
þ 1
4!

α
2

� �4
þOðα6Þ; ð24bÞ

the term in square brackets in (23) scales for small α as

α3

β
sin

α
2

� �
¼ α

2

� �2
1�α2

24

� �
þ2 1�α2

8
þ α4

384

� �
�2þOðα6Þ ¼ � α4

192
þOðα6Þ;

ð25Þ
implying the limit:

lim
α-0

β¼ � lim
α-0

192
α

sin
α
2

� �
¼ �96: ð26Þ

Thus buckling occurs in the absence of an axial load (27a) for a
critical spring resilience (27b):

T2ðkeÞ ¼ 0 : ke ¼ �96EI

L3
: ð27a;bÞ

The relation (23) between the critical buckling load (14a) and the
resilience of the spring (14b) is plotted in Fig. 3b. The shape of the
elastica of the buckled clamped–clamped beam with a linear
spring at the middle is given, to within a multiplying constant,
by (28b):

A¼ cot
pL
2

� �
�csc

pL
2

� �� �
D: ð28aÞ

ζðxÞ ¼D sin ðpxÞ�ðpxÞþ cot
pL
2

� �
�csc

pL
2

� �� �
½1� cos ðpxÞ�

	 

;

ð28bÞ
that is obtained substituting (28a) in (5); the first line of (19)
coincides with (28a). The replacement of clamped by pinned
supports leads to smaller critical buckling loads for the same
spring resilience that are considered next.

2.3. Replacement of clamped by pinned supports

The boundary conditions at the pinned support at x¼0 relate
the constants of integration in (3):

0¼ ζð0Þ ¼ AþC; 0¼ ζ″ð0Þ ¼ �p2C; ð29a;bÞ
leading to the shape of the elastica:

ζðxÞ ¼ BxþD sin ðpxÞ: ð30Þ
The shape of the elastica is symmetric and thus the same
boundary conditions (18a,b) with spring in the middle can be
applied:

1 p cos ðpL2 Þ
qL
2 �p2 q sin ðpL2 Þ

2
4

3
5 B

D

� �
¼ 0: ð31Þ

The vanishing of the determinant specifies the relation between
the buckling load and the resilience of the spring:

p3 cos
pL
2

� �
¼ q

pL
2

cos
pL
2

� �
� sin

pL
2

� �� �
: ð32Þ

The buckling relation for a pinned–pinned beam (32) is similar to
that for a cantilever beam (9) replacing L by L=2; both are analysed
in detail subsequently (Section 4). In the absence of spring (33a),
the smallest positive root of (33b) specifies (33c) the well known
critical buckling load for a pinned–pinned beam:

q¼ 0 : cos
pL
2

� �
¼ 0; pL¼ π; T3ð0Þ ¼ π2EI

L2
¼ 4T1ð0Þ ¼

1
4
T2ð0Þ;

ð33a–dÞ
that is four times larger (smaller) than in the clamped–free (10d)
[clamped–clamped (21d)] case.

An example far removed from (33a–d) is a critical buckling load
four times larger (34a) implying (34b):

T3ðkf Þ ¼ 4π2EI

L2
; pL¼ 2π; q¼ p3

π
¼ 8π2

L3
; kf ¼

8π2EI

L3
; ð34a–dÞ

this corresponds (32) to (34c) to a spring resilience (34d) that is
positive implying that the spring opposes bending. The relation
(32) between the critical buckling load (14a) and the resilience of
the spring (14b) can be put into the dimensionless form:

α3 cos
α
2

� �
¼ β

α
2

cos
α
2

� �
� sin

α
2

� �h i
: ð35Þ
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In the limit of small α, the term in square brackets scales
(24b) as

α3

β
cos

α
2

� �
¼ α

2
1�α2

8

� �
�α
2

1�α2

24

� �
þOðα5Þ ¼ �α3

24
þOðα5Þ: ð36Þ

This leads to the limit:

lim
α-0

β¼ � lim
α-0

24 cos
α
2

� �
¼ �24; ð37Þ

implying that buckling occurs without an axial load (38a) for (38b)
spring resilience (38c):

T3ðkgÞ ¼ 0 : β¼ �24; kg ¼ �24EI

L3
; ð38a–cÞ

that favours bending, and in modulus is smaller (larger) than for
the clamped–clamped (27b) [clamped–free (16d)] case. The rela-
tion (35) between the critical buckling load (14a) and the resi-
lience of the spring (14b) is plotted in Fig. 3c. The shape of the
elastica of the buckled pinned–pinned beam with linear spring at
the middle is given, to within a multiplying constant, by (39b):

B¼ pD cos
pL
2

� �
: ζðxÞ ¼D sin ðpxÞþpx cos

pL
2

� �� �
; ð39a;bÞ

that is obtained substituting (39a) in (28b); the first line of (31)
coincides with (39a). The remaining combination of supports is
the clamped–pinned beam considered next.

2.4. Clamped–pinned beam with spring at the middle

Since the shape is not symmetric, the elastica (3) is given: (i) in
the lower half by (5)� (40a) that satisfies the boundary conditions
(4a,b) at the clamped end:

ζ xr L
2

� �
¼ A½1� cos ðpxÞ�þD½ sin ðpxÞ�px�; ð40aÞ

ζ xZ
L
2

� �
¼ BðL�xÞþC sin ½pðL�xÞ�; ð40bÞ

(ii) in the upper half by (30) � (40b) that meets the boundary
conditions (29a,b) at the pinned end replacing x by L�x. The four
arbitrary constants are determined by four conditions at the
matching point in the middle: (iii) continuity of the displacement
and slope (41a,b);

ζ
L
2
�0

� �
¼ ζ

L
2
þ0

� �
; ζ0

L
2
�0

� �
¼ ζ0

L
2
þ0

� �
; ð41a;bÞ

ζ″
L
2
�0

� �
¼ ζ″

L
2
þ0

� �
; ζ‴

L
2
þ0

� �
�ζ‴

L
2
�0

� �
¼ qζ

L
2

� �
;

ð41c;dÞ
(iii) since there is no applied torque, the curvature is also
continuous (41c); (iv) the transverse force has a jump (41d) due
to the force of the spring. In the l.h.s of (41d), the term of the force
can be omitted due to the continuity of the slope (41b) and, on the
r.h.s. of (41d), the displacement is unique by (41a). Substituting the
shape of the elastica (40a,b) in the boundary conditions (41a–d)
leads to the system of equations:

1� cos ðpL2 Þ � L
2 � sin ðpL2 Þ sin ðpL2 Þ�pL

2

p sin ðpL2 Þ 1 p cos ðpL2 Þ p cos ðpL2 Þ�p

cos ðpL2 Þ 0 sin ðpL2 Þ � sin ðpL2 Þ
�p3 sin ðpL2 Þ �qL

2 �q sin ðpL2 Þ�p3 cos ðpL2 Þ �p3 cos ðpL2 Þ

2
666664

3
777775

A
B

C

D

2
6664

3
7775¼ 0:

ð42Þ
The vanishing of the determinant of the matrix in (42) specifies
the relation between the critical buckling load and the resilience of
the spring for the clamped–pinned beam. The shape of the elastica

of beam with linear spring at the middle is given, to within a
constant multiplying factor, by (40a,b) where the four constants of
integration can be expressed in terms of one using (42).

3. Replacement of the linear by a rotary spring

A linear (rotary) spring affects the critical buckling load by
applying a force (moment) proportional to the displacement
(slope); the same four combinations of support [Section 2
(Section 3)] can be considered, namely clamped-free [Section 2.1
(Section 3.1)], clamped–clamped [Section 2.2 (Section 3.2)],
pinned–pinned [Section 2.3 (Section 3.3)] and clamped–pinned
[Section 2.4 (Section 3.4)].

3.1. Rotary spring at the free end of a cantilever beam

If the linear spring is replaced by a rotary spring the boundary
conditions (6a,b) are replaced by: (i) a bending moments (43a)
proportional to the slope through the resilience of the spring;
(ii) zero transverse force (43b):

EIζ″ðLÞ ¼ �kζ0ðLÞ; EIζ‴ðLÞþTζ0ðLÞ ¼ 0: ð43a;bÞ
The boundary conditions (43a,b)� (44b,c) involve two para-
meters:

q ¼ k
EI

: ζ″ðLÞþqζ0ðLÞ ¼ 0; ζ‴ðLÞþp2ζ0ðLÞ ¼ 0; ð44a–cÞ

namely (2a) and the ratio (44a) of the resilience of the rotary
spring to the bending stiffness. The shape of the elastica (3) for a
beam clamped (4a,b) at x¼0 is (5). Substituting the shape (5) of
the elastica in the boundary conditions (44b,c) leads to the system
of equations:

p2 cos ðpLÞþpq sin ðpLÞ �p2 sin ðpLÞþpq cos ðpLÞ�pq

0 1

" #
A

D

� �
¼ 0:

ð45Þ
The relation between the critical buckling load and resilience of
the rotary spring is

p cos ðpLÞ ¼ �q sin ðpLÞ: ð46Þ
In the absence of spring q ¼ 0, this leads to the same critical
buckling load (10a–d) as before.

An example far removed from (10a–d) is a critical buckling load
four times larger (47a) implying (47b):

T1ðkaÞ ¼ π2EI

L2
; pL¼ π; q ¼1; ka ¼1; ð47a–dÞ

this would require (46) an infinite (47c) resilience (47d) of the
rotary spring. An example far removed from (10a–d) in the
opposite direction is a critical buckling load four times smaller
(48a) implying (48b):

T1ðkbÞ ¼
π2

16
EI

L2
; pL¼ π

4
; q ¼ �p¼ � π

4L
; kb ¼ �π

4
EI
L
;

ð48a–dÞ
this corresponds (46) to (48c) the resilience (48d) of the rotary
spring. The relation (46) between the critical buckling load (14a)
and the resilience of the rotary spring (49a) is (49b):

β ¼ kL
EI

: β ¼ �α cot α: ð49a;bÞ

The buckling in the absence of an axial load (50a) occurs (50b) for
the resilience (50c) of the rotary spring:

lim
α-0

β ¼ lim
α-0

� α
tan α

¼ �1; T1ðkcÞ ¼ 0; kc ¼ �EI
L
: ð50a–cÞ
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The relation (49b) between the critical buckling load (14a) and the
resilience of the spring (49a) is plotted in Fig. 3d. The shape of the
elastica of the buckled clamped-free beam with a rotary spring at
the free end is given, to within a multiplying constant, by (51b):

D¼ 0 : ζðxÞ ¼ A½1� cos ðpxÞ�; ð51a;bÞ

that is obtained substituting (51a) in (5); the second line of (45)
coincides with (51a).

3.2. Rotary spring at the middle of a clamped–clamped beam

The rotary spring can cause a skew-symmetry that breaks the
symmetry of the shape of the elastica of the buckled beam.
Thus the shape of the elastica is given: (i) in the lower half by
(5)� (52a) that meets the boundary condition (4a,b) of clamping
at x¼0:

ζ xr L
2

� �
¼ A½1� cos ðpxÞ�þD½ sin ðpxÞ�px�; ð52aÞ

ζ xZ
L
2

� �
¼ B 1� cos ½pðL�xÞ�� �þC sin ½pðL�xÞ��pðL�xÞ� �

; ð52bÞ

(ii) in the upper half by (52b) that replaces x by L�x to satisfy the
clamping condition at x¼L. At the matching point in the middle
x¼ L=2; (i,ii) the displacement and slope are continuous (41a,b);
(iii) since there is no transverse force, the third derivative is also
continuous (53a); (iv) the bending moment has a jump (53b) due
to the rotary spring:

ζ‴
L
2
�0

� �
¼ ζ‴

L
2
þ0

� �
; ζ″

L
2
�0

� �
�ζ″

L
2
þ0

� �
¼ qζ0

L
2

� �
:

ð53a;bÞ

Substituting (52a,b) in the matching conditions (41a,b); (53a,b)
leads to
The relation between the critical buckling load (14a) and the
resilience of the rotary spring (49a) is specified for the clamped–
clamped beam by the vanishing of the determinant of the matrix
(54). The shape of the elastica of a buckled clamped–clamped
beam with a rotary spring in the middle is given, to within a
multiplying constant, by (52a,b) where all four constants of
integration can be expressed in terms of one of them using (54).

3.3. Replacement of clamped by pinned supports

The symmetry under buckling is again violated by the skew-
symmetry of the rotary spring, and the shape of the elastica is
given: (i) in the lower half by (30)� (55a) that meets the pinning

boundary conditions at x¼0:

ζ xr L
2

� �
¼ BxþD sin ðpxÞ; ð55aÞ

ζ xZ
L
2

� �
¼ AðL�xÞþC sin ½pðL�xÞ�; ð55bÞ

(ii) in the upper half (55b) substituting x by L�x. Substituting the
shape of the elastica (55a,b) in the matching conditions (41a,b);
(53a,b) leads to the system of equations:

� L
2

L
2 � sin ðpL2 Þ sin ðpL2 Þ

1 1 p cos ðpL2 Þ p cos ðpL2 Þ
0 0 cos ðpL2 Þ cos ðpL2 Þ
0 q �p2 sin ðpL2 Þ p2 sin ðpL2 Þþpq cos ðpL2 Þ

2
666664

3
777775

A

B

C

D

2
6664

3
7775¼ 0: ð56Þ

The relation between the critical buckling load (14a) and the
resilience of the rotary spring (49a) is specified for the pinned–
pinned beam by the vanishing of the determinant of the matrix in
(56). The shape of the elastica of a buckled pinned–pinned beam
with a rotary spring in the middle is given, to within a multiplying
constant, by (55a,b) where the four constants of integration can be
expressed in terms of one of them using (56).

3.4. Clamped–pinned beam with rotary spring

The shape of the elastica is not symmetric because: (i) the
clamping and pinning boundary conditions are distinct; (ii) the
rotary spring in the middle violates symmetry by adding skew-
symmetry. The shape of the elastica is given by (40a) in the lower
and (40b) in the upper half. The matching conditions at the
location x¼ L=2 of the rotary spring are (41a,b); (53a,b). Substitut-
ing the former (40a,b) in the latter (41a,b); (53a,b) leads to the
system of equations:

1� cos ðpL2 Þ � L
2 � sin ðpL2 Þ sin ðpL2 Þ�pL

2

p sin ðpL2 Þ 1 p cos ðpL2 Þ p cos ðpL2 Þ�p

sin ðpL2 Þ 0 cos ðpL2 Þ cos ðpL2 Þ
p2 cos ðpL2 Þ q p2 sin ðpL2 Þþpq cos ðpL2 Þ �p2 sin ðpL2 Þ

2
666664

3
777775

A
B

C

D

2
6664

3
7775¼ 0:

ð57Þ

The relation between the critical buckling load (14a) and the
resilience of the rotary spring (49a) for a clamped–pinned beam is
specified by the roots of the determinant of the matrix (57). The
shape of the elastica of a buckling clamped–pinned beam with a
rotary spring at the middle is given, to within a multiplying
constant, by (40a,b) where the four constants of integration can
be expressed in terms of one of them using (57).

4. Relation between buckling load and spring resilience

The buckling relation between the critical axial load (14a) and the
resilience of a linear (14b) or rotary (49a) spring has been obtained in
all 8 cases of: (i–iv) clamped–pinned beamwith a linear spring in the
middle (42), and clamped–clamped (54), pinned–pinned (56) and
clamped–pinned (57) beam with a rotary spring in the middle;

1� cos ðpL2 Þ cos ðpL2 Þ�1 pL
2 � sin ðpL2 Þ sin ðpL2 Þ�pL

2

p sin ðpL2 Þ �p sin ðpL2 Þ �p�p cos ðpL2 Þ �pþp cos ðpL2 Þ
sin ðpL2 Þ sin ðpL2 Þ cos ðpL2 Þ cos ðpL2 Þ

p2 cos ðpL2 Þ�pq sin ðpL2 Þ �p2 cos ðpL2 Þ p2 sin ðpL2 Þ �p2 sin ðpL2 Þþpq�pq cos ðpL2 Þ

2
666664

3
777775

A

B

C

D

2
6664

3
7775¼ 0: ð54Þ
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(v–viii) the cantilever beamwith linear (14c) or rotary (49b) spring at
the tip, and clamped–clamped (23) and pinned–pinned (35) beam
with a linear spring in the middle. In the cases (v–viii), the relation
between axial tension and spring resilience was illustrated respec-
tively in Figs. 3a–d near the critical spring resilience that leads to
buckling without axial load. The relation between axial load and
spring resilience is considered (Section 4) for all buckling modes
(Section 4.1) for the case of a cantilever beam with a linear (Section
4.2) or rotary (Section 4.3) spring at the tip.

4.1. Buckling modes for a cantilever beam

The buckling relation specifying the critical axial buckling load
(14a) for a cantilever beam is (49b)� (58):

tan α
α

¼ �1

β
; ð58Þ

for a rotary spring (49a), and (14c)� (59):

tan α
α

¼ 1�α2

β
� s; ð59Þ

for a linear spring (14b), both cases with the spring at the tip. In
the case of a pinned–pinned beam with a linear spring in the
middle, the buckling relation (35)� (60),

tan ðα=2Þ
α=2

¼ 1�8
β

α
2

� �2
; ð60Þ

is similar to (59) with the substitution α-α=2 and β-β=8. Since
the case (60) is reducible to (59), only the latter will be considered
in the sequel. In the absence of either linear (61a) or rotary (61b)
spring, respectively, (59) and (58) both imply (61c) that there is an
infinity of buckling modes (61d),

β¼ 0 or β ¼ 0 : tan α¼1 ) αn ¼ nπ�π
2
; ð61a–dÞ

with (62a). From respectively (17b) and (51) follows the shape
(62c) of the modes (62b):

n¼ 1;2;3;…; pn ¼
αn

L
: ζnðxÞ ¼ A 1� cos n�1

2

� �
πx
L

� �	 

:

ð62a–cÞ
The first three n¼ 1;2;3 are illustrated in Fig. 4. All modes have
amplitude A at the tip (63a),

ζnðLÞ ¼ A; ζ0nðLÞ ¼ A n�1
2

� �
π
L
ð�1Þn; ð63a;bÞ

and slope (63b) at the tip. The shape of the modes (62c) and the
values (63a,b) are changed in the presence of the linear (rotary)
spring since (62b) are longer roots of (59) [(58)]. The roots are
considered next, first analytically (Section 4.2) and then graphi-
cally (Sections 4.3 and 4.4).

4.2. Infinite roots for the critical buckling load

The buckling relations for the cantilever beam with rotary (58)
or linear (59) spring at the tip both involve the circular tangent
whose MacLaurin series [6] is (64b):

jαjoπ
2
: tan α¼ 1

α
∑
1

n ¼ 1
ð�1Þn1�22n

ð2nÞ! B2nð2αÞ2n; ð64a;bÞ

valid for (64a) and involving the Bernoulli numbers B2n of which
the first five [8] are

B0 ¼ 1; B2 ¼ 1
6 ; B4 ¼ � 1

30 ¼ B8; B6 ¼ 1
42 : ð65a–eÞ

Substituting (64b) in (58) gives the series

�1

β
¼ ∑

1

n ¼ 1
ð�1Þn1�22n

ð2nÞ! B2n2
2nα2n�2

¼ 1þα2

3
þ 2
15
α4þ 34

105
α6þoðα8Þ ¼ G ∏

1

n ¼ 1
ðα�αnÞ; ð66Þ

that agrees with (15a) and (50a) at lowest order; Ga0 in (66)
whose roots specify the critical axial loads for all the buckling
modes of a cantilever beam with a rotary spring at the tip; in the
case of a linear spring (64b) is substituted in (59) leading to

�1
β
¼ tan α�α

α3 ¼ 1
α4 ∑

1

n ¼ 2
ð�1Þn�11�22n

ð2nÞ! B2nð2αÞ2n

¼ �1
3
þ 2
15
α2þ 17

315
α4þoðα6Þ ¼H ∏

1

n ¼ 1
ðα�αnÞ; ð67Þ

that agrees with (15b) to lowest order, and where Ha0. The roots
of (66) and (67) can be calculated approximately by truncating the
series. They can be visualised graphically by a method applied
next, first to the case of a rotary (Section 4.3) and then to the case
of a linear (Section 4.4) spring opposing or favouring the buckling
of the cantilever beam.

4.3. Rotary spring favouring or opposing buckling

The buckling relation for the cantilever beam with a rotary
spring (58) involves the circular tangent that is plotted in Fig. 5

Fig. 4. First three modes of buckled cantilever beam. (a) 1st mode, (b) 2nd mode and (c) 3rd mode.
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showing where it equals its variable, represented by the diagonal
of the quadrant. The smallest roots of (68a) are recorded (68b–d)
for future use:

tan θn ¼ θn : θ1 ¼ 4:493; θ2 ¼ 7:725; θ3 ¼ 10:904: ð68a–dÞ
The ratio of the circular tangent to its variable, represented by the
function s� α�1 tan α, is plotted in Fig. 6 and the roots for the
critical buckling load are the intersections with the horizontal
lines of constant spring resilience, leading (Table 2) to six cases:
(I) in the absence of rotary spring, β ¼ 0, the roots for s¼ �1 are
(61d);(II) if the rotary opposes bending, β40, the roots lie in the
range nπ�π=2oαnonπ implying an increase in the critical
buckling load;(III) for an infinitely strong rotary spring opposing
bending, β ¼1, the critical buckling loads are αn ¼ nπ;(IV) if the
rotary spring weakly favours bending, 04β4�1, the critical

buckling load still increases nπoαnoθn where θn is the n-th root
of (68a);(V) for a spring with transition resilience, β ¼ �1, a new
root α0 appears, leading to buckling without an axial load, in
agreement with (50a–c);(VI) a stronger rotary spring favouring
bending, βo�1, the critical buckling load increases, 0oα0oπ=2
and θnoαnonπþπ=2. Fig. 3d corresponds to the top left of Fig. 6,
where (i) the root α0 is the lowest-order buckling mode for a
rotary spring favouring bending; (ii) the root α1 is the lowest-order
buckling mode for a rotary spring opposing bending. For a given
critical buckling load α, there is only one possible buckling mode:
(i) with a rotary spring favouring bending if nπoαnonπþπ=2
with n¼ 0;1;2;…; (ii) for a rotary spring opposing bending if
nπ�π=2oαonπ with n¼ 1;2;3;…; (iii) there is a jump from
one mode to the next for α¼ nπ. For a given spring resilience β , an
infinity of buckling modes with increasing critical buckling load is
possible: (i) for a rotary spring favouring bending, the modes are αn

with n¼0, 1, 2, …; (ii) for a rotary spring opposing bending for αn

with n¼1, 2, 3, … . The preceding conclusions are modified for a
linear spring at the tip of a cantilever beam because (58) is replaced
by (59) where: (i) the l.h.s is the same; (ii) the r.h.s depends not
only on β but also on α. Thus Fig. 6 is replaced next by Figs. 7 and 8
for the linear spring. Both the rotary and linear springs have
atransition resilience with different values.

4.4. Transition resilience for buckling without an axial load

The buckling relation (59) for a cantilever beam with a linear
spring at the tip is analysed in Fig. 7 by comparing the ratio of the
circular tangent to its variable lines with the curves 1�β=α2 � s
with the roots αn as intersections, leading (Table 3) to six cases:
(I) in the absence of spring (61a) the roots are (61d), of which the
first α1 ¼ π=2 corresponds to the critical buckling load (10c); (II)
for a weak spring opposing bending, βoα2, the roots lie in the
interval nπ�π=2oαnonπ corresponding to higher critical buck-
ling loads; (III) for a critical spring resilience:

β¼ α23q¼ p2=L 3 s¼ 0; ð69a–cÞ
the roots are αn ¼ nπ; (IV) for a strong spring still opposing
bending, β4α2, the roots lie in the range nπoαnoθn, where θn
is a root of (68a), corresponding to a further increase in the critical

Fig. 5. Plots of the circular tangent and its variable to determine their ratio and the
first point θ1 ¼ 4:493 where they are equal.

Fig. 6. Roots αn of the critical buckling load (14a) versus the resilience of a rotary
spring (49a) at the tip of a cantilever beam (58).

Fig. 7. Roots αn of the critical buckling load (14a) versus the resilience of a linear
spring (14b) at the tip of a cantilever beam (59).
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buckling load that can never exceed pnLoθn; (V) an infinitely
strong spring, β¼1, causes buckling with zero axial load because
a new root α0 appears, and the remaining roots are αn ¼ θn for the
higher-order buckling modes; (VI) a spring favouring bending,
βo0, leads to a lowest-order buckling mode with 0oα0oπ=2
and higher-order buckling modes with θnoαnonπþπ=2. Fig. 6
(Fig. 7) and Table 2 (Table 3) for the cantilever beam with a rotary
(linear) spring at the tip look similar, but there is an important
difference: (i) in Fig. 6, the horizontal lines β ¼ const do not
depend on α; (ii) in Fig. 7, the horizontal lines 1�α2=β¼ const
depend both on β and α. In the case (ii), Fig. 7 is transformed to
Fig. 8 separating α and βalong the two axes.

For (i) a linear spring opposing bending, all roots start at
αn ¼ nπ�π=2 with n¼ 1;2;3;… and the critical buckling load
increases with the resilience of the spring β40 passing through
αn ¼ nπ for β¼ ðαnÞ2 and reaching an asymptotic β-1 maximum
αn ¼ θn where θn is the n-th root of (68a); (ii) for a linear spring
favouring bending, βo0, the roots αn start at αn ¼ nπþπ=2 with
n¼ 1;2;3;… and as jβj ¼ �β increases, the critical buckling load
decreases to the asymptotic β-�1 limit αn ¼ θn�1, where θn–1 is
the (n�1)-th root of (68a); (iii) thus there is a jump of 2π for the
same root between a linear spring opposing and favouring bend-
ing. Another difference is that for a linear spring favouring
bending, there is an additional lowest-order root α0 that:
(i) allows buckling without an axial load α0 ¼ 0 for β¼ �3 in
agreement with (16a–d); (ii) for �3oβo0, the critical buckling
load increases in the range 0oα0oπ=2. Fig. 3a corresponds to the
bottom left of Fig. 8 that includes all buckling modes. For a given
critical buckling load α, there is only one mode: (i) for
nπ�π=2oαoθn, it corresponds to a linear spring opposing
bending; (ii) for θnoαonπþπ=2, it corresponds to a linear spring
favouring bending, with n¼ 1;2;3;… in both cases; (iii) for a linear
spring favouring bending, there is an additional lower-order mode
0oα0oπ=2. For a given resilience of the spring, there is an
infinity of buckling modes αn: (i) with n¼ 1;2;3;… for a linear
spring opposing bending; (ii) with n¼ 0;1;2;… for a spring
favouring bending.

5. Discussion

In all the preceding cases of buckling of a beam with any
combination of supports and linear or rotary spring at the tip or
middle, the roots αn determine the buckled shape. For the
cantilever beam with a rotary spring at the tip, the buckled shape

is

ζnðxÞ ¼ A 1� cos αn
x
L

� �h i
; ð70Þ

and the deflection at the tip (71a) may not be the maximum

ζnðLÞ ¼ A 1� cos ðαnÞ½ �; ζ0nðLÞ ¼ A
αn

L
sin ðαnÞ; ð71a;bÞ

nor the slope at the tip (71b) has to be zero. Expressions for the
shape and slope of the buckled cantilever beam with a linear
spring at the tip can be obtained substituting (62b) in (17b).

The effect of a linear (rotary) spring on the buckling of a
beam [Section 2 (Section 3)] has been considered for the four
classical combinations of support: (i) clamped–free [Section 2.1
(Section 3.1)]; (ii) clamped–clamped [Section 2.2 (Section 3.2)];
(iii) pinned–pinned [Section 2.3 (Section 3.3)]; (iv) clamped–
pinned [Section 2.4 (Section 3.4)]. The spring was placed at the
tip in the case (i) and at the middle in the remaining cases (iii–iv).
For each of the eight combinations was obtained: (i) the relation
between the critical buckling load and the resilience of the spring;
(ii) the resulting shape of the buckled elastica taking into account
the effect of the linear or rotary spring.

Of the eight cases four are simplest (Table 1) leading to plots of
the relation between the critical buckling load and the resilience of
the spring: (a,d) the cantilever or clamped–free beam with linear
(rotary) spring at the tip [Fig. 3a (d)]; (b,c) the clamped–clamped
(pinned–pinned) beam with a linear spring at the middle [Fig. 3b
(c)]. The linear or rotary spring can be placed so as to oppose
(favour) bending [Fig. 1 (Fig. 2)] thus increasing (decreasing) the
critical buckling load. Table 1 indicates, in the four simplest cases
(a–d), the value of the resilience of the spring that causes buckling
without an axial load.

Fig. 8. Alternate form of Fig. 7 with α vertically and s¼ 1�α2=β replaced by β horizontally.

Table 1
Resilience of the spring that causes buckling without an axial load for the four
simplest cases.

Case Relation Beam Spring Resilience

a Fig. 3a Cantilever Linear
k¼ �3EI

L3

b Fig. 3b Clamped–clamped Linear
k¼ �96EI

L3

c Fig. 3c Pinned–pinned Linear
k¼ �24EI

L3

d Fig. 3d Cantilever Rotary
k ¼ �EI

L3
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Table 1 relates to Fig. 3 that shows the relation between the
critical axial buckling load and the resilience of the spring near
the critical case of buckling without axial load. For all possible
combinations of axial buckling load and spring resilience, the
buckling relation is less simple, as shown in detail for a cantilever
beam (Section 4) with rotary (Section 4.3) or linear (Section 4.4)
spring at the tip. The analysis in this case was made for all buckling
modes without (Section 4.1) and with (Section 4.2) spring. The
first three modes without spring are illustrated in Fig. 4, and the
effect of the springs was demonstrated analytically (Section 4.2)
and graphically (Sections 4.3 and 4.4). A common baseline graph
(Fig. 5) illustrates the relation between critical axial load and
spring resilience for a cantilever beam in the cases of rotary (Fig. 6
and Table 2) and linear (Figs. 7, 8 and Table 3) springs.

The present theory can be used in all eight cases in two ways:
(i) the direct problem of determining the critical buckling load for
a given resilience of the spring; (ii) the inverse problem of
selecting the resilience of the spring so that the critical buckling
load takes a desired value. The desired value of the critical
buckling load may be: ðαÞ an increase to resist buckling under
higher axial load, by using a spring that opposes bending, thus
increasing the load bearing capability of a structure or its safety
margin; ðβÞ a decrease to demolish a structure by buckling using a
smaller axial load and a spring that favours bending, avoiding
more extreme methods like controlled explosions or tedious
disassembly.
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Table 2
Critical buckling load for a cantilever beam with rotary spring.

Spring None Opposing bending Favouring bending

Finite Infinite Weak Transition Strong

Resilience β ¼ 0 β40 β ¼1 04β4�1 β ¼ �1 βo�1
Case I II III IV V VI

Lowest root α1 ¼
π

2
π

2
oα1oπ α1 ¼ π πoα1oθ1 α0 ¼ 0 0oα0o

π

2
Other roots αn ¼ nπ�π

2
nπ�π

2
oαnonπ αn ¼ nπ nπoαnoθn αn ¼ θn θnoαnonπþπ

2

α� pL¼ L
ffiffiffiffiffiffiffiffiffiffi
T=EI

p
; β ¼ kL=EI; n¼ 1;2;… .

Table 3
Critical buckling load for a cantilever beam with linear spring.

Spring None Opposing bending Favouring bending

Weak Critical Strong Infinite

Resilience β¼ 0 βoα2 β¼ α2 β4α2 β¼1 βo0
Case I II III IV V VI
Lowest root α1 ¼

π

2
π

2
oα1oπ α1 ¼ π πoα1oθ1 α0 ¼ 0 0oα0o

π

2

Other roots αn ¼ nπ�π

2
nπ�π

2
oαnonπ αn ¼ nπ nπoαnoθn αn ¼ θn θnoαnonπþπ

2

α� pL¼ L
ffiffiffiffiffiffiffiffiffiffi
T=EI

p
; β¼ qL3 ¼ kL3=EI; n¼ 1;2;… .
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