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ABSTRACT
The central theme of this paper is to show how one can com-

bine Polynomial Chaos Expansions (PCE) and adjoint theory to
efficiently obtain sensitivities for robust optimal control and op-
timization. A non-intrusive PCE method is used to analyze the
constraint equations for the state (which depends on uncertain in-
puts), namely the governing equations of the dynamical system.
Adjoint solutions are constructed for each of the polynomial ba-
sis functions used in the approximate expansion. The combina-
tion of the gradient for each basis-adjoint pair is used to form the
overall gradient. The resulting gradient can be used to improve
an initial guess in an iterative optimization procedure. The re-
peated use of the non-intrusive PCE method, the adjoint solver
and the gradient estimate can be used to determine optimal con-
trol laws for the governing system in the presence of uncertain-
ties. The formulation of the optimal control problem is presented
in the context of the flow equations where the expected value of a
functional is to be minimized. The boundary shape is the control.
Using an analytical problem to determine the trade-off between
cost and accuracy of some PCE methods, the optimization al-
gorithm is applied to an airfoil optimization problem in external
flow. The optimal solutions are compared against a multi-point
design approach and shown to result in better designs in the con-
strained and unconstrained case. Finally, the approach is used to
reduce the mean of Loss of a low pressure turbine blade. The as-
sociated cost of this approach in an optimization setting is equal
to the cost of a PCE analysis (≈Q deterministic simulations) plus
Q (number of unknowns in the PCE expansion) adjoint solves for
each iteration of a steepest-descent algorithm. However, this cost
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can be further reduced for certain objective functions using an in-
trusive formulation for the adjoint equations [13].

*Nomenclature

δmn Kroneckar delta function
.̂ Probabilistic form of .
ŵ Coefficients of Polynomial Basis
B Borel Sets
E Expectation Operator
I Set of Integers
P Set of Probability Measures
R Real numbers
D Computational Domain
G Gradient
J Probabilistic form of I
ω Random Variable
Φ Orthogonal Polynomial Basis
ψ Lagrange Multiplier
ρ Measure in Probability Space
ξ Random Vector that defines ω
C Constraints
F Function to represent the boundary shape
I Cost Function
P Order of PCE
Q Number of Sampling Points
R Euler or Navier-Stokes Operator
R Residual Operator
Var Variance Operator
w State Vector for the Equations
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1 Introduction
Engineering designs are typically guaranteed a certain de-

gree of robustness due to the multi-point nature of the overall
design process. This ensures performance at a few key operat-
ing points. These operating points are typically further apart in
the design space and have very different characteristics. Take-off
and landing, cruise and a coordinated turn are some key operating
points in the flight envelope of an airplane. At each of these op-
erating points, there is typically some uncertainty (both flow and
geometry). One can envision another multi-point design process
to ensure robustness to these uncertainties.

Advances in modeling of systems governed by Partial Dif-
ferential Equations(PDEs) with uncertain inputs and the recent
explosion of Uncertainty Quantification (UQ) methods offers a
new approach to quantify robustness. UQ methods based on
Polynomial Chaos (PC) theory are particularly efficient as they
identify the optimal choice of basis functions to represent the
characteristics of the system for a given form of input uncertain-
ties. While PC was originally developed for Gaussian uncertain
inputs for linear systems [1], the Wiener-Askey family of orthog-
onal polynomials provides one-to-one correspondence for most
forms of input uncertainties. The use of the PC method reduces
the problem of determining the probabilistic quantities of the sys-
tem to one of determining the coefficients of the polynomial ba-
sis functions, and is essentially a spectral approach in probability
space. The dependence of the number of basis functions on the
required order of expansion and the number of input uncertain-
ties leads to rapid rise in computational cost which will pose a
hurdle for immediate acceptance in industrial Engineering envi-
ronments.

The determination of optimal control laws for systems with
uncertain inputs requires analysis techniques that propagate the
effect of the input uncertainty and this is typically achieved
through any UQ analysis. One approach to determining optimal
control laws for such systems is through Pontryagin’s maximum
principle. This control theory approach when used for systems
governed by PDEs [2–4] has dramatic computational cost advan-
tages over the finite-difference method of calculating gradients.
With the control theory approach the necessary gradients are ob-
tained through the solution of an adjoint system of equations of
the governing equations of interest. The adjoint method is ex-
tremely efficient since the computational expense incurred in the
calculation of the complete gradient is effectively independent
of the number of design variables. In this study, a continuous
adjoint formulation has been used to derive the adjoint system
of equations. Hence, the adjoint equations are derived directly
from the governing equations and then discretized. Hence, this
approach has the advantage over the discrete adjoint formula-
tion in that the resulting adjoint equations are independent of the
form of discretized flow equations. The adjoint system of equa-
tions have a similar form to the governing equations of the flow
and hence the numerical methods developed for the flow equa-

tions can be reused for the adjoint equations. When used for
boundary control, every discrete point that defines the boundary
is allowed to move, enabling a large variety of boundary control.
Any constraints on the boundary shape is imposed by projecting
the gradient into an allowable sub-space.

It is the objective of this article to expound on the combined
use of polynomial chaos theory and adjoints to provide an alter-
native frame-work for robust optimization. In Section 2 a brief
overview of the Polynomial Chaos method is provided and in
Section 3 the adjoint theory for deterministic systems is outlined.
Section 4 combines Section 2 and 3 to highlight the central tenet
of this article. Section 5 provides the outline of an algorithm that
can be used to estimate robust optimal control laws. Section 7 es-
tablishes the equivalence between the use of a non-intrusive and
intrusive UQ method within the algorithm outlined in Section 5.
Finally, Section 8 presents some results for an academic aerody-
namic problem where the Mach number is treated as an uncertain
input to a system that solves the steady-state Euler equations for
flow around an airfoil. Optimal shapes obtained with the ap-
proach outlined in this study are also shown. The results of PCE-
based optimization are compared against multi-point optimiza-
tion studies with equal weights at all points for both constrained
and unconstrained lift cases.

2 Polynomial Chaos Expansions (PCEs)
Under the broad umbrella of uncertainty quantification, a

large number of recent investigations have centered around the
use of polynomial chaos methods (and their variants). The use
these methods can be traced to the seminal work of Wiener [1]
and more recently to Spanos and Ghanem [6,7] and Xiu and Kar-
niadakis [8, 9] (Please refer to Xiu [5] for a comprehensive sur-
vey article). Generalized Polynomial Chaos Expansion (GPCE)
methods use hyper-trigonometric polynomials from the Wiener-
Askey family to approximate the output of systems due to ran-
dom inputs. Typically, an output, w, is written as an polynomial
expansion

w(ω) =
P

∑
i=1

ŵiΦi(ξ(ω))

where ω ∈ Ω is an element in the event space, Φi is an element
of an orthogonal Wiener-Askey family of polynomials and ξ is a
random vector that defines ω. Estimates of ŵi provide surrogate
function definitions for w, that can then be used either for analy-
sis or optimization strategies. The process of determining the ŵi
is the focus of most GPCE methods. We will assume that all ran-
dom variables that are considered here (both input uncertainties
and output performance measures) belong to the triplet (R,B,P )
where B is the σ-field generated by Borel sets in R and P is the
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set of probability measures on (R,B). One of the central tenets
of polynomial chaos methods is the use of orthogonality relations
between the polynomial basis and measures from the probability
space P .

The common methods to compute the coefficients are classi-
fied under the labels of intrusive and non-intrusive methods. The
former uses GPCE for the unknowns in the governing equations
and uses the method of weighted residuals and the orthogonal-
ity property to form a set of coupled non-linear ODEs for the
unknown coefficients while the non-intrusive method use “sam-
pling” techniques to determine the coefficients. Evaluation of
intrusive methods is beyond the scope of this work, so we con-
centrate on non-intrusive methods. The curse-of-dimensionality
is a serious issue with GPCE methods that requires efficient sam-
pling techniques (e.g. tensor product for low dimensional prob-
lems, sparse grids and cubature rules for higher dimensional
problems). While we do not compare these approaches here,
please refer to Xiu [5] for a detailed review.

The pseudo-spectral (collocation) approach uses a set of
quadrature/collocation points to obtain estimates of the output
of the system. The collocation points are the Gauss-Hermite
quadrature points and weights and the orthogonality of the poly-
nomials can be used to determine the coefficients. It should be
noted that the quadrature points are evaluated for the weighting
function e−x2/2.

The pseudo-spectral discrete expansion, wP
N , uses the or-

thogonal polynomials Φ(ξ(ω)) from the Wiener-Askey basis and
finds the coefficients of the expansion, ŵm [5].

I P
N u' wP

N(ω) =
M

∑
i=1

ŵiΦi(ξ(ω)); M =
(N +P)!

N!P!
(1)

ŵi =
Q

∑
j=1

u(ω j)Φm(ξ(ω) j)α j (2)

Q ∈ I is the set of sampling points indexed by j used for the
PCE reconstruction. For pseudo-spectral (collocation) schemes,
Q = P. The choice of the nodes should be such that

Q

∑
j=1

f (y j)α j ≡
Z

f (y)ρ(y)dy = E[ f (y)]

where ρ(y) is the measure w.r.t. which the basis, Φ is normalized
such that hm = 1, ∀m and hm is given by

Z
ρ(yi)Φm(yi)Φn(yi)dyi = h2

mδmn (3)

where δmn is the Kroneckar delta function.
Once the coefficients are evaluated statistical information

can be easily extracted through the following identities. The ex-
pected value or the first moment can be written as

E[w]≈
Z

(
P

∑
i=1

ŵiΦi(y))ρ(y)dy = ŵ1,

due to the fact that Φi(y) is orthogonal to Φ1(y) = 1 (Equation 3)
for all i ≥ 2. Using the same property and the expression for
the variance in terms of the expected value, the variance can be
written in terms of the PCE coefficients as

Var(w) = Ew2−E2w≈
P

∑
m=2

ŵ2
m

A similar approach can be used to compute the second-moment
and global sensitivity coefficients [5].

2.1 Some PCE techniques
We focus our attention on three different methods. They are

outlined below for completeness.

2.1.1 Non-Intrusive Sampling Method (NIS) In
this method, (which we will sometimes refer to as the Linear Re-
gression method) we use Hermite Polynomials to approximate
the outputs of the system. The coefficients of the GPCE are ob-
tained using an regression approach. Hence, we evaluate the out-
put at a set of predetermined points and assemble a linear (over-
determined) system of equations

Φ0(ξ1)ŵ1 + Φ1(ξ1)ŵ2 + · · ·+ ΦP(ξ1)ŵP = u(ξ1)
Φ0(ξ2)ŵ1 + Φ1(ξ2)ŵ2 + · · ·+ ΦP(ξ2)ŵP = u(ξ2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Φ0(ξQ)ŵ1 +Φ1(ξQ)ŵ2 + · · ·+ΦP(ξQ)ŵP = u(ξQ)

which is solved in a least-squares sense for ŵi, i = 1...Q (us-
ing MATLAB’s \ operator). Here, Q is the number of sampling
points and P is the order of the GPCE.

2.1.2 Pseudo-Spectral Method with Hermite Poly-
nomials (PSH) In this method, we use a pseudo-spectral (col-
location) approach and obtain estimates of the output of the sys-
tem at a set of quadrature points. The collocation points are the

3 Copyright c© 2012 by ASME



Gauss-Hermite quadrature points and weights and the orthogo-
nality of the polynomials can be used to determine the coeffi-
cients. It should be noted that the quadrature points are evaluated
for the weighting function e−x2/2.

2.1.3 Pseudo-Spectral Method with Legendre
Polynomials (PSL) This method is very similar to the pre-
vious method expect that Legendre polynomials are used instead
of Hermite polynomials. The reason for evaluating this method is
two-fold. The support for the Gauss-Hermite quadrature points
lies in [−∞,∞] and hence higher order evaluations requires de-
terministic runs at quadrature points where it may be difficult
to “converge” numerical solvers. Additionally, we would also
like to evaluate the degradation in the pseudo-spectral method
when we violate the choice of the Wiener-Askey polynomial ba-
sis. This will be useful for problems when the input uncertainties
are mixed (e.g. Gaussian and Uniform) and we use Hermite (or
Legendre) polynomials to approximate the output.

3 Deterministic Adjoint Theory
We provide a brief overview of the adjoint process [4] for

deterministic systems and describe it in the context of Euler (or
Navier-Stokes) equations that govern the evolution of fluid flow.

The cost functions are functions of the state variables, u, and
the control variables, which may be represented by the function,
F , say. Then

I = I(u,F ),

and a change in F results in a change

δI =
∂IT

∂u
δu+

∂IT

∂F
δF , (4)

in the cost function. Using control theory, the governing
equations for the state variables are introduced as a constraint
in such a way that the final expression for the gradient does not
require re-evaluation of the state. In order to achieve this, δw
must be eliminated from equation 4. Suppose that the governing
equation R which expresses the dependence of w and F within
the domain D can be written as

R(u,F ) = 0 (5)

Then δu is determined from the equation

δR =
[

∂R
∂u

]
δu+

[
∂R
∂F

]
δF = 0 (6)

Next, introducing a Lagrange Multiplier ψ, we have

δI =
∂IT

∂u
δu+

∂IT

∂F
δF −ψT

([
∂R
∂u

]
δu+

[
∂R
∂F

]
δF

)

δI =
(

∂IT

∂u
−ψT

[
∂R
∂u

])
δu+

(
∂IT

∂F
−ψT

[
∂R
∂F

])
δF

Choosing ψ to satisfy the adjoint equation

[
∂R
∂u

]T

ψ =
∂I
∂u

(7)

the first term is eliminated and we find that

δI = GδF (8)

where

G =
∂IT

∂F
−ψT

[
∂R
∂F

]
(9)

This process allows for elimination of the terms that depend
on the flow solution with the result that the gradient with respect
with an arbitrary number of design variables can be determined
without the need for additional evaluations of the state.

After taking a step in the negative gradient direction, the gra-
dient is recalculated and the process repeated to follow the path
of steepest descent until a minimum is reached. In order to avoid
violating constraints, the gradient can be projected into an allow-
able subspace within which the constraints are satisfied. In this
way one can devise procedures which must necessarily converge
at least to a local minimum and which can be accelerated by the
use of more sophisticated descent methods such as conjugate gra-
dient or quasi-Newton algorithms. There is a possibility of more
than one local minimum, but in any case this method will lead
to an improvement over the original design. The above process
solves the following optimization problem:
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inf
F ∈F I(u,F )

s.t. R(u,F ) = 0
C(u,F )≤ 0 (10)

4 Extension to Systems with Uncertain Inputs : A
Partially Intrusive Algorithm
In this section, we discus a partially intrusive approach that

uses the PCE to formulate the adjoint system. Expanding the
objective, residual and flow solutions in terms of PC expansions,
allows for derivation of an adjoint system for each “mode” of
the PCE. These modes can then be combined to determine an
expression for the stochastic gradient.

The adjoint formulation in Section 3 can be re-written in the
following form for systems with uncertain inputs. The general
stochastic optimization problem can be written as

inf
F ∈F J

s.t. P (R̂(û(ξ),F )) = P (r)
P (Ĉ(û(ξ),F )) = P (c) (11)

J can be mean or s.t.d (or other moments of interest) of a primi-
tive function, I . Using a simplified notation for the probabilistic
constraints we can write the optimization problem where the ob-
jective is to reduce the mean of I as follows:

inf
F ∈F E(Î(û(ξ),F ))

s.t. R̂(û(ξ),F ) = 0 a.s.

Ĉ(û(ξ),F ) < 0 a.s. (12)

where the ˆ symbol is used to emphasize that the quantities are
probabilistic in nature. Note that the control variables are still de-
terministic and the stochastic nature of the problem arises from
the dependence of û on the random inputs ξ. For simplicity, the
first moment is used as the objective that is minimized by the
optimal F , but the optimization problem can also be higher mo-
ments or other probabilistic quantities. Due to the nature of the

PDE governed system

Control Variables

OutputsUncertain
Inputs

Figure 1. A schematic of the control problem with uncertain inputs. The
objective is to find the optimal control variables.

basis used in PCE, the first moment, E offers some simplifica-
tions that is highlighted in this Section. A schematic sketch of
the control problem is shown in Figure 1
In many common engineering cases the properties of H can be
used to obtain expressions for the variation in J in terms of varia-
tions of I. For example, if H is theE, then the linearity properties
can be used to write J = EδI . In general,

J = H (I(ŵ,F ) (13)
δJ ≈ J +− J 0

= H (I+)−H (I0)

= H (I)+H (
∂I
∂ŵ

δw+
∂I

∂F
δF )−H (I)

= H (
∂I
∂ŵ

δw+
∂I

∂F
δF )

= H (δI)

The key insight that enables the efficient re-use of the ad-
joint method is the observation that the PCE approach enables
re-construction of any system output, w as a linear expansion of
the form:

w(ω) =
Q

∑
i=1

ŵiΦi(ξ(ω))

Hence, Î, R̂, û etc. can be written as a linear combination of
basis functions. The choice of Hi is obtained from the Wiener-
Askey basis and depends on the nature of the uncertain input.
Substituting this expansion into the derivation outlined in Sec-
tion 3 formulates the adjoint system and the gradient. This is
outlined here for completeness. wx

i is used to denote the ith co-
efficient associated with the random variable x in the PCE expan-
sion.
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Î(ω) =
Q

∑
i=1

ŵI
i Φi(ξ(ω)) =

Q

∑
i=1

Îi

R̂(ω) =
Q

∑
i=1

ŵR
i Φi(ξ(ω)) =

Q

∑
i=1

R̂i

û(ω) =
Q

∑
i=1

ŵu
i Φi(ξ(ω)) =

Q

∑
i=1

ûi

(14)

Recalling that the expected value of a random variable under
the PCE approximation is just the first coefficient, w1 and Φ1 is
typically 1, offers considerable simplifications to the adjoint pro-
cess. To encompass the general case of any objective function,
we retain the sub-script i notation in the following derivation to
denote the possible influence of coefficients > 1.

Now following the deterministic approach, variations in cost
function, Î, and the constraint, R̂, can be written as a sum over the
variations with respect to each of the coefficients of the PC basis
functions, ŵi. We drop the E notation for I and use the subscript
notation to denote the contribution of the ith term in the PCE for
I. Please note that we do not formulate the problem using E(R)
instead of R. With these notational changes Equation 4 can be
written as

δÎ =
Q

∑
i=1

(
∂ÎT

i
∂û

δû+
∂ÎT

i
∂F

δF
)

but û = g(ŵi)

δÎ =
Q

∑
i=1

(
∂ÎT

i
∂ŵi

δŵi +
∂ÎT

i
∂F

δF
)

(15)

where Îi is the ith contribution from the PCE. Similarly, Equa-
tion 6 can be written as

δR̂ =
Q

∑
i=1

([
∂R̂i

∂ŵi

]
δŵi +

[
∂R̂i

∂F

]
δF

)
= 0 a.s. (16)

Multiplying Equation 16 by a Lagrange multiplier ψ are before
but in indexed form (to correspond to the PC basis function ŵi)
and combining Equations 15 and 16 and grouping terms leads to

δÎ =
Q

∑
i=1

[(
∂ÎT

i
∂ŵi

−ψT
i

[
∂R̂i

∂ŵi

])
δŵi +

(
∂ÎT

i
∂F

−ψT
i

[
∂R̂i

∂F

])
δF

]
(17)

Now the ψi can be chosen to eliminate the dependence of Î on ŵi
and these become the adjoint system of equations to solve. The
form of the adjoint equations (after multiplying through with Φ j,
integration with respect to an appropriate weighting function and
using the orthogonal property in Equation 3) is,

[
∂R̂i

∂ŵi

]T

ψi =
∂Îi

∂ŵi
i = 1,2, ...,Q (18)

and the gradient can be written as

δÎ = ĜδF (19)

where

Ĝ =
Q

∑
i=1

[
∂ÎT

i
∂F

−ψT
i

[
∂R̂i

∂F
Φi(ξ)

]]
(20)

Hence, to evaluate the gradient, one needs to be able to recon-
struct the ith approximation to the partials required in the adjoint
system (Equation 18) and the gradient equation (Equation 20).
As the non-intrusive method using PCEs for UQ scales weakly
with the number of outputs, this is not major stumbling block.
However, the number of adjoint solves scales with the number of
unknowns in the PCE expansion which is known to have rapid
growth with order and number of input uncertainties. For engi-
neering estimates, order 2 has been found to be sufficient.

After taking a step in the negative gradient direction, the gra-
dient is recalculated and the process repeated to follow the path
of steepest descent until a minimum is reached. As in the de-
terministic case, in order to avoid violating constraints, the gra-
dient can be projected into an allowable subspace within which
the constraints are satisfied. In this way one can devise proce-
dures which must necessarily converge at least to a local mini-
mum where it is robust the uncertain inputs to the system.

5 Overview of the Optimization Process
The process outlined in the previous section can be summarized
as an algorithm:
Note : This algorithm is partially intrusive as it requires refor-
mulation of the adjoint system developed for deterministic cal-
culations. While this approach requires reworking of the adjoint
solver, if the objective function is simple like the mean, it only re-
quires the solution of adjoint system for all the uncertain inputs,
significantly reducing the cost of the adjoint component.
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Data: Define uncertain inputs to system (µ,σ etc.),
Choose PCE from Wiener-Askey basis

Initialize Ĝ = 0;
while ‖Ĝ‖ 6= 0 do

F = F −λĜ, λ is a constant;
Use non-intrusive method to estimate PCE;
Use PCE to estimate quantities required for adjoint
solve;
for i ∈ 1,2, ...Q do

Solve adjoint system in Equation 18;
end
Compute Ĝ using Equation 20;
Project Ĝ into allowable sub-space to satisfy
constraints;

end
Algorithm 1: A Partially-Intrusive, Steepest-Descent version
of the Optimization Algorithm

6 Extension to Systems with Uncertain Inputs : A
Non-Intrusive Approach
In this section, we outline a completely non-intrusive ap-

proach. Here, we solve for the flow and the adjoint equations
at each of the sampling points. The gradient is then constructed
using a combination of the flow and adjoint solutions and gradi-
ent at each sampling point. This gradient is then represented as a
PCE and the appropriate coefficients (depending on the objective
function) are used to determine the change to the geometry that
results in improvement of the performance metric.

The algorithm can be outlined as follows:

Data: Define uncertain inputs to system (µ,σ etc.),
Choose PCE from Wiener-Askey basis

Initialize Ĝ = 0;
while ‖Ĝ‖ 6= 0 do

F = F −λĜ, λ is a constant;
Use non-intrusive method to estimate PCE of flow;
Use non-intrusive method to estimate PCE of adjoint;
At each sampling point, compute Ĝ j using
Equation 9;
Using Ĝ j, reconstruct a PCE of the gradient Ĝ;
Project Ĝ j into allowable sub-space to satisfy
constraints;

end
Algorithm 2: A Non-Intrusive, Steepest-Descent version of
the Optimization Algorithm
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Figure 2. Number of sampling points using a Smolyak Sparse grid and
Clenshaw-Curtis abscissas

7 (Lack of) Equivalence between the two approaches

In this section, we show that the method outlined in Sec-
tion 6 that is based on a non-intrusive UQ method is an approxi-
mation to one with a partially intrusive method (Section 4). The
non-intrusive approach is easier to implement and can readily re-
use deterministic codes used for aerodynamic design but is com-
putationally expensive. The partially intrusive approach requires
additional coding (and derivation) but could significantly reduce
the cost of the adjoint simulation. This is due to the fact that as
shown in Figure 2 the number of sampling counts grows rapidly
with increase in number of input random variables. There are
ways to reduce this cost for particular applications (for example
[10], [11]). On the other hand, the partially intrusive approach
only requires solution of a number of adjoint systems equivalent
to the number of unknown coefficients in the PCE expansion. In
addition, for common aerodynamic objective functions like the
expected value of drag, one only needs the solution of the adjoint
system for the first term in the PCE expansion. The proof of this
equivalence is obtained by equating the expression for the coef-
ficients of the PCE expansion for the gradient through the non-
intrusive approach and that constructed through the PCE expan-
sion for the adjoints in the partially intrusive approach. The two
forms are slightly different and the difference contains higher-
order terms in the PCE expansion and terms that couple the ad-
joint solution and the perturbation terms at different sampling
points.

The key connection between the two different methods is
through the explicit expression for the coefficients in terms of
the solution at the different sampling points. We will use the
subscripts j to denote the sampling points and i to denote the
coefficients of the PCE. Recalling that the expression for the mth

coefficient is of the form:
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ŵm =
Q

∑
j=1

u(ω j)Φm(ξ(ω) j)α j

where Q is the number of sampling points. Hence, the gradient
expression in Section 6 can be written as

Ĝm =
Q

∑
j=1

Ĝ(ω j)Φm(ξ(ω) j)α j

which for m = 0 reduces to a linear combination of the gradient
at various sampling points. The gradient at the different sam-
pling points can be written using the deterministic formulation
(Equation 9) as

Ĝ j =
∂ÎT

j

∂F
− ψ̂T

j

[
∂R̂ j

∂F

]
(21)

and the coefficients of the gradient for the non-intrusive approach
can be written as

Ĝi =
Q

∑
j=1

Ĝ jΦi(ξ j)α j (22)

Comparing this coefficient to that obtained from the partially in-
trusive approach in Equation 20

Ĝ = ∑
i

ĜiΦi(ξ) (23)

Ĝ =
Q

∑
i=1

[
∂ÎT

i
∂F

−ψT
i

[
∂R̂i

∂F

]]
Φi(ξ)

Ĝi =
[

∂ÎT
i

∂F
−ψT

i

[
∂R̂i

∂F

]]

and expanding Î and ψ̂ in terms of the values at the different
sampling points, we can write the coefficients Ĝi as

Ĝi =
Q

∑
j=1

Φi(ξ j)α j

[
∂ÎT

j

∂F

]
−

Q

∑
j=1

Φi(ξ j)α j [ψT
j
] Q

∑
j=1

Φi(ξ j)α j
[

∂R̂ j

∂F

]

Comparing this with the coefficients in Equation 22, it is clear
that the double summation term is only partly accounted for in
the non-intrusive approach. Hence, the contribution of the prod-
uct term involving the adjoint solutions and the variation in the
residual due to boundary surface movement across various sam-
pling points is not accounted for in the expressions for the gradi-
ent. Our numerical studies suggest that lack of completeness in
the gradient expression is relevant for coefficients m >> 1 and
hence could affect computations where higher-order moments of
the objective function are being optimized. Alternately, one can
easily modify the gradient expressions in the non-intrusive ap-
proach to include these terms.

8 Results
8.1 Assessment of PCE for an Analytical Problem

We start with a simple (but representative) analytical prob-
lem. Consider a problem with one random variable, ξ ∈ [−1,1]
and an output, u = 2 + ξ2 if ξ > 0.0 and u = 2 + 0.1 ξ2 if
ξ <= 0.0. We assume that ξ is normally distributed with µ = 0
and σ = 1.0. The form of u is assumed to be representative of
the drag-divergence characteristics of transonic airfoils. We will
use the results here to decide on the choice of the non-intrusive
method for the optimal control problem we are interested in.

The conclusions for this analytical problem are summarized
in Table 1. While the pseudo-spectral approach with Gauss-
Hermite quadrature points results in a good surrogate function,
the error in the mean and variance is much smaller at a lower
polynomial order for the NIS and PSL methods. In addition, both
these methods require fewer function evaluations making them
attractive candidates for probabilistic analysis in engineering en-
vironments. However, design procedures that rely on surrogates
may consider the PSH method as it provides better functional
approximations.

8.2 Aerodynamic Analysis for Normal Random Free-
Stream Mach Number

We now assume an input random variable, the free-stream
Mach number which is normally distributed with mean, µ 0.75
and standard deviation, σ = 0.0025 (3) and use PCE expansions
to determine the pdf of the aerodynamic drag of a RAE2822 air-
foil in inviscid flow.

We evaluate the drag using FLO82 at a predetermined set of
sampling points for the PSH method. Figures 5 and 4 shows the
evaluation of Cd and Cl at a fixed angle-of-attack of 2 degrees.
As expected the drag and lift response is roughly linear. This
now resembles a linear system and this is further evident in the
pdf of Cl and Cd which are roughly Gaussian. Furthermore, PCE
expansions above order 2 are sufficient for Cd and even the first
order expansion is sufficient for Cl .
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Method Function Order L2 Mean Var

Evaluations Err. Err. Err.

NIS 3 1 12.315 0.1712 0.0022

NIS 4 2 7.6345 9.7e-6 0.0073

NIS 6 3 1.5175 2.6e-5 3.3e-4

NIS 9 4 1.5175 2.6e-5 3.3e-4

NIS 11 5 0.5771 3.5e-5 3.0e-7

PSH 2 2 0.0335 0.4845 0.8114

PSH 4 4 0.0246 0.0779 0.4797

PSH 8 8 0.0059 0.0015 0.0273

PSH 16 16 0.0022 4.2e-7 1.2e-4

PSL 2 1 16.699 0.1356 0.0029

PSL 3 2 6.6708 4.9e-4 0.0062

PSL 4 3 1.4703 1.2e-5 3.8e-4

PSL 5 4 1.1021 9.8e-5 4.8e-4

PSL 6 5 0.4808 1.4e-5 1.5e-4

Table 1. Comparison of different methods for the Analytical Problem
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Figure 3. The pdf of the free-stream Mach number

8.3 Multi-Point Design : Unconstrained Lift
We now use the traditional multi-design approach to obtain

a baseline optimum solution. We will compare the robust opti-
mization approaches that are the focus of this study against the
solution obtained with the multi-point approach. We choose 5
points equally spaced at intervals of 0.005 in the Mach num-
ber range of [0.74,0.76]. The optimization algorithm was driven
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Figure 4. Estimates for Cd

with adjoints and a steepest-descent algorithm and 20 iterations
performed in this multi-point design with the intent of reducing
Cd . The only constraints that are imposed is that the thickness of
the redesigned airfoils do not fall below that of the initial geom-
etry. This is done by projecting the combined gradient into the
allowable sub-space. All points in the multi-point design were
weighted equally. Table 2 shows the resulting reduction in Cd .
Figure 6 shows the pdf of Cd before and after redesign. The pdfs
were computed using the NIS method as the sampling points did
not follow any quadrature rules. While it is clear that the mean
has reduced from 0.0204 to 0.0100, the reduction in σ is less sig-
nificant (from 0.00772 to 0.00616). Regardless, this reduction of
approximately 50% in the mean and around 20% in the standard
deviation, illustrates the ability of multi-point optimization to re-
cover robust designs. In general, we would expect multi-point
design exercises to reduce the mean of the performance measure
while having little control over the standard deviation (or higher
moments) unless one tailors the weights of the design points. A
sample study using the weights of the Gauss-Hermite quadra-
ture rule for a fourth order method (hence four sampling points)
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Figure 5. Estimates for Cl

shows a much larger decrease in the mean and the standard de-
viation. The normalized weights are 0.1267, 0.3685, 0.3685 and
0.1267. The sampling points and the resulting Cd are tabulated
in Table 2 and the pdf is shown in Figure 7. The results show
that even naive tailoring of the multi-point optimization exercise
can help target statistical quantities that add robustness to the de-
sign. It is however not clear that the simplicity of this problem
(normal distribution of input and approximately linear response
of the system)

8.4 PCE-based Design : Unconstrained Lift
In this section, we present results from using the PCE-based

approach for robust optimization. For comparison we use the
same problem as in the previous sub-section (8.3) and try to re-
duce the statistical properties of Cd due to the uncertain operat-
ing condition of free-stream Mach number (8.2). To eliminate
the dependence of the results on the sampling points, the same
points from the multi-point optimization exercise in Section 8.3
are used again. As these may not be the quadrature points for
the PSH or PSL method, we revert to the NIS approach to con-

Mach Baseline After Optimization After Optimization

Geometry with equal weights Gauss-Hermite Weights

0.740 0.0129 0.0050 0.0039

0.745 0.0162 0.0072 0.0042

0.750 0.0199 0.0100

0.755 0.0240 0.0134 0.0092

0.760 0.028 0.0173 0.0127

Table 2. Multi-Point Design : Drag before and after optimization
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Figure 6. Comparison of pdf (using NIS and third order PCE approxima-
tion) before and after the multi-point redesign.

struct the PCE of the required quantities. The algorithm for the
optimization follows that outlined in Section 6.

Figure 8 shows the pdf of Cd when the objective was to re-
duce its mean. For comparison, Figure 9 shows the pdf of Cd
when the objective was to reduce its variance. In both calcula-
tions 5 points were used for the PCE re-construction. The re-
duction in the mean and variance when only the mean of Cd is
the objective function is comparable to that obtained using the
Gauss-Hermite weights for the multi-point optimization. Sur-
prisingly, the reduction in variance obtained using the variance
of Cd as the objective function is lower than that obtained with
the mean as the objective function. the results at each sampling
point are tabulated in Table 3.

8.5 PCE-based Design : Constrained Lift
We now repeat the use of the optimization algorithm but with

a deterministic constraint on the lift.
Table 4 shows the result of optimization with the objective

function as the mean and the variance along with the determin-
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Figure 7. Comparison of pdf (using weights for the Gauss-Hermite
Quadrature Rule) before and after the multi-point redesign.

Mach Baseline After Optimization After Optimization

Geometry with mean variance

0.740 0.0129 0.0036 0.0100

0.745 0.0162 0.0044 0.0124

0.750 0.0199 0.0065 0.0151

0.755 0.0240 0.0093 0.0184

0.760 0.028 0.0126 0.0223

Table 3. PCE-based Design : Drag before and after optimization

istic constraint on lift for each Mach number. The lift is con-
strained to the target value by altering the angle-of-attack during
the flow solution. These results show that the improvement at
each Mach number is lower when compared to the unconstrained
case. However, when compared to the multi-point approach, the
improvement is better for the higher Mach numbers. The low-
est Mach number case shows a better design with the multi-point
approach.

The pdfs of the results from the constrained optimization
are summarized in Figure 10. Figure 10(a) shows the pdf before
and after optimization for the mean. The mean is reduced from
0.0200 to 0.0068. As no restrictions were imposed on the vari-
ance, the standard deviation is reduced from 0.0070 to 0.0042.
Figure 10(b) shows the pdf before and after optimization for the
variance. In this case, the mean is reduced from 0.0200 to 0.0139
and the reduction in the standard deviation As no restrictions
were imposed on the variance, the standard deviation is reduced
from 0.0070 to 0.0063.
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(a) Convergence of PDF after optimization for µ of Cd
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(b) PDF before and after optimization for µ of Cd

Figure 8. Estimates for Cd

Mach Base Target After Opt After Opt After Opt

Geom Lift (equal wts) (mean) (var)

0.740 0.0129 0.78 0.0037 0.0042 0.0075

0.745 0.0162 0.80 0.0050 0.0048 0.0105

0.750 0.0199 0.82 0.0073 0.0067 0.0138

0.755 0.0240 0.84 0.0103 0.0095 0.0175

0.760 0.0280 0.86 0.0142 0.0133 0.0214

Table 4. Constrained PCE-based Design : Drag before and after opti-
mization

8.6 Reducing the Mean Vane-Loss of a Low-Pressure
Turbine

We now focus on a more realistic turbomachinery problem,
namely a turbine cascade. We study the effect of varying the
incidence angle on its performance. The vane-loss is used as a
measure of performance and is predicted using a 2D CFD solver.
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(a) Convergence of PDF after optimization for σ of Cd
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(b) PDF before and after optimization for σ of Cd

Figure 9. Estimates for Cd

The uncertainty in incidence angle is assumed to be of normal
form with a mean, µ, of 48 degrees and a standard deviation,
3σ, of 3 degrees. Using the accumulated experience with UQ
methods, computational simulations are performed at 11 equally
spaced points in the interval [-3σ, 3σ]. For the NIS method,
this data is fitted using polynomial chaos expansions up-to order
5 and the approximate fits and expansions higher than order 3
provided a good fit to the trend in vane-loss.

The geometry is shown in Fig. 12. The mesh has been re-
fined close to the wall to achieve an average unity Y+. The com-
putational domain includes 60 blocks and 25,000 cells and the
simulations were run on a workstation using 4 processors. In this
case, the loss coefficient is used as objective function Y during
the optimization,

η =

(
Parea

ta exit −Parea
ta inlet

)
(
Parea

ta inlet −Parea
s inlet

) , (24)

where P and T are the area averaged pressure and temperature,
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(a) PDF of Cd before and after optimization to reduce µ
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(b) PDF of Cd before and after optimization to reduce σ

Figure 10. Estimates for Cd
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Figure 11. Convergence of pdfs for various orders of expansions.

and the subscripts ta and s refer to the total absolute and static
quantities.

Figure 13 shows the contours of nondimensional density of
the baseline vane blade geometry. Having obtained the baseline
flow solution, the corresponding adjoint solution is computed.
The contour plots corresponding to the nondimensional adjoint
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Figure 12. 2-D vane grid.

Figure 13. 2-D vane density distribution.

of the continuity equation are shown in Fig. 14 for the loss coef-
ficient (24).

A sample optimization application, an unconstrained mini-
mization optimization problem using the loss coefficient as the
cost function, is performed. The engineering design variables
used in this testcase are the stagger angle and the overturning an-
gle, as illustrated in Fig. 15. The relative evolution of the cost
function using a gradient-based optimizer based on the steepest
descent method is illustrated in Fig. 16, where the initial loss co-
efficient value is used as reference. The two curves correspond to
different forms of running the adjoint solver. The constant-eddy-
viscosity approach which does not solve for the adjoint turbu-
lence equations is an useful alternative (computational cost and
memory) for some problems. As it can be seen, even though the
baseline vane corresponded to a tuned geometry, the optimizer
is able to improve its performance by about 4 tenths of a point
when using the full adjoint and 3 tenths of a point when using
the CEV adjoint, after three optimizer iterations.

Figure 14. 2-D vane density distribution.

2
(b) Stagger angle

(c) Overturning angle

Figure 15. Changes applied to the vane geometry.
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Figure 16. 2-D vane minimization of loss coefficient.
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Figure 17. PDFs before and after the optimization

Now, the robust optimization approach with PCEs is applied
to this problem. As in the deterministic case, two design vari-
ables were used and the mean of the loss was used as the metric
to reduce. The incidence angle to the vane was considered an
uncertain variable with a Gaussian distribution of 3σ variation
±3deg. 11 equally spaced points in the interval from [−3σ,3σ]
was used to construct PCE expansions using the NIS approach.
At each of the points, for each iteration of the optimization, the
flow solver and the adjoint were computed, alongwith the gradi-
ent. These gradients were then used to form a PCE expansion
for each design variable and the the first coefficient of the expan-
sion was used to modify the design variable to realize the next
baseline geometry. Figure 17 shows the pdfs before and after the
robust optimization exercise. As expected the optimization pro-
cedure has reduced the mean of Loss and the reduction is close to
3%. Note that the variance has increased, an undesirable feature,
but the optimization procedure did not include the variance as a
metric. The mean of the loss was reduced from 1.0 to 0.9502
which is a 5

Figure 18. Optimal 2-D vane (black: optimized, grey: baseline).

9 Conclusions

This paper outlines the process of efficiently combining non-
intrusive PCE based methods UQ methods and adjoint tech-
niques to obtain robust optimal controllers for dynamical sys-
tems. The associated cost of the non-intrusive approach in an
optimization setting is combination of a UQ analysis and Q ad-
joint solves for each iteration of a steepest-descent algorithm,
where Q is the number of PC coefficients. In the partially intru-
sive approach, it is possible (with code rewrites) to reduce the
number of adjoint solves to as low as 1 (when the objective is
to reduce the mean) and as high as Q when the objective func-
tion is higher moments. The non-intrusive approach allows for
re-use of existing optimization frame-works with minimal mod-
ifications. When the non-intrusive approach is applied to an air-
foil optimization problem, the results in this paper highlight that
improved designs over the multi-point approach can be realized.
The problem of efficiently applying probabilistic constraints is
another area that needs attention. Preliminary results in this di-
rection shows that naive use of sampling approaches [14] or the
concept of uncertainty sets [15] roughly increases the computa-
tional cost of the optimization algorithm by l, where l is the num-
ber of samples at which the constraint is imposed [16]. While ro-
bust optimization techniques are still expensive to use routinely
in an industrial setting, the ability to assess robustness of designs
during the evolution of the design process is invaluable and we
hope that some method of this nature will find use in the near
future.
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