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ABSTRACT
While the mathematical derivation of the adjoint equations

and its numerical implementation is well established, there is
scant discussion on the understanding of the adjoint solution by
itself. As this is a field solution of similar resolution of the flow-
field, there is wealth of data that can be used for design guid-
ance. This paper addressess this specific topic. In particular,
we take representative cases from turbomachinery aerodynamic
problems and use the adjoint solution to identify the “physical
insight” it provides. We aim to tie the adjoint solution to the
flow-field which has physical properties. Towards this end, we
first look at three problems 1) a fan, 2) a compressor rotor and
stator, 3) a low pressure turbine. In all three of them, we focus on
changes related to geometry, but one can also realize the changes
using other inputs to the flow solver (eg. boundary conditions).
We show how the adjoint counter-part of the density, the veloc-
ity fields and the turbulence quantities can be used to provide in-
sights into the nature of changes the designer can induce to cause
improvement in the performance metric of interest. We also dis-
cuss how to use adjoint solutions for problems with constraints
to further refine the changes. Finally, we use a problem where
it is not immediately apparent what geometry changes need to
be used for further evaluation with optimization algorithms. In
this problem, we use the adjoint and flow solution on a turbine
strut, to determine the kind of end-wall treatments that reduce the
loss. These changes are then implemented to show that the loss
is reduced by close to 8%.
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Nomenclature
α Design Variable
R Residual Operator
∆Pt Drop in total pressure
ω Specific Dissipation Rate
ψ Adjoint Field
ρ Density
τ ji Stress-Tensor
C Constraint Functions
c Convective Speed
E Energy
I Objective Function
inl Inlet Quantities
k Turbulence Kinetic Energy
l Length of Domain
p Pressure
Ps Static Pressure
q State Vector for Flow equations
T Terminal Time
t Time
u Convected Quantity
ui Velocity Components
x j Coordinate direction

1 Introduction
The continuous growth of computational power has made

external and internal flow simulations to be routinely performed
using high-fidelity computational fluid dynamic (CFD) models.
The emerging trend is to use optimization techniques as part of
the design tools, with numerical design optimization becoming
common practice not only in academia but also in industry.

Among the several optimization methods developed by the
operations research field [14], and considering that CFD flow
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simulations can take hours, if not days, to perform, the most
efficient methods are gradient-based, which require a minimal
number of cost function evaluations. However, these methods re-
quire an estimate of the cost function derivatives. To address this,
the designer faces the problem of evaluating the derivatives [4].
Finite-difference (FD) approximations have always been popu-
lar due to their simplicity but they rapidly become computation-
ally prohibitive when the number of variables greatly exceeds the
number of functions. In this case, an adjoint method is the best-
suited approach to efficiently estimate function gradients since
the cost involved in calculating sensitivities using the adjoint
method is therefore practically independent of the number of de-
sign variables.

The application of adjoint methods to CFD was pioneered by
Pironneau [15] and it was later revisited and extended by Jame-
son to perform airfoil [7] and wing [8] design. More recent suc-
cessful applications include multipoint aerodynamic shape opti-
mization problems [16], aerostructural design optimization [13],
and even magnetohydrodynamics flow control [11].

The major drawback of using adjoint-based gradients has
always been the necessity of implementing an additional solver
– the adjoint system of equations solver, that is generally of
the same complexity as the flow solver. Thus, in the pres-
ence of flows modeled by the Reynolds-Averaged Navier–Stokes
(RANS) equations, the corresponding adjoint system might be-
come far to complex to be fully derived. This has led to the use of
many approximations and simplifications in the implementation
of such adjoint solvers. Among the diferent approaches found in
the literature, the major ones are:

Euler equations
Both the flow and adjoint solvers only account for the invis-
cid flow effects. The argument being that, in some external
flows, such as in clean aircraft configurations, and in some
internal flows, such as in some turbine blades, the viscous
effects can be neglected since there are no regions of flow
separation [9].
RANS with algebraic turbulence models
The adjoint solver is consistent with the flow solver, but a
simplistic turbulence model is used to expeditize the devel-
opement of the former solver. Often used when the viscous
and turbulent effects needs to be accounted for, but the de-
velopment effort is kept to a minimum [6].
RANS with constant eddy viscosity (CEV) approximation
The flow solver uses proper two-equation turbulence mod-
els, such as κ − ε or κ −ω , but the adjoint solver assumes
frozen eddy viscosity. In this case, the flow is properly
solved and it is assumed that the variation of viscosity can
be neglected in the adjoint [18, 2].
RANS flow and adjoint solver
This corresponds to the exact derivation of the adjoint solver,
regardless of the complexity of the turbulence model used.

The dual (adjoint) solver is perfectly consistent with the pri-
mal (flow) solver. This approach is made feasible if one
uses the hybrid ADjoint methodology to develop the adjoint
solver [12, 10].

These approaches are all used today by the adjoint-based
design community, but there is no clear evidence of what are the
penalties associated with approximation models compared to the
exact adjoint solver, when using the adjoint solution to drive a
realistic gradient-based optimization problem.

Traditionally the process of selecting design variations has
been carried out by trial and error, relying on the intuition and
experience of the designer. It is not at all likely that repeated tri-
als using an interactive design and analysis procedure can lead
to a truly optimum design. In order to take full advantage of
the possibility of examining a large design space, the numerical
simulations need to be combined with automatic search and opti-
mization procedures. This can lead to automatic design methods
which will fully realize the potential improvements in aerody-
namic efficiency.

An approach which has become increasingly popular is to
carry out a search over a large number of variations via a ge-
netic algorithm. This may allow the discovery of (sometimes
unexpected) optimum design choices in very complex multi-
objective problems, but it becomes extremely expensive when
each evaluation of the cost function requires intensive compu-
tation, as is the case in aerodynamic and hydrodynamic prob-
lems.Consequently, gradient-based procedures are appropriate
for aerodynamic shape optimization.

2 Background
The underlying theory of adjoint-based high-fidelity CFD

design optimization is presented next.

2.1 Generic Design Problem
A generic CFD design problem can be formally described as

Minimize I(w,S(α))
w.r.t. α , (1)

subject to R(α ,q(α)) = 0
C(α ,q(α)) = 0 ,

where I is the cost function, S is the vector of design variables
and w is the flow solution, which is typically of function of the
design variables, and C = 0 represents additional constraints that
may or may not involve the flow solution. The flow governing
equations expressed in the form R = 0 also appear as a constraint,
since the solution w must always obey the flow physics.

When using a gradient-based optimizer to solve the design
problem (1), the evaluation of the cost and constraint functions,
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and their gradients with respect to the design variables are also
required, that is, dI

dS and dCi
dS have to be estimated.

2.2 Flow Governing Equations
The governing equations used in the present work are the

Reynolds-Averaged Navier–Stokes (RANS) equations. In con-
servation form, the Navier–Stokes system of equations may be
written in index notation as

∂ρ
∂ t

+
∂

∂x j
(ρu j) = 0 , (2a)

∂
∂ t

(ρui)+
∂

∂x j
(ρuiu j + pδi j− τ ji) = 0, i = 1,2,3 , (2b)

∂
∂ t

(ρE)+
∂

∂x j
(ρEu j + pu j−uiτi j +q j) = 0 , (2c)

where ρ , ui and E are respectively the density, mean velocity and
total energy, τi j is the viscous stress and q j is the heat flux.

A turbulence model needs to be used to model the Reynolds
stresses. In this paper, a two-equation turbulence model was
used, in particular the k−ω model of [19],

∂
∂ t

(ρk)+
∂

∂x j
(ρku j)= τi j

∂ui

∂x j
−βkρkω +

∂
∂x j

[(
µ +σk

ρk
ω

)
∂k
∂x j

]
,

(3a)

∂
∂ t

(ρω)+
∂

∂x j
(ρωu j)=

γω
k

τi j
∂ui

∂x j
−βω ρω2 +

∂
∂x j

[(
µ +σω

ρk
ω

)
∂ω
∂x j

]
,

(3b)
where k is the turbulence kinetic energy and ω is the specific
dissipation rate. The turbulent eddy viscosity is computed from
µT = ρk/ω and the constants are γ = 5/9, βk = 9/100, βω =
3/40, σk = 1/2 and σω = 1/2. The effective viscosity used in the
Navier–Stokes equations (2) is then computed as µ = µm + µT ,
where µm is the molecular (laminar) viscosity.

In semi-discrete form, the RANS governing equations (2,3)
can be expressed as

dqi jk

dt
+Ri jk(q) = 0 , (4)

where q = (ρ,ρu,ρE,ρk,ρω)T is the vector of conservative
variables, R is the residual with all of its components (inviscid,
viscous and turbulent fluxes, boundary conditions and artificial
dissipation), and the triad i jk represents the three computational
directions. The unsteady term of Eq.(4) is dropped out since only
the steady solution of the equation is of interest in this work.

2.3 Adjoint Equations
The adjoint equations can be expressed as

[
∂R

∂w

]T

ψ =
[

∂ I
∂w

]T

, (5)

where ψ is the adjoint vector.
Since the CFD solver does not handle the geometric param-

eters α directly, but rather a computational mesh defined by the
coordinates of each node x, the chain rule of differentiation is
used to express the gradient of the cost function with respect to
the design variables as

dI
dα

=
dI
dx

dx
dα

, (6)

being the total gradient of the cost function with respect to the
grid coordinates, based on the adjoint solution ψ , given by

dI
dx

=
∂ I
∂x
−ψT ∂R

∂x
. (7)

The evaluation of the gradient of each cost or constraint
function in the optimization problem (1) requires solving Eq.(5)
with a new right-hand side vector. On the other hand, the compu-
tational cost of the total sensitivity (7) is almost independent of
the number of grid coordinates x, which is the feature that makes
the adjoint method so attractive for gradient-based optimization
involving a large number of variables and a few functions.

2.4 Intrepreting the Adjoint Solutions
The key to reading the adjoint solution is the observation

that the product of the adjoint vector, ψ , and the variation in the
constraint, δR, determines the change to the objective function.
This is just a re-wording of the statement that the adjoint vector
is the Lagrange multiplier. However, on closer inspection, this
statement can be strengthened in the context of the constraint
equations being the Navier-Stokes equations. In this case, the
adjoint solution at each grid point, which is a vector counter-part
to the flow solution at that grid-point has a one-to-one correspon-
dence to the flow solution. For example, the adjoint counter-part
for density, can be intepreted as the change required to the be in-
duced to the density to cause an increase in the objective function
of interest. Similarly the adjoint counter-part for the turbulence
quantities signifies the change required in the actual turbulence
quantities to increase the objective function. It is common for
many problems to observe that the adjoint solution has± signs at
different points in the computational domain. In such cases, the
intepretation can be made stronger. Here, the design guidance
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that the adjoint solution provides is to require that the designer
cause changes that increase density where the adjoint solution is
positive and decrease desnity where the adjoint solution is nega-
tive.

We first use the 1D constant coefficient wave equation to
confirm the above statements. This equation valid over an (t,x)
domain [0,T ]× [0, l] along with the initial condition can be writ-
ten as

∂u
∂ t

+ c
∂u
∂x

= 0 (8)

u(0, .) = u0

and a terminal cost function I(T ) =
∫ l

0 |u|dx. The adjoint equa-
tion for u0 > 0 ∀ x is

− ∂ψ
∂τ

− c
∂ψ
∂x

= 0 (9)

ψ(T, .) = 1

where τ = −t. Hence, the adjoint solution at terminal time is a
constant and it evolves backwards through a wave equation and
hence remains constant over the interval [0,T ]. Hence, the ad-
joint solution suggests that for all time t = [0,T ], the solution u,
has to be increased to increase the cost function. This agrees with
the form of the cost function.

If the initial condition, u0, varied linearly from 1 to −1 over
the spatial interval (with a cross-over between positive and neg-
ative regions happening at l/2), then the adjoint solution for the
same objective function will the solution to the backward prop-
agating step-function whose form at time, T , has a shock at l/2.
This would suggest that if changes are made to increase u where
the adjoint solution is positive and decrease it where u is neg-
ative, then the objective function will be increased. As the ob-
jective function is an absolute function, this interpretation of the
adjoint solution is also true.

A similar argument can also be used for the Burgers equa-
tion but we instead focus on the flow equations represented by
Euler and Navier-Stokes equations. These equations being non-
linear and in coupled form make it trickier to analyze. To ground
the discussion, we take an example of a turbine vane. Figure 1
shows the contours of the adjoint variable corresponding to den-
sity for a turbine vane (the flow is from the bottom of the page to
top) and the gradient vector plot on the surface of the airfoil for
the Loss coefficient. The vector points in the direction of surface
movement that leads to increase in Loss. The range of the adjoint
solution spans the positive and negative real axis suggesting that
improvements in the metric (in this case the metric is Loss which

(a) Adjoint Density Contours

(b) Gradient Vector Plot

Figure 1. 2-D vane adjoint and gradients (dη/dx).

we would like to reduce) can be obtained by decreasing the den-
sity over the suction side of the airfoil while mostly increasing it
over the fore-portion of the pressure side. In relative magnitude,
the suggested reduction in density near the tailing edge of the
suction side is more than over the same region on the pressure
side.
The Loss metric is defined as

Loss =
∆Pt

Pinl
t −Pinl

s

where Pt is the total pressure and Ps is the static pressure and the
super-script,inl, refers to values at the inlet. The boundary condi-
tion applied at the inlet holds the total pressure to the prescribed
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value and under the assumption that the static pressure variations
at the inlet are small (weak upstream travelling waves), the ma-
jor contribution to the change in loss is the change to the exit
total pressure. Any increase in the exit total pressure leads to an
reduction in the loss metric.

If we try to make geometry changes that alter the density
as suggested by the adjoint solution, the fore portion of the suc-
tion side will deccelerate the flow by reducing the curvature and
the mid-to-aft portion will accelerate the flow by changing the
turning angle of the metal. The former will increase the density
and the latter will decrease the density. On the pressure side,
the suggested geometry changes pushes the axial location of the
maximum pressure aft, while simultaneously providing a steeper
pressure gradient in the aft portion. From a loss budget perspec-
tive, the suggested changes only highten the possibility of shock
losses and hence, the reduction in loss has to be due to the possi-
ble decrease in viscous profile losses.

With this background, we can focus on the one dimensional
Euler equations. The sensitivity of the cost functional with re-
spect to changes in the geometry can be written following Equa-
tion 7 as

dI = (
∂ I
∂x
−ψT ∂R

∂x
)dx . (10)

Now R is a vector with the following elements: ρ · n̂,
(ρu2 + p) · n̂, ρuH · n̂. Following the earlier argument of intepret-
ing the adjoint solution in terms of changes to the flow solution, if
one manages to induce a geometry change that increases density
(say) where the adjoint field for density is positive and decreases
it where the adjoint field is negative, then one can achieve an
overall reduction in the variation in I. Let us say that we do not
a-priori know how to alter the shape, dx and that we can control
the shape at every point in the geometry (x,y,z). When the ad-
joint solution for density is positive, if we can induce a change
such that the resulting flow field has a reduction in density, then
the change to I (for I which does not depend on the flow field on
the geometry of interest) can be written as

dI = (
∂ I
∂x
−ψT ∂R̄

∂x
)dx−ψT ∂R̃

∂x
(11)

where R̄ is the nominal residual and R̃ is the contribution to the
residual due to reduction in density. As the residual function is
linear in density, an increase in density coupled with a positive
value for the adjoint density field leads to an overall increase
in the variation of I. A similar argument can be made when the
adjoint field if negative. Thus the change dx that the designer has
to induce to the geometry to achieve an increase in I is that which

increases the flow density when the adjoint field is positive and
decreases it when the adjoint field is negative. Similar arguments
can also be made with the adjoint field for the velocities, energy
and turbulence quantities through, due to the non-linearity of the
Euler (or Navier-Stokes) equations, the analysis is more difficult.

This approach of intepreting the adjoint solutions is partic-
ularly useful when it is known a-priori what geometry changes
will help improve the overall metric. While a similar conclu-
sion can be drawn from investigating the gradient vector plot,
intepreting the adjoint solution provides the designer a mecha-
nism to relate the geometry changes to changes in the flow-field.
Hence, it provides an intuitive feel for the designer while also
allowing the designer to be cognizant of changes to other metrics
that are either posed as constraints to the optimization problem
or not posed at all.

3 Implementation
The development of the flow and adjoint solvers and their

integration into a design system are described next.

3.1 Flow Solver
The flow solver used in this work supports three-

dimensional, multi-block structured grids, it uses a finite-volume
formulation of the non-linear and linear Reynolds-Averaged
Navier–Stokes equations. Several turbulence models are avail-
able, such as k−ω (versions 1988,1998,2007), k− ε and SST,
having the option to use wall functions or wall integration for
boundary layer resolution. This solver is typically employed in
the solution of turbomachinery blade rows and it is capable of ef-
ficiently performing three-dimensional analysis for aeromechan-
ics, aerodynamic design, parametric studies, and robust design
applications.

As typical for most iterative CFD flow solvers, the resid-
ual calculation is done in a subroutine that loops through the
three-dimensional domain and accumulates the several fluxes
and boundary conditions contributions in the residual R. How-
ever, the residual at each computationl cell only depends on the
flow variables at that cell and at the cells adjacent to it, which
define the stencil of dependence, as shown in Fig. 2.

Figure 2. Computational flow stencil: 25 nodes.
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3.2 Adjoint Solver
The simple mathematical form of Eq.(5) can be very mis-

leading since, depending on the approach, their numerical im-
plementation can be quite complex, if derived by manual differ-
entiation, or quite costly, if derived using finite-differences.

A discrete adjoint approach formulation is chosen because
it can be applied to any set of governing equations and it can
treat arbitrary cost functions. As such, and in contrast to the
continuous approach, no simplifications have to be made during
the derivation: the effects of viscosity and heat transfer and the
turbulence equations can be easily handled when deriving the
discrete adjoint.

But the most interesting feature of the discrete approach is
that it allows the use of automatic differentiation (AD) tools [3]
in its derivation, expediting considerably the process of obtain-
ing the differentiated form of the discretized governing equations
necessary to assemble the adjoint system of equations.

As such, the approach used in this work is hybrid and it fol-
lows the work of [12] and [10] The discrete adjoint solver is de-
rived with the aid of an automatic differentiation tool that is se-
lectively applied to the CFD source code that handles the resid-
ual and function evaluations. This tool produces the routines that
evaluate the partial derivative matrices ∂R/∂q, ∂Y/∂q, ∂Y/∂x
and ∂R/∂x that are necessary to compute gradients (7) using the
adjoint method (5). This hybrid approach retains the accuracy of
the adjoint methods, while it adds the ease of implementation of
the automatic differentiation methods. The AD tool chosen in
this work is Tapenade [5] because it supports Fortran 90, which
is a requirement taking into account the programming language
used in the flow solver.

The sizes of the matrices involved in this process are

∂R

∂q
(Nq×Nq) ,

∂Y
∂q

(NY ×Nq) , (12)

∂R

∂x
(Nq×Nx) ,

∂Y
∂x

(NY ×Nx) ,

where NY is the number of cost functions, Nx the number of grid
coordinates and Nq the size of the state vector. The size of the
vector q depends on the number of governing equations, Ne, and
the number of cells of the computational mesh, Nc, that discretize
the physical domain, according to the relation Nq = Ne × Nc,
which for the solution of a large, three-dimensional problem in-
volving a system of conservation laws, can be very large. The
size of the grid coordinates vector x, is given by dimensional-
ity of the problem times the number of vertices corresponding
to the computational mesh used, that is, Nx = 3×Nv for three-
dimensional problems.

The adjoint linear system of equations (5) has to be solved
NY times because ψ is valid for all grid coordinates x, but must be
recomputed for each function Y . To solve this large sparse dis-

crete adjoint problem, the Portable, Extensible Toolkit for Sci-
entific Computation (PETSc) [1] is used. The adjoint system
of equations is solved using a PETSc built-in Krylov subspace
method, more specifically, the Generalized Minimum Residual
(GMRES) method [17].

Once the adjoint solution, ψ , is found, the gradient of the
cost function with respect to the grid coordinates is obtained
from Eq.(7), which implies a simple matrix-vector multiplication
operation.

3.3 Constant Eddy Viscosity Approximation

The full RANS adjoint solver described so far makes use
of the complete vector of conservative variables and handles the
corresponding seven governing equations (2,3).

The constant eddy viscosity (CEV) approximation still
solves the full RANS flow equations but it assumes that the vari-
ation of the turbulent eddy viscosity, µT , can be neglected in the
derivation of the adjoint equations. Therefore, under de CEV as-
sumption, only five equations (2) are used to derive the adjoint,
which significantly reduces the size of the dual problem, as quan-
tified in Eq.(12). The benefits being from easier implementation,
faster run time and reduced memory requirements. The matrix
∂R/∂q is reduced by a factor of 72/52 = 1.96, and the vector
∂Y/∂q and matrix ∂R/∂x are reduced by a factor of 7/5 = 1.4.

In the present adjoint solver implementation, a single flag
controls whether CEV approximation is to be used. If so, the
turbulent equations are neglected in the adjoint and the turbulent
eddy viscosity is retrieved from the flow solution and added to
the total adjoint viscosity.

4 Results

This section includes three examples, a commercial engine
fan, a compressor rotor and stator and a low pressure turbine
cascade. In each of these examples, we highlight different uses
of the adjoint solution. Finally, we establish the validity of the
“physical insights” into the adjoint solution, by using it on a tur-
bine strut. In this case, we wish to induce end-wall treatments
that result in improved performance.

6 Copyright c© 2012 by ASME



4.1 Commercial Fan

Figure 3. Contours of adjoint field for density for Efficiency. Flow is from
bottom to top.

The first example is a commercial fan operating at design
conditions. We are interested in adjoint solutions for the effi-
ciency and the mass flow. The former is a performance measure
we hope to improve and the latter is a constraint that we wish to
respect during the design optimization. The steady state of the
flow was computed using a two-equation model (k-ω) and the
adjoint solution was computed using the constant eddy viscos-
ity approach. Contours of the density field of the adjoint solu-
tion for efficiency and mass flow are shown in Figures 3 and4.
These contuors are roughly at mid-span. The adjoint field for
efficiency suggests that geometry changes that induce larger re-
duction in density over the entire pressure surface. This can be
achieved through a reduction in camber. On the suction surface,
near the front portion of the airfoil, the necessary reduction in
density is smaller (than the pressure surface). Reducing cam-
ber to accomodate the desire of the pressure surface will only
lead to an increase in density over the suction surface (assuming
no flow separation due to off-incidence conditions). Hence, to
achieve the necessary reduction in density for the leading edge
portion of the suction surface, the camber changes have to be
offset by thickness increases. Towards the trailing edge, the suc-
tion and pressure surface shows a desire to reduce the density
by equal amounts. These overall changes can be induced by

reducing camber for the front portion of the airfoil along with
half-thickness increases to provide more curvature to the suction
surface, while the portion near the trailing edge requires a com-
bination of camber reduction and reduction in thickness.

Figure 4. Contours of adjoint field for density for mass-flow.Flow is from
bottom to top.

The adjoint field for mass-flow (drawn with same range as
the efficiency plots for clarity) shows a trend similar to the ef-
ficiency plot. Hence, if we try to achieve higher efficiency by
lowering the density for the suction surface and the pressure sur-
face, then the mass-flow will also increase. If mass-flow is a con-
straint (as is typically the case to ensure fair comparison of the
efficiency), then these plots suggest that room for improvement
in efficiency for this section of the fan blade may be small.

4.2 Compressor Rotor
Now we look at a compressor rotor blade. Again we look at

two metrics, efficiency and pressure-ratio and the adjoint field is
produced using the constant-eddy viscosity model. The pressure
ratio is roughly the ratio of the pressure at the exit to the inlet of
the domain. Figure 5 shows the adjoint density contours on a cut
through the domain for efficiency and pressure ratio.

The range in the plot of efficiency is rather narrow and all
negative on this plane. This suggests that all portions of the blade
are equally sensitive to the metric of interest. On the suction sur-
face, reduction in desnity is more near the leading edge region
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(a) Adjoint Density for Efficiency

(b) Adjoint Density for Pressure-Ratio

Figure 5. Adjoint density contours for Efficiency and Pressure-Ratio.

and roughly around mid-chord suggesting a geometry change
that increases thickness and/or camber. The plot for pressure
ratio is shown on a different scale suggesting that relative to effi-
ciency the changes in density are smaller to affect pressure ratio.
The plot also suggests an overall decrease of density over the
entire suction surface to cause an increase in pressure ratio.

4.3 Compressor Stator
Now we look at a compressor stator blade. Here, we only

look at one metric, namely the loss. Figure 6 shows contours of
the adjoint field for density. Outside the vicinity of the boundary

layer, the contours suggest that on the suction side we should
increase the density to increase loss. The pressure side field
suggests a similar change but of smaller magnitude. Along the
boundary layer, the adjoint field sugeests a decrease in density
for both the pressure and suction side. This can achieved by pro-
viding more curvature to the suction side and reducing the curva-
ture of the pressure side. Both these changes will provide more
blockage to the flow leading to higher losses.

Figure 6. Contours of adjoint field for density for Loss.Flow is from bot-
tom to top.

These changes are intuitive for a designer and not of imme-
diate value for this flow. In such cases the value of the adjoint is
in providing quantitative estimates of the geometrical change for
use within an optimizer.

4.4 Low Pressure Turbine Vane
We have discussed this result in Section 2. Here, we focus

on another metric of interest, namely the mass flow. Figure 7
shows the adjoint density and ρvy contours for mass flow (vy is
the tangential component of velocity). These plots show three
regions where increases in mass flow can be achieved. The lead-
ing edge onthe suction side can contribute to increases in mass
flow by increasing the camber and (or) the thickness. This will
accelerate the flow even further, leading to a decrease in the den-
sity and an increase in the tangential velocity. The mid-passage
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(a) Adjoint Density Contours

(b) Adjoint ρvy Contours

Figure 7. 2-D vane adjoint solution for mass flow.

section on the suction surface can be altered to increase the mass
flow by making it thinner. As suggested by the contours, this will
cause the local increase in desnity and the decrease in local tan-
gential velocity. Near the trailing edge, reducing the metal angle
(measured from the vertical) will lead to a decrease in tangential
velocity on the pressure side and a corresponding increase on the
suction side. Overall, these effects can also be simulated by a
variety of other geometric changes.

4.5 End-Wall Contouring
5 Conclusions

The results from this study show that it possible to derive
physical understanding from the adjoint solution. Each adjoint
variable quntifies the sensitivity of the corresponding conserved
flux quantity in the governing Navier-Stokes equations to the
metric of interest. While this is not useful for regular design
problems (where the changes to be induced in the geometry are
well known and what is usually unknown is the amount of change
that needs to be applied) this is invaluable in the following two
situations: 1) when there is scant design guidance and 2) one
needs be gain some understanding into the changes in the flow-
field. There are numerous instances of the former and the latter
in the turbomachinery design world which will benefit from the
study presented in this paper.
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