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Abstract. The currently available computational power and improve-
ments of high-fidelity numerical simulations have lead to an increased
use of computational fluid dynamics (CFD) in the analysis of turbo-
machinery flows, particularly in design environments. The optimization
cases often contain up to thousands of design variables and gradient-
based (GB) optimization algorithms are typically selected due to their
efficiency. The adjoint method is key to efficiently compute the deriva-
tives required by the GB algorithms, with a computational cost nearly
independent of the number of design variables. In this paper we present
the details of the development of an adjoint multirow interface based
on the mixing-plane treatment to extend an already existing adjoint
solver using the ADjoint approach. The mixing-plane treatment allows
the steady simulation of multiple rows, taking their interaction between
one another into account and thus providing more realistic results. A
stator/rotor turbine stage of a commercial jet engine is analyzed and
some representative sensitivity results are presented and discussed.
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1 Introduction

With the currently available computational power, external and internal flow
simulations using high-fidelity computational fluid dynamic (CFD) models have
become a routine both in academia and industry. An emerging trend is to use
optimization techniques as part of the design process. However, as each opti-
mization case may require hundreds of function evaluations to find an optimum,
and as each single numerical simulation may take many hours to complete (or
even days), the time requirements can become prohibitive. Gradient based opti-
mization algorithms, known for their efficiency, are usually selected in this cases.
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For large number of design variables, the derivatives required by these meth-
ods, when obtained using methods such as the finite differences, can also lead to
a large number of functions calls and thus prohibitive time requirements. The
adjoint method, firstly introduced to computational fluid dynamics by Piron-
neau [17] and further extended by Jameson et al. [11] to optimization of airfoil
profiles and wings [11], overcomes this problem by producing exact derivatives
with a computational cost nearly independent of the number of design vari-
ables. There have been various successful efforts to apply the adjoint method
in gradient-based optimization and sensitivity analysis in turbomachinery envi-
ronments [12]. However, most of these cases do not account for the interaction
between different blade passages, which has an important impact on the whole
performance of a multistage turbomachine [3]. Its incorporation on the optimiza-
tion environment would therefore provide a more realistic insight of the direc-
tion to which the optimization should proceed. Previous works in implementing
adjoint solvers with multistage capabilities consisted in using finite-difference
approximation to set-up the discrete adjoint system of equations [5], following
the continuous approach [20], implementation an adjoint solver using the manual
discrete approach [19] and using an operator-overloading AD tool to implement
the adjoint solver [1].

This paper describes the adjoint formulation, development and implementa-
tion of a mixing-plane interface to extend an already existing adjoint solver. It
follows the previous work of Marta and Shankaran [14] on the implementation
of the discrete adjoint counterpart of a proprietary turbomachinery CFD solver,
by using a source transformation AD tool on the direct routines. The improved
adjoint solver is used to obtain sensitivity analysis of exit mass flow to inlet
boundary conditions and blade shape of a stator/rotor turbomachine stage.

2 Background

A generic CFD design problem can be formulated as

Minimize I(α, q(α))
w.r.t α,

subject to R(α, q(α)) = 0
C(α, q(α)) = 0, (1)

where I is the cost function, α is the vector of design variables, q is the flow
solution and C represents additional constraints that may or may not involve the
flow solution. The flow governing equations are expressed in the form R = 0 and
appear as a constraint, as the solution q must always obey the flow physics. In the
case of turbomachinery design optimization, the design variables α which define
its geometry or operating conditions can be the blade stagger, camber angle
and thickness distribution, amongst others. Examples of objective functions (or
constraints) are efficiency, pressure ratio or mass flow.
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2.1 Flow Governing Equations

The present work uses the Reynolds-Averaged Navier-Stokes equations (RANS)
for describing the flow. The Navier-Stokes equations, in conservation form, can
be written as

∂q

∂t
+

∂fi

∂xi
− ∂fvi

∂xi
= 0, (2)

where q, fi and fvi
are the vectors of state variables, inviscid, and viscous fluxes,

respectively, defined as
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, (3)

where ρ is the flow density, ui is the mean velocity in direction i, E is the total
energy, τij is the viscous stress and qi is the heat flux. Wilcox’s two-equation
k − ω turbulence model [21] is used to model Reynolds stresses, resulting in a
system with 7 equations.
The RANS equations can be expressed in their semi-discrete form as

dqijk

dt
+ Rijk(q) = 0, (4)

where R is the residual of the inviscid, viscous, turbulent fluxes, boundary con-
ditions and artificial dissipation. The triad (i, j, k) represents the three compu-
tational directions. The unsteady term is dropped out for the remaining of the
paper, since this work deals only with steady state solutions.

2.2 Mixing-Plane Interface

The mixing-plane method is a steady approach in which circumferentially aver-
aged quantities are exchanged between two adjacent blade rows. It was first
introduced by Denton and Singh [4] and has since became the industry standard
for multistage turbomachinery simulations. The mixing-plane algorithm used in
this work, described in detail by Holmes [9], consists in a control-theory based
flux balance algorithm. It drives the difference between the fluxes in the two
adjacent faces to zero by updating the conserved variables in the auxiliary cells
with a value based on the flux differences. To assure maximum non-reflectivity
in the interface, the method uses the two dimensional approach of Giles [6].
With that it achieves several key goals, including complete flux conservation at
the interface, robustness, indifference to local flow direction and non-reflectivity.
The overall mixing-plane algorithm is schematically represented in Fig. 1. For
simplicity, only one direction of transfer of information is represented.
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Fig. 1. Schematic representation of the mixing-plane interface.

2.3 Adjoint Method

Following the work of Giles and Pierce [7] on the derivation of the adjoining
equations for systems of PDEs, the adjoint for the flow equations in Eq. 4 can
be expressed as

[
∂R

∂q

]T

ψ =
[
∂F
∂q

]T

, (5)

where ψ is the adjoint vector, which is used in the calculation of the total gradient
of the function of interest with respect to a set of independent variables α as

dF
dα

=
∂F
∂α

− ψT ∂R

∂α
. (6)

Since typically the design variables α are not geometric parameters handled
directly by the CFD solver, it is necessary to apply the chain rule of differentia-
tion to express the gradient of F with respect to the desired design parameters as

dF
dα

=
dF
dX

dx

dα
. (7)

The last term in Eq. 7, dX/dα, implies the sensitivity analysis of the grid gen-
eration routine, which implicitly defines the function X = X(α).

2.4 Adjoint Mixing-Plane

The adjoint system of equations for an arbitrary number of row domains, nD, is
⎡
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, (8)

where the terms in the diagonal are the adjoint system of equations of each
individual row domain, and the coupling between the rows is obtained from the
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off-diagonal terms. These coupling terms can be defined, using the differentiation
chain rule, as

∂Ri

∂qj
=

∂Ri

∂q∗
i

∂q∗
i

∂qj
, (9)

where ∂R∗
i /∂qj is the single-row partial derivative and ∂q∗

i /∂qj represents
dependency of the state solution at the mixing-plane interface on the cells of
the adjacent row.

3 Implementation

Some details of the flow and adjoint solvers, and the implementation of the
adjoint mixing-plane interface previously described are presented next.

3.1 Flow Solver

The legacy flow solver is capable of solving the steady and unsteady RANS
equations with a finite volume formulation [10]. It supports three-dimensional,
multi-block and structured grids. Available turbulence models include the k−ω,
k − ε and SST, having the option to use wall functions or wall integration for
the boundary layer resolution.

3.2 Adjoint Solver

A discrete adjoint solver for the mentioned flow solver was previously imple-
mented by using the so called ADjoint hybrid approach [15]. In this approach,
the solver is derived with the aid of an automatic differentiation (AD) tool, which
is selectively applied to the flow solver source code to produce the routines that
evaluate the partial derivative matrices ∂R/∂q, ∂F/∂q, ∂R/∂X and ∂F/∂X of
Eq. 5. The AD tool chosen in the mentioned work, as well as in the present work,
was Tapenade [8], as it supports Fortran 90, which is the programming language
used in the flow solver implementation. Once the adjoint linear system of equa-
tions is assembled, the Portable, Extensible Toolkit for Scientific Computation
(PETSc) [2] is used to solve it. The turbulence equations were full handled in
the discrete adjoint formulation, despite having the option to run the adjoint
solver with frozen turbulence [13]. Following the same ADjoint approach used to
develop the adjoint solver, the adjoint mixing-plane interface is implemented by
differentiating the rewritten subroutines which were then manually assembled to
obtain the term ∂q∗

i /∂qj of Eq. 9 [18].

4 Results

This section presents some results of the analysis of a multirow stator-rotor stage
of a low pressure turbine. Both the stator and rotor are modeled with a single
blade passage, using periodic boundary conditions. Each domain is discretized



884 S. S. Rodrigues and A. C. Marta

Fig. 2. Normalized values of density of converged flow solution.

with an OH-grid topology, with a total of 90,750 cells amongst the two domains.
The flow and adjoint solutions were converged to a relative averaged residual of
the continuity equation of 10−6 or less.

All the results presented in this section, with th exception of the flow solution,
are relative to selecting the mass flow at the exit of the stage, ṁexit, as the
function of interest, F .

Figure 2 shows the converged flow solution, for the case of density, and Fig. 3
shows its adjoint counterpart. The three momentum equations are also repre-
sented by the streamlines in both figures. The sensitivity information given by
the adjoint solution itself could be used to gain insight of how the flow features
should vary in order to increase the metric of interest [16].

Fig. 3. Normalized values of density counterpart of adjoint solution, ψ2, for F = ṁexit.

Figure 4 shows the normalized sensitivity of ṁexit to the inlet total pressure
boundary condition pinT . The positive derivative, exhibited in almost all inlet
section locations, reveals the expected increase of mass flow with the increase of
inlet total pressure.
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Fig. 4. Normalized adjoint based sensitivity of exit mass flow, ṁexit to inlet total
pressure, pinlet

T .

Figure 5 presents the adjoint based sensitivity of the objective function to
the shape of the blade. In this case, the contour shown is the magnitude of the
sensitivity vector projected onto the blade surface outer normal at each point,
given by

dṁexit

dn
=

dṁexit

dx
· n, (10)

with n = (nx, ny, nz) being the surface outer normal. Analyzing Fig. 5, it can be
seen that the exit mass flow can be increased by moving the stator blade in the
positive (negative) outer normal direction at the regions of positive (negative)
derivatives.

Fig. 5. Adjoint based sensitivity of stage exit mass flow ṁexit to blade shape in normal
direction.

5 Conclusions

The formulation of the discrete adjoint mixing-plane was developed and imple-
mented in a proprietary multistage turbomachinery CFD solver, using automatic
differentiation tools to compute coupling terms of the discrete adjoint equations.
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The multistage adjoint solution was computed for a stator/rotor case, con-
sidering exit mass flow as the function of interest, and the final derivatives with
respect to the boundary conditions at the inlet of the stator/rotor stage and
blade geometry were presented and discussed.

The importance of a coupled multistage turbomachinery analysis and design
is highlighted by the selected results presented, which clearly demonstrate the
physical flow coupling between adjacent blade rows.
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