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aIDMEC - LAETA, Avenida Rovisco Pais 1, 1049-001 Lisboa
*e-mail: simao.rodrigues@tecnico.ulisboa.pt

Keywords: turbomachinery, discrete adjoint, multistage, gradient-based
optimization, parallel processing, finite-differences.

Abstract

With the exponential growth in computational power as well as improve-
ments in the accuracy of computational fluid dynamics (CFD) tools, their use
in turbomachinery design and analysis has seen a great increase, particularly
in optimization environments, where gradient-based optimization algorithms
are often selected for their efficiency. These algorithms require the compu-
tation of the sensitivities of the functions of interest to the design variables.
The number of design variables in an optimization problem may be in the or-
der of thousands. As such, the use of the adjoint approach for calculating the
gradients is highly advantageous as it produces function sensitivities with com-
putational cost that is nearly independent of the number of design variables.
In the analysis of turbomachinery, accounting for the interaction between the
multiple blade passages is of paramount importance if one wishes to increase
the accuracy of the simulation. Many computational methods exist to address
this interactions. The mixing-plane treatment is one of the most widely used
methods in the steady analysis of multiple rows of a turbomachine. This pa-
per describes improvements to a discrete adjoint solver of a proprietary CFD
solver for multistage turbomachinery applications, namely the adjoint coun-
terpart of the mixing-plane formulation of the direct solver. The adjoint solver
is developed using the ADjoint approach, where the partial derivatives required
for the assembly of the adjoint system of equations are obtained using auto-
matic differentiation tools. A verification of the implementation of the mixing-
plane against the finite-difference approximations is presented. Sensitivities
of selected surface functions of interest, such as mass flow, to other selected
design parameters, such as surface nodes or inflow boundary conditions, cal-
culated with both methods are presented. The results show good agreement
of both derivatives and emphasise the benefits of the adjoint approach versus
finite-differences in terms of accuracy and computational cost.
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1 INTRODUCTION

With the growth in computational power, external and internal flow simu-
lations using high-fidelity computational fluid dynamic (CFD) models have
become a routine, with the emerging trend being to use optimization tech-
niques as part of the design process, both in academia and industry.

Given the nature of the flow models, a numerical simulation may take
hours or even days to complete a function evaluation, meaning that an op-
timization case, which may require hundreds of function evaluations to find
an optimum, may lead to a prohibitive time requirement. For this reason,
the most commonly used optimization methods are the gradient based (GB)
ones, which are the most efficient. These GB methods, however, require the
calculation of the derivatives, which, if using methods such as the commonly
used finite difference method, may also lead to prohibitive computational and
time requirements, in the case of a high number of design variables. This
problem is overcome by the adjoint method, which produces exact derivatives
with a cost that is independent of the number of design variables.

The adjoint method was first introduced to computational fluid dynamics
by Pironneau [1] and further extended by Jameson to optimization of airfoil
profiles [2] and wings [3]. More recently it as been used in solving multi-
point aerodynamic shape [4, 5] and aero-structural [6] optimization problems,
magneto-hydrodynamic flow control [7] and turbine blades [8]. Other devel-
opments on the application of the adjoint approach to gradient-based opti-
mization in turbomachinery environments have also been made. However,
most of these cases cannot account for the interaction between different blade
passages, which has an important impact on the whole performance of a mul-
tistage turbomachine [9]. Its incorporation on the optimization environment
would therefore provide an more realistic insight of the direction to which
the optimization should proceed. Frey et al. [10], Wang et al. [12, 11] and
Walther and Nadarajah [13, 14] present adjoint solvers which allow multi-row
optimization.

While Frey et al. uses finite differences to obtain the derivatives to set-
up the adjoint system of equations, in their work, Walther and Nadarajah
manually differentiate the routines that compute those derivatives manually.

Following the work of Marta et al. [15] on the implementation of the ad-
joint solver of a proprietary turbomachinery CFD solver, the adjoint multi-
stage interface was implemented onto the same adjoint solver using Automatic
Differentiation (AD) to compute the partial derivatives for the adjoint equa-
tions. This allows for a much faster development than if differentiating by
hand while still obtaining the computational benefits of avoiding the finite
difference method.

This paper presents a description of the adjoint multistage interface fol-
lowed by the numerical verification of the final derivatives computed by the
improved adjoint solver, against finite-difference approximations, in a stator-
rotor stage simulation.

2 BACKGROUND

In a turbomachinery design environment various parameters can be used to
define its geometry and operating conditions, such as blade stagger, camber
angle and thickness distributions and axial and radial stacking. All these
inputs will influence one or more performance characteristics that are to be
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studied (and improved), such as efficiency, pressure ratio or mass flow. This
can constitute an optimization problem, where the adjustable parameters are
the design variables and the performance characteristics are the functions of
interest, either the cost function or come constraints.

2.1 GRADIENT-BASED OPTIMIZATION

A generic CFD design problem can be formulated as

Minimize I(α, q(α))

w.r.t α,

subject to R(α, q(α)) = 0

C(α, q(α)) = 0,

(1)

where I is the cost function, α is the vector of design variables, q is the flow
solution and C represents additional constraints that may or may not involve
the flow solution. The flow governing equations are expressed in the form
R = 0 and appear as a constraint, as the solution q must always obey the
flow physics.

Gradient Based (GB) optimization algorithms are the most efficient meth-
ods to minimize a function with regard to a set of design variables. They make
use of the gradient of the function to determine the direction to follow at each
step on the search space. This means, however, that these gradients must be
computed somehow.

2.1.1 Sensitivity Analysis

There are many methods one can choose to compute the gradients required
by a GB algorithm, such as finite-differences (FD), complex-step (CS), algo-
rithmic differentiation (AD), adjoint methods, etc.

The simplest way to compute them is to use finite difference approxima-
tion, as it requires little to no change in the analysis code, which can be
treated as a black box. This method however comes with some disadvan-
tages. The approximation is very dependent of the perturbation step, prone
to subtractive errors, and requires at least one extra solver run to compute
the sensitivity to one design variable.

Complex-step approximations eliminate the subtractive error introduced
by finite-differences, however, its computational cost is still proportional to
the number of design variables and requires that the solver can accept complex
numbers.

Automatic (or algorithmic) differentiation (AD) consists in applying the
chain rule to computer programs in order to obtain derivatives of their outputs
based on their inputs.

The adjoint method is a analythic method which allows the computation
of the the sensitivities with a computational cost that is independent of the
number of design variables. The implementation of the adjoint equations for
a given system of PDE’s can be achieved in two ways, the continuous and the
discrete adjoint approach. While the first forms a continuous adjoint problem
from the governing PDE’s and then discretizes the problem to solve it numer-
ically, the discrete adjoint approach first discretizes the governing equations
and then derives the adjoint system for the discrete equations. These two
approaches result in different systems of linear equations that, in theory, con-
verge to the same result with mesh refinement.
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The discrete approach has the advantage of being able to be applied to any
set of governing equations and to treat arbitrary cost functions and provides
sensitivities that are consistent with those produced by the discretized solver.
It is also easier to obtain the appropriate BC’s for the adjoint solver with the
discrete approach.

2.1.2 Flow governing equations

The present work uses the Reynolds-Averaged Navier-Stokes equations (RANS)
for describing the flow. The Navier-Stokes equations, in conservation form,
can be written as

∂q

∂t
+
∂fi
∂xi
− ∂fvi

∂xi
= 0, (2)

where, q, fi and fvi are the vectors of state variables, inviscid, and viscous
fluxes, respectively, define as

q =


ρ
ρu1
ρu2
ρu3
ρE

 , fi =


ρui

ρu1ui + pδi1
ρu2ui + pδi2
ρu3ui + pδi3
ρEui + pui

 , fvi =


0

τijδi1
τijδi2
τijδi3

ujτij + qi

 , (3)

where ρ is the density, ui is the mean velocity in direction i, E is the total
energy, τij is the viscous stress and qi is the heat flux. To model the Reynolds
stresses, Wilcox’s two-equation k− ω turbulence model [16] is used, resulting
in a system with 7 equations.

The RANS equations can be expressed in their semi-discrete form, as

dqijk
dt

+Rijk(q) = 0, (4)

where R is the residual of the inviscid, viscous, turbulent fluxes, boundary
conditions and artificial dissipation. The triad (i, j, k) represents the three
computational directions. Since this work deals with the steady solutions of
the RANS equations the unsteady term is dropped out for the rest of the
paper.

2.1.3 Adjoint equations

Following the work by Giles and Pierce [17] in derivation of the adjoing equa-
tions for systems of PDEs, the adjoint for the flow equations in eq. (4) can be
expressed as [

∂R
∂q

]T
ψ =

[
∂F
∂q

]T
, (5)

where F is the function of interest, ψ is the adjoint vector, which is used in
the calculation of the total gradient of the function of interest with respect to
a set of variables of interest α, given by

dF
dα

=
∂F
∂α
−ψT ∂R

∂α
. (6)

The choosing of the variables in the previous equations is only limited to being
able to describe the objective function of residual in terms of those variables.
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2.1.4 ADjoint method

This hybrid approach consists in computing the total derivative with the pre-
viously described adjoint method, where the partial derivatives of eqs. (5)
and (6) are computed with automatically differentiated routines.

In this approach, the residual calculation is rearranged (if needed) into
a routine that has as inputs the information of the stencil of influence and
outputs the residual [18]. This routine is then differentiated using an AD tool,
thus producing the necessary terms for the calculation of the adjoint solution.

2.2 MULTISTAGE TURBOMACHINERY

The use of mixing planes to permit a quasi-steady analysis of inherently un-
steady multistage turbomachinery flows is a well-established idea. It requires
only one stator blade per stage and, thus removing all transient rotor-stator
interactions, it still gives fairly representative results [9]. The overall mixing-
plane algorithm Holmes [19] (which is schematically represented in fig. 1) can
be condensed in the following steps:

1. Compute the fluxes from conserved quantities and average them at each
spanwise position;

q̃j =

∑ni
i=1 qijaij∑ni
i=1 aij

, (7)

plocal,j = f(q̃j) (8)

2. Communicate the radial profiles of averaged quantities between blade
rows;

plocal
MPI−−−→ pdon (9)

3. Interpolate the received profiles to match local cell distribution;

prec = f(pdon) (10)

4. Compute the variation in the conserved variables to be applied to the
ghost cells, from the flux differences and update them.

q∗local = f(prec, qlocal) (11)

Although fig. 1 only represents the transfer of information from one row to
another, for simplicity, this algorithm occurs in both directions for each inter-
face. To assure maximum non-reflectivity in the interface, the method uses
the two dimensional approach of Giles [20].

2.3 ADJOINT MULTISTAGE INTERFACE

Assuming a simulating of a series of n blade rows, each blade will influence and
be influenced by its neighbours. If no multistage interface is used, a system
of equations eq. (5) is solved for each row. However, to consider the influence
of the rows on each other, a coupled coupled systems of equations must be
solved (eq. (12)). 

[
∂R1
∂q1

]
. . .

[
∂R1
∂qn

]
...

. . .
...[

∂Rn
∂q1

]
. . .

[
∂Rn
∂qn

]


ψ1
...
ψn

 =


∂F
∂q1
...

∂F
∂qn

 . (12)
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Figure 1: Schematic representation of the multistage mixing-plane inter-
face steps.

The term ∂Ri/∂qj represents the influence of row j in the residual of row
i. Each row only influences its neighbours, therefore[

∂Ri

∂qj

]
= 0 , i− 1 > j > i+ 1. (13)

Going back to the multistage interface described in section 2.2, the deriva-
tive of the residual of a certain cell in the receiver in order to the state variables
of another cell in the donor (the terms outside of the diagonal of the matrix
represented in eq. (12)) could be expressed as

∂Rrec

∂qdon
=
∂Rrec

∂qrec

∂qrec
∂qdon

. (14)

Using the chain rule, a more detailed expression can be derived, taking into
account all the various steps of the mixing-plane algorithm,

∂Rrec

∂qdon
=
∂Rrec

∂q∗local

∂q∗local
∂prec

∂prec
∂pdon

∂pdon
∂q̃don

∂q̃don
∂qdon

, (15)

With the previous terms it is then possible to compute the coupled multi-
stage adjoint solution. To obtain the final derivative given by eq. (6) is is also
necessary to compute ∂R/∂α with the coupling taken into account.

In the present work, the derivatives to be computed are dF/du and
dF/dx. The first does not need the multistage coupling to be taken into
account, as the boundary conditions used as variables of interest are located
at the entry of the first row or at the exit of the last row. The latter, however,
requires the computation of coupling terms, due to the averaging by area cre-
ating a dependence of mesh on the face of the adjacent row. It is therefore
necessary to also include coupling terms on the last term of eq. (6), ∂R/∂x,
which can be obtained following the chain rule,

∂Rrec

∂xdon
=
∂Rrec

∂q̃don

∂q̃don
∂xdon

. (16)

3 IMPLEMENTATION

In this section, some details of the implementation of the coupling multistage
interface previously described are presented.
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3.1 FLOW SOLVER

In the present work the steady RANS equations are solve with a proprietary
solver [21]. It supports three-dimensional, multi-block and structure grids, as
well as multiple turbulence models such as the k − ω, k − ε and SST, having
the option to use wall functions or wall integration for the boundary layer
resolution. It is also capable of runing in multiple processors via Message
Passing Interface (MPI). For the interaction between blade passages, when
solving for steady state, the previously described mixing-plane formulation is
used.

3.2 ADJOINT SOLVER

The discrete adjoint solver for the mentioned flow solver was previously im-
plemented by using the ADjoint hybrid approach [18]. The AD tool chosen
in the mentioned work, as well as in the present work, was Tapenade [22], as
it supports Fortran 90, which is the programming language used in the flow
solver implementation. The built-in Krylov subspace method of the Portable,
Extensible Toolkit for Scientific Computation (PETSc) [23] is used to solve
the system of equations, more specifically, the generalized minimum residual
method with the incomplete factorization preconditioner with one level fill,
ILU(1).

3.3 ADJOINT MULTISTAGE INTERFACE

Using the previously described ADjoint approach, the implementation of the
adjoint multistage interface would require a routine that receives the state
solution at two adjacent faces and would compute the updated local solution
at the face in treatment. This routine would then be differentiated to obtain
the term ∂qrec/∂qdon of eq. (14).

Such routine proved very difficult to implement, due to the complexity of
the direct solver routines, as well as the use of features of the Fortran language
that proved to be dificult to differentiate by the selected AD tool. With that
in mind, a series of requirements needed to be complied by the rewritten
routines to be differentiated to obtain the terms of eqs. (15) and (16):

1. Routines inputs and outputs must passed as arguments in order to be
properly differentiated.

2. The input and output variables should not be structures with dinami-
cally allocated arrays, as the AD tool in use does not deal with it easily;

3. The routine to be differentiated should not have any MPI calls.

The first item of the previous list had to be addressed in most of the
subroutines of the direct solver, as the code was programmed to manage
memory stored in Fortran modules. This implied having to define new derived
storage structures.

As the original solver was structured in the structure with many arrays
way. One approach to this requirement would be to use the arrays of the
variables inside the structures directly as arguments. However, as the number
of variables was quite big (particularly for the profile computation), the use
of an array of structures, each structure containing a value for each variable
was chosen instead.

The direct mixing-plane interface is inherently parallel (e.g. the accumu-
lation of quantities in 1D profile, passage between rows, etc), as such, the
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Figure 2: Representation of stator-rotor stage in study and respective
computational mesh.

number of MPI communication calls in the various subroutines was substan-
tial. To comply with this item, the choice was either store all the solution
across the multiple processes in one master process that would perform all
the computations or maintain the parallel structure of the code. The latter
approach was chosen.

4 VERIFICATION OF THE MULTISTAGE SENSITIVITY
ANALYSIS

This section presents the verification of the implemented adjoint mixing-plane
interface with the simulation of a stator-rotor stage of General Electric GenX
LP Turbine. The computational domain is made of two single blade passages,
with a total of 90750 cells (see fig. 2).

The adjoint multistage interface was verified with a second order finite-
difference approximation, with the two methods showing good agreement.
The detailed results are to be presented in a paper to be submitted.

This paper will present the verification of the total derivatives computed
using the improved adjoint solver, with the multistage interface. The selected
quantity of interest is the mass flow on the outlet of the computational domain
of the rotor (ṁexit

2 ) and shall be used for the rest of the paper. The direct and
adjoint solutions for the equation of continuity (ρ) are presented in fig. 3.

The influence of the inlet total pressure (pin1 ) on ṁexit
2 , given by ṁexit

2 /pin1 ,
is presented in fig. 4.

The same derivative was computed with finite-differences for five control
cells on the inlet face and are presented in fig. 5, along with the derivatives
computed with the adjoint method and the relative error between the two
values. The perturbation step used in the finite-difference approximation was
converged until the relative error was below 1%. While the adjoint method
was able to compute the derivatives for the whole domain with one extra
computation (with a similar computational cost of one direct run), for the
finite-difference approximation, a minimum of one direct run was needed for
each control cell. In reality, it took many direct runs in order to converge the
perturbation step for each of the control cells.
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Figure 3: Direct (q1) and adjoint (ψ1) solutions.

Figure 4: Sensitivity of exit mass flow ṁexit
2 to the inlet total pressure pin1

(ṁexit
2 /pin1 ).
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Figure 5: Relative errors and derivatives of verification cells.
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5 CONCLUSIONS

The formulation of the discrete adjoint mixing-plane was developed and im-
plemented on a proprietary CFD code, using AD tools. The adjoint mixing-
plane implementation was verified against finite-differences. The multistage
adjoint solution was computed for a stator-rotor case and the final derivative
of various functions of interest were presented, along with comparison with
finite differences. The derivatives computed with the two approaches showed
good agreement, with relative errors below 1%, thus confirming the correct
implementation of the adjoint multistage interface. While the adjoint method
required only one extra solver run with a computational cost similar to one
direct run, the finite difference approach required many direct solver runs in
order to obtain a converged value, thus emphasizing the benefits of using the
adjoint method for sensitivity analysis.
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[9] J. D. Denton. “The Calculation of Three-Dimensional Viscous Flow
Through Multistage Turbomachines”. In: Journal of Turbomachin-
ery 114.1 (Jan. 1, 1992), pp. 18–26. issn: 0889-504X. doi: 10.

1115/1.2927983.

[10] C. Frey, H.-P. Kersken, and D. Nurnberger. “The discrete adjoint
of a turbomachinery RANS solver”. In: ASME Turbo Expo 2009:
Power for Land, Sea, and Air. American Society of Mechanical
Engineers, 2009, pp. 345–354.

[11] D. X. Wang et al. “Adjoint Aerodynamic Design Optimization for
Blades in Multistage Turbomachines—Part II: Validation and Ap-
plication”. In: Journal of Turbomachinery 132.2 (2010), p. 021012.
issn: 0889504X. doi: 10.1115/1.3103928.

[12] D. X. Wang and L. He. “Adjoint Aerodynamic Design Optimiza-
tion for Blades in Multistage Turbomachines—Part I: Methodol-
ogy and Verification”. In: Journal of Turbomachinery 132.2 (2010),
p. 021011. issn: 0889504X. doi: 10.1115/1.3072498.

[13] B. Walther and S. Nadarajah. “Constrained Adjoint-Based Aero-
dynamic Shape Optimization of a Single-Stage Transonic Compres-
sor”. In: Journal of Turbomachinery 135.021017 (2013), p. 021017.

[14] B. Walther and S. Nadarajah. “An Adjoint-Based Optimization
Method for Constrained Aerodynamic Shape Design of Three-Dimensional
Blades in Multi-Row Turbomachinery Configurations”. In: (June 16,
2014), V02BT39A031. doi: 10.1115/GT2014-26604.

[15] A. C. Marta, S. Shankaran, and A. Stein. “Blade Shape Optimiza-
tion using a RANS Discrete Adjoint Solver”. In: Proceedings of the
2nd International Conference on Engineering Optimization, num-
ber ENGOPT2010-1410, Lisbon, Portugal. 2010.

[16] D. C. Wilcox. “Reassessment of the scale-determining equation
for advanced turbulence models”. In: AIAA Journal 26.11 (1988),
pp. 1299–1310. issn: 0001-1452. doi: 10.2514/3.10041.

[17] M. B. Giles and N. A. Pierce. “An introduction to the adjoint
approach to design”. In: Flow, turbulence and combustion 65.3-4
(2000), pp. 393–415.

[18] A. C. Marta et al. “A methodology for the development of discrete
adjoint solvers using automatic differentiation tools”. In: Inter-
national Journal of Computational Fluid Dynamics 21.9-10 (Oct.
2007), pp. 307–327. issn: 1061-8562, 1029-0257. doi: 10.1080/

10618560701678647.

[19] D. G. Holmes. “Mixing Planes Revisited: A Steady Mixing Plane
Approach Designed to Combine High Levels of Conservation and
Robustness”. In: Proceedings of ASME Turbo Expo 2008: Power
for Land, Sea and Air. Berlin, Germany, Jan. 1, 2008, pp. 2649–
2658. doi: 10.1115/GT2008-51296.

[20] M. B. Giles. UNSFLO: a Numerical Method for Unsteady Inviscid
Flow in Turbomachinery. Gas Turbine Laboratory, Massachusetts
Institute of Technology, 1988.

11



Simão S. Rodrigues & André C. Marta
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