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Abstract. Multidisciplinary design and optimization is a promising
methodology for the efficient design of complex systems, in particular
when it combines coupled analyses with gradient-based optimization
techniques. In this case, it requires the derivatives evaluation of the
functions of interest with respect to the design variables, which is the
most demanding computational task in the process, so the goal of this
work is to develop an efficient optimization framework to solve aerody-
namic design problems using exact gradient information. To this end, the
aerodynamic model based on the panel method is reformulated into five
smaller modules, in which the respective sensitivity analysis blocks are
constructed using exact gradient estimation methods: automatic differen-
tiation, symbolic differentiation and the adjoint method. After the aero-
dynamic and corresponding sensitivity analysis tools are verified numer-
ically, aerodynamic optimization problems are solved using the new tool
with remarkable success since, when compared to the finite-differences
method, the optimization time can be reduced by 90%.
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1 Introduction

Multidisciplinary Design and Optimization (MDO) is a promising tool to design
complex systems, such those found in the aerospace field, combining optimiza-
tion procedures with coupled multidisciplinary analysis [7]. Since hundred or
even thousand design variables are usually required to faithfully parametrize the
complete system, the use of gradient-based optimization techniques are imper-
ative to efficient optimization due to faster convergence rates when comparing
with heuristic and gradient free methods. However, the performance of these type
of algorithms depends heavily on how efficiently the sensitivities/derivatives of
the interest functions with respect to the design variables are calculated. The
adjoint method is probably one of the most attractive to efficient sensitivity anal-
ysis since the derivatives may be calculated exactly and almost independently
of the number of the system’s inputs.
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The objective of this work is to develop an efficient aerodynamic optimization
tool to be incorporated in a wing aerostructural design framework [1]. The wing’s
structure was modeled using a 3D finite-element model, applied to the neutral
axis and the aerodynamic loads were calculated using a panel method code [3].
Almeida took advantage of the framework’s static aerostructural capabilities to
minimize the wing mass, subject to lift and stress constraints, and concluded
that an improved design was achieved. However, the optimization process was
conducted slowly since the sensitivity analysis was performed inefficiently and
inaccurately, using finite-differences (FD).

This work finds its motivation in solving the issue of inefficient aerodynamic
optimization by providing an efficient sensitivity analysis framework to the panel
method code implemented by Cardeira [3] using a gradient-based algorithm with
an adjoint method for sensitivity analyses.

2 Optimization Methods

Following a deterministic approach, a typical engineering optimization problem
may be expressed as nonlinear programming (NLP) as [2]

minimize f(x)
w.r.t. x ∈ R

n

subject to gi(x) ≤ 0 for i = 1, ...,m

hj(x) = 0 for j = 1, ..., �

xL ≤ x ≤ xU

(1)

where x is the design vector, or the independent variables, xL and xU are the
lower and upper bounds, f is the objective function, hj and gi are the equality
and inequality constraints, respectively.

Gradient-Based (GB) methods are usually preferable due to faster conver-
gence rates and clear stopping criterion, but they require the gradient of both
objective and constraint functions. The methodology to solve these problems
consists in an iterative cycle comprised of two steps: find a descent/feasible
direction based on gradient information; minimize the objective function in that
direction (line search).

Among the several constrained GB methods, the Sequential Quadratic Pro-
gramming [6] method will be used since it presents some advantages, includ-
ing: the initial point may be unfeasible, only gradients of active constraints are
needed, higher rate of convergence when comparing with similar methods and it
is already implemented in MATLAB R©.

3 Sensitivity Analysis

A common requirement among gradient-based optimization methods is the eval-
uation of the gradient of both objective and constraint functions. The perfor-
mance of such methods greatly depends on how efficiently those gradients are
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calculated, and the following sections survey the sensitivity analysis methods
available.

3.1 Symbolic Differentiation

Symbolic differentiation (SD) applies the rules of differentiation using computa-
tional software. It is restricted to explicit functions and, therefore, may become
impracticable to be implemented in very large problems. Some tools are available
include the diff() function from the Symbolic Math Toolbox in MATLAB R©.

3.2 Finite-Differences Method

Finite-difference formulas approximate the derivative of a function using a quo-
tient of a difference and they may be obtained through Taylor-series expansions.
An example is the forward finite-difference (FFD) formula,

∂Fj(x0)
∂xi

=
Fj(x0 + eih) − Fj(x0)

h
+ O(h) , (2)

where F = [F1, ..., Fm]T are dependent functions and x = [x1, ..., xn]T are inde-
pendent variables. The truncation error is proportional to the step size h. If
higher precision is desired, Taylor-series expansions may be combined.

These formulas are easy to implement as they can be used without detailed
knowledge of the system. However, they suffer from errors of truncation and
subtractive cancellation, and their cost depends linearly on the size of x.

3.3 Complex-Step Derivative

The complex-step derivative (CSD) estimates the first derivative of a function
using complex-variable calculus by considering Taylor-series expansion of F in
the imaginary axis direction and taking the imaginary part. The resulting for-
mulas do not suffer from the subtraction cancellation but complex algebra com-
putationally expensive and is not supported by all programming languages.

3.4 Semi-analytical Methods

According to Peter and Dwight [5], semi-analytical methods such as the direct
and the adjoint methods are the most efficient to sensitivity analysis. Consider
again the vector valued function F, which depends explicitly on x and implicitly
on the state vector y = [y1, ..., yk]T , whose relation between the independent
variables and the state vector is given by a system of residual equations

R(x,y(x)) = 0 (3)
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According to the chain-rule for the total derivative of the function with
respect to the independent variables, and since Eq. (3) must always be verified,
results after some algebra

dF
dx

=
∂F
∂x

+
∂F
∂y

dy
dx

=
∂F
∂x

−∂F
∂y

[
∂R
∂y

]−1

︸ ︷︷ ︸
[ψ]T

[
∂R
∂x

]
(4)

It is possible to assign the transpose of an adjoint matrix to the first two matrices
of the second term, in the right hand side, as suggested by the under bracket.
Consequently, dF

dx may be calculated if the adjoint matrix is first solved for. This
approach is the adjoint method and it is best suited if the number of outputs is
smaller than the number of inputs (m < n).

3.5 Automatic Differentiation

A computer program with n inputs, l intermediate variables and m outputs can
be decomposed into elementary functions such that each computer variable ti
depends only on the previous assigned variables: ti = Ti(t1, ..., ti−1), where Ti is
an elementary function [4]. The AD derivatives can be propagated in two ways:
forward mode (FM) and reverse mode (RM). A sweep in FM corresponds to fix
j and increment i from 1 to n + l + m, while a sweep in RM corresponds to fix
i while j changes from n + l + m to 1,

FM:
dti
dtj

= δij +
i−1∑
k=j

∂Ti

∂tk

dtk
dtj

RM:
dti
dtj

= δij +
i∑

k=j+1

dti
dtk

∂Tk

∂tj
(5)

The FM corresponds to obtain a column from the matrix dti
dtj

, while RM
second corresponds to obtain a row. Therefore, RM is more efficient than FM if
m < n, and the opposite is true if m > n.

4 Aerodynamic Model and Framework

4.1 Panel Method

The aerodynamic tool [3] is an implementation of the panel method, a numerical
technique to solve inviscid potential flows around bodies of arbitrary shape by
solving the Laplace equation, ∇2φ = 0, subject to impermeable wall and farfield
boundary conditions, ∇φ.n = 0 and limr→∞(∇φ−V∞) = 0. The technique con-
sists in distributing and finding the intensities of singularities along the body’s
surface to consequently determine the velocity field. The velocity potential φ
in an arbitrary point P in the body’s surface is a function of the singularities
intensities and respective distance to point P,

1
4π

∫
Body+Wake

μn.∇
(

1
r

)
dS − 1

4π

∫
Body

σ

(
1
r

)
dS = 0, (6)
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where σ and μ are the source and doublet intensities, and r is a distance from
an arbitrary point in the body surface. σ is known since σ = n.∇φ∞

Since Eq. (6) holds for every point in the surface, the geometry can be dis-
cretized into panels, each containing a collocation point, resulting linear system
of equations for the doublet intensities,

Aμμ = b. (7)

4.2 Aerodynamic Framework

The aerodynamic tool was reformulated into five modules, as schematically
depicted in Fig. 3, as detailed next.

Fig. 1. Geometrical description of the aircraft half wing

Wing Parametrization. Translates the design variables xDV, into a discrete
set of points representing the wing’s geometry. According to Fig. 1, the exterior
wing shape is defined by the leading edge, defined by the semi span length b/2,
sweep angle Λ and dihedral angle Γ . The wing root and tip chords are cr and
ct are related by the taper ratio λ = ct/cr and their twist angles are δr and
δt, respectively. Local twist and chord are assumed to vary linearly along the
span. The wing is then discretized in the spanwise direction according to user
specifications and an airfoil shape is assigned. The airfoil shapes are parametrized
using control points (WPi) of four Bezier curves [8], In addition, the module
also outputs the wing area S and the mean aerodynamic chord MAC.

Panels Definition. Creates the panels and calculates associated quantities. It
outputs the panel’s corner points PP, the collocation points CP, the panel’s
areas DS and the panel’s basis vectors LV, as illustrated in Fig. 2.

Change of Basis. Given the CP, PP and LV vectors, the corner points PP
are transformed to their own panel’s frame of reference PLP since the influence
coefficients may then be easily calculated.
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Fig. 2. Panel construction through a set of four non-coplanar adjacent points.

Aero Solver. Receives as inputs the vectors LPP, CP, LV and additionally,
the free-stream airspeed V∞ and angle-of-attack α. It then assembles and solves
the linear system in Eq. (7) for the aerodynamic solution μ and residuals R.
Since the wing could be assumed symmetric with respect to plane Oxz of Fig. 1,
the method of images was used to diminish the computational cost of the imple-
mentation. The residuals may be written appropriately for the computational
mesh as

Rij =
N∑

n=1

[
M−1∑
m=1

(Cijmnμmn + Bijmnσmn) + CijMn

(
μ(M−1)n − μ1n

)]
= 0, (8)

where Cijmn and Bijmn are the doublet and source influences of panel (m,n) on
panel (i, j). Since the method of images was used, it can be proven that these
quantities depend only on the corner points of panel (m,n), the (i, j) panel’s
collocation point and respective image, all written in (m,n) panel’s frame of
reference. The source intensities are easily known since σmn = nmn.V∞.

Post-processing. Calculates the aerodynamic coefficients from the flow solu-
tion. It takes the angle-of-attack α, the vectors PP, CP, LV, DS, the aerody-
namic solution μ, and MAC and S as inputs. Then computes the velocity on
the panel (i, j) as

Vij = (V∞l, V∞m, V∞n)ij + (vl, vm, vn)ij , (9)

where the first term is the free-stream and the second is the perturbation velocity,
function of the aerodynamic solution μij , both written in (i, j) panel’s frame of
reference. Next, the pressure coefficient is obtained as

Cpij
= 1 − |Vij |2

|V∞|2 . (10)

Knowing the pressure coefficients on each panel, the aerodynamic coefficients
are calculated by numerical integration as

CL = − 2
S

M−1∑
i

N∑
j

Cpij
DSij (nij .eL), (11a)
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CD = − 2
S

M−1∑
i

N∑
j

Cpij
DSij (nij .eD), (11b)

CM = − 2
S.l0

M−1∑
i

N∑
j

Cpij
DSij (CPij × nij), (11c)

where eL and eD are the unit vectors in the directions of the lift and drag,
respectively, function of the angle-of-attack α. The variable l0 is an appropriated
reference length, which corresponds to MAC and b for the pitching and rolling
moment coefficients, respectively.

5 Sensitivity Analysis Framework

The sensitivity analysis framework is depicted in Fig. 3. Each module presented
before has its own sensitivity analysis, where the jacobians of the outputs with
respect to the inputs are calculated. Then, the sensitivities of the functions of
interest, f , with respect to the design variables, xDV, are calculated propagating
the intermediate jacobians according to the chain-rule of differential calculus.

xDV
Wing
Param

Panels
Def

Change
of Basis

Aero
Solver

Post-
Process

f
Auto
Diff

Sym
Diff

Sym
Diff

Adj
Method

CHAIN-RULE

Fig. 3. Flowchart illustrating the sensitivity analysis framework

Mathematical Formulation. First, the vector of design variables must be
defined. It is composed of three segments: one containing planform related
parameters, another containing the control points that parametrize the airfoil
shape in each cross section, and the angle-of-attack,

xDV =
[
xgeo

T xairfoil
T α

]T
, (12)

where each of the right hand side vectors are

xgeo =
[
Λ Γ δr δt b cr λ

]T (13a)

and
xairfoil

T = ∪j

[
Ax ... Lx Ay ... Ly

]
j

∀j ∈ {1, ..., N + 1} (13b)
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Adjoint Method. Considering both the inputs of the Aero Solver and Post
Process modules, it can be defined an intermediate information as

x2 =
[
x1

T DST LPPT S MAC α V∞
]T

, (14)

where x1 is defined as

x1 =
[
PPT CPT LVT

]T
, (15)

such that R = R(x2,μ) and f = f(x2,μ). Since the size of x2 is much larger
than the size of f , the adjoint method is the best suited to calculate the sensi-
tivity of f with respect to x2 as

df

dx2
=

∂f

∂x2
+

[
ψ

]T ∂R
∂x2

(16a)

[
∂R
∂μ

]T [
ψ

]
= −

[
∂f

∂μ

]T

(16b)

Chain-Rule. The chain-rule is used to ultimately calculate the sensitivities of
the interest functions with respect to the design variables as

df

dxDV
=

df

dx2

dx2

dxDV
(17)

where

dx2

dxDV
=

[[
dx1

dxDV

]T [
dDS

dxDV

]T [
dLPP
dxDV

]T [
∂S

∂xDV

]T [
∂MAC
∂xDV

]T [
∂α

∂xDV

]T

[0]

]T

(18)
Note that some entries were already replaced by the respective partial derivatives
where explicit dependence is observed. The remaining derivatives are assembled
according to the variable dependencies presented for each module,

dx1

dxDV
=

∂x1

∂WP
∂WP
∂xDV

(19)

dDS

dxDV
=

∂DS

∂WP
∂WP
∂xDV

(20)

dLPP
dxDV

=
∂LPP
∂x1

∂x1

∂WP
∂WP
∂xDV

(21)

Sensitivities of Wing Parametrization. This module calculates three Jaco-
bians: ∂S/∂xDV, ∂MAC/∂xDV and ∂WP/∂xDV. The non-zero derivatives of
the first two are calculated by hand since the expressions are simple. The last
Jacobian is calculated with the aid of automatic differentiation using the forward
mode since the number of outputs is larger than the number of inputs for the
mesh sizes expected to be used in the optimization problems. The implemen-
tation was benchmarked with the complex-step derivative to compare both the
results and performance. As it may be observed in Table 1, the AD implemen-
tation is faster, with savings up to 40.5%.
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Table 1. Computational cost of the Wing Parametrization sensitivity analysis module.

No. panels 50 200 450 800 1250 1800

CSD time [s] 0.639 3.011 9.332 19.815 38.970 64.553

AD time [s] 0.380 1.151 4.191 10.400 27.219 55.999

Savings [%] 40.5 61.8 55.1 47.5 30.2 13.3

Sensitivities of Panels Definition. The sensitivity analysis of Panels Defini-
tion corresponds to the calculation of four jacobians: ∂PP/∂WP, ∂CP/∂WP,
∂LV/∂WP and ∂DS/∂WP. These matrices were all obtained with the aid of
symbolic differentiation. Although the procedure was quite lengthy, this app-
roach allowed to obtain huge computational savings since only different from
zero partial derivatives were calculated, algebraic simplifications were made and
MATLAB R© vectorization techniques were applied. According to Table 2, the
implementation can be about 1000 times faster, comparing with the CSD and
AD.

Since this approach is very susceptible to errors, the implementation was
benchmarked with AD and the complex-step derivative. Figure 4 shows the abso-
lute difference for each entry of ∂CP

∂WP when benchmarked with the CSD and AD.
As observed, the difference is bounded and really small. Similar results were
obtained for the remaining Jacobians thus verified the module.

Table 2. Computational cost of the Panels Definition sensitivity analysis module.

No. panels 200 450 800 1250 1800

CSD time [s] 20.05006 109.4079 289.9539 761.1905 2821.0137

AD time [s] 22.93737 148.1591 599.1266 2296.589 8623.2376

SD time [s] 0.117399 0.294621 0.554629 1.005761 1.822698

Savings CSD [%] 99.4 99.7 99.8 99.9 99.9

Savings AD [%] 99.5 99.8 99.9 100 100

Sensitivities of Change of Basis. The Jacobians ∂LPP/∂PP, ∂LPP/∂CP
and ∂LPP/∂LV and ∂LPP/∂x1 were obtained by hand differentiation since the
expressions were simple. No benchmark is provided here, although the module’s
verification was indeed performed.

Sensitivities of Aero Solver. Given the inputs of Aero Solver module, the
respective sensitivity analysis corresponds to the calculation of six Jacobians that
are used to construct ∂R/∂x2 and ∂R/∂μ, that are used in the adjoint method
in Eqs. (16a) and (16b). The sensitivity analysis corresponds to differentiate
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Fig. 4. Absolute difference for all entries of ∂CP/∂WP

Eq. (8) with respect to the inputs of Aero Solver, that was performed by hand
with the aid of symbolic differentiation. The reason to follow this methodology
was the same as for the sensitivity analysis of Panels Definition. The benefits
in computational terms are described in Table 3, where savings of about 99.5%
were observed, when comparing the followed approach with the forward mode
of AD.

Table 3. Computational cost of the Aero Solver sensitivity analysis module.

No. panels 50 200 450

AD time [s] 749.964 8653.022 40582.198

SD time [s] 3.796 40.797 222.411

Savings [%] 99.5 99.5 99.5

Since obtaining the derivatives using this approach is very susceptible to pro-
gramming errors, a benchmark with AD differentiation was performed. Figure 5
presents the absolute difference for all entries of ∂R/∂LPP, taking the respec-
tive values calculated using AD as reference. As observed, the differences are
bounded and small. A similar analysis was performed for all the produced Jaco-
bians and the results were similar, proving that the implementation was correct.

Sensitivities of Post Process. The sensitivity analysis of Post Process corre-
sponds to calculate the Jacobians ∂f/∂x2 and ∂f/∂μ. These matrices, required
to the adjoint method in Eqs. (16a) and (16b), were calculated using the reverse
mode of automatic differentiation since the number of inputs is much higher
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than the number of outputs. Furthermore, the number of outputs is, at most,
equal to five, corresponding to all the aerodynamic coefficients the program may
compute.

Benchmark with Finite Differences. After the sensitivity analysis frame-
work had been constructed, it was benchmarked with the finite-differences
method to guarantee that the program was free of programming errors and also
to measure its performance. Figure 6 shows the absolute difference of each entry
of the aerodynamic coefficients sensitivities with respect to the design variables,
when compared to the finite-differences method with a step size of h = 10−7. As
observed, the difference is at most of O(10−6), thus verifying the framework’s
results. On the other hand, Table 4 shows the time spent by the sensitivity anal-
ysis framework and the implementation using FD, taking the time spent by the
aerodynamic model as reference, for an increasing number of design variables.
As observed, using the sensitivity analysis framework translates into increased
time savings for increasing number of design variables. This result allows to con-
clude that the new tool is much more efficient than the implementation of FD
for accurate wing description.

6 Aerodynamic Optimization

An illustrative optimization problem of a full wing was solved to demonstrate the
benefits of gradient-based optimization using efficient sensitivity analysis. The
problem was solved using both the new sensitivity analysis framework (FW) and
the finite-difference (FD) method, to compare the required computational time,
the number of iterations and the number of function evaluations.
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Table 4. Runtime comparison for increasing number of design variables

No. panels 32 64 128 192 240

No. DV 80 128 224 320 392

tmodel [s] 0.083 0.239 0.876 1.946 3.037

tsens/tmodel [–] 41.65 34.56 27.77 25.07 24.01

tFD/tmodel [–] 61.47 120.07 224.78 316.24 390.19

Savings [%] 32.2 71.1 87.6 92.1 93.8

The lift and pitching moment constrained wing optimization problem was
expressed as

minimize CD

w.r.t. xDV

subject to CL = 0.3 , S = S0 , CM = CM0

xL ≤ xDV ≤ xU

(22)

where xDV includes all design parameters, as defined in Eq. (12).
Both the baseline and optimized wing configurations are depicted in Fig. 7.
The output functions and part of the design vector baseline and optimized

values are presented in Table 5, for both approaches of sensitivity analysis. The
drag was reduced in 72% again due to increased aspect ratio, lift reduction and
lift redistribution. The performance of both approaches was also measured and
presented in Table 6. As observed, the number of function evaluations using the
new framework is much less when compared to finite-differences. As a conse-
quence, the optimization time is considerably much shorter, about 9 times faster
than the implementation using finite-differences, clearly proving its efficiency for
accurate wing optimization using many design variables.
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Fig. 7. Baseline and optimized wing configurations

Table 5. Baseline, optimized design vector and output values in the second optimiza-
tion problem

Design variables Baseline Optimized FW Optimized FD

α [◦ ] 4 1.000000 1.000000

Λ [◦ ] 0 6.011407 6.007157

Γ [◦ ] 0 5.000000 5.000000

δr [◦ ] 0 2.230745 2.227752

δt [◦ ] 0 −0.124150 −0.124778

b [m] 6 8.000000 8.000000

cr [m] 1 1.000000 1.000000

λ 1 0.500000 0.500000

Outputs Baseline Optimized FW Optimized FD

CD 0.013429 0.003724 0.003725

CL 0.313735 0.300000 0.300000

CMx 0.071235 0.065081 0.065076

CMy 0.220788 0.220788 0.220788

S 6.000000 6.000000 6.000000

AR 6.000000 10.666667 10.666667

Table 6. Second optimization case performance benchmark between different sensitiv-
ity analysis methods

Gradient calculation method Time [s] Iterations Function evaluations

Sensitivity framework 7607.1 44 75

Forward finite differences 68726.9 44 10155
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7 Conclusions

An efficient aerodynamic optimization tool was developed. To accomplish that,
a sensitivity analysis framework was constructed based on exact gradient cal-
culation using analytical methods such as automatic differentiation, symbolic
differentiation and the adjoint method. Special concern was employed to obtain
high computational efficiency, which was translated in combining good program-
ming practices in MATLAB R© with code simplifications, whenever possible. An
aerodynamic wing optimization problem was solved to illustrate the performance
of the new sensitivity analysis framework and it was concluded that savings up to
90% in the computational cost can be achieved.
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