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Abstract. Since the early days of aviation, aeroelastic problems have shown to be some
of the most challenging to solve. With the development of numerical methods, the study
of aircraft structures and their interaction with the surrounding air flow at different flight
conditions has become easily accessible and, thus, is now mandatory in the design phase
of an aircraft. This work focuses on the development of a numerical tool for aircraft wing
fluid-structure interaction (FSI) analyses, in which the external airflow and the internal
structure interact. A panel method was implemented for the aerodynamic analysis and a
finite-element model using equivalent beam elements was implemented for the structural
analysis, both coded in MATLAB R© language. Each analysis models were successfully in-
dividually verified against other bibliographic sources and then the two disciplines were
coupled into the FSI numerical tool. To validate the accuracy of the numerical tool to
predict aeroelastic parameters, such as flutter and divergence speeds, a half wing prototype
was built and tested in a wind tunnel. The wing shape was parameterized using area, air-
foil cross-section shape, aspect ratio, taper ratio, sweep angle and dihedral angle. Before
the optimization, a parametric study was conducted to study the influence of these param-
eters in the wing performance. The validated FSI tool was then used in an optimization
framework to obtain an optimized wing shape with the objective of maximizing the lift-to-
drag ratio whilst guaranteeing that flutter and divergence behavior are not worse than that
of the baseline wing.

1 INTRODUCTION

Recent developments in wing design, such as active aeroelastic wings [1]), higher aspect
ratios (AR) and morphing shapes during flight [2, 3], have furthered the need of reliable



Ivo M. D. Rocha and André C. Marta

prediction of aeroelastic phenomena, since these new flexible wings can easily lead to
aeroelastic instabilities, even inside standard flight envelope conditions. The novel designs
are being adopted in Unmanned Air Vehicles (UAV), such as the High Altitude Long
Endurance (HALE) Airbus Zephyr in Fig.1, where the very high AR wing decreases
induced drag, thus improves the aerodynamic performance.

Figure 1: Airbus Zephyr HALE UAV

Given that small to medium size UAVs fly at relatively low speeds, their aerodynamic
behavior can be accurately modeled by low complexity models. However, there is a lack of
readily available aeroelastic experimental data for these speed ranges, as most studies are
performed at the transonic speeds [4, 5, 6]. There are some attempts to improve data for
experimental confirmation, particularly for the case of geometric non-linearities [7] but,
for the most part, there is a need for a broad range of aeroelastic testing data cases [8],
specially with the recent numerical developments concerning the simulation of geometric
non-linear behavior and Limit Cycle Oscillations [9, 10].

Besides the introduction of more complex geometric definitions, there is interest in
analyzing several possible interface methods between the aerodynamic and structural
models [11] to improve accuracy of current aeroelastic tools. Another advantage of the
increased accuracy of aeroelastic tools is the possibility of incorporating optimizing al-
gorithms to their architecture to allow design refining around the expected aeroelastic
behavior of an aircraft, that leads to considerable design time savings.

The goals of this work is then to develop an aeroelastic analysis and design framework,
capable of handling highly flexible wings, that predicts accurately the wing aeroelastic
response, in particular divergence speed and flutter speed.

2 COMPUTATIONAL AEROELASTICITY

Computational Aeroelasticity (CAE) specifically refers to the coupling of Computational
Fluid Dynamics (CFD) methods with Computational Structural Dynamics (CSD) tools
to perform aeroelastic analyses [5].

The basis for any CAE methodology is the coupled equations of motion,

[M ]q̈(t) + [D]q̇(t) + [K]q(t) = F (t) , (1)
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where M , D and K are generalized mass, damping and stiffness matrices, respectively,
F (t) is generalized force vector that accounts for the aerodynamic loads, and q(t) is the
generalized displacement vector [12]. It is then necessary to model each discipline with
CFD and CSD numerical tools, and then provide an adequate coupling between the two.

2.1 Coupling Models

A typical structure of an aeroelastic tool is shown in Fig. 2, where the Fluid-Structure
Interface (FSI) is highlighted.

Figure 2: Structure of a typical coupled aeroelastic tool [5]

The FSI is paramount to connecting the separate discipline modules of the aeroelastic
framework, and that can be done using a fully-coupled model, a loosely coupled model
or a closely coupled model [5]. While the fully coupled FSI integrates and solves the
combined fluid and structural equations of motion simultaneously in one single solver, the
other two solve then separately using different solvers. The first approach is not only very
rigid in terms of choice of discipline models but also usually computationally expensive. In
contrast, the loosely and closely coupled models, though requiring an interface to exchange
information between aerodynamic and structural solvers and loosing some accuracy, allow
the flexibility of choosing different solvers for each discipline [5]. While in the loosely
coupled the exchange of information only takes place after partial or complete convergence
of each solver, in the closely coupled model the discipline solvers exchange of information
at the boundary via an interface module, making the entire CAE model tightly coupled
and, thus, with improved accuracy. The information exchanged are surface loads, output
of CFD and input to CSD, and surface deformation, output of CSD and input to CFD.

By selecting a loosely coupled or a closely coupled model, it is possible to have two
separate solvers for each aerodynamic and structural model computations, both reducing
the complexity of implementation and allowing an easier validation of results.

2.2 Discipline models

As far as aerodynamic models go, there are several options to choose, as illustrated in
Fig.13(a), depending on the complexity of the flow considered.

Since our aim is to study aeroelastic effects in wings, 3D effects must be accounted
for, in particular at the wing tip. However, the driving forces in aeroelasticity are mainly
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(a) Aerodynamic models (b) Structural models

Figure 3: FSI discipline models [13]

inviscid, and the low flow speeds considered in our design cases mean rotational and
compressibility effects might be discarded. Given that we want to model the lifting
surface thickness, the appropriate models, balancing required complexity and available
computational power, are the panel methods[14]. These models are based on potential
flow equations and they are relatively easy to implement and integrate in an FSI model.

As for structural models, while it is possible to choose between continuous and discrete
models as shown in Fig.13(b), the implementation of discrete models is required to couple
it in the FSI tool. Among the different Finite Elements (FE), the beam FE is the simplest
model, but accurate enough for low and medium fidelity applications, such as simulating
a solid wing or a spar [15].

3 NUMERICAL IMPLEMENTATION

3.1 Aerodynamic Model

The methodology followed to implement the 3D panel method is similar to the defined by
Katz [16]. This model is based on the potential flow equation, valid for incompressible,
inviscid and irrotational flow,

∇2Φ∗ = 0 , (2)

where Φ∗ is the total velocity potential. Equation (2) is applied to a body with known
boundaries SB, as shown in Fig.4. Applying Green’s theorem, a general solution can be

Figure 4: Potential flow over a closed body [16]

found by a sum of singularities, such as sources (σ) and doublets (µ) placed on the SB
boundary,
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Φ∗(x, y, z) =
1

4π

∫
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µn · ∇
(

1

r

)
dS − 1

4π

∫
body

σ

(
1

r

)
dS + Φ∞ , (3)

where r is the distance to a point outside the SB boundary and vector n points in the
direction of potential jump µ. Dirichlet boundary conditions are used, which implies that
the perturbation potential Φ is specified on the entire SB surface.

The potential flow Eq.(2) does not include time dependent terms directly and, given
aeroelasticity is an unsteady problem, these must be introduced through the bound-
ary conditions. Considering a constant flow of speed U∞ in the positive x direction, as
shown in Fig. 5, a translation is applied to the body frame of reference as (X0, Y0, Z0) =
(−U∞t, 0, 0) for each time step.

Figure 5: Inertial and body coordinates [16]

An important definition that affects the accuracy of the method is the wake geometry.
A straight wake convected at the flow incidence angle was selected, as it requires fewer
wake panels to be defined, decreasing significantly the computational cost, though with
penalty of aerodynamic forces overestimation [16] that means dynamic instabilities will
appear earlier in the simulations compared to the experiments. The body translation is
used to define the new wake panel, with one extremity on the previous wake panel and
the other at a X0 distance from the other extremity, so any motion of the wing will then
translate into the new wake panels.

With the boundary conditions inserted and defining the source strength as

σ = −n · (V0 + vrel + Ω× r) , (4)

where V0 = (Ẋ0, Ẏ0, Ż0) is the velocity of the (x, y, z) system’s origin, vrel = (ẋ, ẏ, ż) is
the relative velocity of the body fixed frame of reference, Ω is the rate of rotation of the
body’s frame of reference, as shown in Fig.5, and r is the position vector, the problem is
reduced to a set of algebraic equations with the doublet distribution µ as the unknowns.

The body’s surface is discretized into N panels and the wake in NW panels, with
collocation points P at the panel center and panel vertices 1, 2, 3, 4, as shown in Fig. 6 for
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Figure 6: Influence of panel k on point P [16]

a panel k. Assuming constant source strength σ and doublet strength µ for each panel,
and Eq.(2) can be rewritten as

N∑
k=1

Ckµk +

NW∑
l=1

Clµl +
N∑
k=1

Bkσk = 0 for each internal point P , (5)

with
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)
dS
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k

. (6)

By using the Kutta condition, the wake doublets µl can be defined in terms of the unknown
surface doublets µk, leading to a linear algebraic system of N equation containing N
unknown singularity variables µk.

After solving Eq.(5) for the surface doublets µk, the velocity components can be eval-
uated numerically as

vl = −δµ
δl
, vm = − δµ

δm
, vn = −σ , (7)

using central differences, at panel coordinates (l,m, n) as shown in Fig. 7, These perturba-

Figure 7: Panel coordinate system [16]

tion velocities are then related with the local velocity by Vk = (U∞l
U∞mU∞n)+(vl, vmvn)k.
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By defining the local velocity on each panel, the pressure coefficientCp can be computed
on a panel basis as

Cpk = 1− V 2
k

U2
∞
− 2

U2
∞

δφ

δt
. (8)

The pressure coefficient at time t+∆t is computed using the Backward Euler method [17],
yielding

Ct+∆t
pk

= 1−
V 2
t+∆t

U2
∞
− 2

U2
∞

φt+∆t − φt

∆t
. (9)

The main advantage of using a Backward Euler method is that it is an implicit scheme,
making the solution unconditionally stable, thus enabling the use of large time steps [18].
Finally, the aerodynamic force Fk for each panel is given by

Fk = −Cpkq∞Sk , (10)

where Sk is the panel area and q∞ is the dynamic pressure.
The implementation of the 3D unsteady panel method was verified against the open-

source software XFLR-5 [19] in steady mode. A rectangular wing with NACA0015 airfoil,
1.5 m span and 0.25 m chord, operating at U∞=7 m/s with 4◦ angle-of-attack. The
discretization used an uniform mesh with 4000 panels, 100 in the chordwise direction and
40 in the spanwise direction, as shown in Fig.8. These wing dimensions match those used
for the aeroelastic experimental and numerical studies.

Figure 8: Aerodynamic computational mesh

The verification results, shown in Tab.1, reveal that, while the lift and pitching moment
coefficients exhibit a very good match between both softwares, the drag coefficient shows
a 15% disparity. Most likely, this is due to the wake shape handling [16] as both models
were inviscid but, since the drag force is not very relevant in the aeroelastic response of
a wing, this disparity can be found irrelevant.

3.2 Structural Model

Two types of wing sections are supported, solid and hollow, as shown in Fig. 9.
Excluding the damping effects in the fundamental Eq.(1), due to the difficulty of esti-

mating it theoretically, Eq.(1) can be put as an eigenvalue problem,
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Aeroelastic framework XFLR-5 difference

CL 0.3071 0.3137 2.1 %
CD 0.00443 0.00517 14.3 %
CM -0.07285 -0.07506 2.9 %

Table 1: Verification of aerodynamic coefficients

Figure 9: Hollow and solid wing sections

([M ]− ω2[K])x = 0 , (11)

where ω is the system frequencies, which allow for a prediction of the wing aeroelastic
behavior and also to adjust the ideal time step in the unsteady calculations according to
the Nyquist-Shannon sampling theorem [20],

ts =
1

fmax
, (12)

where fmax is the maximum frequency that is to be observed by the structural solver.
It should be pointed that a damped system displays divergent behavior for higher

airspeeds than an undamped system so the divergence speed will be underestimated.
The 3D beam finite element implementation implied a discretization of the wing in

spanwise sections, that matched those of the aerodynamic model to facilitate the FSI.
The wing geometric properties and aerodynamic forces are assessed on those sections.

The selected 3D beam element is based on the Euler-Bernoulli beam theory [21], and
combines the stiffness constants of a beam under the pure buckling condition [kb], a torsion
bar element under pure torsion [kt] and a truss element under pure axial loads [ka], given
as

[
kb
]

=
EIz
L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 [
kt
]

=
GJ

L

[
1 −1
−1 1

] [
ka
]

=
AE

L

[
1 −1
−1 1

]
(13)

considering the nodal displacement vectors ub = {v1 θz1 v2 θz2}, ut = {θx1 θx2} and
ua = {u1 u2}, for a beam of length L, elastic modulus E, shear modulus G, cross-sectional
area A and cross-sectional torsion constant J ,

The representation of the 6-DOF beam element is made by the superimposition of a
beam element under bending condition, a torsional bar, and a truss element, as shown
in Fig.10. The global stiffness matrix [K] results from the assembly of the local beam



Ivo M. D. Rocha and André C. Marta

Figure 10: 3D beam element [22]

stiffness matrices [ke], after transformed from the local reference frame to the global
reference frame.

To implement the dynamic structural response, a Newmark - β time integration scheme
was chosen [23] as, with careful selection of parameters, the method is implicit and un-
conditionally stable, and so the time step can be chosen freely. The time integration
procedure comprised six steps:

1. Define first acceleration estimation ẍi = M−1(F −K xi);

2. Define Newmark time integration parameters β = 0.5 , γ = 0.25 and time step ∆t;

3. Calculate integration constants: a0 = 1
β∆t2

, a1 = 1
β∆t

, a2 = 1
2β
− 1, a3 = ∆t(1 − γ)

and a4 = γ∆t;

4. Obtain effective stiffness matrix Keff = K + a0M ;

5. Define Reff matrix Ri+1
eff = F +M

(
a0x

i + a1ẋi + a2ẍi
)

;

6. Find displacement, velocity and acceleration values for next time-step: xi+1 =
K−1
effR

i+1
eff , ẍ

i+1 = a0 (xi+1 − xi)− a1ẋ
i − a2ẍ

i and ẋi+1 = ẋi + a3ẍ
i + a4ẍ

i+1.

3.3 Fluid-Structure Interaction

The interface between aerodynamic and structural solvers uses closely coupled approach,
that was made simpler by the fact that both solvers use a Lagrangian frame of reference.
The implemented interface model comprises four main steps:

1. Wing displacements are determined by the structural solver using the force and
moment field from the aerodynamic module at t = N ;

2. From the displacements and mass and stiffness matrices, the structure’s velocities
and accelerations are computed using the Newmark - β time integration scheme;

3. Using the structures dynamic behavior, the mesh is changed using one of four in-
terface algorithms (described next);

4. Finally, a 3D rigid body transformation is applied to the body to update the aero-
dynamic solver mesh for computations at t = N + 1.

The four interface algorithms include the Conventional Serial Staggered Algorithm
(CSS1), the Serial Staggered Algorithm with First Order Structural Predictor (CSS2),
the Serial Staggered Algorithm with Second Order Structural Predictor (CSS3) and an
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Algorithm Displacement calculation
CSS1 xn+1 = u(n)
CSS2 xn+1 = u(n) + ∆t v(n)
CSS3 xn+1 = u(n) + ∆t(1.5v(n)− 0.5v(n− 1))
CSS4 xn+1 = u(n) + ∆t

2
v(n)

Table 2: FSI algorithms for displacement estimation

Improved Serial Staggered Algorithm (CSS4). These estimate the new CFD mesh points
in different manners, as shown in Tab. 2:

The effect of these algorithms on flutter speed computation were studied using the
test wing geometry described in Sec. 3.1 and extruded polystyrene foam (E=23.92 MPa,
G=9.14 MPa, ρ=31.453 kg/m3). The corresponding predicted flutter speeds were 16.66 m/s,
17.35 m/s, 16.25 m/s and 18.14 m/s. Given the proximity of these values, the fact that
the Newmark-β time integration scheme does not provide very accurate velocities and
accelerations, and that CSS1 displayed the best aeroelastic behavior transition from a
non-flutter condition to a flutter condition, this was the preferred algorithm.

3.4 Framework Architecture

The aeroelastic framework was developed with three goals in mind: user-friendly to debug
and produce results; reusability to allow for modules to be easily exchanged or added; and
low maintenance to reduce the time required to check connections between modules. This
led to a modular framework with clearly separated aerodynamic and structural modules,
as schematically seen in Fig. 11. These included:

• steady aerodynamic module: defines initial aerodynamic mesh and starts aerody-
namic computations at t = 0;

• unsteady aerodynamic module: performs aerodynamic computations for any t > 0,

• structural module: defines structural mesh, computes mass and stiffness matrices,
and nodal forces;

• Newmark module: performs structural time integration from time t to t+ ∆t;

• Fluid-Structure Interaction module: couples the aerodynamic and structural mod-
ules and advances the aerodynamic mesh from t to t+ ∆t.

An analysis was made for the computing time for a case with 300 iterations, using a
computer with an Intel R© Core

TM
i7-2630QM with 8Gb of RAM, and the timings for each

module are listed in Tab. 3. Most of the computing time is spent on the fluid solver
module due to the calculation of the aerodynamic influence coefficients matrix, as each
panel must be compared to every other panel in the wing for each time iteration.



Ivo M. D. Rocha and André C. Marta

Aeroelastic Framework

Outputs

Steady aerodynamic module

Inputs

Unsteady aerodynamic module

Structural module

Newmark module

Fluid structure interaction

Figure 11: Modular aeroelastic framework architecture

Module Time (s)

Fluid solver 1403.6
Structural solver and time integration 3.3
Fluid structure interaction 1.5
Other sources 0.9

Total 1409.3

Table 3: CPU time per aeroelastic framework module

4 NUMERICAL RESULTS

4.1 Problem Description

The objective is to perform numerical and experimental dynamic aeroelastic analyses on
a simple rectangular wing. To do so, a baseline wing with airfoil NACA 0015 made of
extruded polystyrene rigid foam is used, with properties shown in Tab.4.

Fluid and structural solver options

Time step 0.005 s
Total time 1.5 s

FSI algorithm CSS1
Structural subiterations 0

Material properties

Young’s modulus 23.92 MPa
Shear modulus 9.14 MPa

Material density 31.453 kg/m3

Wing geometric properties

Airfoil NACA 0015
Half span 0.75 m

Root chord 0.25 m
Taper ratio 1
Sweep angle 0◦

Dihedral angle 0◦

Angle of attack 4◦

Flight conditions

Freestream velocity 10.0 m/s
Altitude 0 m

Air density 1.225 kg/m3

Table 4: Baseline numerical wing test case parameters
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Before the aeroelastic analysis design was started, a modal analysis was performed,
using the aeroelastic framework developed using Eq.(11). The first 8 frequencies are shown
in Tab.5. With the definition of the wing natural vibration frequencies and considering

Mode Frequency (Hz) Mode Frequency (Hz)

1st flapwise bending 7.9 2nd torsion 176.8
2nd flapwise bending 48.4 1st chordwise bending 244.2
1st torsion 58.9 4th flapwise bending 248.0
3rd flapwise bending 132.2 5th flapwise bending 291.4

Table 5: Modes and natural frequencies of tested wing

that time step values lower than 0.005 s are not feasible to use due to program constraints,
the time step chosen is the lowest value possible. This time step allows to capture both
flapwise bending and torsion modes, which were shown to be the major components in
achieving divergent behavior.

4.2 Grid Convergence Study

A convergence study was conducted to assess the required number of chordwise nc and
spanwise ns points. The wing test case parameters are summarized in Tab.4.

The aerodynamic forces are the output parameters used in the convergence study since
they are the primary source of wing loading, in particular the lift component. To select
the most appropriate mesh for the aeroelastic analysis, the aerodynamic coefficients were
computed using four different meshes, and the results are shown in Tab.6.

Mesh nc× ns 20 × 10 40 × 20 64 × 30 100 × 40

CL 0.2947 0.3041 0.3075 0.3092
CD 0.0101 0.0060 0.0044 0.0032

Computing time 0.30 s 1.29 s 6.32 s 26.48 s

Table 6: Grid convergence test

While the number of chordwise points affects mainly the aerodynamic component,
the spanwise points also affect the structural module. As such, ns should not be lower
than 10 points. By checking the aerodynamic coefficients, there is a low variation of
the lift coefficient but coarser meshes grossly overestimates the induced drag. Another
important value is the computational time, as the value shown is for only one aerodynamic
iteration, but each numerical aeroelastic test performed is expected to require more than
300 iterations per freestream velocity. Therefore, the mesh that presents the best trade-off
between accuracy and computational cost is the 40×20 mesh.

Another study was conducted to assess the wing tip displacement variation with the
number of panels, resulting in the roughly the same conclusion about mesh size.
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4.3 Flutter Speed Estimation

Since most structural vibration phenomena can be characterized as a damped harmonic
motion, the damping ratio g was estimated to find the flutter speed, defined as the thresh-
old between dynamic stability and instability, that is, the transition from positive to
negative damping ratio [24].

The damping ratio ζ can be obtained from the logarithmic increment [12], defined as

δn =
1

n
ln

Xi

Xi+n

=
2πζ√
1− ζ2

. (14)

The damping ratio computed for a number of freestream velocities is shown in Fig.12(bottom)
using the parameters in Tab.4. In addition, a Fast-Fourier transform (FFT) is performed
on the corresponding wing tip displacement behavior to check the frequency evolution
with the increase in velocity, also shown in Fig.12(top).

Figure 12: f-U and U-g graphs for the baseline numerical case

The flutter speed, corresponding to the transition from a positive to a negative damping
ratio, occurs at U=16.66 m/s for the simulated wing. The null damping ratio is considered
the primary method to find the flutter speed but, by analyzing the frequency spectra, an
approximate estimation can also be found by checking when two separate frequencies
coalesce into a single value. As shown in Fig.12(top), vibration modes 2 (torsion) and 3
(bending) have the same frequency for a velocity of 17.35 m/s, implying that the wing is
experiencing divergent behavior.

4.4 Flutter Speed Index Comparison

The Flutter Speed Index [5] is defined as

Uf =
U∞

bωa
√
µ
, (15)
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where U∞ is the freestream velocity, b is the wing span, ωa is the first torsional mode
frequency and µ is the mass ratio of the wing [5]. The definition of the mass ratio of the
wing comes from stability theory [25], µ = m/1

2
ρairSc̄, where m is the wing mass, ρair is

the air density, S the aerodynamic wing area and c̄ the mean chord of the wing.
A comparison between the flutter speed index obtained for the numerical analysis and

an experimental test is shown in Fig. 14. The baseline wing corresponds to the one
simulated in Sec.4.3, while the reduced span wing has a half-span of 0.625 m.

(a) Baseline wing (b) Reduced span wing

Figure 13: Experimental wing models

Figure 14: Flutter Speed Index variation with freestream velocity

For both the experimental and the numerical cases, the flutter speed index remains
close between the two wings, despite having different span and torsional behavior.

The major difference occurs between the experimental and numerical results, that is
attributed to the difference in the first torsional mode observed, as all other parameters are
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equal. The disparities can be explained by the overestimation of aerodynamic forces and
the lack of damping in the numerical model, and by parasite vibrations of the experimental
wing mount model that contribute to the damping of the wing natural vibrations.

Also worth noting that, for the numerical case, no values of the flutter speed index are
computed on the baseline wing for a velocity greater than 17.35 m/s due to the presence
of highly divergent behavior of the wing, consistent with the expected post-flutter.

4.5 Flutter Speed Sensitivity to Wing Aspect Ratio

As the experimental testing showed, there is a significant change in the wing’s aeroelastic
behavior with aspect ratio, mainly due to the increase in wing rigidity. To further study
the variation of aeroelastic behavior, a parametric sensitivity analysis of the wing flutter
speed with respect to its aspect ratio was performed using the numerical model developed.

The wing defined in Tab.4 was used but letting the span vary so that the aspect ratio
(AR = b/c̄) ranged between 4 and 7.6. The numerical results obtained are shown in
Fig.15.

Figure 15: Flutter speed sensitivity to wing aspect ratio

As expected, there is an increase of the flutter speed with the decrease of the wing
aspect ratio, effectively doubling its value for aspect ratio values between 4 and 6, while
the evolution for values greater than 6 is lower, thus exhibiting a inversely quadratic
dependence with aspect ratio. Aspect ratios greater than 8 were not computed since the
developed numerical code still does not account for non-linear geometric or displacement
behaviors. The increase of flutter speed by decreasing the aspect ratio is mainly due to
the increase of the wing rigidity.

4.6 Static Aerodynamic Optimization

The first optimization problem pursued was a purely aerodynamic design problem for
maximum lift-to-drag ratio, with constraints in lift coefficient and wing area to assure that
the optimized wings produce the same lift as the baseline. The baseline wing geometry
and operating conditions were the same as in Tab.4.
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The numerical analyses were conducted with the static aerodynamic solver incorporated
in the aeroelastic framework, and the constrained optimization algorithm SQP in function
fmincon in MATLAB R© was used to solve the problem cast in the form

Maximize L/D
with respect to x
subject to S ≥ 0.375 m2

CL ≥ 0.3
1.3 ≤ b ≤ 1.7 m
0.25 m ≤ croot ≤ 0.4 m
λ ≥ 0.4
−5◦ ≤ θroot, θtip ≤ 5◦ ,

(16)

where the wing design variables vector x included the half span b/2, root chord croot,
taper ratio λ, root twist angle θroot and tip twist angle θtip.

Since only the static aerodynamic solver was used in the analysis, the finer mesh in
Tab.6 with 100 chordwise points and 40 spanwise points was used

The objective function, design parameters and corresponding bounds, and the con-
straints are shown in Tab.7, for both the baseline and optimized wing. The optimizer

Baseline Wing Optimized wing

Lift-to-drag ratio L/D 96.78 178.89

Half span b/2 0.75 m 0.85 m
Root chord croot 0.25 m 0.3162 m
Taper ratio λ 1.0 0.4
Root twist θroot 0◦ -0.9883◦

Tip twist θtip 0◦ 1.1472◦

Area S 0.375 m2 0.3762 m2

Mass m 0.1510 kg 0.1452 kg
Lift coefficient CL 0.3097 0.3006
Drag coefficient CD 0.0032 0.0017
Pitch coefficient CM -0.0738 -0.0782

Table 7: Static wing aerodynamic optimization

satisfied all constraints and, while there wing lift coefficient remained almost constant,
the drag coefficient decreased, thus leading to the desired increase in lift-to-drag ratio.
This resulted from an optimal wing taper ratio that led to an approximately elliptical lift
distribution, thus reducing the induced drag. The final wing shape is shown in Fig.16.

4.7 Static Structural Optimization

The second optimization problem consisted of the minimization of the wing mass, keeping
the same aerodynamic constraints and mesh as in Sec.4.6.
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Figure 16: Wing design for static aerodynamic optimization

The objective, design parameters and constraints are summarized in Tab.8.

Baseline wing Optimized wing

Mass m 0.1510 kg 0.1415 kg

Half span b/2 0.75 m 0.85 m
Root chord croot 0.25 m 0.25 m
Taper ratio λ 1.0 0.8
Root twist θroot 0◦ -0.1658◦

Tip twist θtip 0◦ -0.3749◦

Area S 0.375 m2 0.3826 m2

Lift coefficient CL 0.31 0.30
Lift-to-drag ratio L/D 96.78 142.49

Table 8: Static structural wing optimization

Since the final mass is marginally smaller than in the previous case, and considering
the difference in L/D, the wing from the aerodynamic optimization case is preferred over
this from a design perspective.

4.8 Flutter Speed Optimization

In this optimization problem, a function was defined to determine the freestream speed
for which the numerical aeroelastic solver achieves a divergent oscillatory solution, which
was identified as the flutter speed. Due to the added computational cost of the unsteady
analyses, the coarse mesh of 40× 20 panels presented in Sec.4.2 was used.

The constraints are mostly the same as stated in Sec.4.6, excluding the speed constraint
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that is not applicable. The wing flutter optimization problem can then be cast in the form

Maximize Uflutter
with respect to x
subject to CL ≥ 0.3

1.3 ≤ b ≤ 1.7 m
0.25 m ≤ croot ≤ 0.4 m
λ ≥ 0.4
−5◦ ≤ θroot, θtip ≤ 5◦ ,

(17)

The parameters of the optimal wing obtained are listed in Tab.9.

Baseline wing Optimized wing

Flutter speed Uflutter 16.66 m/s 28.56 m/s

Half span b/2 0.75 m 0.85 m
Root chord croot 0.25 m 0.4 m
Taper ratio λ 1.0 0.5848
Root twist θroot 0◦ 0◦

Tip twist θtip 0◦ 5◦

Area S 0.375 m2 0.3762 m2

Mass m 0.1510 kg 0.1452 kg
Lift coefficient CL 0.31 0.46

Table 9: Flutter speed optimization

The optimized wing achieved a large increase in flutter speed compared to the baseline
wing, while also maintaining a low mass and a greater base CL, in part due to the increase
in taper ratio and large wing tip twist.

5 CONCLUSIONS

A modular numerical aeroelastic framework was implemented in MATLAB R© to reduced
program complexity and facilitate future add-ons or replacements of existing modules.
The aerodynamic module was verified against open source software XFLR-5 and the
structural module accuracy compared to ANSYS R©.

The numerical framework was shown to be able to estimate the flutter speed both by
computing the damping ratio associated to the wing’s dynamic behavior and the structural
frequency spectra that results from this dynamic behavior.

The comparison of numerical and experimental data showed a discrepancy between
the measured frequency spectra for both cases, with the experimental results displaying a
higher rigidity comparing to numerical results. While this variation cannot be dismissed,
it can be seen as an extra safety margin since the numerical model underestimates the
wing flutter speed and thus experimental tests can be performed within safety limits.



Ivo M. D. Rocha and André C. Marta

The effect of the wing aspect ratio on the flutter speed was studied, which showed
that the wing bending rigidity plays a crucial role on the aeroelastic instabilities and
further illustrating the major design challenge of increasing the aspect ratio to improve
the lift-to-drag ratio.

The optimization test cases served as another illustration of the aeroelastic framework
versatility and also verify the results that were well withing expectation for the static
aerodynamic and structural cases, and the dynamic aeroelastic final case.
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