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IDMEC
Instituto Superior Técnico
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Abstract. This work provides a solution for the safety enhancement of small fixed-wing
UAVs regarding obstacle detection during flight. The main goal is to implement an optimal
multi-sensor system configuration. To achieve it, preceding works regarding the integration
of available sensors in such systems were studied. As a result, select sensors (ultrasonic
sensor, laser rangefinder, LIDAR and RADAR) were modeled for collision detection and
avoidance simulations using the potential fields method. An optimization study using a
genetic algorithm was conducted to find the sets of sensors and respective orientation that
result in the best collision avoidance performance. To do so, a set of randomly gener-
ated collision scenarios with both stationary and moving obstacles were generated. This
study resulted in relatively simple detection configurations that still provided high collision
avoidance success rate. The ultrasonic sensor revealed to be inappropriate given its short
range, while the laser rangefinder benefited from long range but had very limited field-
of-view. In contrast, both the LIDAR and the RADAR are the most promising, as they
exhibit not only a significant range but also a broad field-of-view. The best multi-sensor
configurations were either a front-facing LIDAR or RADAR, complimented by a pair of
laser rangefinders pointing sideways at an angle of 10 or 63 degrees, respectively. Once the
hardware that should integrate an optimal system was known and available, the assembly
of the final system, including the sensors and a PixHawk flight controller, was designed.
The appropriate software (PX4 and QGroundControl) was also built and adapted to the
current work. To validate the proposed system, all sensors were first individually tested
before assembling the complete system. The bench tests attested the accuracy of the sensor
specifications and previous simulations. As such, ground tests using a simple rover shall
follow. Once the system is validated under these conditions, flight tests may begin.

Keywords: Sense and avoidance, collision avoidance, sensor fusion, optimization, laser
rangefinder, LIDAR
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1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have received considerable attention in a myriad of
operations due to their enhanced stability and endurance. Despite being initially devel-
oped for military purposes [1], there has been a notable upsurge in the civilian market for
UAVs [2].

Some applications of UAVs present high collision risk. Due to their ability to work in a
collaborative and cooperative manner, swarms of drones are typically used for surveillance
purposes, tracking and localizing objects. One of the most significant challenges regarding
the navigation of a swarm of agents is collision avoidance. Collision avoidance systems
are responsible for guiding an autonomous agent to safely and reliably avoid potential
collisions with other agents in the swarm as well as with other objects in the environment.
The capacity to locally sense and avoid items in the environment becomes more crucial
for agents to be fully autonomous and, in turn, for systems to be more robust [3]. Drones
are also required to exhibit a practical resolution for a Sense and Avoid feature as part
of the NextGen [4] strategy for integrating UAVs into the U.S. National Airspace System
(NAS). In fact, all UAVs must deploy an automated Sense and Avoid intelligent system
that provides safety levels comparable to or even superior to those of manned aircraft [5].

Fittingly, this work specifically addresses the safety enhancement of small fixed-wing
UAVs (maximum take-off weight < 25 kg, range < 10 km, endurance < 2h and flight
altitude < 120 m), particularly with regard to the detection of obstacles during flight and
the automatically triggered collision avoidance maneuver. It is part of a comprehensive
obstacle detection and collision avoidance system, representing a two-stage ”sense” and
”avoid” problem, being this work more focused on the former. Preceding this work, dif-
ferent detection systems were simulated using laser rangefinders and RADARs in different
configurations [6]. Through the Potential Fields method and resorting to an optimization
algorithm, a possible configuration of the UAV detection system was reached. Subse-
quently, ultrasonic sensors and laser rangefinders have been employed in the hardware
implementation of an effective Sense and Avoid System on a simple rover [7]. In this
work, the main goal is to implement an adapted version of the forementioned systems
on a small fixed-wing UAV, integrating an optimal multi-sensor configuration that can
include ultrasonic sensors, laser rangefinders, RADARs and LIDARs.

2 SENSOR MODELLING

The next subsections describe different models of active non-cooperative sensors: the
ultrasonic sensor, the laser rangefinder, the LIDAR (Light Detection and Ranging) and
the RADAR (Radio Detection and Ranging), as illustrated in Fig. 1, followed by their
comparative analysis in Tab. 1. Different models were developed by [8] and further
adapted to the present work.

2.1 Ultrasonic Sensor

This sensor generates a sound, which is then reflected by the obstacle and recorded
by the sensor. If the velocity of the radiated sound in the air medium is known, the
distance from the point of greatest reflection to the obstacle can be calculated [13]. Using
ultrasonic sensors proves to be advantageous mainly due to the ease at which this simple
technology can be sized down. However, because these are proximal sensors, their signal
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(a) Ultrasonic sensor. (Source: MaxBotix.)
(b) Laser rangefinder. (Source: Light-
Ware.)

(c) LIDAR. (Source: LightWare.) (d) RADAR. (Source: Ainstein.)

Figure 1: Active non-cooperative sensors.

Table 1: Sensor hardware specifications.

Ultrasonic
sensor

Laser
rangefinder

LIDAR RADAR

MB1242 [9] LW20/C [10] SF45/B [11] US-D1 [12]

Range (m) 7 100 45 50
Horizontal FOV (◦) 0 0.3 20-320 43
Resolution (cm) 1 1 1 –
Accuracy (m) 0.1 0.1 0.1 0.04
Update rate (Hz) 7 388 5000 100
Power supply voltage (V) 3-5.5 4.5-5.5 4.5-5.5 5-5.5
Power supply current (mA) 4.4 100 300 400
Outputs and interfaces Serial and I2C Serial and I2C Serial and I2C,

Micro USB
UART, CAN

Dimensions (mm) 22x19x15 30x20x43 51x48x44 108x79x20
Weight (g) 5.9 20 59 110

quickly attenuates and their capacity to measure distance is typically limited to less than
10 meters [14]. This type of sensor has a wide FOV that translates to a beam pattern
with axial symmetry, as represented in Fig.2.

Since the ultrasonic sensor only outputs a distance, it leaves all the interior beam points
located at a specific distance from the UAV as potential object positions. This results
in errors that shall be avoided, as well as other issues that arise from sound reflection.
The sound reflection law states that the reflected sound wave’s angle with the normal
of the surface is preserved. Thus, the ultrasonic sensor requires a perpendicular surface
in order to detect an object, which in turn implies that the targets format is crucial
to the mission’s success. It is vital to recognize the final results can only be used as
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Figure 2: Ultrasonic sensor beam pattern [7].

a reference given that these simulations only use spherical-shaped targets (and different
target formats could either improve or worsen the outcome). In short, the model must
check for these possibilities at all times:

1. The presence of any spherical surface point within the sonar beam pattern;

2. The perpendicularity of the sound wave direction with its reflecting surface.

Verifying these conditions requires considerable computing time. Therefore, a progres-
sively complex approach that avoids unnecessary blocks of code was implemented [7].
First, the beam pattern is reduced to a cylinder. When the center of the obstacle is found
to be inside the cylinder, a more thorough analysis is performed to identify which portion
of the spherical surface, if any, is in fact inside the beam pattern.The last stage addresses
the perpendicularity issue. The final surface computed in the preceding phase is defined
as a list of points with a sampling ratio 25 times bigger for each spherical coordinate (in
relation to the first list of points).

2.2 Laser Rangefinder

Laser rangefinders are able to compute distances to obstacles by emitting a laser pulse
and measuring the time it takes for the reflected beam to be detected, given that laser light
beams move at a known speed. This principle is quite common among sensors, accounting
for lightweight, low-cost technology [15]. However, it is limited by weather conditions, as
laser light might scatter in the presence of clouds, fog or atmospheric attenuation.

Given that all sensors’ models may be implemented at an angle β relative to the
longitudinal axis, our model assumes the use of two symmetrical sensors at the angles β
and −β whenever β ̸= 0.

Considering the obstacles as spheres, this can be modeled as a simple interception
between a line and a spherical surface given by

∥x− c∥2 = r2 (1a)

x = o+ dû, (1b)

where x is a generic point on the line and/or sphere, c is the centre point of the sphere,
r is its radius, û is the unit vector that defines the line direction in 3D space and d is the
distance from the origin of the line. Combining both equations leads to an easily solvable
quadratic equation,

d2(û · û) + 2d[û · (o− c)] + (o− c) · (o− c)− r2 = 0, (2)
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that returns a solution if 0 < dsol < Rd. In real conditions, the laser would not reach the
furthest point, reflecting on the closest one. Therefore, if there are two solutions in this
interval, only the smallest one prevails. The reflection point with the spherical surface
can be easily obtained from Eq. (1b).

2.3 LIDAR

Light Detection and Ranging (LIDAR) emits short and precise laser light impulses with
high frequency, that in turn, are reflected and received again by the sensor, measuring
the time it took for them to return. Although this technology is similar to the laser
rangefinder’s, it is multidirectional. Thus, its execution goes beyond simply detecting an
obstacle’s range and 3-D point cloud can be acquired through a vast array of distance
measurements.

The LIDAR model is very similar to the laser rangefinder’s. As such, only the points
that are closest to the sensor are detected. This implies that if an object is totally
visible, it is considered that its half was detected and the remaining of the obstacle is
reconstructed assuming symmetry, where the center of symmetry is the medium point of
the segment connecting the first and last point of the cluster. In the present simulations,
this distance corresponds to the diameter of the obstacle. This model discards obstacles
that are hidden or outside FOV.

Figure 3: Obstacle reconstruction using a LIDAR [8].

A common issue lies within the higher distance between consecutive points in farther
obstacles which results in smaller detected dimensions (see Fig. 3). To solve this problem,
the measured diameter is passed through the time filter [16],

Dk = Dk−1 +G (Dm −Dk−1) , (3)

where G(0 < G < 1) is the filter gain, Dk is the filtered diameter at instant tk, Dk−1 is the
filtered diameter at instant tk−1, and Dm is the measured dimension at instant tk. The
gain must be carefully chosen because it affects how quickly the dimensions change. While
a small gain (i.e., slow variation) is better for noisy surroundings, it is not appropriate
for objects with high relative speeds. The gain is given by

G = 1− n
√

1− p, (4)

where p corresponds to a fraction that represents the desired accuracy of the dimensions
and n corresponds to the number of filter cycles required to get an accuracy of p. Classic
Kalman filters [17] were employed for the tracking phase, where the motion of obstacles
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was assumed to be two-dimensional, linear, and constant over successive scans. This
simplification, which takes into account a high scanning frequency, accurately captures
the targets’ state.

2.4 RADAR

Radio Detection and Ranging (RADAR) is one of the most popular sensing technolo-
gies. It consists of a transmitting antenna producing electromagnetic waves (in the radio
or microwave spectrum) and a receiving antenna, which collects waves echoed from static
or dynamic obstacles [18]. By measuring the time lapse between the transmitted and
received signal, it is possible to determine the distance between the sensor and the target,
since radio waves move at a known speed, in a way that can be projected mathematically.
Despite being very similar to the LIDAR, RADAR technology is distinguished by the
frequency of the emitted radiation.

In this case, the state estimation is more complex than the one employed in the LI-
DAR model, given the RADAR sensor provides the range, bearing, and elevation of
the observed obstacles. These outputs are polar, while the intruder dynamics are best
described in rectangular coordinates. Due to its straightforward implementation, the con-
verted measurement Kalman filter (CMKF) was chosen in [8]. The 2-D model used in the
simulations shown is represented by{

xu
m = λ−1

α rm cos (αm)

yum = λ−1
α rm sin (αm)

(5)

where (xu
m, y

u
m) are the measurements converted to the Cartesian frame, rm is the measured

range, αm is the measured azimuth and λα is the bias compensation factor expressed as

λα = e−σ2
α/2, (6)

where σα is the standard deviation of the noise in the azimuth measurements. The
compensation of the bias is multiplicative due to the use of the unbiased conversion and
modeling the measurement errors as Gaussian white noise. The covariance matrix used
in the Kalman Filter is given by

Ru =

[
var (xu

m | rm, αm) cov (xu
m, y

u
m | rm, αm)

cov (xu
m, y

u
m | rm, αm) var (yum | rm, αm)

]
, (7)

with the details of the computation of these variances found in [19].

2.5 Multi-Sensor Data Fusion

All of these sensors (and respective models) provide input that allow the avoidance
system to actuate. However, if the system’s architecture is composed by more than one
sensor, the data provided must be merged in some way. Following best practices [20], the
weighted filter method is used in the present study. The principle behind this method is
simple: each sensor is given a weight that is based on how reliable it is. Reference data
sensors that provide information about the UAV state must be installed. Considering that
changes in the distance to obstacles correspond to changes in the UAV location, reference
data sensors like IMUs and optical flow sensors are used to assess the accuracy of the main
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data and aid in selecting the best sensor. In the particular case of fixed obstacles, the
aforementioned variances in distance ought to match. The weights are then calculated by
applying a differential norm to compare all conceivable sensor combinations of main data
and reference data. In each instant, the obstacle distance measurement corresponding
to the sensor with the lowest weight is chosen, and the remaining measurements are
discarded on the grounds that they are corrupted. Nonetheless, the sensor readings are
fused in accordance with their weights if the computed weights have a low variation.

3 OPTIMAL SENSING SYSTEM

An optimization study was conducted to find the types of sensors and respective orien-
tation that result in the best collision avoidance performance. To do so, a set of randomly
generated collision scenarios with both stationary and moving obstacles were generated.
The sensors modelled in Sec.2 were tested for each of these scenarios, varying their orien-
tation until optimal configurations were reached. The scenario generation algorithm and
multi-sensor optimization was further developed based on [8].

3.1 Scenarios Generation

In order to create scenarios that are suitable for this study, a scenario generation
algorithm was created. Each scenario must specify the obstacle’s initial position, velocity
and radius. It also includes a pre-planned path and waypoints that the UAV must follow.

Figure 4 is based on the graphical representation of this algorithm [7], depicting the
processes that lead to generating a scenario. Different bounds are defined regarding
the kinematic and dimensional properties of the obstacles and the UAV itself. Various
stochastic and partially stochastic processes were then extracted from these intervals,
creating random values for the different variables.

Figure 4: Scenario generation algorithm [7].

Partially stochastic processes have been used in two different cases: determining the
velocity orientation of moving obstacles and setting the position of static obstacles. In
the former, the goal is to ensure that deviation from the obstacles to the center of the
graphical window is not predicted by initial conditions, i.e., initially, the direction of the
obstacle’s velocity shall point to the centre of the window, rather than pointing outwards,
increasing the possibility of collision. In the latter, the initial position of the static obstacle
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must not be within the safety radius around the waypoint, given that the UAV must pass
through it.

Figure 5: Randomly generated scenario.

An example of a resulting scenario is plotted in Fig. 5. This scenario generating
function simply accepts the predetermined path and waypoints of the UAV as an input
before combining them with a list of moving and static obstacles to produce a scenario. If
the UAV does not go beyond any obstacle’s safety radius throughout the whole simulation
(without any sensors), the scenario will be discarded. Until there are n scenarios with an
impending collision, this process is repeated.

3.2 Optimization Technique and Problem Formulation

To determine the optimal sensor configuration, different sensor sets were tested. The
parameters that characterize each sensor model were obtained from their technical man-
uals or inferred from available data summarized in Tab. 1. Since our simulations were
restricted to the horizontal plane of motion, the vertical FOV is not relevant.

Forty collision-leading scenarios were randomly generated, with obstacle parameters
varying according to the limits set in Tab. 2.

Table 2: Data for randomly generated imminent collision scenarios.

UAV speed # fixed obst. # moving obst. obst.radius obst.speed obst.direction

[5, 15]m/s {0, 1, 2} {0, 1, 2} [0.5, 2]m [5, 15]m/s [0, 90]◦

In order to optimize the sensor orientation β, a S&A metric function f(β), to be
minimized, was defined as

f(β) =
∑
j

∑
i

(
−dmin(i) + ϕ1 |max (Rs(i)− dmin(i), 0)|2 + ϕ2 |max (Rc(i)− dmin(i), 0)|2

)
,

(8)
where the first term drives the evasion maneuver to maximize the minimum distance dmin

between the UAV and the obstacle i, the second term represents the penalty when the min-
imum distance violates the safety radius Rs (dmin ≤ Rs), and the last term represents the
penalty when the minimum distance violates the obstacle collision radius Rc (dmin ≤ Rc).
The metric accumulates not only for every obstacle i in each scenario but also for all
scenarios j. In order to penalize collision cases more than close-calls, the weights were set
to ϕ1 = 10 and ϕ2 = 50.
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(a) Pair of laser rangefinders. (b) Pair of laser rangefinders and a RADAR.

Figure 6: S&A metric as function of laser rangefinder orientation.

Figure 6 shows the metric defined in Eq. (8) for two particular sensor solution cases:
i) using a pair of laser rangefinders with a 100m range, symmetrically pointing forward
with an angle β with respect to the UAV longitudinal axis; and ii) adding a RADAR with
a 120m range pointing in the direction of the UAV longitudinal axis.

In both cases, the metric proves to be noisy. Thus, the optimization technique selected
to find the minimum of f(β) was the Genetic Algorithm (GA) implemented in MATLAB.
This gradient-free, population-based method, deals with a set of solutions that are updated
simultaneously in each iteration. In practice, compared to other minimization algorithms,
this reduces the likelihood of the result being a relative minimum. This problem can be
posed as

Minimize f(β)

w.r.t. β

subject to βmin ≤ β ≤ βmax

(9)

where βmin and βmax are the lower and upper bounds of β, respectively, to be defined for
each particular case. Notice that β is a vector if multiple sensors are used.

The initial population was set to be created with a uniform distribution; the crossover
function was set to create 80% of the population in each generation; because the variables
are bounded, the mutation function randomly generates directions that are adaptive with
respect to the last successful or unsuccessful generation, where the chosen direction and
step length satisfy the set bounds. The convergence criteria were set such that the global
minimum was found in a timely but accurate manner: a function convergence of 10−3

was used with 10 stall generations, and a maximum of 50 generations prescribed. The
population size was set to 30 individuals. These parameters were chosen following best
practices. The simulations were run on an 1,4 GHz Intel quad-core i5 with 8 GB 2133
MHz RAM.

3.3 Optimal Sensing Configurations

The following subsections are dedicated to detailing the proposed sensing architec-
tures, further explaining each solution and the respective optimal result. In the end, the
performance of the different sensor sets will be summarized and compared, in order to
implement the best solutions.
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3.3.1 Two Ultrasonic Sensors

For a set of two ultrasonic sensors, the orientation of each sensor was bounded between
0◦ and 90◦ from the longitudinal axis and the range was set to 6m. To simplify the
problem, the two sonars were considered to have a symmetrical orientation, resulting in
just one design variable. A narrow beam pattern was adopted to reduce computational
cost.

The GA minimization terminated at 20 iterations, due to average change in the fitness
value less than the specified tolerance, after performing 592 function evaluations for 39
hours and 40 minutes. It reached an optimal orientation of 36.5◦ (see Fig. 7).

Figure 7: Optimal orientation for two ultrasonic sensors configuration.

The results, summarized in the first line of Tab. 3, are not satisfactory for either
case, since the sensor’s scanning pattern allows for the safety radius to be breached too
many times. This was expected due to the short range of ultrasonic sensors, that makes
it impossible for the UAV to detect the obstacle and replan its trajectory in a timely
manner.

3.3.2 Two Laser Rangefinders

Analogous to the previous case, a set of two laser rangefinders with symmetrical ori-
entation was considered, but adopting a sensing range of 100 m.

After 19 generations, the GA optimization algorithm finished, corresponding to 564
function evaluations and a computing time of approximately 6 hours. The optimal sensor
orientation was 34.4◦, which corresponds well with one of the approximate minimum
shown in the preliminary study in Fig. 6. The optimal two laser rangefinder sensor
configuration is illustrated Fig. 8.

Figure 8: Optimal orientation for two laser rangefinder configuration.
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The performance of this optimal configuration is summarized in the second line of
Tab. 3. Although the optimal configuration only fails once in 40 scenarios, the safety
radius was breached in 23 of them. This result was expected, since a UAV equipped only
with two laser rangefinders is not capable of properly tracking the moving obstacles when
collisions are imminent.

Compared to the previous case of ultrasonic sensors, these simulations demonstrated
that laser rangefinders not only prevent more collisions but also more close calls. Overall,
these sensors perform better under the given circumstances.

3.3.3 Two RADARs

Once again, the two RADAR sensors were considered to be symmetrical about the
UAV longitudinal axis and the orientation spanned from 0◦ to 90◦. Each RADAR had a
range of 50 m, an accuracy of 0.04 m and a FOV of 43◦.

After 11 generations, the optimizer finished 340 function evaluations. The optimal
RADAR orientation was 9.2◦, as illustrated in Fig.9.

Figure 9: Optimal orientation for two RADAR configuration.

Another configuration worth studying would be a sensor orientation close to 21.5◦,
which would yield the same result as if the UAV were equipped with a single RADAR
with double FOV (86◦). Table 3 includes the comparison between this configuration, the
optimal orientation and a single RADAR pointing forward.

Regarding actual collisions, obstacles that approach the UAV from an angle are more
likely to be detected by the optimal solution rather than by the single RADAR config-
uration. As can be seen in Tab. 3, the number of failures increase as the orientation
decreases (for this particular case), which in turn makes the success rate decrease.

By overlapping the FOV of the two sensors, the accuracy is reduced through the data
fusion algorithm. Thus, in this case, having a narrower FOV (β = 9.2◦) and in turn,
the juxtaposition of both RADARs proved to be almost as effective as the double FOV
configuration (β = 21.5◦).

These simulations showed that the reduced accuracy of the RADAR proves to be
impactful on the precision of obstacle tracking compared to that of the laser sensors.
Despite having a broader FOV and resulting in less close calls, the RADAR solution
led to just as many collisions, which means that the two laser rangefinder configuration
remains as promising (same success rate). It is reasonable to say that while RADAR FOV
is more crucial for detecting obstacles, the sensor’s accuracy is the most significant factor
for effective collision avoidance.
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3.3.4 Two LIDARs

Each LIDAR was modelled with a range of 45 m, an accuracy of 0.1 m and a variable
FOV. According to hardware specifications (see Tab.1), this FOV can range from 20◦ to
320◦, thus, a FOV of 180◦ was chosen. This value ensures a reasonable trade-off between
timely scanning frequency and a broad scope.

However, this makes optimization redundant, as illustrated in Fig. 10. This happens
due to the nature of the scenario generation algorithm used: because the obstacles are
spawned inside the limits of the scenario, it is worthless to track the area behind the UAV
in the initial instant. Furthermore, from this instant on, if an obstacle were positioned
behind the UAV, it would have already been tracked before due to the wide FOV and long
range of the LIDAR. The overlapping of the FOV in the case of a two LIDAR solution
does not prove to be advantageous either. Note that this is only verified for a FOV of
180◦. If the FOV were smaller, it would be convenient to optimize the sensor orientation.

In this particular case, it is fair to state that the most beneficial solution would be to
use a single LIDAR pointing forward, since it decreases hardware cost. This configuration
is illustrated in Fig. 11.

Figure 10: S&A metric as function of sensor
orientation for a set of two LIDAR.

Figure 11: Single LIDAR configuration.

Table 3 includes the performance comparison for different orientations of two LIDAR.
As mentioned above, the success rate is the same for both cases. Compared to the previous
types of sensors studied, the LIDAR performs better overall. The wide FOV reduces the
chances of close calls and eliminates the possibility of failure.

3.3.5 Performance Comparison of Sensor Sets

Other solutions that involved three sensors were optimized, for example, including two
laser rangefinders symmetrical about the UAV longitudinal axis, whose orientations were
bonded between 0◦ and 70◦; and one fixed RADAR pointing forward. This configuration
was also replicated with two lasers and one LIDAR, two RADARs and one laser, and 2
RADARs and one LIDAR. The performance of the optimal version of these sets of sensors
is summarized in Tab. 3, as well as the results from the solutions with only one type of
sensor. Optimizations with different sets of sensors were performed but left out of this
table in order to avoid redundancy of results.
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Table 3: Comparison of the optimal performance for the different sensor sets studied.

Sensors Metric Failure Close call Success rate

2 SONARs @ 36.5 ° 804.0 4/40 30/40 90.0%
2 lasers @ 34.4 ° -414.0 1/40 23/40 97.5%
2 lasers @ 63.4 ° + 1 RADAR @ 0 ° -1240.4 0/40 11/40 100.0%
2 lasers @ 10.0 ° + 1 LIDAR @ 0 ° -1606.4 0/40 8/40 100.0%
2 RADARs @ 9.2 ° -1171.0 1/40 12/40 97.5%
2 RADARs @ 21.5 ° -1141.7 1/40 12/40 97.5%
2 RADARs @ 35.3 ° + 1 laser @ 0 ° -1480.1 0/40 9/40 100.0%
2 RADARs @ 28.1 ° + 1 LIDAR @ 0 ° -1574.3 0/40 9/40 100.0%
1 LIDAR @ 0 ° -1480.1 0/40 9/40 100.0%

For the set of scenarios tested, the RADAR performed better than the laser rangefinder,
which in turn performed better than the ultrasonic sensor if only one sensor type is to be
used. Nonetheless, this is tightly dependent on the sensor characteristics, such as range,
FOV and accuracy. Furthermore, a single LIDAR was enough to outperform all other
types of sensor.

As expected, all the solutions that present a 100% success rate include either a RADAR
or a LIDAR in their configuration. If the LIDAR is kept out, it is the two RADAR and
one laser rangefinder solution that produced the least collisions and led to the least close
calls. From these findings, and because of the 0◦ FOV of a laser rangefinder, it is expected
that increasing even more the number of sensors would lead to even better performance,
thought at a higher hardware cost.

Comparing the solutions that include a LIDAR, it is proved that it is not significantly
advantageous to pair it with other types of sensors, since it already performs distinctively
well on its own. Regardless, the two laser and the two RADAR solution are beneficial
due to reducing the likelihood of close calls. Despite the LIDAR having a wide FOV
that is not increased by either configuration, the chances of breaching the safety radius
decrease because the other sensors provide additional detection capacity. I.e., since the
LIDAR sweeps the designated area at a certain frequency, there are time instants when
a fraction of the area within the LIDAR FOV is ’unsupervised’. Therefore, it is useful to
have another set of sensors that track obstacles approaching from that specific area.

To summarize, the optimized configuration had a very similar performance in four
different cases (reflected in the Metric column), being the most promising one composed
of one LIDAR pointing forward, complemented by two laser rangefinders pointing at 10◦

sideways. These four configurations are illustrated in Fig. 12.

4 HARDWARE AND SOFTWARE IMPLEMENTATION

This section provides an introduction to the flight controller and ground control station,
including the steps that must be taken to build and adapt this software to the current
work, and the electrical layout of the final system.

Some basic concepts are needed in order to build and fly an unmanned vehicle using
PX4 [21]. PX4 is a core part of a broader drone platform that includes the QGroundCon-
trol ground station, the Pixhawk hardware, and MAVSDK for integration with companion
computers, cameras and other hardware using the MAVLink protocol.
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(a) Two RADARs and one laser
rangefinder.

(b) Two lasers and one LIDAR.

(c) Two RADARs and one LIDAR.

(d) Single LIDAR.

Figure 12: Optimal sensor configurations to be tested.

4.1 Flight Controller

PX4 is a powerful open source autopilot flight stack that can be built on a console
or in an IDE, for both simulated and hardware targets. PX4 can be run on various
hardware platforms, including Pixhawk. The Pixhawk 2.1, or Hex Cube Black, was the
chosen controller in [7], so it will also be used in the current work. Generally, the most
recent stable released version of PX4 ought to be used, to benefit from bug fixes and get
updated features. As such, this is the version that is installed by default and integrated
into QGroundControl. However, the current stable release (v1.13.3) does not include
the driver for the LIDAR used in this work. Consequently, it was necessary to switch
to a more recent beta release (v1.14) that includes it. The PX4 source code is stored
on a Github repository called PX4/PX4-Autopilot. To get release 1.14 and enable the
necessary drivers, the PX4 Developer Guide includes tutorials on Building PX4 Software
[22] and PX4 Board Configuration [23].

Once these steps are completed, the PX4 Autopilot firmware will be compiled, gener-
ating an executable file that can be uploaded onto the flight controller.

4.2 Ground Control

A ground control station works as a virtual cockpit, serving as an interface between
a flight controller and a human operator. Typically, a software running on a computer
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is connected to the flight controller through wireless telemetry. This enables the human
operator to communicate with the aircraft during flight, allowing the acquisition of rel-
evant data such as position, velocity, acceleration, or any other sensor data. It can be
installed simply by running the executable file available in the QGroundControl online
user manual [24].

The PX4 firmware can be installed onto the flight controller by following the steps in
the PX4 User Guide [25]. The user is then prompted by QGroundControl to calibrate
the vehicle, including the configuration of the controller’s built-in sensors, radio receiver,
flying modes, power, and motors.

4.3 Electrical Wiring Layout

The electrical layout can be designed once the hardware is chosen and calibrated.
It is possible to connect all the components as shown in Fig. 13 using the connections

and supplementary devices (GPS and power module) included within the Cube Black
package. It is necessary to employ a power module to provide the flight controller a
regulated power source and power the electronic speed controller (ESC) at the same time.
The ESC also draws power from a battery and operates the motor using a PWM signal
from one of the PWM I/O entries. A PPM Sum Receiver is also present, and it needs
to be connected to an RX IN input. This component converts the PWM signals from
the radio receiver into a single PPM signal that the flight controller can process. The
telemetry module communicates through radio waves with a second telemetry module
that is linked to a ground station. This allows real-time data to be exchanged and orders
to be sent to the vehicle. Lastly, the I2C ports can be used to connect sensors, namely
the ultrasonic sensot and the laser rangefinder.

Figure 13: Electrical wiring diagram [7].
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5 SENSOR BENCH TESTS

To validate the capabilities of a S&A system, several experiments were performed.
More specifically, the sensors that integrate the optimized configurations found in Sec.
3 were individually tested before the complete system. Due to the risk associated with
flight testing, experiments were based on ground tests using a simple rover. Once the
system is validated under these conditions, flight tests using a small fixed-wing UAV may
begin.

5.1 Ultrasonic Sensor

The MB1242 ultrasonic sensor must be connected to the Pixhawk 2.1 and activated in
QGroundControl in order to perform the bench tests [7]. These tests included variations
in material of the detected obstacle and angles. Figure 14a) demonstrates an experiment
where the object to detect is in front of the sensor. In Fig. 14b), the idea is to determine
the sonar capability of detecting an object which has an angular deflection (θ) in relation
to the sensor.

(a) Straight on obstacle. (b) Off-set obstacle.

Figure 14: Ultrasonic sensor bench tests.

For these first experiments, the target object is a rectangular wooden board with size
30x25cm as seen in Fig. 15. The frontal test was also repeated with a rectangular XPS
board (125.5x60cm) as the target object.

Figure 15: Experimental setup.

During these experiments, each board was positioned at different distances relative to
the sonar (20cm to 760cm) and the sensor data was recorded for 30 seconds for each
position. This method was aimed at determining, for each position, the fraction of time
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where the sensor was actually detecting its target and how much these measurements
were deviated from the correct distance.

It is important to consider that the target material could affect the performance of this
sensor. The MB1242 data sheet [9] mentions that this sensor’s ideal surface to detect is
hard, smooth and non-porous. Although wood is not a perfect example of an ideal surface,
its properties are not far from that category. To determine whether these conclusions are
applicable to other materials. A target made of XPS was also tested, which is not as hard
as wood, yet is more porous. Figure 16 represents the detection rate for both materials.
When testing with a XPS board, the maximum range decreased and the sensor performed
worse overall. This decrease in performance was foreseeable since XPS’s properties do not
match those of an ideal material (hard, smooth and non-porous).

Figure 16: MB1242 detection rate for different materials.

The last significant point is that the performance of this sensor is impacted by the
target’s rotation within its inertial referential. Only when the sound is reflected back
from the target can the sonar identify it. According to the principles of sound reflection,
this is only conceivable if the normal vector of the surface in question is parallel to the
trajectory of the sound being emitted until it reaches the desired target.

Empirically, this translates to the results that follow. Figure 17 shows the sensor’s
detection rate for various distances and orientations. As expected, the sensor performed
better when the obstacle was completely in front of it, achieving a maximum range of 435
cm with perfect a detection rate, although the datasheet states 640 cm. Additionally, the
maximum range decreased when augmenting θ, which was also an expected behaviour.
Moreover, this sensor proved to be very directional as it stopped detecting any targets for
θ ≥ 40◦.

Figure 18 shows the average absolute error at each distance from the sensor. No relation
between the real distance from the sensor and its error was detected, given that all points
seem to be almost randomly dispersed from 300 cm onwards. Moreover, the average
absolute error never surpassed 30 cm. This error occurs in the wood frontal test, which
leads to the conclusion that this board might not match the ideal surface for this type
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Figure 17: MB1242 detection rate for different angles of incidence.

of sensor to detect. However, the collision avoidance system needs to be robust enough
for most materials, i.e., if the available sensor fails this bench test, it is not sufficiently
accurate for the purpose of this work.

Figure 18: MB1242 average absolute error for different angles of incidence.

According to the datasheet [9], the sensor is calibrated and tested to provide stable
range readings to large targets even in electrically and acoustically noisy environments.
It also states that the sonar should ideally be used indoors. Nonetheless, it is important
to note that these tests were done outdoors, due to the nature of this project. Since this
sensor is intended to integrate a collision avoidance system for small UAVs, its applications
require that it performs well outdoors. However, this also means that the results shown
can and have been affected by exterior noise.

Additionally, an experimental beam pattern was generated using the maximum range
recorded for each orientation, shown in Fig. 19. Such beam patterns tend to be particu-
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larly advantageous for S&A systems since they restrict their detecting volume, ultimately
allowing the controlling device to pinpoint the target’s location with a high degree of
accuracy.

Figure 19: MB1242 empirical beam pattern.

5.2 Laser Rangefinder

Prior to testing, it was necessary to configure the LW20/C laser rangefinder within the
flight controller’s environment [7]. Once the configuration was done, the perfomance of the
sensor could be assessed through an identical experience to that of the sonar. However,
since the laser rangefinder is completely directional, it is not necessary to experiment with
off-set obstacles.

In frontal tests, the laser maintained a perfect detection rate before reaching 85 m,
as seen in Fig. 20. From this distance onward, the detection rate decreased non-linearly
until it reached 100 m (marked as a dashed red line in Fig. 20). Ultimately, the complete
range promised in the datasheet was not attained with a perfect detection rate.

Figure 20: LW20/C detection rate.
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These tests also served to prove how much of an impact directionality has on this type
of sensor. The wooden board had to be perfectly aligned with the laser rangefinder in
order for it to detect it correctly. When translating this to the optimal sensing system
designed in Sec. 3, it means the sensor has to be flawlessly aligned with the UAV’s
longitudinal axis.

Lastly, the average absolute error, plotted in Fig. 21 was mostly between 0 and 50 cm,
but increased with the distance from the sensor. The results were not as satisfactory for
distances greater than 50m.

Figure 21: LW20/C average absolute error.

5.3 LIDAR

The chosen LIDAR was the SF45/B model by LightWare [11]. It can be connected to
the flight controller’s TELEM2 port (TX and RX pins) using a DF13 header. The red
and black wires (VCC and GND) were connected with an external power supply and the
remaining three wires (blue, white and green) were left unconnected. Figure 22 ilustrates
the eletrical wiring diagram for this configuration.

Figure 22: Eletrical wiring diagram for SF45/B.
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The LIDAR also comes with a micro USB port that connects to any PC running the
LightWare Studio application for visualisation of results, making configuration changes
and upgrading the firmware. The sensor should be configured by setting the scanning
angle limits to -90◦and 90◦, the baud rate to 921600 and the update rate to 50 Hz. It is
also important to make sure ’scan upon startup’ is enabled.

To activate this sensor within the QGroundControl environment, it is necessary to
follow the instructions in Sec. 4. After that is assured, the user can access the vehicle
setup section and, within the parameters tab, set SENS EN SF45 CFG to the desired
serial port (TELEM2).

In the bench tests, the angles of the detected obstacle and scanning speed of the sonar
were varied. Figure 23 shows the resulting scans from two different experiments: a) the
object to detect is in front of the sensor; and b) the object to detect is at 90◦ in relation
to the sensor. In these tests, the forementioned rectangular XPS board (125.5x60cm) was
used as target.

(a) Straight on obstacle. (b) 90◦ off-set obstacle.

Figure 23: LIDAR bench tests.

On an unobstructed rugby field, the XPS board was positioned at different distances
relative to the LIDAR (0 to 50m) and the sensor data was recorded for 30 seconds for each
position. As expected, this sensor performed better than the others, maintaining a perfect
detection rate through all its range in both experiments, as seen in Fig. 24. However, Fig.
25 shows that the average absolute error was overall lower when the obstacle was aligned
with the sensor. This is likely because the LIDAR scans back and forth from -90 to 90◦,
meaning that for each sweep, it passes twice through θ = 0◦ and only once through each
limit.

Figure 24: SF45/B detection rate. Figure 25: SF45/B average absolute error.
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Although the SF45’s update rate was set to 50Hz, empirically, it is, on average, 37.2Hz.
In LightwareStudio, it is also possible to calibrate the sensor’s cycle delay, which is in-
versely proportional to its scanning speed. The minimum cycle delay (5) corresponds to
the maximum scanning speed (6.3 rad/s) and vice-versa. This implies that, by choosing
a higher sweep speed and maintaining the angle limits, the arc of circle that is not being
detected between each measurement increases. Figure 26 illustrates how the length of
the arc traversed varies analytically with the distance to the sensor and the angular ve-
locity. This graphic shows that, although the LIDAR has a 50m range, at the maximum
scanning speed, it might not be possible to detect an obstacle less than 8m wide at this
distance. When the scanning speed is reduced, the sensor is likely to detect a target of at
least 2.2 m at maximum distance. At minimum speed, this stops being relevant within
the 50 m range. However, if covering a larger area quickly is more important, sacrificing
some visibility at the maximum range might be acceptable. Ultimately, the compromise
should be based on the specific needs and constraints of the system.

Figure 26: SF45/B undetectable arcs for different scanning speeds.

6 CONCLUSIONS

This work presents a comprehensive solution for enhancing the safety of small fixed-
wing UAVs by addressing the critical issue of obstacle detection during flight. A set of
select sensors, namely the ultrasonic sensor, laser rangefinder, LIDAR, and RADAR, were
identified and further employed in modeling collision detection and avoidance simulations
using the potential fields method.

To determine the best combination of sensors and their orientations, these simulations
were used in an optimization study. The study revealed that relatively simple detection
configurations can yield a high success rate in collision avoidance. While the ultrasonic
sensor is found to be inadequate due to its limited range, the laser rangefinder benefits
from a long range, but has a restricted field-of-view. On the other hand, both the LIDAR
and RADAR prove to be the most promising options, offering not only a substantial
range but also a wide field-of-view. Based on the optimization study, the recommended
multi-sensor configurations consist of a front-facing LIDAR or RADAR, accompanied by
a pair of laser rangefinders pointing sideways at either a 10 or 63 ◦angle.

To validate the proposed system, the necessary hardware and software were successfully
implemented, which allowed for the individual testing of each sensor. The bench tests
confirmed the accuracy of the sensors specifications and previous simulations. In the case
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of the ultrasonic sensor, the importance of the material and the angular deflection of the
obstacle to be detected was highlighted. As for the laser rangefinder, the key factor proved
to be directionality. The LIDAR presented less shortcomings, as expected. However, the
sensor’s parameters (update rate, angular velocity and scan angle limits) directly affected
its performance. More specifically, it is necessary to reach a compromise between the
LIDAR scan speed and the effective range of visibility.

In the future, these sensors will be integrated into a multi-sensor configuration to
be tested on a rover. Subsequently, the system’s performance will be evaluated under
realistic conditions through flight testing. Overall, this work provides a comprehensive
methodology for testing and validation of an optimized multi-sensor system configuration
and the proposed system holds great potential for enhancing the safety of small fixed-wing
UAVs during flight.
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