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Abstract. The usage of powerful optimization tools is becoming common in solving
many engineering problems due to available computational resources and mature numerical
algorithms. In this work, an adjoint-based high-fidelity aerodynamic shape optimization
framework is used to manipulate a generic aircraft fuselage shape to minimize the total
aerodynamic drag with specific payload volume constraints. The external fuselage shape is
modified using the free-form deformation (FFD) technique to allow greater flexibility. The
impact of using different deformation strategies applied to the displacement of FFD control
points is studied, including displacements along the normal direction, the transverse axis
directions, and cambering along the longitudinal axis direction. It is demonstrated that
the combination of flexible control point displacement in multiple FFD box cross-section
planes together with a streamwise cambering can produce a very significant drag reduction,
in excess of 40% compared to the selected baseline shape, while still satisfying volume
constraints to account for internal or protruding payloads.

Keywords: aircraft design, gradient-based optimization, adjoint method, free form de-
formation, high-fidelity analysis, aerodynamic performance
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1 INTRODUCTION

In recent years, the aviation industry has been expanding to more diverse solutions,
proposing novel aircraft configurations and shapes. In addition, Unmanned Aerial Vehicles
(UAVs) have been pivotal in multiple areas, such as agriculture, warfare and commodities
built into our society [1–3]. Because of this growing market, aircraft shape optimization
plays a crucial role in enhancing aerodynamic efficiency, payload distribution, structural
integrity and overall flight performance. As this industry keeps evolving towards high-
performance and efficient designs, the optimization of fuselages becomes critical.

Although traditional fuselage designs often present challenges related to drag reduc-
tion, weight minimization, and integration of different payloads, such as radars, gimbals or
other components with random geometries, Computational Fluid Dynamics (CFD) and
Multidisciplinary Design Optimization (MDO) [4] have enabled engineers to push the
boundaries of fuselage designs, resulting in significant performance improvements [5–7].
Fuselage optimization is a critical area of modern aircraft design that has a direct influ-
ence on aerodynamic efficiency, structural stability, and operational flexibility [5, 8, 9].
Reducing parasitic drag [10], which accounts for a huge percentage of an aircraft’s total
aerodynamic drag, is one of the main targets in fuselage design. Through fuselage shape
optimization, designers can have maximum control over airflow, which enables more effi-
cient intersections with wings and tails, which in turn allows for innovative constructions
with high aerodynamic performance [5]. Also, the ability to accommodate random and
modular payload configurations efficiently is another critical factor in modern aircraft
design, particularly in the UAV industry [11]. Unlike manned aircraft, UAVs do not re-
quire pressurized cabins, which offers greater design freedom in shape, weight distribution,
and internal component layout. Therefore, fuselage shape optimization potentially offers
greater performance gains while being flexible enough to accommodate a range of mission
profiles.

In this work, gradient-based techniques will be used to guarantee rapid convergence
to an optimized fuselage configuration, as demonstrated in similar cases [12, 13]. The
gradients of the cost and constraint functions will be efficiently calculated using the ad-
joint method [14], making the computational cost independent of the number of design
variables, which is expected to be large in shape optimization.

Various parametrization strategies will be explored to efficiently optimize the fuselage
shape for best aerodynamic performance for a simple generic fuselage. For this, the free-
form deformation (FFD) method, which is one kind of geometry modification technique
that parametrizes shape perturbation instead of the shape itself used in aircraft design
optimization, will be used [15]. The deformation process will include deformations along
the fuselage axis, radial deformations, and deformations along the normals of the control
points of the Free-Form Deformation (FFD) box. In addition, local shape modifications,
such as cambering specific areas, mainly around the nose or tail area, will be analyzed.

In order to ensure practical feasibility, volume constraints will be included in the opti-
mization framework. These constraints are important to preserve payload volume, as well
as internal component allocation, and to avoid aggressive shape distortions that would
compromise the aircraft’s functional requirements [16, 17]. Through the imposition of
volume preservation in key fuselage regions, the optimization will balance aerodynamic
gains with real-world design constraints.
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2 SHAPE DEFORMATION MODELING

Shape deformation modeling is an important technique in aerodynamic optimization
to drive precise geometric deformation to achieve desired performance goals. Various
techniques can be employed, including basis vector, domain element, discrete, analyti-
cal, Free-Form Deformation (FFD), partial differential equation (PDE), polynomial and
spline, and Computer-Aided Design (CAD) [18–20]. FFD and CAD-based approaches are
very efficient for complex problems [21]. Nevertheless, CAD systems still have problems
parameterizing complex geometries and generating suitable grids for automatic simula-
tions [21], making FFD a promising solution.

The FFD method has been successfully applied in aircraft design problems, such as
helicopter fuselage optimization [22], manipulating the control points within a volume
to generate smooth deformations. Other examples can be found in the works of Ekici
and Juniper [23], Zhao et al. [24]. Moreover, this strategy also supports alterations in
triangulated surface nodes and structure surface meshes along with a decrease in design
variables [25]. Though FFD is not said to control any part of the design directly, it is still
quite effective where solutions to aerodynamics entail huge displacements. The framework
used in this study, Mach-Aero [26], incorporates the FFD method [27, 28].

2.1 Fuselage Deformation using FFD

The first study case is illustrated in Fig. 1, where the CFD mesh of the simplified
fuselage used in the preliminary studies within the corresponding FFD box is shown.
This arrangement sets the baseline geometry, allowing systematic modifications of the
fuselage geometry by displacing control points within the FFD box, which subsequently
rebuilds the 3D computational mesh.

Figure 1: Simplified fuselage CFD mesh with the initial FFD box.

The FFD box resolution, in terms of number of control points, plays an important
role in the flexibility of the deformations and must align with the optimization study’s
goals. A coarser grid with a few control points has a good capacity for preserving global
deformations and, therefore, it is well suited to initial design and shape optimization at
scales like the one shown in Fig. 2a. However, a finer grid with more control points, as
illustrated in Fig. 2b, provides room for local control. The balance between shape degrees
of freedom and computational cost has to be treated with great caution when introducing
additional shape design variables [29].



Lúıs D. Pinheiro, Nuno M. B. Matos and André C. Marta

(a) Coarse FFD box. (b) Fine FFD box.

Figure 2: FFD box modeling.

2.2 Strategies for FFD Control Point Displacements

The parametrization of the FFD box and, hence, of the fuselage shape, can be done
by several strategies with different advantages, depending on the optimization problem,
as illustrated in Fig.4 for three different strategies.

(a) Normal
direction

(b) Radial
direction

(c) Y-, Z-
direction

Figure 3: Different deformation strategies.

The first parametrization strategies (Fig.3a) uses the normal directions of the FFD box
points, hence the deformations are defined in different directions based on the FFD box
and fuselage geometry, offering flexibility to the optimizer. However, this strategies might
produce less intuitive deformations for certain geometries, as the control points will move
in different directions.

The second parametrization strategies (Fig.3b) uses radial deformations, making nec-
essary the definition of a reference axis. By adjusting the fuselage’s dimensions through
scaling functions, this strategies makes it possible to expand or contract selected areas.
However, for the present study, it was not as effective since the goal was to reshape the
geometry in study and not reduce its size [28].

The last parametrization strategies (Fig.3c) performs deformations along the X, Y, and
Z axes. It makes it convenient to use when scaling, stretching, or compressing along the
axes, since it provides controlled shape variation in specific directions and provides the
user with a clear understanding of the optimizer choices.

In addition to the three strategies described, it is also possible to define specific regions
of the fuselage to be parametrized, spatially restricting the deformation region, with the
use of a subset of control points defined by Point Selection. This gives the ability to
deform different parts of the fuselage using distinct functions with different values, as
observed in Fig. 4, which demonstrates how it is possible to reshape only certain parts of
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the geometry in study using the normal vectors of the FFD box.

(a) Specific Volume (b) Specific Points

Figure 4: Specified deformations in the FFD box.

2.3 Cambered Fuselages

While the strategies presented in Sec.2.2 offer great freedom, the desire to employ a well-
defined engineering parameter led to the definition of fuselage camber. Although fuselages
are typically aerodynamically designed to have little contribution to total lift, that can
be obtained by cambering the tail and nose sections [30, 31]. Such parametrization of a
fuselage using camber was defined in the current framework using a quadratic function,
as plotted in Fig. 5a, being the quadratic coefficient used later as a design variable during
optimization. An example of such deformation can be observed in Fig. 5b, where both
nose and trail camber have been added, where the fuselage length was normalized for the
application of the quadratic function along its entire length.

(a) Quadratic camber functions. (b) Nose and tail fuselage deformation.

Figure 5: Camber parametrization.

This strategy can be further customized by selecting only certain FFD control points
to restrict the deformation to only certain fuselage regions, namely by deforming the nose
and tail with different independent curvatures. This selective approach can potentially
enhance lift and stability adjustments while minimizing unwanted aerodynamic distur-
bances, particularly at intersection regions (with wing or tail).
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2.4 Volume Constraints

To prevent that the fuselage shape deformations during the optimization still lead to
internal fuselage volumes that account for specific payload, such as radar or fuel tank,
volume and triangulated surface constraints must be implemented [16].

On one hand, the volume constraint enforces volumes into the fuselages that prevent
excessive deformations that could comprise the necessary payload volume. On the other
hand, the triangulated surface constraint uses an STL file format to define a given 3D
shape that must be encapsulated by the fuselage shape, thus limiting the shape defor-
mation during optimization. The latter constraint facilitates the integration of payloads
into aerodynamic problems, giving more freedom in the optimization. Fig. 6 illustrates an
example of a possible internal (a) or partially external (b) payload shape (sphere) defined
using an STL file.

(a) Internal payload. (b) Partially external payload.

Figure 6: Fuselage volume constraint (in red) defined by triangulated surface.

3 FUSELAGE SHAPE OPTIMIZATION

The baseline fuselage shape shown in Fig.1 will be used as a starting point for the
aerodynamic optimization problem aimed at minimizing the drag coefficient, posed in
standard form as

minimize
x

CD(x)

subject to KSgeom ≤ 0
, (1)

where x is the vector of all design variables (DVs) used in each case, which include the
coordinates of the FFD control points and/or the amplitude of the camber function. The
constraint function KSgeom(x) represents an aggregated geometric constraint based on
the Kreisselmeier–Steinhauser (KS) function, which provides a smooth and conservative
approximation of the maximum deviation between triangulated surfaces [16]. All opti-
mization cases were performed in the MACH-Aero framework [14], using ADFlow [32] to
evaluate the aerodynamic performance. The gradient-based SLSQP algorithm was used
with a convergence tolerance of 10−6 and with a maximum of 1000 iterations.

The fuselage operating condition represented a flight at a speed of 34 m/s at Standard
Sea Level, with zero angle of attack (flow aligned with X-axis).

The different deformation strategies explained in Sec.2.2 are evaluated and theirs effec-
tiveness compared. The strategies individual considered are normal-based deformations
(Fig.7a), directional deformations along a specific axis Y (Fig.7b), Z (Fig.7c) or both
(Fig.7d), and cambered fuselage deformations (Figs.9a, 9b and 9c). The combined cam-
ber and normal vectors (Fig.9d) or Y-/Z-directions (Fig.9e) are also studied. Lastly, the
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effect of volume constraints in the optimal fuselage shape is also studied for both internal
and protruding objects (Fig.10). The detailed discussion of all results is included in Sec.4.

3.1 Selected FFD Points

The first set of studies included the normal-based, and the (Y- and Z-) direction-based
deformation parametrization strategies. Each strategy required specific considerations to
ensure the stability of the optimization process, particularly to prevent the generation
of invalid geometries, such as negative volumes, which would cause the mesh to fail and
compromise the optimization. The resulting optimized fuselage shapes are illustrated in
Fig. 7.

(a) Normal vectors (b) Y direction

(c) Z direction (d) Y and Z directions

Figure 7: Optimal shapes using different parametrization strategies.

For the normal-based deformations, Fig. 7a, it was necessary to carefully select which
regions of the FFD box could be parametrized. Points located near the symmetry plane
(y = 0) were excluded, as their displacements could easily produce negative CFD mesh
volumes and, subsequently, make the optimization process to fail. Additionally, the points
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near the edges of the fuselage, specifically at the nose and tail, were also frozen to pre-
vent geometric inconsistencies at the edges, avoiding similar problems. Furthermore, the
freedom given to the FFD points was kept relatively small to avoid, again, the risk of
generating invalid mesh volumes. These limitations directly impacted the optimization
results, as seen in the corresponding figures and data summarized in Tab.1.

In contrast, the directional deformation strategy, which deforms the geometry along
the Y- and Z-axis, was generally easier to control. As expected, the freedom given to
the FFD points could be increased without immediately risking mesh failures in these
cases. However, this strategy tended to excessively deform certain regions of the fuselage,
particularly near the tail, creating irregular geometries, almost like a twist or warp in
these regions, as observed in Fig.8. Similar to the normal-based strategy, the points at

Figure 8: Irregularities encountered using the directional deformation method

the fuselage leading and trailing edges were kept fixed to avoid negative mesh volumes,
which limited the flexibility of the surrounding regions, thus aggravating the localized
deformations observed.

3.2 Camber Function

The second set of studies was conducted to identify the benefits of adding camber to
the fuselage. The precautions when setting up these cases are primarily related to avoid
creating mismatches in the intersection regions with components such as wings or tails. To
address this issue, freedom was given only at specific longitudinal (X-axis) intervals that
excluded intersection regions to prevent the aforementioned problems. Three different
cases were tested, applying the camber function only in the nose region, tail region, or
both, which produced the optimal shapes shown in Fig. 9,

3.3 Combined Deformation Strategies

The last two studies include the combination of the camber function with the normal-
or direction-based strategy. The resulting fuselage shapes are shown in Figs.9d and 9e,
respectively.

3.4 Volume Constraints

To complete the study, the Triangulated Surface Constraint was tested with the same
different shape deformation strategies. The same 3D object, a sphere, was used in these
cases to represent any given payload. Two different object locations were experimented:
the object inside the baseline fuselage and partially outside, protruding the baseline fuse-
lage shape.

The cross-section of the resulting optimal fuselage shapes obtained with the different
deformation strategies, passing through the object, are illustrated in Fig. 10. The so-
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(a) Restricted to nose. (b) Restricted to tail.

(c) Restricted to nose and tail.

(d) Camber combined with normal vectors. (e) Camber combined with Y and Z direc-
tions.

Figure 9: Optimal shapes with camber deformation strategy.
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lutions to the problems with the object inside the baseline fuselage include: combined
camber and normal-based deformations (Fig.10a), combined camber and deformations
along the Y- and Z-axes (Fig.10b), and deformations only along normal-vectors of the
FFD box (Fig.10c). In addition, the cases with the object initially protruding the base-
line fuselage are shown in Figs.10d and 10e, using normal-vectors, and combined with
z-axis deformation, respectively.

(a) Camber + nor-
mal vectors defor-
mations with sphere
inside fuselage.

(b) Camber + (Y
and Z) deforma-
tions with sphere
inside fuselage.

(c) Parametrization
using normals of
FFD points with
sphere inside fuse-
lage.

(d) Parametrization
using normals of
FFD points.

(e) Parametrization
along Z-axis, com-
bined with normal
vectors of FFD
points.

Figure 10: Optimal shapes using the triangulated surface constraint.

As attested in Fig. 10, each of the presented cases made the optimizer manipulate the
FFD control points in different ways to ensure that the fuselage could envelop the payload
(sphere).

The main differences encountered between the cases shown in Figs.10d and 10e arise
from the variation in the selected points. While deforming the shape using the normal
vectors of the FFD box points, it was necessary to exclude points near the plane of sym-
metry (y = 0) to prevent mesh issues and negative volumes, which caused the differences.
To mitigate this problem, it was given freedom to these points along the Z axis in the
second case, which visibly improved the design, as the fuselage was able to shrink near
the symmetry plane, resulting in a smoother and more effective deformation.
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Finally, the differences between parameterizations with and without the triangulated
surface constraint can be observed in Fig.11, where two different cases are illustrated:
combined camber and normal-based deformations (Fig.11a) and camber with deforma-
tions along the Y and Z axes (Fig.11b), both showing optimized fuselages taking (red)
or not (black) into consideration the triangulated surface constraint. It is clear that, de-
spite using the same parameter values, the resulting shapes differ significantly. It is also
worth noting that, for the optimized fuselages (black), the optimal design variable values
reached their imposed lower bounds, which suggests that the optimizer could have further
reduced the fuselage size in the absence of these.

(a) Camber + normal
vectors deformations.

(b) Camber + (Y and
Z) deformations.

Figure 11: Comparison of optimal shapes with (red) or without (black) triangulated
surface constraint.

4 DISCUSSION OF RESULTS

The drag reduction obtained for each of the different deformation strategies studied in
Sec.3 is listed in Tab.1.

Through the analysis of optimal shapes presented in Sec.3 and the aerodynamic per-
formance gains presented in Tab.1, it is possible to assess about the effectiveness of the
different shape parametrization strategies proposed. Notice, however, that these opti-
mal shapes were obtained from problems that differed slightly in terms of design variable
bounds to overcome mesh morphing fails, as such, the comparisons might not extrapolate
directly to other fuselage geometries.

In the cases with the deformation parametrization along the normal vectors of the FFD
box points, the optimized shapes exhibited fewer irregularities and a more stable CFD
mesh morphing, leading to a nearly 17% drag reduction for either the unconstrained and
internal volume constrained cases, but less an expressive 7% reduction in the protruding
payload case. However, this strategy revealed to be relatively limited and not well adapted
to arbitrary fuselage shapes.

Looking at the strategies using deformations along the Y- and Z-directions, they ex-
hibited a much greater drag reduction compared to the normal direction strategy. The
Y-direction only strategy, corresponding the lateral fuselage deformations led to consid-
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Table 1: Optimization deformation strategy studies and corresponding drag coefficient
reduction.

Parametrization strategy Constraints Opt. shape Min CD ∆CD

(baseline) 0.0189 ref
Normals None Fig.7a 0.0161 -16.6%
Y-axis None Fig.7b 0.0155 -21.6%
Z-axis None Fig.7c 0.0168 -11.7%
(Y, Z)-axis None Fig.7d 0.0114 -40.4%
Nose Camber None Fig.9a 0.0185 -2.1%
Tail Camber None Fig.9b 0.0185 -2.1%
(Tail, Nose) Camber None Fig.9c 0.0184 -2.3%
Camber + Normals None Fig.9d 0.0161 -17.1%
Camber + (Y, Z)-axis None Fig.9e 0.0133 -41.6%
Camber + Normals TS (IS) Fig.10a 0.0162 -16.9%
Camber + (Y, Z)-axis TS (IS) Fig.10b 0.0135 -39.8%
Normals TS (IS) Fig.10c 0.0162 -16.4%
Normals TS (IntS) Fig.10d 0.0176 -7.0%
Normals + Z-axis TS (IntS) Fig.10e 0.0155 -21.3%

TS = Triangulated Surface, IS = Internal Sphere, IntS = Intersected Sphere.

erably better shapes compared to the Z-direction only strategy, and, unsurprisingly given
the greater deformation freedom, the combination of both Y- and Z-direction deformations
led to an impressive 40% drag reduction.

When considering the deformation using the camber function alone, little impact in the
aerodynamic performance was obtained, limited to about 2% reduction in drag, regardless
of the regions manipulated (nose, tail or both). However, tuning the fuselage camber has
been shown to improve the airflow going through the fuselage to the wing [30, 31], as
should not be discarded in more complex cases.

The combination of the camber deformation with the simultaneous Y- and Z-direction
deformation resulted in the best overall unconstrained fuselage shape, which exhibited
a massive 41.6% drag reduction compared to the baseline. However, some cautions re-
garding the optimized shape must be taken into consideration since some irregularities
were created during the optimization. This combined strategy also produced the best
aerodynamic shape for the constrained case with internal payload, with almost 40% drag
reduction.

In future studies, to mitigate the referred problems seen in Fig.8, it might be beneficial
to make some modifications near the tail region of the fuselage, such as adding a volume
constraint might prevent the formation of torsion or warping. Another way to prevent
these irregularities could be to incorporate a parametrization strategy, such as those
discussed in this study, which, when combined with the Point Selection method, might
allow for greater flexibility and deformation control in the affected region.

Referring the the protruding payload cases, only the deformation strategy along the
normal vectors was considered to prevent irregular deformations in the fuselage while
integrating the triangulated surface constraint with the sphere intersected in the main
body. However, in this study, and when comparing the cases represented by Figs.10d and
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10e, the normal direction deformation only case led to a 7% drag reduction while the
combination with the Z-direction deformation increase the reduction significantly to over
21%, mostly due to the impact of the manipulation of the FFD points near the fuselage
vertical symmetry XZ-plane.

5 CONCLUSIONS

Several parametrization strategies for fuselage deformation in aerodynamic shape op-
timization were proposed, tested and compared. This allowed an understanding of the
characteristics of each strategy and how they can be applied in more complex design
problems.

Drag reduction ranging from 2.1% to 41.6% were observed, depending on the case study
considered. Despite the directional parametrization leading to greater drag reduction, the
parametrization along the normal vectors of the FFD box points should not be excluded
when opting for a deformation strategy. This strategy combined with a deformation along
the vertical Z-axis have produced good results as well, with the added benefit of reducing
the surface irregularities if the DV bounds are properly set.

This work highlighted the importance of selecting appropriate parametrization strate-
gies based on both aerodynamic performance and payload constraints (internal to the
fuselage or partially protruding). The triangulated surface constraint proved to be a
powerful tool in constraining an aerodynamic problem, offering multiple applications to
handle the payload positioning and volume required.

While this study focused on specific implementations, future research should explore
the impact of varying constraint parameters, such as spatial tolerance [16].

ACKNOWLEDGEMENTS

The authors would like to thank Tekever UAS for supporting the production of this
article by offering all the needed data to successfully produce the analyses here shown.

The third acknowledges Fundação para a Ciência e a Tecnologia (FCT) for its financial
support via the project LAETA Base Funding (DOI: 10.54499/UIDB/50022/2020).

REFERENCES

[1] K. K. Reddy, S. K. Basha, B. Naveen, and K. Abhilash. The game-changing role of
drones in agriculture. Agri Express, 02, May 2024. ISSN 2584 - 2498.
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[18] J. A. Samareh. Survey of shape parameterization techniques for high-fidelity
multidisciplinary shape optimization. AIAA Journal, 39(5):877–884, 2001.
doi:10.2514/2.1391.

[19] A. Hahn. Vehicle sketch pad: A parametric geometry modeler for conceptual aircraft
design. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum
and Aerospace Exposition, 2010. doi:10.2514/6.2010-657.

[20] D. Rodriguez and P. Sturdza. A Rapid Geometry Engine for Preliminary Air-
craft Design. American Institute of Aeronautics and Astronautics, January 2006.
doi:10.2514/6.2006-929.

[21] J. A. Samareh. Aerodynamic shape optimization based on free-form deformation.
Collection of Technical Papers - 10th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 6:3672–3683, 2004. doi:10.2514/6.2004-4630.

[22] M. Wentrup. An adjoint based optimization chain for complex helicopter fuselage
parts using a free form deformation or cad based parameterization method. In 41st
European Rotorcraft Forum, September 2015.

[23] E. Ekici and M. P. Juniper. Adjoint based shape optimization for thermoacoustic
stability of combustors using free form deformation. In Turbo Expo: Power for Land,
Sea, and Air, volume 87943, page V03AT04A058. American Society of Mechanical
Engineers, 2024.

[24] H. Zhao, J. T. Hwang, and J.-S. Chen. Open-source shape optimization for iso-
geometric shells using fenics and openmdao, 2024. URL https://arxiv.org/abs/

2410.02225.

[25] N. R. Secco, J. P. Jasa, G. K. W. Kenway, and J. R. R. A. Martins. Component-based
geometry manipulation for aerodynamic shape optimization with overset meshes.
AIAA Journal, 56(9):3667–3679, 2018. doi:10.2514/1.J056550.

[26] MDO Lab. MDO Lab Mach-Aero Documentation. URL https://

mdolab-mach-aero.readthedocs-hosted.com/en/latest/. Accessed: March 10,
2025.

[27] G. K. W. Kenway, G. J. Kennedy, and J. R. R. A. Martins. A CAD-free approach to
high-fidelity aerostructural optimization. In Proceedings of the 13th AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference, Fort Worth, TX, September
2010. AIAA 2010-9231.

[28] H. M. Hajdik, A. Yildirim, E. Wu, B. J. Brelje, S. Seraj, M. Mangano, J. L. Anibal,
E. Jonsson, E. J. Adler, C. A. Mader, G. K. w. Kenway, and J. R. r. a. Martins.
pygeo: A geometry package for multidisciplinary design optimization. Journal of
Open Source Software, 8(87):5319, 2023. doi:10.21105/joss.05319.

[29] L. A. Schwarz. Non-rigid registration using free-form deformations. Master’s thesis,
Technical University of Munich (TUM), May 2007.

https://doi.org/10.2514/2.1391
https://doi.org/10.2514/6.2010-657
https://doi.org/10.2514/6.2006-929
https://doi.org/10.2514/6.2004-4630
https://arxiv.org/abs/2410.02225
https://arxiv.org/abs/2410.02225
https://doi.org/10.2514/1.J056550
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/
https://mdolab-mach-aero.readthedocs-hosted.com/en/latest/
https://doi.org/10.21105/joss.05319
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