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Summary: The extension of an aeroacoustic wind turbine (WT) blade shape optimization to
tackle composite structural mechanics is presented. The existing framework is briefly described,
following a detailed description of the composite model developed using a finite element model
(FEM) formulation. The internal structure of the WT blade is a spar box, for which a finite
element code using shell elements is developed capable of handling isotropic, orthotropic and
laminated composite materials. The FEM tool developed showed good agreement with compa-
rable results obtained using a commercial software. The structural analysis capability devel-
oped is to be later coupled to the aeroacoustic design framework. This effort paves the way for
the ultimate goal of optimizing a WT blade, both external shape for aerodynamic and aeroa-
coustic performance, and internal sizing for structural response, taking int account multiple
disciplines, using a multidisciplinary optimization approach.

1. INTRODUCTION

Power production from wind energy is an emergent topic due to the awareness of the neces-
sity of renewable sources of energy. Although the production of wind energy does not generate
pollutants, there is an impact in human health due to noise production of the rotor of wind
turbines. In Rodrigues [1] a multi-disciplinary optimization model was developed, where an
aeroacoustic model is coupled to an aerodynamic prediction model with the purpose of the
maximizing the energy production while simultaneously reducing the noise generation. In this
work, a structural finite element model using shell elements, of an internal box-like spar, is to be
coupled to the previously developed aeroacoustic optimization framework. The spar is modeled
as an internal box-like structure that follows the external geometry of the blade, adding stiffness
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thus diminishing the deflection of the blade under load. The material used for the spar can ei-
ther be isotropic, orthotropic or laminated composite. A parametrization model of the spar was
developed and integrated in the framework optimization.

2. THEORETICAL MODELS
2.1 Aerodynamic Model

A wind turbine is a mechanical device that extracts the kinetic energy of the wind in order to
convert it to electrical energy. While wind turbines can either have the axis of rotation horizontal
or vertical, the focus of this work is only horizontal-axis wind turbines (HAWT).

The present work follows the work developed by Rodrigues [1], that uses the Blade Element
Momentum (BEM) theory, with corrections to account the tip- and hub-losses as well as the
turbulent wake state. The BEM model follows the assumptions that there is no aerodynamic
interaction between blade elements, the forces on the element are dependent on the lift and drag
characteristics of the airfoil shape of the blade and the radial velocity component is neglected.
Although the spanwise flow is neglected, this component may induce significant modifications
to the aerodynamic behaviour, especially near the root. To increase the accuracy of the BEM
model, the airfoil data is corrected using the stall delay model from Du and Selig [2] and the
drag adjustments from Eggers et al. [3]. In the BEM iterations, the angle of attack calculated
can become very large. To make cover to this wider range of values of angle of attack, the
aerodynamic data is extrapolated using the procedure developed in Viterna and Janetzke [4].

Knowing the power curve and the probability density function of the wind, based on a
Weibull distribution, it is possible to compute the Annual Energy Production (AEP) as

N—-1
1
AEP =) | o (P(Vis1) + P(Vi)) x f(Vi < Vo < Viy1) x 8760, )
=1

where P(V;) is the power produced by the wind turbine for a wind velocity of V;, f(V; < Vj <
Vi11) is the probability of the wind to have a velocity Vj that is between V; and V;; and 8760
is the number of hours per year. The Weibull distribution, using 2 parameters, requires the
knowledge of a scaling factor A and a form factor £k,

k(W k-1 Ve k
he (Vo) = A (A) exp <— <A> . ()
2.2 Aeroacoustic Model

In a wind turbine, the sources of noise can be both mechanic and aerodynamic. According
to Brooks et al. [5], the aerodynamic noise can be divided in low frequency noise, turbulent
inflow noise and airfoil self-noise. The airfoil self-noise can be divided in Laminar Boundary
Layer Vortex Shedding noise (LBL-VS), Turbulent Boundary Layer Trailing Edge noise (TBL-
TE), Separation-Stall noise, Trailing Edge Bluntness Vortex Shedding noise (TEB-VS) and Tip
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Vortex Formation noise (TVF). In Rodrigues [1] it is only considered the turbulent inflow noise
and the five mechanisms of the airfoil self-noise, for considering that the aerodynamic noise
dominates over the mechanic noise.

Lowson [6] formulated a model for the inflow turbulence noise, where the sound pressure
for high frequencies used is

p*cid 2 M°k*D

H
L 272 ~N\T7/3
¢ (1 + k2)

pyinf

= 10 1Og10 + 784 s (3)

where p is the density of the air, ¢ is the speed of sound, d is the section span, L is the turbulence
length scale, I is the intensity of the turbulence, M is Mach number, D is the effect of sound
directivity, 7. is the distance from the observer and k =k /k. is the quotient between the wave
number k = 27 f/U, where U is the local inflow velocity, and the wave number range of
energy-containing eddies k. = 3/4L. The intensity of the turbulence [ is a function of the
surface roughness 2, and height z. For the low frequencies, the model adds a correction factor,

Ly inflow = L,ﬁ{m 7+ 10logyg < 4)

(&
1+ Kc> ’
where L, i, 10w 18 the sound pressure level for turbulent inflow noise, Lgm 7 is the sound pressure
level for high frequencies and K. is a low frequencies correction factor.

The model presented is based on the flow over a flat plate. To account for the geometry of
the airfoil, Moriarty et al. [7] developed a correction factor. The total inflow turbulence noise is
calculated by summing this correction factor to the model of Lowson [6],

Lp,airfoil = ALp + Lp,flatplate + 10, (5)

where AL, is the correction factor for the airfoil geometry and 10 is a fudge factor to match
with NLR data.

The airfoil self-noise is the result of interaction between the blade and the turbulence in the
flow due to boundary layer and wake phenomenons. As mentioned earlier this noise source
can be divided in five mechanisms. The LBL-VS, TBL-TE and Separation-Stall noise can be
predicted by the semi empirical scale laws given by Brooks et al. [5] as

sMTO LD
Ly = 10logy, <72> + F;(St) + G;(Re), (6)

e

where ¢; can be either the boundary layer thickness or displacement thickness, f() is a value
dependent of the noise mechanism and the terms F;(St) and G;(Re) are spectral shape functions
that are different for each mechanism but that are always dependent of the Strouhal number St
and Reynolds number Re, respectively. The TEB-VS and TVF have a similar formulation, with
TEB-VS using spectral shape functions based on the trailing edge solid angle W5 and trailing
edge thickness h.
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Finally, the prediction method developed in Rodrigues [1] consists in dividing the blade in
finite segments, for which a certain airfoil shape and span length are considered. This way, the
sound pressure level can be computed at each blade noise element and the total sound pressure
level generated by the rotor is the result of a summation of noise from each blade element,

; Np
Li)’total—IOIOgm(N > 10 > €
z 3
(2

where N is the number of blades, NV, is the number of azimuthal positions where the blade is
computed, Li’i is the total sound pressure level generated by the i*" blade noise element at fre-
quency band j. The Overall Sound Pressure Level (OASPL) is then obtained by the summation
of the noise levels at every frequency as

L
D,
10

J
Lp,total

OASPL =10logyo | Y 10710 |. (8)
J

Further details about the aeroacoustic model can be found in Rodrigues [1].
2.3 Structural Model
2.3.1 Plane Elasticity

Every element used is defined in plane stress which is a group of problems in the plane
elasticity topic, which studies the small deformations in solid continua. Plane stress problems
state that stresses regarding normal local coordinates of the element are zero. The relation
between the stress and strain fields is given by the constitutive relation,

0 =Dme, (€))

where the constitutive matrix of the material is

Eq Eivoq 0
1 —vi9101 1 —rvy0o00
D = FEyvoy E12 o | (10)
1 —wvior01 1 —viov0
0 0 G19

where F/; and F, are the Young’s modulus in the direction of the fibers and transverse to the
direction of the fibers, respectively, G15 is the shear modulus and v,5 and v5; are the Poisson’s
ratios.

The formulation of the strain vector for each node is

ou Mo 7

o or
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Eyy ¢ = — =10 { } (11)
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where u and v are the displacements in the = and y direction, respectively.

The element used in the present work is Q4, which has four nodes, with two degrees of
freedom for each node in the in-plane formulation Zienkiewicz and Taylor [8]. To formulate the
problem, the total potential energy of each element is used, defined as I1° = U¢ — W*, where
I1° 1s the total potential energy, U® is the strain energy and WW*° is the work done in the element
by external forces. The strain energy U is equal to the negative work of the internal forces and
is defined as

ve = = / I DmemdV = ﬁdf B DB d2.d, (12)
2 Jv 2 2,
where ¢,, 1S the membrane strain vector of the element, B,, is the membrane strain matrix,
dSQ. is the area dimensions of the element and d, is the translational displacement vector of the
element, d;e = [u; UZ']T
From this formulation, it is possible extract the stiffness matrix,

KS =h B T DpmBmdf2. , (13)
df2e

used in the equilibrium equation,
K d, = fe. (14)

where f.is the vector of applied nodal forces.

2.3.2 Bending Plates

For the current work, the displacement formulation of Reissner-Mindlin Plate Theory is
used, which is based on the displacement field,

Uy (fL‘, Y, z, t) = U(l‘, Y, t) - Zey(xa Y, t)

uz(@,y, 2,t) = v(@,y,t) + 202(z,y,t) (15)
U3(£U, Y, z, t) = ’LU(I‘, Y, t)

where (u1, us, u3) and (u, v, w) are the total displacement of the point and the displacement of a

point on the midplane, respectively, in the (z, y, 2) coordinate directions. 6, and ¢, are rotations

of the transverse normal about x and y axes. The bending strains obtained are

( 00,
o “ox
00,
Eyy _27
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Note that ,,=0 and the transverse shear strains are non-zero.
The bending and shear constitutive matrices are given, respectively, by

Eq Eyvgy 0
1—viovo1 1 —viovm
Dy, = | FEiva o3 and Dg = Gis 01 (17)
0 0 G2
1—viovo1 1 —viovm
0 0 Gi2

Following the same methodology as in the in-plane formulation, the strain energy for the
plate theory is

1
Ue = / TDyeydV + O‘/ eDye,dV, (18)
2 Jv 2 Jv
e 1 h3 1T T 11 nT T 17
U =—- | —=d, By " Dy,Bypdf2.d, + ahd, Bs DsBgdf2.d, |, (19)
2\12°° Jag, a0,
where « is the shear correction factor and is equal to 5/6, €, = [c40 &y %y]T and £, =
[Vaz 7yZ]T are the bending and shear extension vectors, for each node of the element and By,
and By are the bending and shear strain matrices. The displacement vector for each node is
d;/e = [wieﬁi‘gyi]T'
The stiffness matrices for bending and for shear contributions are then
3
K§ = 2 / B, TDpBpdf., K& =ha / BsTD:Bgdf2, , (20)
12 Jag, ds2.
which are used in the equilibrium equation,
(K} +K)d, = [e. 1)

To avoid computational problems of shear locking, the methodology of reduced integration
for the shear contribution of the stiffness matrix is used.

2.3.3 Plane Element in Local Coordinates

The formulation of the shell element couples the effects of membrane and bending in the
energy expression (see Zienkiewicz and Taylor [8]). It is important to note that the in-plane
forces do not affect the bending deformations and vice-versa and the 0;, do not enter in the
definition of the displacements of either mode.

2.3.4 Drilling Degree of Freedom

The formulation presented so far generates problems with singularities when the nodes de-
fined are coplanar, that ia when all elements surrounding the node lay in the same plane. These
kind of problems can also occur in quasi-coplanar situations. The sixth equilibrium equation
for the coplanar nodes is
0.0, =0, (22)
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where 0., is the local drilling rotation degree for node 7 and gives 6., = 0, avoiding singularities.

For this addition, it is then necessary to define which nodes are coplanar and non-coplanar.
As presented in Ofiate [9], this process is possible by generating a vector normal to each element
sharing a the node and verify the angle between their normals. The angle can not be inferior to
5° to account for quasi-coplanar nodes.

2.4 Composite Model

Following Reddy [10], the Equivalent Single Layer Theory is developed by assuming a
linear combination of equations of displacement or stress and the thickness coordinate of every
layer. This method is used in the present work due to the simplicity, low computational cost and
sufficiently accurate description of the global response for thin and moderately thick laminates.

The modifications to the isotropic and orthotropic materials stiffness matrix are

K&, = Juo, B D DA [(Zk+1 - Zk)Dm(k)} B df2
= Juo, BoT XLy |4 (31 — ') Do®) | By ae. 23)
KSJ =a [y, Bs; LI [(szrI - Zk)Ds(k)} Bs; df2..

where the subscripts m, b and s refer to membrane, bending and shear, respectiely.

Since the composite elements are composed by layers, the membrane interferes with the
bending results and vice-versa, resulting in a new component of the stiffness matrix where this
interaction is accounted,

Sy = / B! DY) By, + By, DY) B de2., 24)
where ijj,)o is given by
ANy
ZE Zk+1 _Zk D (k) (25)
k=1

For each of the constitutive matrices ng), where a = m, b, s, to account for the angle vari-

ation of the material of each ply, it is necessary to apply the transformation DY = TDWTT.
The transformation matrix T used for the membrane and bending cases is

cos? (6) sin? (6) — sin (260)

T = sin? (6) cos? (0) sin (20) , (26)
sin (#) cos (f) —sin (#) cos (0) cos? () — sin? (6)

while for the shear case the transformation matrix is

cos(f) sin(0)
T=1_ sin (f) cos(0)| " 27)
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3. IMPLEMENTATION
3.1 Verification of Structural Model

To verify the results of the finite element method, the case represented in Figure 1 was
developed. The borders are all free except the ones at z = 0, which are fixed. The points
represent the nodes where the results are verified and are in (11, 0.813, 0.813) and (0.814, [2, 0.8(3).
For this case [y = I = I3 = 1m. The results obtained are compared with the commercial
program ANSYS® using the element SHELL63.

L
¥4

Figure 1. Case of study to verify results using isotropic and orthotropic materials.

The force F, = [0 — 1000 O]T N 1is applied on a single node. The case was tested for
three different mesh sizes, using grids of 5 x 5, 10 x 10 and 20 x 20 elements for each face,
resulting in models with 100, 400 and 1600 elements, respectively.

For the purpose of verifying the results obtained for each degree of freedom, the relative
error formulation was used,

|Valueansys, — Valuemoder, |

e;[%] = x 100 (28)

|Valueansys,|
where e; is the relative error in percentage, Valuensys, 1s the value obtained by ANSYS
model and V alue,,oqe1, 1 the value obtained for the finite element model developed.

For both isotropic and orthotropic cases, it is used a thickness of 0.001m and Poisson’s ratio
of 15 = 151 = 0.25. For the isotropic material, the Young modulus and shear modulus used
are respectively £, = E; = 5.4 x 10'°Pa and G135 = Go3 = Gog = 2f;12Pa, while for the
orthotropic material it is used £} = 5.4 x 10'°Pa, Ey = 1.8 x 10'*° Pa and G5 = Ga3 = Gog =

9 x 10%Pa, as presented in Lund and Stegmann [11].

3.1.1 Verification of the Model for Isotropic Materials

The results for point (1,0.8,0.8) are represented in Figure 2 and for point (0.8, 1,0.8) are
represented in Figure 3.
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Figure 2. Errors for the isotropic material at point (1,0.8,0.8).

As the number of elements grows, the translational errors for point (1,0.8,0.8) tend to
values inferior to 5%, although it is visible a small ascendant trend for e;;, while the rotational
errors tend to values below 6%. As the number of elements grow, the translational errors for
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Figure 3. Errors for the isotropic material at point (0.8, 1,0.8).

point (0.8, 1, 0.8) tend to values inferior to 0.5% and the rotational errors tend values below 5%.
For the finer mesh, corresponding to 10 x 10 elements divisions of each face, exists instability
in the values of the errors, especially for ey..

3.1.2 Verification of the Model for Orthotropic Materials

The representation of the graphical evolution of the errors for point (1,0.8,0.8) and point
(0.8,1,0.8) are in Figure 4 and Figure 5, respectively.

The curves tend to have a similar behavior to the isotropic material results, although errors
are a little bit larger. In this case, as the number of elements grows, all relative errors tend to
values smaller than 10%.
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Figure 4. Error for the orthotropic material at point (1, 0.8,0.8).
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Figure 5. Error for the orthotropic material at point (0.8, 1,0.8).

3.2 Verification of the Model for Composite Materials

To verify the composite model, a plane plate model as presented in Figure 6 is used. The
reference node is located at (0.8,0.8,0), for a plate with dimensions [; = Iy = 1m. Two
forces are applied, F; = (0,—1000,0) N and F, = (0,0, —1000) N. The material used is the
orthotropic material previously defined, except when mentioned that two materials are used,
corresponding to the orthotropic and the isotropic materials previously defined.

In this case, the ANSYS® element used for the verification is the SHELL181, and a grid of
40 x 40 elements selected.

In Table 1 it is summarized the relative errors for each displacement variable obtained in the
verification for various cases of angles, number of plies, thickness of ply and materials. The
orientation of the fibers are relative to the x-axis. Unless otherwise noted, four equal plies are
used, totaling a thickness of 0.001m. When only three plies are used, the middle ply has twice
the thickness, thus mantaining the total plate thickness.

As seen in Table 1, the results of the developed composite model show very good agreement
with the benchmark values obtained using ANSYS®.

10
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NN

P4

Figure 6. Case of study to verify results of composite model.

Angles ey [%] ey [P] ew [%] egy [P] egy [%]
0°  5.148 1949 3310 1.564  3.345
90°  3.913 2797 3660 0945 3713
300 2.845 3288  3.598 4292 3.641
60°  2.323 3.149 2400 2618 2312
45°  0.681 3558 2737 5792 2.589
(15°/ —45°/15°)T  1.336 3571 3.889 2562  4.108
(15°/ — 45°/15°)™  1.176 1452 3417  1.894  3.648
90°/0°/90°/0°  3.440 1359 3430 1333 3472
90°/0°/0°/90°  2.434 2316 3.585  1.073  3.626
60°/30°/ — 60°/30°  0.942 7875  3.53  3.834  3.138
23°/ —5°/ —17°/88°  2.697 3241 3344 1925 3421

T non-equal thickness ~ * two materials

between plies

Table 1. Summary of the values achieved for laminated plate with a grid of 40 x 40.

4. CONCLUSIONS

In the present work, a finite element model was developed and verified successfully with the
commercial program ANSYS, for various geometries, loadings, materials and boundary limits.
The model tends to very small values of the relative error, as the number of elements grows. For
the composite model, with 1600 elements, the relative error never exceeds 8%.

Current efforts are now focused on merging this development into the wind turbine blade
aeroacoustic design framework. Ultimately it will be possible to exercise the multidisciplinary
design tool in optimization problems involving functions of interest dealing simultaneously with
aerodynamics, acoustics and composite structural mechanics.

11
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