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Abstract. Recent incidents involving small drones have been raising concerns about 

their safe operation. It is foreseen that embedded safety systems will become mandatory 

in the near future, when stricter operational regulations will be put into place. 

This work is part of the on-going research aimed to address the current lack of intrinsic 

safety systems by developing three distinct but highly coupled subsystems: flight energy 

management (FEM), obstacle detection (OD) and mission planning (MP). 

The FEM is able to estimate the energy balance of the updated mission plan by making 

an assessment of the available energy, both stored and to be harvested in-flight (e.g., 

photovoltaic), and comparing it to the required energy, taking into account the aircraft 

performance and in-route weather conditions (e.g., wind and solar radiation). This 

energy balance is continuously updated in real-time. The OD addresses all aspects of 

obstacle detection, namely the identification of the required aircraft instrumentation 

and the respective measurements processing to assess if there is probability of collision. 

Preliminary work using a LIDAR shows this sensor is valid for detecting close range 

obstacles. Further work will include its integration with other visual information in 

order to increase the detection range. Lastly, the MP allows for both pre-flight mission 

planning as well as in-flight mission replanning, taking into account the data received 

from the FEM to attest the mission feasibility, and from the OD regarding the detection 

of new obstacles. The mission planning depends on a set of desired waypoints, a list of 

known obstacles (static, such as terrain and buildings, or dynamic, such as other 

aircraft), the vehicle performance capabilities and the rules of air, resulting in a well-

defined reference path. This path can currently be optimized for different metrics, such 

as time (minimum for fast execution or maximum for extended endurance), distance 

(maximum for extended range) or energy (minimum for extended range). 

These three subsystems are meant to be integrated into the drone flight-controller to 

provide valuable data to the operator and, as a last resort, to automatically take action 

to avoid collisions or abort energy limited missions. A solar powered unmanned fixed 

wing aircraft, previously designed and built, will serve as one of the flight platforms to 

assess the operational capabilities of the developed safety subsystems. This vehicle has 

been flight tested to characterize its power requirements across the flight envelope thus 

providing key data used in the implemented algorithms’ simulations. 
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1 INTRODUCTION 

According to the Teal Group [1], drones, also known as Unmanned Aerial 

Vehicles (UAVs) and Remotely Piloted Aircraft (RPA), are, and will continue to be, the 

sector in the world aerospace industry that exhibit the largest growth in the current 

decade. The spending is forecast to increase from $6.4 billion annually to $11.5 billion 

in the next ten years, totalling almost $91 billion in the next ten years. This tremendous 

growth will also see a shift of the cumulative civil market from 11% to 14% by the end 

of 2024. 

While the development of drones emerged in the military industry as vehicles 

designed to perform dangerous missions, the proliferation of UAV technology and the 

cascading down effect, contributed decisively to their application to civil missions. In 

recent years, the development of small low-cost drones, made the hobbyist market the 

largest consumer of such vehicles, with sales forecasted by the Federal Aviation 

Administration to be in excess of one million units in the USA alone in Christmas 2015 

[2]. Among the top-three small UAVs manufacturers, that include Chinese DJI, French 

Parrot and US 3DRobotics, only very recently the former made available a somewhat 

limited obstacle sense and avoid system. 

 Being these low cost small drones at easy reach to the consumer, most often than 

not without any prior knowledge on how to operate such vehicles, there has been a very 

well-founded concern about the safety of people and property in the vicinity of drones. 

The goal of this project is to work towards the development of low cost safety systems 

that can be easily embedded in current hobby UAV platforms. These systems are meant 

to assist the operator by providing information concerning the vehicle status in terms of 

capability to perform the mission and, ultimately, automatically override the operator 

controls to avoid any catastrophic event. 

2 OPERATIONAL SAFETY SYSTEM 

 This work is part of the Safe Drones research project aimed to address the current 

lack of an intrinsic safety system by developing three distinct but highly coupled 

subsystems: flight energy management (FEM), obstacle detection (OD) and mission 

planning (MP). These subsystems are tightly coupled to each other, as shown in Fig.1.  

 

 

Figure 1: Operational safety system [3]. 
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 The interaction between these three subsystems aims to enhance low-cost UAV 

safety. Any flight should start with offline mission planning, accounting for known 

obstacles, restricted areas, limited autonomy and any other relevant a priori information. 

Given the planned path, the obstacle detection module evaluates possible collision 

threats in real time, and if an evasive manoeuvre has to be performed, the mission 

planning module recalculates a possible flight path. Simultaneously, the energy 

management module evaluates the expected energy balance up to the landing point, and 

if it is negative, a new mission path must be recalculated. Notice however that, at these 

early stages of the project, each subsystem is being developed as an individual module, 

assuming the input data to be provided by the outputs of other modules is available. 

The following sections describe the complete work and the achievements obtained 

regarding the MP and FEM modules, and remarks are made about the OD module yet to 

be developed. 

3 MISSION PLANNING 

Path planning with obstacle avoidance is a fundamental aspect of autonomous 

vehicles operations. To this day, several solutions have been developed to tackle this 

problem. The proposed methods so far are divided into two main categories: global and 

local path planning. Global path planning requires a known static environment and is 

generally performed offline before the mission begins. Local path planning methods are 

implemented during mission execution and are responsible for the replanning of the 

original path when new obstacles are detected. 

Graph search algorithms are one of the most popular methods used in robot path 

planning. These methods are heavily based on the Dijkstra's algorithm [4] where 

starting at one vertex a graph is searched by exploring adjacent nodes until the goal state 

is reached, with the intent of finding the optimal path. In [5] a variation of the A* 

algorithm is proposed for path planning of fixed-wing UAVs in 3D environments, 

providing a feasible solution for offline path planning with turning and climbing angles 

constraints. The Ant Colony Optimization algorithm has also been applied to the UAV 

global path planning problem [6]. The solutions however are only applied to 2D 

environments, considering a constant flying height, which is not suitable for many 

applications of flying vehicles. The Artificial Potential Field methods are an approach 

inspired by physical potential fields. These methods are generally used for reactive 

collision avoidance systems [7] and are a good solution for online implementation. 

 This work presents a two-stage path planning architecture. In the first stage, the 

global planning module, which assumes a known static environment, determines a 

collision free path from a given start to goal configurations. This path is given as a 

reference for the mission execution stage and as new threats are detected by the on-

board sensors, the local planning module must replan the path to avoid these new 

obstacles. 

Figure 2 illustrates the proposed framework for the path planning system and its 

integration with the other system modules. The navigation module is responsible for the 

estimation of the UAV state, which comprises its position and velocity. The obstacle 

detection module contains the sensors and algorithms necessary to detect and estimate 

the obstacles state. In this work, the type of sensors used will not be specified, but it is 

assumed that there is a working method of sensor fusion to obtain the necessary 
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information about the environment. For the purpose of collision avoidance, a safety 

volume is defined around the obstacles. Due to its simplicity and ability to encompass a 

wide variety of obstacle types, a cylindrical model is used to represent obstacles. 

 

Figure 2: System architecture [8]. 

3.1 Pre-Flight Path Planning 

In this work, the configuration space will be defined as a regular grid. Some of the 

kinematic constraints of the vehicle, minimum turning radius and maximum climb 

angle, were included in the definition of the search space. Other constraints in the 

vehicle maneuverability can be included in the process of node expansion during the 

search process through the graph. 

Distinct expansion rules are defined for multirotor and fixed-wing platforms. 

Fixed-wing platforms have a forward only motion and cannot make sharp turns or 

climbs. To incorporate maneuverability restrictions, a set of expansion rules is defined 

as seen in Fig.3. 

 

Figure 3: Expansion rules for fixed-wing aircraft [8]. 

Other constraints include the minimum safety distance, given the relative distance 

between the UAV position and the obstacle. 

 Depending on the mission objectives, different cost functions can be considered. 

For the minimum distance paths the cost function is simply given by the sum of 

Euclidean distance between all points. Considering a path P of N waypoints, the cost is 

given by 

 𝐹𝑑 = ∑ ‖𝑷𝑖+1 − 𝑷𝑖‖
𝑁−1
𝑖=1  (1) 

To formulate the energy minimization problem, an energy balance is considered. 

Considering a point mass model for the UAV, its motion can be analysed using the 

work and energy method. The energy balance is a statement about how energy is spent 

when the UAV moves from point i to point j, 

 𝐸𝑖→𝑗 =  
1

2
𝑚 (𝑣𝑗

2 − 𝑣𝑖
2) + 𝐷Δ𝑠 + 𝑚𝑔Δℎ (2) 
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where m is the UAV mass, v the vehicle speed, D the drag force, s the air displacement, 

g the gravity component and h the height variation. The cost function for minimum 

energy paths is then given by 

 𝐹𝑒 = ∑ 𝐸𝑖→𝑖+1
𝑁−1
𝑖=1  (3) 

 The A* algorithm [4] works by systematically searching the graph by applying 

the transition function and choosing the states that minimize the cost function. The Ant 

Colony Optimization (ACO) [5] is a metaheuristic method derived from the observation 

of real ant’s behaviour that uses a pheromone trail to mark paths from the nest to the 

food source. The paths obtained with A* and ACO consist of straight line segments 

between waypoints. These paths cannot be exactly followed by the UAV with dynamic 

and kinematic constraints. Bezier curves are used to generate a flyable path for the 

UAV. Bezier curves are a type of parametric curves designed to provide a smooth path 

that passes exactly through the initial and final waypoints and is influenced by the other 

waypoints on the way, which are defined as control points. A particular case of these 

curves are Rational Bezier curves [9], given by  

 𝑃𝑅(𝑡) =
∑ 𝐵𝑖

𝑛
(𝑡)∙𝑤𝑖∙𝑃𝑖

𝑛
𝑖=0

∑ 𝐵𝑖
𝑛

(𝑡)∙𝑤𝑖
𝑛
𝑖=0

, 𝑡 ∈ [0,1] (4) 

where Bi(t) is the Bernstein polynomial, Pi the control points given, by A* and ACO, 

and wi the curve weights. The curvature of a parametric curve P(t) can be calculated as 

 𝑘(𝑡) =
|𝑃′(𝑡)×𝑃′′(𝑡)|

|𝑃′(𝑡)|3  (5) 

The defined problem is to optimize the weights of a rational Bezier curve. The 

optimization problem is formulated as 

 

minimize 𝐹𝐶

subject to 𝑑0 ≥ 𝑅𝑠

𝑃𝑅(𝑡) = 𝑓(𝑤)
|𝑘| ≤ 𝑘𝑚𝑎𝑥

𝑤𝑚𝑖𝑛 ≤ 𝑤𝑖 ≤ 𝑤𝑚𝑎𝑥

 (6) 

The cost function Fc to be minimized is given either by Eq.(1) or Eq.(3). If the 

constraints are to be satisfied without optimizing the cost function Fc is set to zero. The 

constraints impose a minimum distance between the UAV and the obstacle, and ensure 

that, given the UAV turning limits, the path is flyable. 

All the following examples were obtained with MATLAB R2016a running on an 

Intel Core i5 with a CPU of 2.4 GHz, 4Gb RAM and Windows 7. 

In Fig.4, a minimum energy path is planned in the presence of a wind field. The 

figure also shows the UAV departure heading. The presented results are obtained with 

the A* algorithm, which provided better results than ACO. Three curves determined 

from the A* points, Pi, are also depicted: Bi (the initial Bezier curve with unitary 

weights), Bc (the curve with adjusted weights to satisfy constraints) and Bo (the curve 

obtained from constrained optimization of the cost function). 

From the results in Tab.1, it is seen that the optimized Bezier curve provides the 

path of minimum cost, but it has a longer computation time and provides little 

improvement over the curve that is only computed to satisfy constraints. 
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Figure 4: Minimum energy paths for fixed-wing platform using the A* algorithm [8]. 

Table 1: Minimum energy for 2-waypoints.  

Path Energy (kJ) CPU time (s) 

A* 4.02 0.120 

Bi 3.50 0.027 

Bc 3.51 11.91 

Bo 3.43 79.84 

3.2 Real-Time Path Planning 

This section tackles the problem of replanning a reference path when new 

obstacles are detected, while considering the Rules of the Air [10]. The time to 

collision, tCPA, is used, thus higher priority will be given to intruders with the smallest 

tCPA and the conflicts are resolved in a sequential manner. 

 The Potential Fields approach is used, where the obstacles and the goal position 

are treated as charged particles [7]. A repulsive force is attributed to the obstacles and 

an attractive force to the goal point. The sum of those forces is used to generate the 

direction of motion. The proposed fields are generated in a similar way to [11]. From 

the total field vector, the required heading and flight path angles to avoid the obstacle 

are obtained, from which, knowing the current direction of motion, a series of 

waypoints are generated until the obstacle has been cleared. 

A set of situations are presented where a segment of the original path must be 

replanned to avoid new obstacles. The first case represents a UAV that is on a climbing 

trajectory when a moving intruder is detected. The replanned path leads to the levelling 

off the UAV, as depicted in Fig.5, to avoid the obstacle. The replanning computation 

time took 0.019s. 

Another example shows a moving obstacle blocking one of the points of 

obligatory passage. As seen in Fig.6, the UAV follows the right-hand rules to avoid the 

obstacle without compromising the safety distance. This computation required 0.015s of 

CPU time. Again, the computation time of the online stage is fast enough to be suited 

for real-time implementation. 
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Figure 5: Converging encounter [8]. 

 

 

Figure 6: Converging encounter with missed waypoint [8]. 

 

 

Figure 7: 3D path with multiple obstacle avoidance [8]. 
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In the final example, the UAV encounters two moving intruders, with one of 

them blocking a reference waypoint, and a static obstacle while following the reference 

path. The resulting replanned path is depicted in Fig.7.  

3.3 Remarks 

This module was aimed to provide autonomous flight capabilities to UAVs with 

collision avoidance capabilities. The task was divided into a global and a local layer. 

 For the global path planning stage the best results were found to be provided by 

a combination of the two algorithms, using A* and ACO to optimize waypoint order. 

The global planner can resolve a series of different scenarios and new optimization 

criteria can be easily added to expand the range of problems to be solved. 

For the online stage, Potential Fields are used to generate a local trajectory when 

unknown obstacles are detected. The replanning of the path is made considering an 

uncooperative situation between the vehicles, and a sequential resolution of encounters, 

prioritized according to time to collision. The Potential Fields method is 

computationally inexpensive being a feasible solution for real-time implementation. 

4 FLIGHT ENERGY MANAGEMENT 

The energy management (or energy monitoring) module is responsible for 

assessing the energy requirements and expected energy balance for the assigned 

mission, and for the aircraft's safe return to base, accounting for meteorological 

conditions experienced such as wind and solar radiation. 

 The goal is to develop a system capable of generating an updated estimate of the 

state of total energy remaining onboard the aircraft at the end of the mission (the margin 

remaining in terms of energy), capable of being run on the airborne avionics hardware, 

enabling better energy awareness when planning a mission or advising a mission 

adjustment or a return to base if the energy margin drops below a defined safe value. 

The first estimation is done pre-mission (offline) and later the update of the estimate is 

periodic as the mission progresses (online), taking into account the conditions 

experienced (wind, solar radiation, handicapped airframe or trajectory change, either 

due to a pilot or ground control command or automatic obstacle avoidance 

manoeuvres), as well as those predicted for the remainder of the mission. 

4.1 Energy Estimation Models 

Figure 8 provides an overview of how the estimation of the remaining energy at 

the end of the flight is obtained. 

The past energy flow analysis starts with the initial state of the system, the 

energy available in all energy sources at the start of the mission Esources,t0, then the 

energy flowing out of the system (measured consumed energy) is subtracted, Econs,t_0→ t, 

and the energy harvested (flowing into the system) Esolar|harv,t0→t is added. This results in 

the energy available in the energy sources in the present (at time instant t),  

 𝐸𝑠𝑜𝑢𝑟𝑐𝑒𝑠,𝑡(𝑡) = 𝐸𝑠𝑜𝑢𝑟𝑐𝑒𝑠,𝑡0
+ 𝐸𝑠𝑜𝑙𝑎𝑟|ℎ𝑎𝑟𝑣,𝑡0→𝑡(𝑡) − 𝐸𝑐𝑜𝑛𝑠,𝑡0→𝑡(𝑡) (7) 
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Figure 8: Energy balance at end of mission [3]. 

To obtain the future energy flow, the expected energy to flow out of the system in the 

future (required energy to complete the mission) Ereq,t→tf is subtracted, and the expected 

energy to flow into the system in the future (solar energy expected to be harvested in the 

remainder of the mission) Esolar|pred,t→tf is added. This results in the estimated final state 

of the system, the estimated remaining energy in the sources at the end of the mission 

 𝐸𝑟𝑒𝑚,𝑡𝑓
(𝑡) = 𝐸𝑠𝑜𝑢𝑟𝑐𝑒𝑠,𝑡(𝑡) + 𝐸𝑠𝑜𝑙𝑎𝑟|𝑝𝑟𝑒𝑑,𝑡→𝑡𝑓

(𝑡) − 𝐸𝑟𝑒𝑞,𝑡→𝑡𝑓
(𝑡) (8) 

The energy available in the energy sources at the start of mission is modelled by 

 𝐸𝑠𝑜𝑢𝑟𝑐𝑒𝑠,𝑡0
= 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑡0

+ 𝐸𝑓𝑢𝑒𝑙,𝑡0
+ 𝐸𝑝,𝑡0

+ 𝐸𝑘,𝑡0
 (9) 

where Ebattery,t0 and Efuel,t0 are the energy available in the battery and in the fossil fuel 

tank at the start of the mission respectively, and Ep,t0 and Ek,t0 are the potential and 

kinetic energies of the aircraft at the start of the mission, respectively. The initial energy 

stored in the battery is given by 

 𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦,𝑡0
= 3600 𝑆𝑜𝐶 𝑄𝑛𝑜𝑚𝑈𝑛𝑜𝑚 (10) 

where SoC is the state of charge of the battery (between 0 and 100%), Qnom is the 

nominal charge of the battery and Unom is the nominal voltage of the battery. The initial 

energy contained in the fuel tank is related to the volume of fuel it contains, 

 𝐸𝑓𝑢𝑒𝑙,𝑡0
=  𝑢𝑓𝑢𝑒𝑙𝑚𝑓𝑢𝑒𝑙,𝑡0

= 𝑢𝑓𝑢𝑒𝑙𝜌𝑓𝑢𝑒𝑙𝑉𝑓𝑢𝑒𝑙,𝑡0
 (11) 

where ufuel is the specific energy of the fossil fuel, fuel is its density and Vfuel,t0 is its 

volume at the beginning of the mission. 

The model for the energy consumed is given by 

 𝐸𝑐𝑜𝑛𝑠,𝑡0→𝑡(𝑡) = ∫ �̇�𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡)𝑑𝑡
𝑡

𝑡0
+ ∫ �̇�𝑠𝑜𝑙𝑎𝑟|ℎ𝑎𝑟𝑣(𝑡)𝑑𝑡

𝑡

𝑡0
+ ∫ �̇�𝑓𝑢𝑒𝑙(𝑡)𝑑𝑡

𝑡

𝑡0
 (12) 

where the terms are estimated as 

 ∫ �̇�𝑏𝑎𝑡𝑡𝑒𝑟𝑦(𝑡)𝑑𝑡
𝑡

𝑡0
= ∫ 𝑈𝐵𝐼𝐵𝑑𝑡

𝑡

𝑡0
 (13) 

and 

 ∫ �̇�𝑓𝑢𝑒𝑙(𝑡)𝑑𝑡
𝑡

𝑡0
= 𝑢𝑓𝑢𝑒𝑙𝜌𝑓𝑢𝑒𝑙 ∫ �̇�𝑓𝑢𝑒𝑙𝑑𝑡

𝑡

𝑡0
 (14) 

where �̇�fuel is the fuel volumetric flow. This assumes that the quantities UB, IB, UPV, IPV 

and �̇�fuel are measured. It is important to notice that IB can be both positive or negative, 

depending on whether the battery is being discharged or charged, respectively. The solar 

energy harvested from the beginning of the mission until time instant t is described by 
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 ∫ �̇�𝑠𝑜𝑙𝑎𝑟|ℎ𝑎𝑟𝑣(𝑡)𝑑𝑡
𝑡

𝑡0
= ∫ 𝑈𝑃𝑉𝐼𝑃𝑉𝑑𝑡

𝑡

𝑡0
 (15) 

 The required energy to complete the mission is obtained by estimating the future 

consumption of the propulsion system Eprop,t→tf, the future consumption of all the 

avionics equipment Eav,t→tf and also taking into account the change in mechanical 

energy (ΔEp and ΔEk) between the instant of calculation t and the end of the mission, 

 𝐸𝑟𝑒𝑞,𝑡→𝑡𝑓
(𝑡) = ∆𝐸𝑝(𝑡) + ∆𝐸𝑘(𝑡) + 𝐸𝑎𝑣,𝑡→𝑡𝑓

(𝑡) + 𝐸𝑝𝑟𝑜𝑝,𝑡→𝑡𝑓
(𝑡) (16) 

To estimate the required propulsion energy to finish the mission successfully 

two different approaches were considered. The first approach (M1) is based on the force 

diagram of Fig.9 (for a generic aircraft), from which the required thrust is obtained. 

 

Figure 9: Force diagram for a generic aircraft [3]. 

The balance of forces is therefore given by 

 {
𝐿 − 𝑊 cos(𝛾) + 𝐵 cos(𝛾) + 𝑇 sin(𝛼) = 0

𝑇 cos(𝛼) − 𝐷 − 𝑊 sin(𝛾) + 𝐵 sin(𝛾) = 𝑚𝑎
 (17) 

where B represents the buoyancy force. The drag polar curve CD=f(CL) and the 

relationship between lift coefficient and the angle of attack CL=f(α) of the aircraft are 

used in addition to Eq.(17) to solve the balance of forces, assuming the desired 

acceleration for each mission segment, the weight and buoyancy (in case the aircraft in 

study is an airship) of the aircraft are known. Air density  is modelled according to the 

Earth's atmosphere standard model of reference and the climb angle  is calculated 

according to the waypoints defined during mission planning. 

 The second approach (M2) to determine the required propulsion and avionics 

power required is to experimentally characterize the energy requirements of an aircraft 

as a function of airspeed, exemplified in Fig.10 for the LEEUAV [12] in cruise 

condition. 
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Figure 10: Power required as function of airspeed for the LEEUAV in cruise [13]. 

The required propulsion energy to finish the mission can then be obtained by 

integrating the corresponding value of required electric power Pel from the curve over 

the expected remaining duration of the mission, 

 𝐸𝑎𝑣,𝑡→𝑡𝑓
(𝑡) + 𝐸𝑝𝑟𝑜𝑝,𝑡→𝑡𝑓

(𝑡) = ∫ 𝑃𝑒𝑙𝑑𝑡
𝑡𝑓

𝑡
 (18) 

 Assuming level flight (which constitutes the largest percentage of mission time), 

the approach in [14] can be used to estimate the solar irradiance in a given location, at a 

given time. The expected energy to be harvested from a given time instant t until the 

end of the mission is finally obtained by integrating the power output of the solar panel 

over time, 

 𝐸𝑠𝑜𝑙𝑎𝑟|𝑝𝑟𝑒𝑑 = ∫ 𝐽𝑆𝑃𝑉𝜂𝑃𝑉𝑑𝑡
𝑡𝑓

𝑡
 (19) 

where J is the solar radiance (solar power per unit area), SPV is the solar panel area and 

PV is its efficiency. 

4.2 Simulation Results 

Offline simulations were performed for the case of the LEEUAV, given the 

available data from previous works (polar curve, relationship between lift coefficient 

and angle of attack, and Fig.10), to assess the performance of the FEM in this case. The 

offline simulations aim to predict if the planned mission is feasible (before take-off). 

The mission profile and ground speed profile are shown in Fig.11. 

 

Figure 11: Power required as function of airspeed for the LEEUAV in cruise [3]. 

An initial simulation without wind was performed to compare the predicted 

propulsion power requirements for different flight stages using each method used to 

estimate the required energy to complete the mission, and the results are shown in 

Tab.2. 

Method 2 is very accurate at predicting the power required to fly during cruise, 

since it derives from an experimental characterization. This means that method 1 

overestimates the power requirements for cruise by approximately 106%, which is not 

good. Method 2 on the other hand, severely underestimates the power requirements for 

climb, since the experimental characterization on which method 2 is based on was 

performed only for the cruise condition, and no data was available for climb. The 

required power for the descent stage is zero since it is assumed the aircraft glides while 

descending. These results show that these methods are sensitive to the quality of the 

data available to perform the estimates. 
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Table 2: Predicted propulsion power (W) required to fly each stage by each method. 

Stage M1 M2 

Climb 578.3 247.1 

Cruise 132.8 64.4 

Descent 0.0 0.0 

For the following simulations, an arbitrary temporal wind profile was chosen as 

shown in Tab.3, in which the mission instants indicate when the respective wind speed 

changes to that value. 

Table 3: Wind temporal profile.  

Mission instant (s) Wind speed (m/s) 

0 1.2 

600 0.8 

1200 1.9 

1800 1.5 

2400 0.3 

3000 0.7 

3600 0.6 

4200 1.0 

The influence of performing the mission in different days of the year (day 172 - 

Summer Solstice, and day 355 - Winter Solstice) and different starting hours was also 

investigated. The results obtained are shown in Tab.4. 

Table 4: Energy estimated from offline simulations.  

Energy (kJ) Day 172, 9h Day 172 15h45 Day 355 9h 

Esources,t0 408.9 408.9 408.9 

Ereq M1 836.6 836.6 836.6 

Ereq M2 382.6 382.6 382.6 

Esolar|pred 627.2 428.6 263.0 

Erem M1 199.5 1.0 -164.6 

Erem M2 653.5 454.9 289.3 

Two main conclusions can be drawn from Tab.4. First it is possible to observe that 

during the Summer Solstice more solar energy is expected to be harvested compared to 

the Winter Solstice when the mission begins at the same hour, which makes sense. Also, 

on the same day more energy is expected to be collected if the mission starts in the 

morning than if it starts later in the afternoon, which is also a result to be expected. It is 

predicted that the mission can be completed safely in the Summer Solstice if it starts at 

9h, and the battery would still have around 50% of its total energy at the end. If the 

mission starts at 15:45h however, the battery is predicted to finish the mission with less 

than 1% of its total energy, which is a value low enough to raise safety concerns, and 

the mission should be replanned. During the Winter Solstice, the value of remaining 

energy is negative, meaning that the battery does not have enough energy to complete 

this mission, since not enough solar energy would be collected to compensate the 

amount consumed. If method 2 is used instead to calculate the required propulsion 

power, then the conclusion would be that this mission could be completed safely in any 

of the conditions considered. In reality, this probably would not be true since, given the 

available data, the power requirements for climb would be underestimated by method 2. 

With better data available, this method would be more useful and provide more accurate 

remaining energy estimates. 
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5 FLIGHT PLATFORMS FOR SYSTEM TESTING 

The work now being developed is built on a previous project of a Long 

Endurance Electric Unmanned Aircraft Vehicle (LEEUAV), that included the 

collaboration of research groups IDMEC at Instituto Superior Técnico and AEROG at 

Universidade da Beira Interior) [12], both part of LAETA. The goal was to develop a 

low cost, small footprint electric UAV, capable of being deployed from short airfields, 

easy to build and maintain, and highly flexible to perform different civilian surveillance 

missions. The resulting design is illustrated in Fig.12. 

 

Figure 12: Flight platform LEEUAV [13]. 

 Through this legacy project, some important lessons were learnt by addressing 

key design tasks: 1) several different electric propulsion system configurations were 

evaluated in terms of performance, overall weight and cost. It led to the selection of 

high-efficiency photovoltaic solar panels, high-density rechargeable batteries and 

combination of propeller with brushless electric motor [15]; 2) using high-fidelity CFD 

analysis, the aerodynamic design of the airframe, including wing, fuselage and tail, was 

modelled. The computational process put in place enables the swift design of different 

UAV configurations [16]; 3) the autopilot and First Person View (FPV) hardware and 

software were selected and tested in flight to assess its long range capability [17]. 

The prototype was designed and built, using advanced model building 

techniques, and test flown, both radio control operated [18] and autonomously operated 

with the full set of communications, FPV and solar harvesting systems [13]. 

6 CONCLUSIONS 

Two safety subsystems targeted for low-cost UAVs were developed: the mission 

planning (MP), both pre-flight and real-time, and the flight energy management (FEM). 

Their capabilities were demonstrated in simulations, being planned their integration in 

an existing flying platform. However, prior to that integration, the development of the 

obstacle detection (OD) subsystem is paramount. 

In terms of MP, it was demonstrated that optimal obstacle-free paths could be 

obtained using a combination of both ACO and A* algorithms. As these were computed 

pre-flight, the associated computational cost is justified by the accuracy of the results. 

As for the real-time replanning, it was also demonstrated that the potential field 

approach is very efficient in providing a modified path to avoid new obstacles while 

obeying the rules of air, at a reduced computational cost, which makes it suitable for 

embedding in on-board control systems. 
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Relative to the FEM developed, the energy balances considered can tackle any 

type of aircraft (fixed- or rotary-wings) and several propeller-driven propulsion systems 

(combustion or electric) and a combination of energy sources (fuel, batteries and solar). 

It was seen that the results are highly sensitive to the aircraft performance data and 

propulsion system characterization. As such, these must be carefully handled and tuned 

for each particular UAV during testing of the system. 

Even though the described fixed wing platforms were the drivers for the current 

project, the safety systems developed are intended to be general in application, so that 

they can be embedded not only in fixed wing platforms but also rotary wing platforms 

(e.g. multicopters). 

The next effort will focus on the sensor hardware development for obstacle 

detection. A combination of sonar and LIDAR is meant to provide both accurate short-

range and coarse long-range capabilities, respectively. Further work will include their 

integration with other visual information to increase the detection range. 
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