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ABSTRACT: The recent exponential growth of small drones has been raising concerns about 

the safety of their operation. It is foreseen that embedded safety systems will become 

mandatory in the near future, when stricter operational regulations will be put in place. As 

such, the development of a low cost and low weight solution is paramount.  

This work is part of the on-going research aimed to address the current lack of intrinsic safety 

systems by developing three distinct but highly coupled subsystems: the flight energy 

management (FEM), the mission planning (MP) and the obstacle detection and avoidance 

(ODA). Although aimed primarily to fixed wing drones, its conceptual design is general to 

any type of drones. 

With the FEM, it is possible to estimate the energy balance of the current mission plan by 

making an assessment of the available energy, both stored and to be harvested in-flight (e.g., 

photovoltaic), and comparing it to the required energy, taking into account the aircraft 

performance and in-route weather conditions (e.g., wind and solar radiation). First principles 

of physics are used to obtain a baseline for the energy models without compromising future 

higher-fidelity models. The estimates can be done both pre-flight and continuously updated 

in-flight. This results in a real-time energy balance update that feeds the MP subsystem.  

The MP allows for both pre-flight mission planning as well as adaptive in-flight mission 

planning, taking into account the data received from the FEM to attest its feasibility. It is 

based on a set of waypoints and a list of known fixed obstacles, such as terrain and buildings. 

The mission can be optimized for different metrics, such as time (minimum for fast execution 

or maximum for extended endurance), distance (maximum for extended range). This 

subsystem provides data to the drone operator that can be used to redefine the mission given 

the energy balance update. The MP feeds the FEM with the planned mission for the update of 

the required energy. 

Lastly, the ODA comprises the hardware for sensing obstacles and the software for planning 

an evasive maneuver for collision avoidance. The detection of obstacles leads to an update of 

the list of known obstacles. Any maneuver triggered by the ODA is fed to the MP as it affects 

both the current mission and, consequently, the energy balance estimated by the FEM. 

The goal is to develop a low cost safety system that can ensure the drone can either execute 

the mission successfully or it can prematurely return to the base safely. 
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1 DRONE MARKET OVERVIEW 

 

According to the Teal Group [Teal,2014], 

drones, also known as Unmanned Aerial 

Vehicles (UAVs), are and will continue to be 

the sector in the world aerospace industry that 

exhibit the largest growth in the current 

decade. The spending is forecast to increase 

from $6.4 billion annually to $11.5 billion in 

the next ten years, totalling almost $91 billion 

in the next ten years. This tremendous growth 

will also see a shift of the cumulative civil 

market from 11% to 14% by the end of 2024. 

 While the development of drones 

emerged in the military industry as vehicles 

designed to perform dangerous missions, the 

proliferation of UAV technology and the 

cascading down effect, contributed decisively 

to the their application to civil missions. A 

report by NASA [Cox,2004] points the most 

common civil applications as border and costal 

patrol and monitoring, homeland security, law 

enforcement and disaster operations, digital 

mapping and planning, search and rescue, fire 

detection and firefighting management and 

power transmission line monitoring. 

 In recent years, the development of small 

low cost drones, made the hobbyist market the 

largest consumer of such vehicles, with sales 

forecasted by the Federal Aviation 

Administration to be in excess of one million 

units in the USA alone in Christmas 2015 

[Karp,2015]. Among the top-three small 

UAVs manufacturers, that include Chinese 

DJI, French Parrot and US 3DRobotics, only 

very recently the former made available a 

somewhat limited obstacle sense and avoid 

system. 

 Being these low cost small drones at easy 

reach to the consumer, most often than not 

without any prior knowledge on how to 

operate such vehicles, there has been a very 

well founded concern about the safety of 

people and property in the vicinity of drones. 

 The goal of the current project is to 

develop low cost safety systems that can be 

easily embedded in current hobby UAV 

platforms. These systems are meant to assist 

the operator by providing information 

concerning the vehicle status in terms of 

capability to perform the mission and, 

ultimately automatically override the operator 

controls to avoid any catastrophic event. 

 The work focuses in three interconnected 

sub-systems: the flight energy management 

(FEM), the mission planning (MP) and the 

obstacle detection and avoidance (ODA). 

These sub-systems are tightly coupled to each 

other, as shown in Fig.1. 

 

 
 
Figure 1. Control and video-subsystems [Baião,2016]. 

 

The interaction between the three subjects 

described above aims to enhance low-cost 

RPAS safety. Any flight should start with 

offline mission planning, accounting for 

known obstacles, restricted areas and any other 

relevant a priori information. Given the 

planned path, the obstacle detection module 

evaluates possible collision threats in real 

time, and if an evasive manoeuvre has to be 

performed, the mission planning module 

recalculates a possible flight path. 

Simultaneously, the energy management 

module evaluates the expected energy balance 

until the landing point, and if it is negative a 

new mission path has to be recalculated. 
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 Notice however that, at these early stages 

of the project, each subsystem is being 

developed as an individual module, assuming 

the input data to be provided by the outputs of 

other modules is available.  

 

 

2 UAV PLATFORMS 

The work now being developed is built on a 

previous project of a Long Endurance Electric 

Unmanned Aircraft Vehicle (LEEUAV), that 

included the collaboration of research groups 

IDMEC at Instituto Superior Técnico and 

AEROG at Universidade da Beira Interior) 

[Marta,2014], both part of LAETA. The goal 

was to develop a low cost, small footprint 

electric UAV, capable of being deployed from 

short airfields, easy to build and maintain, and 

highly flexible to perform different civilian 

surveillance missions. The resulting design is 

illustrated in Fig. 2. 

 

 

 
Figure 2. First generation LEEUAV [Marta,2014]. 



 The LEEUAV mission comprises a 8-h 

long endurance daytime mission, at constant 

altitude (1000m above runaway) at a nominal 

cruise speed of 7.5m/s. The two main UAV 

specifications included: 1) long endurance, 

accomplished by using green power 

technologies such as an electric propulsion 

system with solar power, appropriate long 

endurance aerodynamic design and high 

strength to weight ratio structural design; 2) 

autonomous flight, accomplished by equipping 

the UAV with autopilot navigation systems. 

However, the obstacle avoidance capability 

was still missing. 

 Through this legacy project, some 

important lessons were learnt by addressing 

key design tasks: 1) several different electric 

propulsion system configurations were 

evaluated in terms of performance, overall 

weight and cost. It led to the selection of high-

efficiency photovoltaic solar panels, high-

density rechargeable batteries and combination 

of propeller with brushless electric motor 

[Ferreira.2014]; 2) using high-fidelity CFD 

analysis, the aerodynamic design of the 

airframe, including wing, fuselage and tail, 

was modelled. The computational process put 

in place enables the swift design of different 

UAV configurations [Silva,2014]; 3) the 

autopilot and Remote Person View (RPV) 

hardware and software were selected and 

tested in flight to assess its long range 

capability [Miller,2015]. The overview of the 

control and video sub-systems is shown in Fig. 

3. 

 

Figure 3. Control and video-subsystems [Miller,2015]. 



 The prototype of first generation design 
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was built, using advanced model building 

techniques, and test flown radio control 

operated [Cândido,2014]. Although that 

prototype was far from being final, relevant 

conclusions arose from the tests performed 

concerning materials, manufacturing processes 

and flight quality. 

 Recently, a new generation fixed wing 

airframe started being developed 

[Parada,2016]. The selection of the new 

aircraft configuration was carried out using the 

Analytic Hierarchy Process (AHP) 

methodology [Saaty,1980]. The evaluation 

criteria were selected and weighted taking into 

account the importance of aircraft range, 



m

batterym

D

L

gtotal
ER

1*
 ,  (1) 

where *
E is the battery mass specific energy, 

total
  is the electrical system total efficiency, 

DL /  is the lift-to-drag ratio, mmbattery /  is the 

battery to total mass ratio. In addition, the 

hybrid propulsion system and the RPV nature 

of the aircraft were also taken into account. 

This led to a set of 10 weighted evaluation 

criteria: solar panel integration (20%), 

structures and weight (20%), aerodynamics 

(19%), propulsion (13%), RPV integration 

(11%), stability and control (4%), take-off and 

landing (4%), portability (4%), payload 

volume (3%), and manufacturing and 

maintenance (2%). This evaluation led to the 

V-tail configuration shown in Fig.4. The 

pusher design frees up the front of the aircraft 

for placing the RPV system. 

 Even though the described fixed wing 

platforms were the drivers for the current 

project, the safety systems to be developed are 

intended to be general in application, so that 

they can be embedded not only in fixed wing 

platforms but also rotary wing platforms (e.g. 

multicopters).  

 

 

 

Figure 4. Second generation LEEUAV [Parada,2016]. 

 

 

3 FLIGHT ENERGY MANAGEMENT 

The first safety module deals with flight 

energy management. Here the goal is to 

develop lower order mathematical models that 

estimate: 1) the available energy onboard from 

all sources; 2) the expected energy required to 

successfully complete the mission; 3) and 

interact with the mission planning module in 

real time, to ensure that the planned mission is 

adjusted given the weather conditions and 

unexpected obstacle avoidance, in such a way 

that enough energy is available to complete the 

mission safely or a return to base is forced if 

necessary. 

 The following tasks are expected to be 

accomplished: 

- Model the energy available from all sources; 

- Model the energy harvesting methods; 

- Model the mission energy requirements; 

- Identify the equipment necessary to perform 

the necessary parameter measurements; 

- Calculate the energy balance for the mission; 

- Perform case study simulations to assess the 

energy management module’s performance; 

- Integrate the final product in the LEEUAV’s 

auto-pilot. 
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 The diagram in Fig.5 represents the 

energy balance (remaining) at the end of the 

mission, at time tf. The goal is to ensure that it 

is a positive balance, meaning the current 

aircraft mission can be completed. 

 

Figure 5. Energy flow in LEEUAV [Baião,2016]. 



 Assuming that the assessment is being 

done at an arbitrary time t, ranging between 

the start t0  and the end tf of the mission, the 

energy  remaining in the aircraft sources at the 

end of the flight can be written as 
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where 
0, tsources

E  is the energy available in 

the energy sources before the flight (including 

the difference in mechanical energy due to 

difference in altitude of the departure and 

arrival airports), )(
0,

t
ttharv

E


 is the energy 

that was harvested through the solar panels 

from the start of the mission until a given 

instant, )(
,

t
tftfore

E


 is the amount of solar 

energy expected to be harvested according to 

the weather forecast, )(
0,

t
ttcons

E


 is the 

energy that is estimated to have been 

consumed throughout the mission, from the 

start to the instant of calculation, and 

)(
,

t
tftmiss

E


 is the energy that is expected to 

be consumed from a given instant until the 

mission is complete. Notice that all quantities 

are a function of mission time, except for the 

energy available in the sources before the 

flight, since that is a constant amount. 

 

3.1 Energy sources 

Energy sources supply the energy the aircraft 

and its systems require to function properly. 

The main sources of energy found in most 

unmanned aerial vehicles are fossil fuels, 

batteries, and solar energy harvesting. For this 

project, fossil fuels are not considered. 

 The energy available in one source at a 

given time instant will be estimated with 

mathematical models, and the energy 

consumed since the start of the mission until a 

given instant can be obtained from 
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and the energy consumed from all sources, 
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where the energy harvested by the solar panels 

have been accounted for. 

 

Fossil fuels 

One of the reasons fossil fuels thrived in 

aeronautics is because of their very high 

specific energy content.  

 The mechanical energy extracted from 

the fuel chemical energy, by an engine of 

known efficiency, can estimated from 

engine
t

tfuel
V

fuelfuel
ut

tfuel
E   )(

,
)(

,
, (5) 

where ufuel is the fuel specific energy, fuel is 

the fuel density, Vfuel,t is the volume of fuel and 

engine is the engine efficiency. Knowing the 

volume (or weight) of fuel at the start of the 

mission, and provided that the aircraft has a 

flow meter sensor, the available mechanical 

energy available at a given time t can be 

estimated from Eq.(5) using the estimated 

available volume of fuel, 
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where 
tfuel

V
,

  is the measured volumetric flow 

rate. 

   

Batteries 

Batteries are especially interesting because 

they can be recharged and reused many times. 

The most common types of rechargeable 

batteries are based on lead, nickel or lithium. 

While lead-acid (Pb), Nickel-Cadmium (NiCd) 

and Nickel metal hydride (NiMH) batteries are 

widely used for their low cost, their low 

specific energy content make them 

inappropriate for powering UAVs. Lithium-

ion (Li-on), Lithium-ion polymer (LiPo) and 

Lithium-Sulphur (Li-S) are the best 

alternatives to power solar powered aircraft. 

These are the focus of battery research in the 

present for their very high specific energy, but 

some elements used in their composition make 

them even more expensive, and special care in 

operation must be taken because of the 

reactivity and flammability of Lithium.  Table 

1 summarizes the properties of the common 

battery types discussed. 



Table 1. Battery properties [Gao,2015]. 

 Specific energy Lifetime 
 [Wh/kg] [cycles] 
Pb  30  300 
NiCd  50 1500 
NiMH  75 1000 
Li-Po 200 1000 
Li-S 350 1000 

 

 The electrical energy consumed from a 

battery can be measured, at a given time 

instant, as 
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where Pi is the instantaneous power measured 

at time instant i, and TS is the sampling time of 

the measurement of battery current, and Vbattery  

is the battery voltage and Ibattery is the 

instantaneous current. This implies that both 

voltage and current sensors are to be installed 

in the battery circuit of the aircraft. 

 Knowing the energy stored at the start of 

the mission, Ebattery,0,  either by using the 

manufacturer rated capacity or by measuring 

the energy fed by the charger, the available 

electrical energy available at a given time t can 

be estimated as 


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where Rin is the internal resistance. The last 

term in Eq.(8) corresponds to the energy 

dissipated by heat due to the Coulomb effect. 

The internal resistance value, even if provided 

by the manufacturer, should be experimentally 

measured according to the procedure in 

[Tremblay,2007]. 

 

Solar energy harvesting 

Solar cells make use of the photoelectric effect 

to convert solar radiation into electric current, 

that can be used to power a load. A 

photovoltaic (PV) solar array is made of a set 

of solar cells arranged in serial and/or parallel, 

to provide the desired voltage and power. 

 Most solar cells are made of crystalline 

silicon, and they can be either monocrystalline 

or polycristalline. They have a long lifetime 

and are able to be mass produced easily. 

Amorphous silicon thin-film silicon solar cells 

are less expensive than the crystalline 

versions, but have lower efficiencies. Other 

newer chemistries such as crystalline Gallium 

arsenide (GaAs) offer the current best 

efficiencies but their cost is still prohibitive. 

The highest efficiencies offered for these 

chemistries are summarized in Tab.2. 



Table 2. Photovoltaic cells comparison [NREL,2012]. 

 efficiency cost 
Monocrystalline Si 25% high 
Polycrystalline Si 21% medium 
Amorphous Si thin film 14% low 
Crystalline GaAs 44% very high 

 

The average power density reaching the Earth, 

just outside its atmosphere is 1366 W/m
2
, but 
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at low altitudes (up to 2000m) where the 

UAVs are expected to operate, the maximum 

solar radiation does not exceed 1000 W/m
2
. 

 Typically the solar panels are connected 

to batteries through a solar charger that has a 

Maximum Power Point Tracking (MPPT) 

capability. This ensures that the pair voltage-

current provided by the panel is such that 

power is maximized. PV modules have a non-

linear current-voltage (I-V) characteristic, and 

there is only one point at which it can provide 

maximum power. However, this point changes 

with solar radiation intensity and temperature, 

and if this is not accounted for, the mismatch 

in impedance between the PV modules and the 

load leads to power losses. The MPPT 

controller tracks the point of maximum power 

and adjusts the impedance of both the PV 

modules and the load, in order to have the 

maximum amount of power transferred to the 

load [Başoğlu,2016]. 

 The energy harvested through the PV 

panels, from the start of the mission to a given 

time instant, can be expressed as 

 

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where Vsolar  is the PV voltage and Isolar is the 

instantaneous current. This implies that both 

voltage and current sensors are to be installed 

between the solar MPPT charger and the 

battery. 

 To obtain the energy expected to be 

harvested from the solar panels from a given 

time instant until the end of the mission, it is 

necessary to estimate how temperature and 

irradiance will change over time. If these 

functions are known, then the energy that is 

expected to be extracted through the solar 

panels can be given by 
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where PV is the efficiency of the PV panel, 

typically given by the manufacturer as a 

function of temperature, and Psolar  is the solar 

irradiated power, that can be estimated as  


PVsolartsolar AtRtP )()(,    , (11) 

where Rsolar is the solar irradiance and APV  is 

the PV surface area. Consequently, it is 

necessary to either measure the irradiance by 

using a pyranometer or to access databases of 

historical data for a particular location. 

 

Mechanical energy 

Another type of energy that should be 

considered as a source of energy is the 

mechanical energy of the aircraft. This is 

simply modelled as the sum of kinetic Ek and 

gravitational potential energy Ep,  


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where m, v and h are the aircraft mass, speed 

and altitude, respectively, and g is the gravitic 

acceleration. To calculate this energy, the 

aircraft current speed and altitude needs to 

measured, using for instance a Pitot tube. 

 If there is a change in either speed of 

altitude, then the variation of mechanical 

energy has to be due to the work made by the 

forces actuating on the aircraft (except its 

weight that is accounted by the gravitational 

potential energy). 

 

3.2 Energy consumption 

Any aircraft will consume a given amount of 

energy to take-off, climb, descent, manoeuvre, 

accelerate, gather and process data. The 

specifications for the vehicle’s components 

and its dynamic, along with the energy 

requirements imposed for any aircraft, will 

dictate how much energy has to be extracted 

from the energy sources to execute a given 

command. 

 In general, the propulsion system is the 

main energy sink in an aircraft, but other lower 

powered components will contribute to the 

energy expenses, namely other actuators (to 

accomplish varied manoeuvres), sensing and 

communication equipment (to transfer data) 

and processing units (that will process that 
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data). 

 

3.3 Energy required 

The mathematical model for the estimation of 

the energy required to complete a planned 

mission, is based on 
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where Wprop is the energy required by the 

propulsion system  and Eav is the energy 

required by the avionics equipment and other 

auxiliary systems onboard, both from a given 

instant until the end of the planned mission. 

 From the principle of work and energy, 

the change in kinetic energy of a body is 

related to the work done by the external forces 

acting on it, 
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If the work done by the weight is accounted as 

a change in gravitational potential energy.  

 The work required to be done by the 

propulsion system, for the aircraft to 

accomplish its mission, can be estimated using 
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being the work done by drag, 
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where D is the drag force and s is the 

displacement vector.  The energy dissipated by 

the drag Wdrag, accounted for in the calculation 

for the required energy, will vary with the path 

chosen for the mission, as well as the aircraft's 

aerodynamics and velocity over time. 

 Note that the kinetic Ek and potential Ep 

energies are accumulated quantities, meaning 

that they are only accounted for when energy 

from the sources is exchanged for a change in 

speed or altitude. For instance, when the 

aircraft loses altitude, the loss in potential 

energy can be converted into a gain of kinetic 

energy or to compensate the energy dissipated 

by drag, thus reducing the required work of the 

propulsion system. This becomes clear by 

recognising that the change in mechanical 

energy can be written as 
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 The energy required to operate all 

avionic systems (sensors, communications, 

low power actuators and processors), from a 

given time until the end of the mission, is 

given by the sum 
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To estimate these quantities, it is necessary to 

quantify the rated power consumption of each 

electric/electronic component and their 

operating scheduling during the mission. 

 A schematic of the contributions to the 

predicted energy required to complete the 

mission is shown in Fig.6. 

 

 

Figure 6. Estimated required energy [Baiao,2016]. 

 

3.4 Energy management 

Energy management methods aim to make the 

most efficient use of available energy. In 

aircraft that only possess one type of energy 

source, the energy management is 

straightforward, all the energy required to fly 

and operate the vehicle will come from that 

source. However, some UAVs, such as the 

fixed-wing platform adopted in this project,  

have a hybrid setup installed, with more than 
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one source of energy. 

 The most common hybrid system is the 

electric propulsion vehicle that carries a 

rechargeable battery and recharges them using 

PV cells. Energy harvested through the PV 

cells can be directly used to power the aircraft, 

when enough energy is being collected, and 

when this is not the case, some energy can be 

extracted from the battery to provide the 

remaining energy required for operation. If PV 

cells harvest more energy than the one they 

need to power the aircraft, then the battery can 

be recharged with the excess power. To 

prevent overcharging and to increase battery 

life, many solar powered aircraft incorporate a 

charge controller (or charge regulator) 

connected to their batteries, which manages 

the current flow to and from them, and may 

even protect them against overvoltage. 

 To optimize the usage of energy to 

maximize the endurance of a UAV, an 

appropriate energy management system (EMS) 

has to be developed. A possible approach, 

described by [Gao,2013], suggests a three 

stage flight. Stage one begins when enough 

solar energy is available to be harvested by the 

PV panels to power the aircraft, and the excess 

energy is used to charge the batteries. 

Moreover, during stage one, the aircraft gains 

as much altitude as possible, storing energy as 

gravitational potential energy. During stage 

two, when the solar power available is not 

enough to maintain level flight (e.g., at dusk or 

night), the aircraft trades the accumulated 

potential energy for kinetic energy, remaining 

in gliding flight and losing altitude. Finally, 

stage three starts when the aircraft descended 

into the lowest operational altitude, and at this 

point the batteries supply the energy required 

to maintain level flight. This strategy taken to 

to limit can allow for multiple day non-stop 

flights. 

 When a combination of fossil fuels and 

rechargeable batteries, or fuel cells (FC) and 

rechargeable batteries are used, it would be 

wise to first drain the energy from the batteries 

and avoid as much as possible to resort to the 

use of the non-rechargeable energy sources, 

since the energy consumed from the batteries 

could be recovered by means of solar energy 

harvesting through the PV cells. However the 

specific energy of batteries is usually smaller 

than that of the other energy sources. Because 

of their weight, batteries end up being a 

secondary onboard power source in most 

cases. [Karunarathne,2012] studied an EMS 

with a fuel cell and battery combination. Three 

modes of operation are described: during start-

up, the battery powers the propulsion system 

while the FC system gradually starts its 

operation and providing power to the load; 

once the FC is fully operational, the battery is 

recharged to at least 90\% of its capacity 

before take-off; during the most power 

demanding conditions (take-off, climb and 

maximum velocity) both the battery and the 

FC power the propulsion system, but when the 

aircraft is in cruise, only the FC supplies 

power to it, while also recharging the battery. 

 The EMS should not only manage the 

energy required but also take into account the 

rate at which it is used, that is to say, the 

power required. If the total drag curve is 

known for every airspeed, the power required 

curve can be obtained by 


D

CSVVD
req

P 
3

2

1  ,      (19) 

where   is the air density, V  is the true 

airspeed, S  is the reference wing area, and 
D

C  

is the total drag coefficient. 

 The black curve in Fig.7 represents a 

typical required power curve to fly at a given 

airspeed, for a propeller aircraft and assuming 

a constant high-lift device configuration. The 

minimum controllable airspeed is the stall 

speed (where the black curve becomes 

continuous). The airspeed at which the power 

required is minimum does not correspond to 

the airspeed to fly with minimum drag, the 

second one occurs at a slightly higher airspeed, 

approximately at the best rate of climb speed 

point. At airspeeds below or above the 

minimum power required one, the power 

required increases due to an increase in 

induced drag (since the aircraft has to fly at an 
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higher angle of attack to remain in flight) and 

due to an increase in parasitic drag 

respectively. 

 

Figure 7. Required and available power. [Baião,2016]. 

 

The red dashed curve represents the rated 

engine power (full throttle engine power 

delivered to the propellers in levelled sea-level 

flight), but the first blue line represents the 

maximum thrust power available after 

accounting for the propeller efficiency. The 

airspeed at which the first blue curve and the 

power required curve intersect indicates the 

maximum attainable airspeed. Moreover, the 

region between the maximum thrust power 

curve and the power required curve, for a 

given airspeed, illustrate the excess power 

available to perform manoeuvres. The airspeed 

at which this excess power is maximum is an 

ideal candidate (maximum rate of climb) for 

the rate of climb speed. The second blue curve 

indicates the available power at 75% rated 

power, and a similar analysis follows from the 

previous curve. It is important to note however 

that the maximum power available varies with 

altitude (due to decreased air density with 

altitude), and when full throttle is applied at 

altitudes above sea-level, the maximum power 

available will drop to a percentage of the rated 

power. At an altitude where full throttle nets 

only 75% of the rated power, the 

corresponding airspeed obtained corresponds 

to the point of intersection of the second blue 

curve with the required power curve. 

 Knowing the mission profile and the 

desired flying speed at each mission segment, 

it is then possible to estimate the power 

required to fly the aircraft. Each of the energy 

sources identified previously (fossil fuel 

engine or battery/FC/PV fed electric motor) 

have a maximum available power, that have to 

be match to the required power. This is the 

main driver for the EMS to determine the 

appropriate source of energy to by used at a 

given time, as illustrated in Fig.8.. 

 

Figure 8. Energy and power management system 
[Baião,2016]. 



 Given the hybrid solar and battery 

powered LEEUAV platform, a solar energy 

management algorithm was developed in 

MATLAB
®
, illustrated in Fig.9. Given the 

available battery energy and power, the PV 

array and MPPT solar charger controller 

properties, the irradiation forecast for a 

specific location, and the mission profile, this 

algorithm determines the minimum available 

PV area required to fulfil the endurance target. 

 

 

 
Figure 9. Hybrid solar-battery design [Parada,2016]. 
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4 OBSTACLE DETECTION AND 

AVOIDANCE 

Sense and Avoid (S&A) technology is 

fundamental to ensure a safe integration of 

unmanned aircraft in a congested airspace and 

increase their autonomy, and will probably 

propel the creation of regulations regarding 

UAVs in the future. The general structure of 

an S&A system is depicted in Fig.10. 

 

Figure 10. Functionalities of S&A system [Alves,2016]. 



 Requirements and standards for S&A 

systems are still under development, but the 

system will be expected to provide two main 

functions: maintain a minimum self-separation 

and perform, or suggest, manoeuvres to avoid 

collisions when all safety layers fail. Among 

these functions, the S&A sytem is expected to 

provide a set of sub-functions [ICAO,2014]: 1) 

Detect, determine presence of aircraft or other 

potential hazards; 2) Track, estimate position 

and velocity (state) of a single intruder based 

on one or more surveillance reports; 3) 

Evaluate, assess collision risk based on 

intruder and UAV states; 4) Prioritize, 

determine which intruder tracks have met a 

collision risk threshold; 5) Declare, decide that 

action is needed; 6) Determine, decide on what 

action is required; 7) Command, communicate 

determined action; and 8) Execute, respond to 

the commanded action.  

 

4.1 Sense and avoid framework 

 S&A systems consist of sensing 

hardware, a decision mechanism, a path 

planner and a flight controller. 

  The sensing equipment collects 

information about other traffic and obstacles. 

It can be classified as cooperative when any 

two aircraft have the same sensing equipment 

on-board and are able to exchange information 

through a communication channel, for 

example using a transponder (similar to Traffic 

Collision Avoidance System (TCAS)). 

However, small UAVs have strict payload 

capacities and this factor has to be accounted 

for. Automatic Dependent Surveillance - 

Broadcast (ADS-B) is a recent technology that 

broadcasts the aircraft’s position, velocity and 

its intent, using GPS data, it is lighter than 

TCAS and is considered to be the future of 

surveillance technology. However, even if 

every aircraft was equipped with cooperative 

sensing systems, it would still be impossible to 

detect other obstacles like buildings and 

mountains. Aircraft not equipped with such 

devices rely on non-cooperative sensing to 

detect traffic or static obstacles [Yu,2015]. 

Among the non-cooperative technologies the 

sensing principle can be active or passive. 

Active sensors, such as radars and laser (e.g.  

Synthetic Aperture Radar (SAR), Light 

Detection and Ranging (LIDAR)), emit a 

signal that is reflected by the obstacle allowing 

its detection. Passive sensors depend on the 

reception of signals emitted by the obstacle 

itself, they include electro-optical, infra-red 

and acoustic technologies. 

 The decision mechanism (software 

algorithms) then analyses the data collected 

through the sensing hardware and verifies if 

the current planned trajectory has to be altered 

to avoid threats, and if that is the case the path 

planner will attempt to generate an alternative 

path given the constraints on vehicle dynamics 

and fuel economy, which should be optimal 

when possible. Finally, the flight controller 

outputs the control signals that will allow the 

aircraft to perform an evasive manoeuvre. 

S&A is a time critical system that will not 

have the ability to prevent collisions if the 

computation time for all the mentioned tasks 

exceeds a given threshold [Yu,2015]. 

 The proposed collision avoidance system 

framework is expected to account for both 

static and dynamic obstacles and follows a two 

layered architecture, as illustrated in Fig.11. In 

the first stage, the global planning module, 
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which assumes a known static environment, 

determines a collision free path from a given 

start to goal configurations. The RPAS then 

follows this path and as new threats are 

detected by the on-board sensors, the local 

planning module must re-plan the path while 

avoiding these new obstacles. The two stage 

planning architecture allows the offline and 

online solutions to compensate each other in 

terms of planning horizon, considered 

obstacles, vehicle and mission constraints.  

 

Figure 11. Proposed collision avoidance framework 
[Alves,2016]. 



 In this work, the type of sensors used 

will not be specified, but it is assumed that 

there is a working method of sensor fusion to 

obtain the necessary information about the 

environment. To develop the collision 

avoidance algorithms, this information will be 

provided in tabular form as shown in Tab.3. 



Table 3. Obstacle database structure [Alves,2016]. 

Obstacle # X, Y, Z R, H, D 
   1 x1,y1,z1 r1,h1,d1 
   2 x2,y2,z2 r2,h2,d2 
   … …  … 

 

Each known obstacle base location is defined 

by its coordinates (x,y,z). For the purpose of 

collision avoidance, a safety volume is 

defined. Due to its simplicity and ability to 

encompass a wide variety of obstacle types a 

cylindrical model is used to represent 

obstacles, being h and d, the cylinder height 

and radius. From these values, and knowing 

the RPAS position from the navigation 

module, the distance r to the obstacle is 

determined. This distance will be used to rank 

the table in order to prioritize closest obstacles. 

This ranking is not necessary for the offline 

planning stage but it will be important during 

real-time implementation.  

 For moving obstacles detected during the 

mission execution, the same information is to 

be provided, with the additional intruder 

velocity also included. For this type of threats, 

the relative distance is not enough to evaluate 

the urgency with which the threat must be 

addressed hence the time to collision will also 

have to be considered. 

 The global planner depicted in Fig.10 is 

a module that receives a set of waypoints 

during the mission planning stage, a known 

obstacle data-base and a terrain map. If 

obstacles are found in the segments that 

connect the given waypoints, a free path, that 

satisfies certain optimization criteria such as 

shortest path, is provided in the form of a 

waypoint matrix, as schematized in Fig.12. 

 

Figure 12. Global planner inputs and outputs 
[Alves,2016]. 



Given a set of (adjusted) waypoints, the RPAS 

is then guided to the desired locations using 

either path following or path tacking 

techniques. The objective of path following is 

to minimize the position error, forcing the 

control output to follow a path with no time 

dependence. Path tracking requires the vehicle 

to follow a time and space reference trajectory, 

not being as flexible as the path following 
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approach. 

 When unexpected obstacles appear, the 

local planner is activated to generate a new 

path. The online collision avoidance will 

perform two main tasks: the detection of 

possible collisions and the provision of 

avoidance manoeuvres. The local planning 

module will receive from the navigation 

module the current RPAS position and 

velocity, information from the sensing module 

and the list of waypoints of the pre-planned 

path. When new obstacles are detected in the 

sense table, the collision detection algorithm is 

activated to determine if there is a collision 

risk. If a collision is eminent, an appropriate 

evasive manoeuvres, which might be defined 

by new waypoints or velocity and heading 

commands, is determined by the collision 

avoidance algorithm. Efficient obstacle 

avoidance should respond quickly to 

unexpected obstacles and be optimal in respect 

to the overall mission goal and vehicle 

dynamics. 

 

4.2 Collision avoidance algorithms 

Among the several existing collision 

avoidance algorithms, three stand out as being 

the most common. 

 The Artificial Potential Field (APF) 

[Luo,2014] method is inspired by physical 

potential fields and is generally used for 

reactive collision avoidance systems 

[Ruchti,2014]. The aircraft is treated as a 

charged particle moving through a field 

induced by attractive and repulsive forces. 

Waypoints to visit are modelled as attractive 

forces that direct the UAV towards the goal. In 

contrast, detected obstacles are modelled as 

repulsive forces, whose magnitude depends on 

the distance between UAV and obstacles. The 

control command is then given by the sum of 

the attractive and repulsive forces. When 

compared to other methods, the APF method is 

popular due to its mathematical simplicity 

which is an advantage in terms of computation 

speed and complexity [Lihua,2016], making it 

appropriate for use in real time. 

 The Geometric Solution (GS) is another 

method of addressing the collision avoidance 

problem. This method attempts to use simple 

geometric relations to obtain a collision 

avoidance solution. A representative example 

is the collision cone formulation. This 

approach uses RPAS position, heading and 

velocity to determine if the propagated 

trajectory will result in the violation of a 

minimum separation distance. The idea is to 

keep the RPAS velocity vector out of the 

region surrounding the intruder. In 

[Luongo,2009], a 3D solution is presented for 

non-cooperative collision avoidance of 

aircrafts, where algorithm combines velocity, 

heading and vertical changes to avoid the 

safety volume around the intruder aircraft. 

 The Markov Decision Process (MDP) 

approach formulates the collision avoidance 

problem as an optimal control of a stochastic 

system. A MDP is a discrete dynamic 

programing process where the state of the 

system changes according to the current state 

and the chosen action. The problem is then 

solved through dynamic programing by 

evaluating the expected reward for each 

combination of states and actions. A variant 

called Partially Observable MDP (POMDP) 

was devised to account for uncertainties that 

may arise from sensors and intruder behaviour. 

The MDP approach accounts for all possible 

encounter scenarios and their likelihood when 

solving the model, allowing the automatic 

generation of the collision avoidance logic by 

defining the system goal and operating 

environment. For a collision avoidance system 

the state must contain at least the 3D positions 

and velocities of at least two aircrafts and in 

order to build an optimal policy and all the 

possible combinations of actions-state must be 

considered. Large state spaces are the main 

issue when solving MDPs as some 

formulations would require too much 

computational complexity to solve the 

problem, making the approach restricted to 

offline planning. Examples of POMDPs 

applied to RPAS collision avoidance can be 

found in [Temizer,2010] using a 2D 

formulation assuming a discrete state space 
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and [Bai,2011] extending it to 3D continuous-

state models. 

 

 

5 MISSION PLANNING 

Mission planning, or path planning, attempts 

to find the optimal collision-free path for the 

UAV to complete the mission, given several 

constraints and known environmental 

conditions. The optimization can aim to 

minimize the distance, the energy required or 

the mission time, or maximize the endurance 

of the aircraft. 

 In general, path planning requires the 

collection of external information, namely the 

number, position and velocity of obstacles, as 

well as pre-flight information, like the goal 

position, terrain and restricted areas. This 

information is processed afterwards and, faced 

with the set of requirements for the mission, 

the vehicle’s dynamics and navigation 

parameters, a path is generated by the system. 

Since it is likely that the aircraft will face 

unexpected obstacles, including other traffic, 

the initial planned path will need to be 

corrected in certain sections, until the goal 

position is reached. 

 

5.1 Global and local path planning 

 Global path planning algorithms, which 

are mainly performed offline, generate a low 

resolution path that reaches the goal point 

while local planning gives a high resolution 

path over a segment of the global path 

avoiding small obstacles. These local 

algorithms are usually fast and reactive, 

performed online to ensure the vehicle safety 

from unexpected obstacles (such as moving 

aircrafts or objects too small to be present in 

the data base). 

 

5.2 Path planning algorithms 

 Several approaches exist for determining 

paths given some representation of the 

environment. The most popular techniques are 

described next. 

 

5.2.1 Graph search 

 Graph search algorithms are one of the 

most popular methods used in robot path 

planning. In these algorithms, the airspace is 

discretized and represented by a set of cells on 

a weighted graph. The robot's configuration is 

represented by the graph nodes while the 

edges connecting the graph represent the cost 

of moving between nodes. High weight values 

on cell edges can be used to represent 

obstacles. Most of the graph search algorithms 

are based on the Dijkstra algorithm 

[Dijkstra,1959]. This algorithm works by 

evaluating the cost of moving from one node 

to its neighbours and connecting the nodes 

with the lowest moving cost.  The A* 

algorithm [Duchon,2014] builds on the latter 

by combining the moving cost between nodes 

and the cost to reach the goal to drive the 

search. The problem with these algorithms, 

due to its graph structure, is that they usually 

calculate paths with unnecessary heading 

changes. Generally post-processing techniques 

must be applied to obtain a flyable path. They 

also only apply to known static environments, 

which imposes a limit for agents in uncertain 

environments. To overcome this limitations 

D* and T* were introduced. Dynamic A* 

improves on the A* algorithm making it 

applicable to dynamic environments by 

allowing the edges cost to be dynamically 

adjusted [Liao,2012]. T* [Daniel,2010] is 

meant to deal with the problems of heading 

constraints in a graph structure by considering 

different connections between graph nodes. 

Paths obtained by T* are smoother than those 

determined by A*. Both algorithms were 

successfully applied to the UAV path planning 

problem in [Filippis,2012]. A major downfall 

when applying typical graph search algorithms 

to path planning problems is lack of inclusion 

of the vehicle kinematics. In [Hwangbo,2007] 

node connection rules are defined to include 

the vehicle kinematics. A small fixed wing 

UAV is considered, and the grid size in the 
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horizontal place (x and y directions) is defined 

by the minimum turning radius, while the size 

in vertical axis (z direction) is defined by the 

maximum climb angle (assuming constant 

speed). The graph search algorithms are 

attractive because they are easy to implement 

and can be adapted to different case scenarios 

by allowing distinct heuristics to guide the 

search. 

 

5.2.2 Rapidly exploring random tree 

 Rapidly Exploring Random Tree (RRT) 

[Kothari,2013] is a popular search algorithm 

when dealing with high dimensional spaces. 

The general idea is to connect points sampled 

randomly from the search space. The 

algorithm is initialized with a graph that 

contains only the initial state as a single 

vertex. At each step, a random sample from 

the search space is generated and an attempt is 

made to connect this new sample to the nearest 

vertex on the tree.  This connection is limited 

by a growth factor (generally distance), if the 

connection is successful then the new sampled 

point is added to the graph. By increasing the 

probability of sampling states in a specific 

area, the search is guided toward the goal state. 

The higher this probability is, the greedier the 

algorithm. In [Lin,2015] a greedy version of 

closed-loop RRT is used to plan the collision 

avoidance path. 

 

5.2.3 Ant colony optimization 

 The Ant Colony Optimization (ACO) 

algorithm is a meta-heuristic approach inspired 

by the foraging behaviour of ants in the real 

world. Ants are known to find the shortest path 

from their nest to the food source. They 

accomplish this by leaving a pheromone trail 

along their path. This trail is detected by other 

ants which will tend to follow the trail with 

higher pheromone levels. The ACO 

formulation has also been applied to the UAV 

path planning problem [Ma,2007]. These 

solutions however are only applied to 2D 

environments, considering a constant flying 

height, which is not suitable for many 

applications of flying vehicles. ACO has 

shown good results in planning paths but the 

computation time is prohibitive for online 

applications. 

 

5.2.4 Mixed integer linear programming 

 Mixed Integer Linear Programming 

(MILP) [Grøtli,2012] is a technique that 

addresses the collision avoidance problem 

using linear programing. To solve the MILP 

problem a set of constraints to model the UAV 

dynamics must be specified, additionally 

constraints related to collision avoidance, such 

as separation distance, must be provided. Once 

the problem is formulated, a solver determines 

the solution. This approach however is 

computationally expensive and only feasible 

for offline planning as it scales poorly with the 

problem size. This formulation has been 

widely applied to the collision avoidance 

problem of UAVs [Richards,2012]. 

 

5.3 Path planning process 

For the path planning process, it is assume that 

the following elements are available: 

 Ordered set of goal waypoints; 

 Environment (terrain, static obstacles and 

wind conditions); 

 Cost function of mission objective.  

Based on these, the path planning algorithm 

produces a safe flyable path for the RPAS. The 

planned route consists of a set of waypoints in 

the form 

    
iiii zyxP

n
PPP ,,,...

1
 .    (20) 

The planned trajectory should account for 

speed and manoeuvre constraints of the 

vehicle. The path planning process is divided 

in four steps: 

1. Representation of the configuration 

space, or planning environment; 

2. Definition of constraints (both vehicle 

and mission related); 
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3. Definition of the cost function; 

4. Search process for the optimal path from 

starting point to target point. 

These will be covered in the next sub-sections. 

 

5.3.1 Environment modelling 

A key concept of path planning is the 

representation of the physical world where the 

RPAS will operate. The environment model 

includes terrain, weather and obstacles. 

 The configuration space is a data 

structure that allows the specification of the 

possible UAV positions (location and 

orientation) and obstacles location. Many 

representations of configuration spaces can be 

used, the main ones being Voronoi diagrams, 

regular grids and quadtrees. For this project, 

regular grids are used due to their conceptually 

simple representation. 

 By properly defining the grid resolution, 

it becomes easy to find kinematically feasible 

paths. When deciding on the grid size some 

limitations of the RPAS must be considered. In 

the horizontal plane (x-y), the grid resolution is 

limited by the minimum turning radius of the 

RPAS, this is a restriction in the lateral 

acceleration of the vehicle. By setting the grid 

size to be at least 1.5 times greater than the 

minimum turning radius, the feasibility of the 

path is guaranteed, resulting 


min

5.1 Ryx  . (21) 

Fixed-wing platforms are not allowed to climb 

at an angle superior to the maximum climb 

angle, γmax, resulting in a limitation in the 

resolution along the vertical plane z, 


min

.xz  . (22) 

 

5.3.2 Platform constraints 

Some of the kinematic constraints of the 

vehicle, minimum turning radius and 

maximum climb angle, were already included 

in the definition of the search space. Other 

constraints in the vehicle manoeuvrability can 

be included in the process of node expansion 

during the search process through the graph. 

 In a regular 3D grid, there are 26 

neighbouring nodes per node. For a non-

holonomic vehicle, such as multirotor, any of 

the points can be achieved from the central 

location but fixed-wing platforms have a 

forward only motion and cannot make sharp 

turns or climbs. These manoeuvrability 

restrictions are incorporated by defining a set 

of expansion rules [Hwangbo,2007]. Besides 

the RPAS position, given as (x,y,z), its 

heading and climb angle must also be included 

in the node definition in order to determine 

which manoeuvres are possible from the given 

configuration, as illustrated in Fig.13.  

 

 

Figure 13. Expansion rules for fixed-wing platforms 
(adapted from [Hangbo,2007]). 

 

5.3.3 Cost function 

Depending on the mission objectives different 

cost functions can be considered. RPAS have 

limited range and endurance so in this project 

two different criteria are considered: minimum 

distance and minimum energy. 

 

Minimum Distance 

For the minimum distance paths, the cost 

function is simply given by the Euclidean 

distance between points. In the case the RPAS 

is moving between i and point j yields 

222
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Minimum Energy 

The RPAS motion can be analysed using the 
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principle of work and energy. 

 Following Eq.(15) in Section 3.3, the 

required energy corresponds to the work done 

by the thrust generated by the propulsion 

system and additional avionics energy 

consumption. Considering the forces acting on 

the RPAS, the energy required to fly between 

points i and j can be expressed as 

ij
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z
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j
vm
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,      (24) 

where the terms in the rhs account for the 

variation in kinetic energy, the variation in 

gravitational potential energy and the energy 

dissipated by drag, respectively. 

Wind has to be accounted in Eq.(24), where v 

corresponds to the air speed, which relates to 

ground speed as 

 windvairvgroundv   (25) 

The air displacement is given by 


ij

t
air

v
ij

s  . (26) 

where Δtij is the time required to fly from point 

i to j. To ensure that the RPAS follows the 

desired ground track, the component of 

groundv  transversal to the ground path must be 

zero. 

 

5.3.4 Path search 

The A* algorithm is regarded as one of the 

most practical an efficient path planning 

algorithm and, as seen in Sec.5.3.2, it can 

handle some vehicle kinematic constraints. As 

such, this method was the first approach in this 

project. The A* algorithm improves on classic 

graph search methods by combining aspects of 

both uniform cost search and greedy best first 

search. The nodes are evaluated according to 

the cost function 

 )()()( nhngnf  , (27) 

where g(n) denotes the cost to reach the node 

and h(n) represents the cost of getting from the 

node to the goal. As such, f(n) represents the 

estimated cost of the cheapest solution going 

through n. 

 Because the number of nodes to explore 

increases exponentially with the dimension of 

the graph, A* takes too long to find a feasible 

solution for more complex problems. In this 

case, an approximate solution that can be 

found faster may be more useful. To improve 

the algorithms performance there’s an 

approach called Weighted A*. The WA* 

version makes use of a weighted sum of cost 

and heuristic to speed up the search process by 

reducing the number of explored nodes.  

 )(.)()( nhwngnf  , (28) 

For w>1, there is a bias towards states that are 

closer to the goal. This weighted function 

improves the algorithms performance but 

optimality is no longer guaranteed as the 

heuristic is no longer admissible. The cost of 

the solution found is in the worst case w times 

greater than the optimal solution. 

 In order to evaluate the influence of w on 

the quality of the obtained solution, a test was 

run over a large search space. The search 

space characteristics for this test are given in 

Tab.4, and the terrain can be seen in Fig.13.  



Table 4. Map characteristics [Alves,2016]. 

Map size  Start Goal  Δx= Δy Δz  Dsafety 

463x350x60 [51,439,200] [324,258,200] 30 10 100 

 

The values Δx and Δy correspond to a fixed-

wing platform with minimum turning radius of 

20m, and the vertical spacing Δz corresponds 

to a maximum climb angle of approximately 

18º. A minimum safety distance of 100m from 

any obstacles or terrain is defined. In this test, 

the cost function for the search was the 

distance travelled from the start state to the 

current state and the heuristic used was the 

straight line Euclidean distance from the 

current node to the goal. The average results 

for 30 simulations are presented in Tab.5. 

All examples are obtained with MATLAB 

R2012b running on a Intel Core i7 with a CPU 

of 2.40 GHz, 8Gb RAM and Windows 8.1. 
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Table 5. Path search for fixed wing platform using A* e 
WA* algorithms [Alves,2016]. 

Weight w # Eval. nodes UAV Distance [m]  CPU time [s} 

  1 769422 1.0446e4  9621 
  1.1     1872 1.0460e4        0.4036 
  1.2     1871 1.0460e4        0.3993 
  1.5     1871 1.0460e4        0.3836 
  2     1868 1.0460e4        0.3885 
  5     1469 1.0512e4        0.3457 
10     1439 1.0517e4        0.3175 
25     1432 1.0539e4        0.3160 
50     1429 1.0539e4        0.3160 

 

The optimal and sub-optimal paths found can 

be seen in Figures 14 and 15. 

 

Figure 14. A* paths (3D views) [Alves,2016]). 

 

 

Figure 15. A* paths (x-y plane) [Alves,2016]). 

 

From the obtained results in Tab.5, it can be 

seen that WA* provides a considerably faster 

execution time. Even the smallest increase in 

the weight over unity greatly reduces the 

number of explored nodes, biasing the search 

towards the goal. In this case, even for high 

weight values, the path cost is not much worse 

than the optimal (for w=50, the cost is only 

1.3% higher than the optimal). However, even 

though the increase in distance is not much 

higher, the path becomes less "flyable", as it 

includes numerous height changes along the 

path. During the offline computation stage, 

execution time is not an issue, but for the 

online implementation, the processing speed is 

key. In those cases, a compromise between 

path optimality and processing requirements 

may be necessary. 

 

 Another tested path planning algorithm 

was the Ant Colony Optimization (ACO). 

Both variants of the ACO algorithm, ACS and 

Min-Max AS, are applied to the RPAS path 

planning problem. The necessary elements are: 

- Graph Construction: the graph is constructed 

as a weighted tri-dimensional grid. Each node 

represents the RPAS position and orientation 

in a Cartesian coordinate system (x,y,z,α,ψ). 

The spacing between the nodes is proportional 

to the distance between points. 

- Constraints: depending on the type of 

platform being considered different 

movements are allowed as defined in 

Sec.5.3.2. 

- Pheromone trail: in this implementation, 

pheromones will be deposited in each node, 

representing the desirability of visiting one 

node after the other. 

- Heuristic information: defined as the inverse 

of the distance between each node and the 

target and, additionally, as the inverse of the 

energy expenditure between nodes, as 



ij
E

ij
dij

11
 , (29) 

where dij represents the Euclidean distance 

given by Eq.(23) and Eij represents the energy 

spend in the transition between nodes, given 

by Eq.(24). 
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 To test the performance of the proposed 

algorithms two examples are considered: first 

a minimum distance path is planned in a tri-

dimensional environment. In the second 

example a simple two-dimensional 

environment is used to test the planning of 

energy efficient paths in the presence of a 

wind field. The results presented consider a 

fixed-wing platform with 10kg of mass, wing 

area of 1m2 and drag coefficient of 0.5, flying 

at 12m/s at sea level. 

 

Minimum distance paths  

In this first example the objective is to plan a 

minimum distance path between two points 

over a 3D terrain. The map characteristics are 

given in Tab.6. 



Table 6. Map characteristics [Alves,2016]. 

Map size  Start Goal  Δx= Δy Δz  Dsafety 

93x70x50 [11,88,200] [66,53,200] 150 50 150 

 

For the A* algorithm the cost function used is 

f(n)=g(n)+h(n), where both g(n) and h(n) are 

Euclidean distances.  In the ACO algorithm, 

the heuristic information is given as ij=1/dij 

and the cost of the ants paths is calculated as 

the travelled distance between nodes. The 

algorithms parameters are given in Tab.7.  

 

Table 7. ACO parameters[Alves,2016]. 

α β m q0 τ   iter τmin τmax 

1 2 10 0.4 10 0.3 0.9 500 0.01 10 

 

The results are presented in Tab.8. 

 

Table 8. Minimum distance paths without wind 
[Alves,2016]. 

Algorithm Distance [m] CPU time [s] 

A* 1.0275e4     0.4609 

ACS 3.9445e4 149.4950 

Min-Max AS 3.8818e4 101.6099 

 

The planned paths are shown in Fig. 16 to 18. 

 

 

Figure 16. Minimum distance A* paths (x-y plane) 
[Alves,2016]). 

 

Figure 17. Minimum distance ACS paths (x-y plane) 
[Alves,2016]). 

 

Figure 18. Minimum distance Min-Max AS paths (x-y 
plane) [Alves,2016]). 

 

Minimum energy paths 

The A* cost function is defined as 

f(n)=g(n)+h(n), where h(n) is the Euclidean 

distance to the goal and g(n) is the 
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accumulated energetic cost of transitions 

between nodes. For the ACO, the heuristic 

function is given by Eq.(13). The graph 

characteristics for this test are presented in 

Tab.9. The algorithms parameters are given in 

Tab.10.  



Table 9. Map characteristics [Alves,2016]. 

Map size  Start Goal  Δx= Δy Dsafety 

20x20 [60,450] [450,60] 30 150 



Table 10. ACO parameters [Alves,2016]. 

α β m q0 τ   iter τmin τmax 

1 2 10 0.4 10 0.3 0.9 1000 0.01 10 



The results are given in Tab.11. and Tab.12, 

for with wind and without wind conditions, 

respectively. 



Table 11. Minimum energy paths without wind 
[Alves,2016]. 

Algorithm Energy [J] CPU time [s] 

A* 2.0467e4     0.1455 

ACS 2.3322e4 137.7393 

Min-Max AS 2.2140e4 110.2066 



Table 12. Minimum energy paths with wind 
[Alves,2016]. 

Algorithm Energy [J] CPU time [s] 

A* 3.7305e4     0.4609 

ACS 3.9445e4 139.4950 

Min-Max AS 3.8818e4 101.6099 

 

The planned paths are shown in Figures 19 to 

21, with indication of the RPAS departure 

heading. 

 

Figure 19. Minimum energy A* path [Alves,2016]). 

 

Figure 20. Minimum energy ACS path [Alves,2016]). 

 

 

Figure 21. Minimum energy Min-Max AS path 
[Alves,2016]). 

 

From the obtained results it can be concluded 

that the A* algorithm outperforms ACO. The 

drawbacks of ACO are its slow convergence 

and the randomness of the search does not 

guarantee that the optimal solution is found. 

On the other hand A* is complete, meaning 

that if a solution exists it will always find one 

and if used with a consistent heuristic it is 

guaranteed that the found path is optimal. 

Between the two ACO algorithms tested the 

Min-Max AS has shown better results in terms 

of computation time and path cost.  

 

6 FINAL REMARKS 

While this project is still in an early stage of 

development, progress has been made in every 

of the three safety subsystems identified. It is 
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expected that by the end of the project, the 

goals identified in Sec.1 will be successfully 

achieved. 
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