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Abstract

During the last decade, significant progress has been made in the field of optimization using
high-fidelity models. The increased use of adjoint methods has allowed the computation of sensi-
tivity information, required by gradient-based optimizers, in a very efficient manner. In terms of
fluid dynamics, while the first applications were focused on aerodynamic shape design, recent ap-
proaches to the development of adjoint solvers, namely with the use of automatic differentiation
tools, have made possible to extend their capabilities far beyond that. The present paper briefly
describes a discrete adjoint method implementation for a generic CFD solver and lays down the
steps to estimate sensitivities of functions of interest with respect to any variables handled by the
flow solver. The applications presented are based on turbomachinery blade design problems. Two
different capabilities are illustrated: one more traditional geared toward shape optimization that
focuses on estimating gradients of some turbomachinery aerodynamic performance parameters with
respect to blade geometry, and another more innovative geared toward estimating the effect of the
inlet or exit boundary conditions on some aerothermal performance parameters. The computational
cost required by this method in terms of CPU time is considerably reduced compared to the popular
finite-difference method, at the expense of a more complex implementation. The detailed sensitivity
information obtained is discussed from a designer perspective. Other possible applications of adjoint
methods are listed and their development implications are also described.
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1 Introduction

In the last decades, turbomachinery design has greatly benefited with the use of high-fidelity computa-
tional tools, including but not limited to aerodynamic, aerothermal, structural and dynamic analyses.
Of particular interest is the expanding role of computational fluid dynamic (CFD) simulations, departing
from the conventional simulation analysis to advanced design optimization tasks.

When it comes to optimization, it is well known that gradient-based algorithms, whenever possible
to be used, are the most efficient in terms of computational resources required to drive the solution
to its optimal. However, derivatives of the functions of interest need to be provided to such class of
algorithms. This, by itself, can pose a problem as most sensitivity analysis methods can become too
costly when the number of optimization variables is very large. A good example are finite-differences,
whose computational cost scales linearly with the number of variables.

For problems when the number of variables greatly exceeds the number of functions, the adjoint
method is the best-suited approach to efficiently estimate function gradients since the cost involved in
calculating sensitivities is practically independent of the number of design variables.

The first application of the adjoint method to CFD is credited to Pironneau [1] back in 70’s. Since
then, much progress has been made extending its application to aeronautical problems, ranging from
airfoils [2] to complete wings [3], from external [4] to internal flows [5], and even multi-stage turboma-
chines [6] and robust optimization [7].

While these applications were on shape optimization, that is, where the design variables were shape
parameters, and where the functions of interest were of aerodynamic nature, such as wing drag or blade
efficiency, the adjoint method can be extended to other classes of problems in a straightforward manner.

In this paper, a generic derivation of the adjoint equations is provided and two distinct applications
are presented: the first being a conventional aerodynamic problem using wall shape design variables,
while the second is an aerothermal problem using inlet or exit boundary conditions.
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2 Background

The underlying theory of design optimization and adjoint-based sensitivity analysis using high-fidelity
CFD are presented in this section. First, the design problem is posed in non-linear programming form,
then the flow governing equations are presented and their corresponding adjoint equations are derived,
followed by the adjoint-based gradients expressions. Finally, a possible gradient-based optimization
framework is discussed.

2.1 Generic Design Problem

The design of any turbomachinery component can be mathematically formulated as an optimization
problem. In generic terms, this problem can be cast in non-linear programming (NLP) form as

minimize f(α,ω(α))

w.r.t. α (1)

subject to R(α,ω(α)) = 0

c(α,ω(α)) = 0 ,

where f stands for the objective (or cost) function, α is the vector of design variables and ω is the state
solution, which is typically of function of the design variables, and c = 0 represents additional constraints
that may or may not involve the state solution. For the particular case of a CFD design problem, ω is
the flow solution, and the additional constraint R = 0 represents the flow governing equations, which
means that the solution must always obey the flow physics.

In turbomachinery design, examples of functions of interest, either objective f or constraints c can be
blade efficiency, pressure ratio, mass flow or surface temperature. The design variables, that represent
the tuning parameters, can be some form of blade shape control, such as blade stagger, camber angle
and thickness distributions, axial and radial stacking. Other possibility of design variables is to consider
the boundary conditions of the governing equations themselves. An example could be the inlet total
temperature or turbulence intensity radial profiles, assuming one as some degree of control over these.

It is of paramount importance to the designer to assess the sensitivity of the functions of interest with
respect to the tuning parameters, that is to say, a detailed sensitivity analysis ought to be conducted
so that estimates to df/dα and dci/dα are obtained. Moreover, in case the NLP problem (1) is to
be solved numerically using a gradient-based optimizer, these sensitivities are necessary and must be
evaluated in an accurate and timely manner.

2.2 Flow Governing Equations

The governing equations used in the present work are the Reynolds-Averaged Navier–Stokes (RANS)
equations. In conservation form, the Navier–Stokes system of equations may be written in index notation
as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 , (2a)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj + pδij − τji) = 0, i = 1, 2, 3 , (2b)

∂

∂t
(ρE) +

∂

∂xj
(ρEuj + puj − uiτij + qj) = 0 , (2c)

where ρ, ui and E are respectively the density, mean velocity and total energy, τij is the viscous stress
and qj is the heat flux. A turbulence model needs to be used to model the Reynolds stresses. In this
paper, a two-equation turbulence model was used, in particular the k − ω model of Wilcox [8],

∂

∂t
(ρk) +

∂

∂xj
(ρkuj) = τij

∂ui
∂xj
− βkρkω +

∂

∂xj

[(
µ+ σk

ρk

ω

)
∂k

∂xj

]
, (3a)
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ω

)
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]
, (3b)

where k is the turbulence kinetic energy and ω is the specific dissipation rate. The turbulent eddy
viscosity is computed from µT = ρk/ω and the constants are γ = 5/9, βk = 9/100, βω = 3/40, σk = 1/2
and σω = 1/2. The effective viscosity used in the Navier–Stokes equations (2) is then computed as
µ = µm + µT , where µm is the molecular (laminar) viscosity.

In semi-discrete form, the RANS governing equations (2,3) can be expressed for a given computional
cell n as

dωn
dt

+Rn(ω) = 0 , (4)

where ω = (ρ, ρu, ρE, ρk, ρω)
T

is the vector of conservative variables and R is the residual with all of its
components (inviscid, viscous and turbulent fluxes, boundary conditions and artificial dissipation) The
unsteady term of Eq.(4) is dropped out since only the steady solution of the equation is of interest in
this work.

2.3 Adjoint Equations

The derivation of the adjoint equations for systems of PDEs follows the work by Giles [9]. The adjoint
equations of the flow Eq.(4) can be expressed as[

∂R
∂ω

]T
ψ =

[
∂f

∂ω

]T
, (5)

where ψ is the adjoint state vector.
Once the adjoint solution is computed from Eq.(5), the gradient of the function of interest with

respect to the design variables α is easily obtained from a simple matrix-vector multiplication operation
given by

df

dα
=
∂f

∂α
−ψT ∂R

∂α
. (6)

It is important to highlight the dependence of the adjoint equation on the function of interest f .
This implies solving Eq.(5) with a new right-hand side vector for each function of interest, that is, for
the objective function f and constraints c in the optimization problem Eq.(1).

On the other hand, the computational cost of the total sensitivity Eq.(6) is almost independent of
the number of design variables α, which is the feature that makes the adjoint method so attractive for
gradient-based optimization involving a large number of variables and a few functions.

2.4 Optimization Framework

As already mentioned, the NLP problem in Eq.(1) can be solved using a gradient-based optimization
algorithm.

Let α denote the set of design parameters controlled by the optimizer. Using the set of values provided
by the optimizer, the flow solver of Eq.(4) is run to compute the flow solution ω and, using some post-
processing, the functions of interest f or c are evaluated and passed back to the optimizer. Using the
flow solution obtained by running the flow solver, the adjoint solution ψ corresponding to the functions
of interest is then computed using the adjoint solver. Once the adjoint solution is evaluated from Eq.(5),
the gradients of the functions of interest with respect to the design parameters are computed by Eq.(6),
which implies a simple matrix-vector multiplication operation, and passed back to the optimizer. The
function values and gradients are then used by the optimizer to find the search direction, along which
a step is taken in the design space. The optimizer then loops though the described steps until the
optimality criteria are satisfied.

The schematic of the adjoint-based optimization algorithm just described is illustrated in Fig. 1.
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Figure 1: Schematic of the adjoint-based optimization algorithm.

In terms of computational cost, the flow and adjoint solvers are the two main blocks of the process,
being the cost of the solution of the adjoint equations approximately the same as that of the solution of
the flow governing equations, since both equations are of similar size and complexity.

The algorithm illustrated in Fig. 1 is rather simplistic. In practice, some additional pre- and post-
processing steps need to be considered, like mesh generation and deformation, or even transformation
of variables. For instance, if the desired design variables β are not handled explicitly by the flow solver,
then it is necessary to derive the relation α = α(β) and use the chain rule of differentiation to express
the gradient of the function of interest with respect to the design variables as

df

dβ
=

df

dα

dα

dβ
. (7)

The method used to evaluate the term dα
dβ is problem dependent. If the relation expressed by Eq.(7)

is known explicitly, even if in the form of a source code, then the adjoint method can again be used.
In contrast, if that relation is given by some sort of a black box, such as a commercial CAD or mesh
generator software, then most likely a finite-difference approximation has to be used.

3 Implementation

The legacy flow solver is briefly described and main properties of the corresponding adjoint solver are
highlighted in this section.

3.1 Flow Solver

The flow solver used is an in-house developed code for the analysis of turbomachinery blade rows. It
solves the RANS Eqs. (2,3) in multi-block, three-dimensional, structured grids, using the finite-volume
technique, and supporting multi-processor execution.

As typical for most iterative CFD solvers, the residual calculation is done by looping through the
discretized domain and accumulating the several fluxes and boundary conditions contributions in the
residual Rn of each cell.

3.2 Adjoint Solver

The simple mathematical form of Eq.(5) can be very misleading since, depending on the approach, their
numerical implementation can be quite complex, if derived by manual differentiation, or quite costly, if
derived using finite-differences.

A discrete adjoint approach formulation was chosen because it can be applied to any set of governing
equations, namely full RANS with turbulent adjoint terms, and it can treat arbitrary functions of
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interest. In addition, the discrete approach allowed the use of automatic differentiation (AD) tools [10]
in its derivation, considerably mitigating the cost of developing the adjoint solver.

This resulting hybrid approach follows the work of Marta [11]. It retains the accuracy of the adjoint
methods, while it adds the ease of implementation of the automatic differentiation methods. The discrete
adjoint solver was derived with the aid of an AD tool that was selectively applied to the CFD source
code that handled the evaluations of the residual R and functions of interest f . That tool produced the
routines that evaluate the entries of the partial derivative matrices ∂R/∂ω, ∂f/∂ω, ∂f/∂α and ∂R/∂α
that are necessary to compute gradients in Eq.(6) using the adjoint solution from Eq.(5).

The sizes of the matrices involved in this process are

∂R
∂ω

(Nω ×Nω) ,
∂f

∂ω
(Nf ×Nω) ,

∂R
∂α

(Nω ×Nα) ,
∂f

∂α
(Nf ×Nα) , (8)

where Nf is the number of functions of interest, Nα is the number of design variables and Nω is the size
of the state vector. The size of the vector ω depends on the number of governing equations, Ne (seven
for RANS), and the number of cells of the computational mesh, Nc, that discretize the physical domain,
according to the relation Nω = Ne ×Nc, which for the solution of a large problem is very large.

The details about the adjoint solver implementation and verification can be found in reference [5].

4 Results

This section demonstrates the capability of the adjoint method to estimate, accurately and in detail, the
sensitivity of some functions of interest with respect to different design variables. It includes two distinct
turbomachine blades: a high-pressure compressor rotor blade and a low-pressure turbine stator vane.
For each test case, adjoint-based sensitivity information is computed for different functions of interest
and design variables.

4.1 Compressor Rotor Blade

A transonic blade of a high-pressure compressor stage was used to demonstrate the capabilities of the
adjoint solver handling grid coordinates as design variables.

The full wheel geometry is shown in Fig. 2(a). The close up of the blades is presented in Fig. 2(b),
where the casing wall has been removed for visual clarity.

(a) Full wheel (b) Close up (c) Computational domain

Figure 2: Compressor rotor geometry.

The mesh generated has a OH-grid topology around the blade, reverting to H-grid topology further
away from the blade, and a wall refinement leading to an average y+ of 25. A total of 60 blocks were
created, as shown in Fig. 2(c), totaling 1.2 million cells, and the simulations were run on a cluster using
32 processors.
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The inlet boundary conditions were absolute tangential velocity fixed and pressure extrapolated from
the interior. The exit static pressure was held fixed. All solid walls were considered impermeable with
no-slip condition. The remaining faces were either block-to-block interfaces or periodic.

In this test case, the isentropic efficiency was used as function of interest f ,

η =

(
P enthta exit/P

enth
ta inlet

)(γ−1)/γ − 1

(Tmassta exit/T
mass
ta inlet)− 1

, (9)

where the superscripts enth, mass and area indicate an enthalpy, mass and area averaged quantities at
the inlet or exit sections.

The coordinates of each computational grid node (x, y, z)n were assumed to be design variables,
which meant a total of 3.6 million parameters (Nα).

Given that the full adjoint solution was used, seven adjoint variables, (ρ, ρu, ρv, ρw, ρE, ρk, ρω)adj ,
were computed at each computational node, thus Nω ≈ 8.4 million.

4.1.1 Flow and Adjoint Solutions

The contours of non-dimensional density on the hub and blade surface are shown in Fig. 3(a), where the
flow goes in the positive z direction. The corresponding adjoint solution of the continuity equation for
isentropic efficiency, setting f = η in Eq.(5), is shown in Fig. 3(b).

(a) Flow (b) Adjoint

Figure 3: Flow and adjoint solution for the compressor rotor blade.

The average inlet density and the average exit adjoint of the continuity equation were used as reference
for the non-dimensionalization of the flow and adjoint solutions, respectively.

As typically found in adjoint solutions, the plot in Fig. 3(b) shows an adjoint flow some how reverse
of the real flow. The wake emanates from the blade trailing edge as a consequence of the adjoint flow
pointing in the negative direction. This is the result of the representation of the adjoint time τ as the
negative of the physical time t as inferred from the derivation of the adjoint equations [9].

Further details on the interpretation of adjoint solutions cab be found in reference [12].

4.1.2 Adjoint-Based Gradients

The contours of the gradient of the compressor rotor blade efficiency with respect to each node of the
grid coordinate components, (x, y, z)n, evaluated using Eq.(6), are illustrated in Fig. 4 for the hub and
blade surface nodes.
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(a) dη/dx (b) dη/dy (c) dη/dz

Figure 4: Gradient of compressor rotor blade efficiency w.r.t. node coordinates.

The large values at the blade leading edge reveal how sensitive the machine performance is relative
to this region. It is also possible to obtain the sensitivity of blade efficiency with respect to the radius r
of the hub wall by combining the x and y components as

dη

dr
=

dη

dx

dx

dr
+

dη

dy

dy

dr
=

dη

dx
cos(θ) +

dη

dy
sin(θ) (10)

where θ is the tangential angle in cylindrical coordinates measured from the x to the y axis. This
sensitivity is presented graphically in Fig. 5.

Figure 5: Gradient of compressor rotor blade efficiency w.r.t. hub radius.

The information contained in plots like the ones in Fig. 4 and Fig. 5 can be extremely valuable
during blade shape design, even for the experienced designer. In this particular case, an increase in
blade efficiency is expected by placing an elevation in the red region and a depression in the blue region
of the hub wall. This technique of shaping the hub or casing walls are known as endwall contouring.

4.2 Turbine Stator Vane

A vane of a low-pressure turbine stage was used to demonstrate the capabilities of the adjoint solver
handling inlet or exit boundary conditions as design variables.

Similarly to the previous test case, the full wheel geometry and a close up of the vane are shown in
Fig. 6(a) and Fig. 6(b), respectively.
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(a) Full wheel (b) Close up (c) Computational domain

Figure 6: Turbine stator geometry.

Being a stator blade, no tip gap had to be modeled and, as such, a considerably simpler mesh was
generated. It was still an OH-grid around the blade, but only 15 blocks were needed, as shown in
Fig. 6(c). A much coarser mesh was produced, totaling only 44 thousand cells, and the simulations were
run on a workstation using 4 processors. The same type of boundary conditions as in test case 4.1 were
used.

For this test case, the total temperature averaged over a user-specified wall surface was used as
function of interest f ,

TT avg =

∫
Ω
TTdΩ∫
Ω

dΩ
, (11)

where the superscript avg indicates an area averaged quantity at the specified wall surface Ω.
The results presented were obtained by specifying the pressure and suction vane sides as the surface

Ω used to compute the area-averaged total temperature in Eq.(11).
The boundary conditions at the inlet plane were assumed to be design parameters, that is, the total

pressure, total temperature, tangential velocity, radial and axial velocity cosines at each node of the
40× 18 inlet grid plane nodes were considered variables. This totaled Nα = 3, 600 parameters.

4.2.1 Flow and Adjoint Solutions

The contours of non-dimensional density and adjoint solution of the continuity equation for area-averaged
total temperature (f = TT avg) on the vane surface are shown in Fig. 7(a) and Fig. 7(b), respectively.

(a) Flow (b) Adjoint

Figure 7: Flow and adjoint solution for the turbine stator vane.

The reference values for non-dimensionalization were taken at the inlet and exit planes for the flow
and adjoint states, respectively.
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4.2.2 Adjoint-Based Gradients

The contours of the gradient of the area-averaged total temperature on the vane surface with respect to
the boundary conditions at each node of the inlet grid are illustrated in Fig. 8.

(a)
dTT avg

dpT inlet
(b)

dTT avg

dhT inlet

(c)
dTT avg

dvt inlet

(d)
dTT avg

dcr inlet
(e)

dTT avg

dcz inlet

Figure 8: Gradient of turbine vane averaged total temperature w.r.t. inlet boundary conditions.

The red contours in Fig. 8(b) denote the region whose increase in total enthalpy would lead to an
increase in the vane averaged total temperature; this happens because enthalpy is directly related to
temperature and because the flow at that inlet region will later directly impinge the vane. The other
plots in Fig. 8, even though as not straightforward to interpret, can also be used by the turbine designer
to help him properly match different stages while complying with heat transfer constraints.

5 Conclusions

The adjoint method was used to compute sensitivities of some performance metrics with respect to
different parameters in turbomachinery blades. Two test cases were used to demonstrate different kind
of functions of interest and design variables. The functions included an aerodynamic metric – isentropic
efficiency — and an aerothermal metric — averaged total temperature. The design variables included
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shape parameters, in the form of grid coordinates, and inlet boundary conditions. The shear amount of
information obtained was only possible thanks to the adjoint method. It would be virtually impossible
to use any other type of sensitivity analysis method to handle such a large number of design variables.

Given the proliferation of adjoint methods, in part due to new techniques to develop adjoint solvers
for legacy flow solvers, the designers can now be offered a totally new level of information with their CFD
simulations. The detailed flow analysis can now be complemented with an equally detailed sensitivity
analysis, using any kind of function of interest f and design variable α, as expressed in Eq.(5) and Eq.(6).
The next challenge will be on how to properly embed such wealthy data into the current design process.
While the sensitivity analysis can be used to provide physical insight to the designer in terms of quality
and robustness of a given blade design, as demonstrated in the included test cases, it can also prove to
be an irreplaceable block in a gradient-based optimization framework, as depicted in Fig. 1.
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