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ABSTRACT
High-fidelity computational fluid dynamics (CFD) are com

mon practice in turbomachinery design. Typically, several cas
are run with manually modified parameters based on design
expertise to fine-tune a machine. Although successful, a more
ficient process is desired. Choosing a gradient-based optimi
tion approach, the gradients of the functions of interest need
be estimated. When the number of variables greatly exceeds
number of functions, the adjoint method is the best-suited a
proach to efficiently estimate gradients. Until recently, the d
velopment of CFD adjoint solvers was regarded as complex a
difficult, which limited their use mostly to academia. This pap
focuses on the problem of developing adjoint solvers for lega
industrial CFD solvers. A discrete adjoint solver is derived wit
the aid of an automatic differentiation tool that is selectively ap
plied to the CFD code that handles the residual and functio
evaluations. The adjoint-based gradients are validated again
finite-difference and complex-step derivative approximations.

NOMENCLATURE
a Hicks-Henne bump amplitude.
C Constraint function.
E Total energy.
e Unit vector.
H Total enthalpy.
h Perturbation step.
ṁ Mass flow.
O Truncation error.
PR Pressure ratio.
ponding author: andre.marta@ge.com
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p Pressure.
q Conservative variables, flow solution.
R Residual vector of the governing equations.
t Time.
u,v,w Velocity Cartesian components.
x Vector of grid coordinates.
x,y,z Cartesian coordinates.
Y Objective, cost or merit function.
Greek symbols:
α Vector of design variables.
∆ Relative difference.
δ Variation.
η Isentropic efficiency.
ρ Density.
ψ Adjoint vector.
Subscripts:
i, j,k Computational indexes.
x,y,z Cartesian components.

INTRODUCTION
Turbomachinery design has changed significantly since

inception and the use of high-fidelity computational fluid dy
namic (CFD) simulations have become common practice. Sin
the analysis tools have continued to mature in these industrial e
vironments, the desire for efficient design tools has now emerg
as the next logical step. Without a numerical optimization too
a designer is left with the time consuming task of fine-tuning
machine, which implies running several CFD cases for a set
manually modified design parameters based on designer exp
tise. Although this process has proven successful, the need fo
Copyright c© 2009 by ASME
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more efficient design system is often desired.
The operations research field has produced a plethoric

of optimization methods [1] that could be of potential use fo
optimal design. However, looking at the particular nature of
turbomachinery design problem, where a single CFD simul
tion can take hours, if not days, to perform, it is highly desire
that the number of evaluations of the function of interest to opt
mize should be kept to a minimum. This fact rules out gradien
free methods, such as simulated annealing or evolutionary alg
rithms, as these typically require a large number of function eva
uations. On the other hand, if a gradient-based optimization a
proach is chosen, a new problem arises to estimate the gradie
of the functions of interest with respect to the design variables

There are different approaches to evaluate derivatives [2
Calculus teaches how to analytically obtain the derivative of
single- or multi-variable function, there are even software too
that perform symbolic differentiation [3], but for the functions of
interest in turbomachinery design and their highly non-linear d
pendence on the design variables of interest, a numerical meth
is necessary. Finite-difference (FD) approximations have alwa
been popular due to its simplicity but they rapidly become com
putationally prohibitive when the number of variables greatly ex
ceeds the number of functions. In this case, an adjoint method
the best-suited approach to efficiently estimate function gradien
since the cost involved in calculating sensitivities using the a
joint method is therefore practically independent of the numb
of design variables. While FD can be regarded as external diffe
entiation, adjoints are evaluated by internally differentiating th
function of interest.

The adjoint methods have been used in the context of part
differential equations context for a very long time. Its applicatio
to CFD was pioneered by Pironneau [4] and it was later revi
ited and extended by Jameson to perform airfoil [5] and wing [6
design. It has since been successfully used in constrained mu
objective and multipoint aerodynamic shape optimization prob
lems [7–9], and even in aerostructural design optimization [10
involving the coupling between a CFD adjoint solver and a com
putational structural model adjoint solver.

From a design perspective, an adjoint solver can improve t
design space understanding since the adjoint-based sensitivi
can be easily used for design space visualization. Besides ae
dynamic shape optimization, there are many other applicatio
of adjoint solvers: mesh sensitivity [11], mesh adaptation [12
error estimation [13] or even magnetohydrodynamics flow con
trol [14]. The same adjoint solver can be shared by any of the
applications, as they only differ in the way to adjoint solution is
post processed. This clearly shows the enormous potential a
benefit that an adjoint solver represents any CFD or design grou

The major drawback of using adjoint-based sensitivities ha
always been the necessity of an additional solver – the adjo
system of equations solver. The development of CFD adjoi
solvers has been thought to be both complex and difficult, whic
2
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has limited their use mostly to academia. Because of that, so
major turbomachinery manufacturers decided to team up wi
universities in research projects involving design applications u
ing adjoint-based gradients [15–17].

This paper focuses on the problem of rapidly developing a
adjoint solver for a legacy CFD solver that models the traditiona
flow governing equations. The methodology used to develop t
adjoint solver relies on a hybrid approach [18,19]. A discrete a
joint solver is derived with the aid of an automatic differentiation
tool that is selectively applied to the CFD source code that ha
dles the residual and function evaluations. This tool produces t
routines that evaluate the individual entries of the adjoint syste
of equations. This hybrid approach retains the accuracy of t
adjoint methods, while it adds the ease of implementation of th
automatic differentiation methods. This proposed methodolog
is believed to be the most suitable to derive an adjoint solver f
a legacy flow solver in a industrial design environment since
allows a much faster development time.

This paper is divided into four main sections. The back
ground section revises the generic optimization problem sta
ment, introduces the flow governing equations and details t
derivation of the corresponding adjoint equations. Then, in th
implementation section, the steps necessary to derive the
joint solver using the proposed hybrid approach are explaine
In addition, an integration plan of such tool in an engineer
ing aerodynamic design framework is presented and discuss
In the results section, the discrete adjoint solver derived usin
the proposed methodology is tested on a rotor blade passage
a high-pressure compressor and the adjoint-based gradients
some functions of interest with respect to shape parameters
computed and verified against finite-difference and complex-st
derivative approximations. Finally, the paper ends with some r
marks about the findings of the work presented in the conclusio
section.

BACKGROUND
The methodology presented in this paper is developed in t

context of optimization. Thus, the different pieces necessary
pose and solve a design problem using a high-fidelity flow ana
ysis are presented next.

Generic Design Problem
When some component of a turbomachine is to be tune

several characteristics are used to monitor its performance, su
as efficiency, pressure ratio or mass flow. In addition, the
are several machine-defining parameters that can be adjuste
change those characteristics, such as blade stagger, camber
gle and thickness distributions, axial and radial stacking. In th
context of optimization, the performance monitoring characte
istics are named objective functions (also cost function or figu
Copyright c© 2009 by ASME
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Figure 1. GRADIENT-BASED OPTIMIZATION ALGORITHM.

of merit), and the adjustable parameters are designated as de
variables. In mathematical terms, an objective function can
posed as

Y = Y(α,q(α)) , (1)

whereα is the vector of design variables andq is the flow solu-
tion, which is typically of function of the design variables.

From fluid mechanics, the flow solution is given by the s
lution of a set of partial differential equations (PDEs) that mod
the flow physics. In general, such governing equations can
expressed in the form

R (α,q(α)) = 0, (2)

where the first instance ofα indicates the fact that the residua
of the governing equations may depend explicitly on design va
ables.

Therefore, a generic CFD design problem can be forma
described as

Minimize Y(α,q(α))
w.r.t. α , (3)

subject to R (α,q(α)) = 0

Ci(α,q(α)) = 0 i = 1, ...,m,

whereCi = 0 representsmadditional constraints that may or ma
not involve the flow solution.

When using a gradient-based optimizer to solve the des
problem (3), the evaluation of the objective functionY and the
constraintsCi values, their gradients with respect to the desig
variablesα are also required, that is,dY

dα and dCi
dα have to be es-

timated. The corresponding optimization algorithm is schema
cally shown in Fig. 1.

The main focus of present work is on the sensitivity modu
of such gradient-based optimization algorithm in the context
turbomachinery design using CFD tools.
3
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Governing Flow Equations
As a proof-of-concept, the governing PDEs chosen in th

present work are the Euler equations. It is important to reca
that this choice is not limiting since the methodology presented
derive the discrete adjoint solver is generic and can be applied
any set of governing equations. In conservation form, the thre
dimensional Euler system of equations is

∂q
∂t

+
∂E
∂x

+
∂F
∂y

+
∂G
∂z

= 0, (4)

whereq is the vector of conservative variables andE, F andG
are the (convective) inviscid fluxes in thex, y andz directions,
respectively, defined as

q =


ρ

ρu
ρv
ρw
ρE

 , E =


ρu

ρu2 + p
ρuv
ρuw
ρHu

 ,

F =


ρv

ρvu
ρv2 + p

ρvw
ρHv

 andG =


ρw

ρwu
ρwv

ρw2 + p
ρHw

 ,

(5)

whereρ is the density,u, v andw are the Cartesian velocity com-
ponents,p is the static pressure andH is the total enthalpy, which
is related to the total energy byH = E + p

ρ .
In semi-discrete form, the governing equations (4) can b

expressed as

dqi jk

dt
+Ri jk(w) = 0, (6)

whereR is the residual described earlier with all of its compo
nents (inviscid fluxes, boundary conditions, artificial dissipation
etc.), and the triadi jk represents the three computational direc
tions. The unsteady term of Eqn. (6) is dropped out since on
the steady solution of the equation is of interest in this work.

Adjoint Equations
The adjoint equations for systems of PDEs have alread

been well documented in the literature. A good reference is th
work by Giles [20], which provides details about the continuou
and discrete adjoint approaches and their derivations. Regardl
Copyright c© 2009 by ASME
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of the derivation approach adopted, the adjoint equations can
expressed as

[
∂R
∂q

]T

ψ =
[

∂Y
∂q

]T

, (7)

whereψ is the adjoint vector.
Since a CFD solver, in general, does not handle the ge

metric parametersα directly, but rather a computational mesh
defined by the coordinates of each nodex, it is convenient to use
the chain rule of differentiation to express the sensitivity of th
function of interest with respect to the design variables as

dY
dα

=
dY
dx

dx
dα

. (8)

The total sensitivity of the objective function with respect t
the grid coordinates, based on the adjoint solutionψ, is given by

dY
dx

=
∂Y
∂x
−ψT ∂R

∂x
. (9)

In order to compute the sensitivity of each function of inte
estY, either objective or constraint function in the optimizatio
problem (3), a new adjoint solution is required. This implie
solving Eqn. (7) with a new right-hand side vector. On the oth
hand, the computational cost of the total sensitivity (9) is almo
independent of the number of grid coordinatesx, which is the
feature that makes the adjoint method so attractive for gradie
based optimization involving a large number of variables and
few functions of interest.

The simple mathematical form of Eqn. (7) can be very mi
leading since, depending on the approach, their numerical imp
mentation can be quite complex, if derived by manual differen
ation, or quite costly, if derived using finite-differences.

There are two distinct ways of deriving an adjoint solve
The continuous adjoint approach forms a continuous adjo
problem from the governing PDEs and then discretizes this pro
lem to solve it numerically. The discrete adjoint approach fir
discretizes the governing PDE and then derives an adjoint s
tem for these discrete equations. There has been some stu
comparing these two distinct approaches [21] and, in gener
one approach does not always prevail over the other.

The discrete approach formulation has the advantage tha
can be applied to any set of governing equations and it can tr
arbitrary functions of interest. As such, and in contrast to th
continuous approach, no simplifications have to be made dur
the derivation: the effects of the viscosity and heat transfer a
the turbulence equations can easily by handled when deriving
discrete adjoint. This is particularly important as not derivin
4
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the full adjoint can result in incorrect sensitivities, particularly
for viscous flow, as demonstrated by Dwight [22]. Another ad
vantage of this formulation is that the boundary conditions a
handled seamlessly since the adjoint solver is derived from t
discretized flow residual equations that already implement the
But the most interesting feature of the discrete approach is th
it allows the use of automatic differentiation (AD) tools in its
derivation, expediting considerably the process of obtaining th
differentiated form of the discretized governing equations ne
essary to assemble the adjoint system of equations. This is
reasoning behind the approach adopted to compute the par
derivative matrices∂R /∂q, ∂Y/∂q, ∂Y/∂x and ∂R /∂x that is
presented in the implementation section.

Automatic Differentiation
Automatic differentiation (AD), also known as computa-

tional or algorithmic differentiation, is a sensitivity analysis
method based on the systematic application of the chain rule
differentiation to computer programs.

The sequence of operations in any computational algorith
can be cast in the form

ti = fi(t1, t2, . . . , ti−1) , i = n+1,n+2, . . . ,m, (10)

where each functionfi is either a unary or binary operation.
t1, t2, . . . , tn are the independent variables, which in this work as
sume the role of grid coordinatesx, andtn+1, tn+2, . . . , tm are the
dependent variables, that include all the intermediate variables
the algorithm, among which we can find the outputs of interes
Y. Applying the chain rule to the algorithm (10) yields

∂ti
∂t j

=
i−1

∑
k=1

∂ fi
∂tk

∂tk
∂t j

, j = 1,2, . . . ,n. (11)

AD tools can automatically generated new code that comput
user-specified derivatives as accurately as an analytic method

There are two different modes of operation for AD. The for
ward mode propagates the required sensitivity at the same ti
as the solution is being computed. In terms of index notation, o
independent variable is selected, choosingj and keeping it fixed,
and then the expression is worked forward in the indexi until
the desired derivative is obtained. Thus, this mode is well-suite
when evaluating the sensitivity of many functions with respec
to one parameter. The reverse mode requires the function to
computed first, with intermediate variable values stored. The
intermediate variables are then used by the reverse version of
code to find the sensitivities. This mode works by fixingi, corre-
sponding to the desired output to be differentiated, and workin
the way backward in the indexj all the way down to the inde-
pendent variables. As such, it is the desired mode to compute
sensitivity of one function with respect to many parameters.
Copyright c© 2009 by ASME
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There are two methods for implementing AD – source cod
transformation and operator overloading. The AD implement
tion using source transformation requires the whole source co
to be processed by a parser. The parser introduces additio
lines of code corresponding to the derivative calculations wh
generating the differentiated version of the source code. The
fore, the resulting code is greatly enlarged and it becomes pr
tically unreadable. The AD implementation using operator ove
loading defines a new user-defined type that is used instead
real numbers. This new type includes not only the value of t
original variable, but the derivative as well. All the intrinsic op
erations and functions have to be redefined (overloaded) for
new type in order for the derivative to be computed together wi
the original computations. This results in a very elegant impl
mentation since very few changes are required in the origin
code, but it is usually less efficient.

There are a number of software tools available for a
tomatic differentiation, supporting different programming lan
guages, such as Fortran 77/90 or C/C++, and implementing
ther the source code or the operator overloading methods.
short comparison of some AD tools has been compiled by Cu
din [23]. The AD tool chosen in this work was Tapenade [24–2
because it supports Fortran 90, which was a requirement tak
into account the programming language used in the flow solv
implementation, it uses source transformation and it can perfo
differentiation in either forward or reverse mode.

In the context of CFD, the code that evaluates the functio
of interest is typically an iterative solver. It has been shown th
the direct application of AD tools to CFD solvers generates d
ferentiated code that requires too much memory to store the
termediate variable values for every iteration, and can take up
ten times longer to run [27].

Hybrid approach: AD adjoint
The approach used in this work is hybrid. On one hand,

relies on the discrete adjoint method to compute the sensitiviti
making use of the adjoint (7) and the total sensitivity (9) equ
tions to compute the gradients of the function of interest wi
respect to the grid coordinates. However, rather than using A
to differentiate the entire source code of the CFD solver, AD
selectively applied to produce only the code that computes the
dividual entries in the flux Jacobian matrix and the other parti
derivatives –∂R

∂q , ∂Y
∂q , ∂Y

∂x and ∂R
∂x – that are necessary to compute

sensitivities using an adjoint method.

Verification of Gradients
The adjoint-based gradients obtained using the proposed

brid approach are verified against both finite-difference (FD) a
complex-step (CS) derivative approximations.

To minimize the necessary number of evaluations of th
flow solver, the 1st-order forward-difference formula for the first
5
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derivative, obtained from the Taylor series expansion of functi
Y for a perturbation about a pointx, is used. That is,

dY
dx

=
Y(x+h)−Y(x)

h
+O(h) , (12)

wherex corresponds to each individual entry of the vector of gr
coordinatesx,andh is the real perturbation step.

As in FD approximation, this expression suffers from a larg
sensitivity to the choice of step size. Ifh is chosen too large,
the derivative estimate might be inaccurate because of the la
truncation error; if it is made too small, then subtractive canc
lation might occur and the estimate is again inaccurate. Find
the sweet spot ofh is often problem dependent so several valu
have to be tried.

The complex-step derivative approximation can also be d
rived using a Taylor series expansion [28, 29], similar to th
finite-difference approximation, but instead of using a real pe
turbation step, it uses a pure imaginary step,

dY
dx

=
Im [Y(x+ ih)]

h
+O(h2) . (13)

Comparing the CS approximation (13) to the FD approxim
tion (12), it can be seen that the former has 2nd-order accuracy,
even though it only requiresNx+1 function evaluations, and it is
not subject to subtractive cancellation. This enables us to m
much more conclusive comparisons when it comes to accura

To implement the CS method in a flow solver coded in a la
guage that supports complex-arithmetic, it is necessary to ma
few changes to the code, namely substitute all real type varia
declarations with complex declarations and define all functio
and operators that are not defined for complex arguments. T
was easily accomplished by running a custom made script t
automatically generated the transformed Fortran code. A po
worth noting is that the complex-step method is equivalent to t
forward-mode of automatic differentiation using operator ove
loading [30].

This method has already been proved to be very accur
extremely robust and surprisingly easy to implement in desi
problems [31]. Nevertheless, the cost of estimating the derivat
using this method is still proportional to the number of desig
variables, which is further aggravated by the fact that the r
time of the complex-valued code might take up to three tim
longer to run when compared to the original real-valued code

IMPLEMENTATION
Following the methodology outlined in the previous sectio

the development of the discrete adjoint solver and its integrat
into a design system followed several well-defined steps, wh
are described next.
Copyright c© 2009 by ASME
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Figure 2. COMPUTATIONAL FLOW STENCIL: 13 CELLS.

Figure 3. COMPUTATIONAL GRID STENCIL: 32 NODES.

Flow Solver

The implementation of the proposed hybrid adjoint solv
had a legacy flow solver as its starting point. This flow solv
is multi-block, three-dimensional, finite-volume, structured gri
non-linear and linear, Euler/Navier-Stokes solver for turbom
chinery blade rows. It is capable of efficiently performing thre
dimensional analysis for aeromechanics, aerodynamic des
parametric studies, and robust design applications.

As typical for most iterative CFD flow solvers, the resid
ual calculation is done in a subroutine that loops through t
three-dimensional domain and accumulates the several flu
and boundary conditions contributions in the residualR . How-
ever, the residual at each cell only depends on the flow variab
at that cell and at the cells adjacent to it, which define the sten
of dependence. This stencil is shown in Fig. 2 for the case of
inviscid flow analysis. For this same case, the cell residual d
pends only on grid metrics defined by the grid stencil shown
Fig. 3.

Adjoint Solver

The gradients of the functions of interest with respect to t
grid coordinates are computed by first assembling the discr
adjoint equations (7), solving them, and then using the sensitiv
equation (9). The sizes of the matrices involved in this proce
6
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∂R
∂q

(Nq×Nq) ,
∂Y
∂q

(NY×Nq) ,

∂R
∂x

(Nq×Nx) ,
∂Y
∂x

(NY×Nx) ,

whereNY is the number of functions of interest,Nx the num-
ber of grid coordinates andNq the size of the state vector. The
size of the vectorq depends on the number of governing equ
tions, Ne, and the number of cells of the computational mes
Nc, that discretize the physical domain, according to the relati
Nq = Ne×Nc, which for the solution of a large, three-dimensiona
problem involving a system of conservation laws, can be ve
large. The size of the grid coordinates vectorx, is given by di-
mensionality of the problem times the number of vertices corr
sponding to the computational mesh used, that is,Nx = 3×Nv

for three-dimensional problems.
According to the proposed hybrid adjoint approach, aut

matic differentiation tools are used to generate code that co
putes the non-zero entries of these matrices of partial sensit
ties.

Construction of the Jacobian ∂R
∂q If one would di-

rectly apply AD to the original nested-loop residual code, th
would translate into enormous computational inefficiencies.
the forward mode were used, then the cost of computing∂R

∂q
would be roughlyNc×Nq times the cost of the original residua
computation. If the reverse mode were used, then there wo
be a large memory penalty associated with the storage of all
intermediate variables generated by the series of nested loo
which is exactly what needs to be avoided.

Therefore, to avoid the AD of nested loops over the who
computational domain, a re-engineered set of routines that mim
the original computation of the residual, but only at a given ce
location in the computational domain, was created. That co
was easily constructed from the original residual evaluation ro
tines in the flow solver by removing the loops over all the cells
the domain and making necessary adjustments so that the bo
ary conditions were handled properly. The new residual routi
computes theNe residuals,rAdj , at a specified cell(i,j,k) ,
getting contributions from allNe×Ncs flow variables,qAdj , and
from all 3×Nvs grid variables in the stencil,xAdj ,yAdj ,zAdj ,
whereNcs denotes the number of cells of the flow stencil (se
Fig. 2), andNvs denotes the number of vertices of the grid ste
cil (see Fig. 3),

subroutine residualAdj(i,j,k,xAdj,yAdj,zAdj,qAdj,rAdj) .
(14)

There areNe× (Ne×Ncs) sensitivities to be computed for
each cell, corresponding toNe rows in the Jacobian adjoint ma-
trix, ∂R

∂q , where each of these rows contains no more thanNe×Ncs
Copyright c© 2009 by ASME
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non-zero entries. Due to the way residuals are computed, the
verse mode is much more efficient in this case and, on this ba
it was used to produce adjoint code for the set of residual ev
uation routines. All derivatives in the stencil can be calculate
from a single call to the differentiated residual routine at a give
computational cell.

Construction of the vector ∂Y
∂q The RHS vector of the

adjoint equations (7) (or matrix, in the case of multiple function
of interest) represents the direct effect of the flow variables on t
function of interest. Similarly to the residual evaluation, it wa
necessary to obtain modified versions of the original functions
use Tapenade to produce the AD code that computes the der
tives. However, since the functions of interest were all glob
parameters of some sort, the dependence on the flow (and g
could not be reduced to a stencil. In this case, the whole comp
tational domain was specified for both the flow variables,qAdj ,
and grid coordinates,xAdj ,yAdj ,zAdj ,

subroutine functionAdj(xAdj,yAdj,zAdj,qAdj,fyAdj) . (15)

AD was used in reverse mode because the dimension of
putsqAdj , Nq, clearly outnumbered the dimension of the ou
putsfyAdj , NY. As such, the whole RHS vector could be com
puted from a single call to the differentiated function routine.

Solution of the Adjoint System The adjoint linear
system of equations (7) has to be solvedNY times becauseψ
is valid for all grid coordinatesx, but must be recomputed for
each functionY. Each adjoint solver run requires the solution o
a system ofNq equations but both the Jacobian matrix and th
RHS vector in this system of equations are very sparse.

In order to solve this large sparse discrete adjoint pro
lem, the Portable, Extensible Toolkit for Scientific Computatio
(PETSc) [32, 33] was used. PETSc is a suite of data structu
and routines for the scalable, parallel solution of scientific a
plications modeled by PDEs. It employs the message pass
interface (MPI) standard for all interprocessor communication,
has several linear iterative solvers and preconditioners availa
and performs very well, provided that a careful object creatio
and assembly procedure is followed.

All the adjoint and partial sensitivity matrices and vector
– ∂R

∂q , ∂Y
∂q , ∂R

∂x and ∂Y
∂x – were created as PETSc’s data struc

tures and, due to their structure, stored as sparse entities. O
the sparse data structures were assembled, the adjoint sys
of equations was solved using a PETSc built-in Krylov sub
space (KSP) method, more specifically, a Generalized Minimu
Residual (GMRES) method [34] was used.

Function Gradient Evaluation
Once the adjoint solution,ψ, is found, the gradient of the

function of interest with respect to the grid coordinates is o
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tained from Eqn. (9).
Similarly to the partial derivatives with respect to the flow

the terms∂R
∂x and ∂Y

∂x were also computed using automaticall
differentiated routines. The same re-engineered routines of
flow solver residual (14) and objective function (15) used earli
were again differentiated automatically, this time with respe
to the grid coordinatesxAdj ,yAdj ,zAdj . This generated code
that evaluated the entries of the matrix∂R

∂x and vector∂Y
∂x , respec-

tively.
Using these AD codes, it was possible to compute the no

zero entries of the matrix and vector of partial derivatives in th
total sensitivity equation (9). After these had been assembled,
adjoint-based sensitivity of the function of interestY was then
evaluated using the matrix-vector multiplication and the vect
addition built-in operation routines provided in PETSc.

Gradient-Based Optimization Framework
For the reasons enumerated in the introduction, an efficie

turbomachinery design framework should be controlled by
gradient-based optimizer. Such optimizer has to be provided w
both the objective and constraint function values and gradie
with respect to the design variables, as illustrated in Fig. 1.

From a design perspective, a turbomachine is geometrica
represented not by the surface nodes coordinates but rathe
some higher-level descriptors, such as stagger, camber angle
tribution and thickness distribution. Letα denote the high-level
geometric parameters that form the set of design variables.

While the function values can easily be computed by po
processing the flow solution obtained from running the flo
solver, the corresponding gradients require an additional solve
the adjoint solver. After the sensitivity of the objective functio
with respect to the grid coordinates is computed by Eqn. (9)
is still necessary to evaluate the sensitivity of the computation
mesh with respect to those high-level parameters,dx

dα , according
to Eqn. (8).

Unless the source code of every tool involved in the gr
generation process is available, it is necessary to use an app
imation to estimatedx

dα . In this work, a simple finite-difference
approximation was used to accomplish that. This meant that
every design variable, it was necessary to re-grid the compu
tional domain. However, since the grid topology was kept co
stant, it was possible to accelerate this process by means of
morphing.

The computed final sensitivitydY
dα is then used by the

gradient-based optimizer to find the search direction and to
termine the step size during the line search.

The schematic of such adjoint-based optimization algorith
is illustrated in Fig. 4.

It is important to notice that if any of theCi constraints is
active in the design space during the optimization, then an ad
tional adjoint system has to be solved for each active constra
Copyright c© 2009 by ASME



d

d
a

of
i
e
-

o

s
n
e
a

s
re
ch
4
a
/r
5

e
e
es.
ty
it
ity
t
-
e
s-
ate
-

m
e-
in

he

-

io

-
.

ct
in
ts
?
α

Grid Generation: x = x(α)

?
x

Flow Solver: R (x,q(x)) = 0 -
Y

?
q

Adjoint Solver:
[

∂R
∂q

]T
ψ =

[
∂Y
∂q

]T

?
ψ

Gradient: dY
dx = ∂Y

∂x −ψT ∂R
∂x

?

dY
dx

Sensitivity: dY
dα = dY

dx
dx
dα

-

dY
dα

Gradient
Based

Optimizer

Figure 4. SCHEMATIC OF THE ADJOINT-BASED OPTIMIZATION AL-

GORITHM.

function,Ci , which includes the computation of a new right-han
side (RHS) for the system (7).

In terms of computational cost, the flow solver and the a
joint solver are the two main blocks of the process, being th
the cost of solution of the adjoint equations is similar to that
the solution of the governing equations since they are of sim
lar size and complexity. The sensitivity block consists of som
linear algebra involving matrix-vector multiplication, thus rela
tively cheap to evaluate.

The advantage of the adjoint approach can be seen fr
Eqn. (9), which is independent ofδq, meaning that the gradient
of Y with respect to an arbitrarily large vector of grid coordinate
x can be determined without the need for additional solutio
of the governing flow PDE. This capability to effectively handl
design problems involving a large number of variables is wh
makes the adjoint methods well known for.

RESULTS
A transonic blade passage of a high-pressure compres

stage was used to demonstrate the capabilities of the disc
adjoint solver developed using the proposed hybrid approa
The rotor design pressure ratio is 1.5 at a mass flow rate of 1
lbm/s. The design rotational speed is 9,000 rpm. The rotor h
60 blades and an aspect ratio of 1.75 (based on average span
axial chord). The three-dimensional geometry is shown in Fig.
where the casing wall has been removed for clarity.
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Figure 5. ROTOR BLADE PASSAGE.

The flow solver implements the boundary conditions by
means of halo cells, that is, auxiliary cell layers that sit on th
exterior of the physical domain. The boundary conditions of th
case presented were made simple for demonstration purpos
As such, the inlet boundary had the absolute tangential veloci
fixed and the pressure extrapolated from the interior. The ex
pressure was fixed and the total internal energy and the veloc
were extrapolated from the interior cells to the auxiliary cells a
the exit. All solid walls were considered inviscid, being the mo
mentum vector mirrored so that the resulting flux was null. Th
remaining faces were periodic, in which the state vector, tran
ferred from the master to the slave faces, undergone a coordin
transformation according to rotationally periodicity of the geom
etry.

Figure 6 shows the contour of pressure and the momentu
vector of the flow on the hub and blade surface planes corr
sponding to the baseline blade geometry. The values are given
the absolute reference frame. In the relative reference frame, t
no-permeability condition is satisfied at the solid walls.

Having obtained the baseline flow solution, the correspond
ing adjoint solution is computed using Eqn. (7). Although an
adjoint solutionper seis of little use to a designer, for complete-
ness, the adjoint solution is shown in Fig. 7 for pressure rat
(Y = PR). The contour plot corresponds to the adjoint of the
continuity equation and the vector plot is for the adjoint of the
momentum equation. As typical for the adjoint solution, the vec
tor plot shows an adjoint flow some how reverse of the real flow

The adjoint-based sensitivity of pressure ratio with respe
to the grid coordinates evaluated using Eqn. (9) is illustrated
Fig. 8. The vector plot components correspond to the gradien
of pressure ratio with respect to each coordinate component,

dPR
dx

=
dPR
dx

ex +
dPR
dy

ey +
dPR
dz

ez (16)
Copyright c© 2009 by ASME
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Figure 6. PRESSURE DISTRIBUTION AND MOMENTUM VECTOR.

Figure 7. ADJOINT SOLUTION OF THE CONTINUITY EQUATION

(Y = PR).

Each vector points into the direction of increased press
ratio and its magnitude is the improvement per unit change in
grid node coordinate. Consequently, a designer can easily in
from Fig. 8 how to tune the blade and/or endwalls for increas
PR, since those vectors tell him how the surface geometry sho
change to accomplish it. The large vectors at the blade lead
and trailing edges reveal how sensitive the machine performa
is relative to these regions.

A cross-section located at blade midspan is presented
Fig. 9. The sensitivity of pressure ratio with respect to the bla
shape is greater closer to the leading and trailing edges on
suction side, and gradually increases towards the trailing e
9
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Figure 8. GRADIENT OF PRESSURE RATIO W.R.T. SURFACE

NODES: dPR
dx .

Figure 9. GRADIENT OF PRESSURE RATIO W.R.T. SURFACE

NODES: dPR
dx AT MIDSPAN.

on the pressure side.
In the current implementation, the memory use was the

largest because the full Jacobian matrix∂R
∂q was pre-assembled.

If an alternative free-matrix adjoint computations would have
been used, this would considerably mitigated this issue, at th
expense of larger runtimes, though. In addition, the coordinate
of every node of the whole three-dimensional grid were taken
as variables in the adjoint sensitivity computation. A change in
the grid perturbation module to make it local to the nodes of the
blade would also translate into memory savings.

To verify the adjoint-based gradients, the sensitivity of the
Copyright c© 2009 by ASME
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function of interest was compared to values obtained using b
finite-difference and complex-step derivative approximation
using Eqn. (12) and Eqn. (13). While the adjoint approach
lows for an efficient computation of the sensitivity with respe
to every grid coordinate, it would have been computationally pr
hibitive to perform the same computation using either of the tw
approximations because it would imply running the flow solv
again for each node, for each coordinate component. Con
quently, only a few grid nodes were selected for verificatio
Figure 10 shows an example of such verification study for t
grid node located on the suction side of the blade, at the 14.2%
chord, at the midspan plane. Two functions of interest are show
pressure ratio and isentropic efficiency. The vertical axis rep
sent the gradient value and the horizontal axis the different s
sizesh used for the approximations.

As expected using finite-differences, the gradient value
highly dependent of the step size chosen. The best matches w
for h = 10−5−10−4. Values greater than that produced signi
icant truncation errors, whereas smaller lead to subtraction c
cellation. The gradients estimated using the complex-step der
tive approximation showed a much better accuracy, and beca
the approximation expression Eqn. (13) does not involved a
subtraction, it was possible to use extremely small perturbat
steps, in the order ofh = 10−20. The agreement between gra
dient values using the different sensitivity analysis methods
excellent, which proves the correct implementation of the adjo
method. Similar findings were obtained for every other grid no
tested, and for different functions of interest.

After the successful verification of the adjoint solver, Hicks
Henne bump functions [35] were used to test the integration w
the grid generation module and compute higher-level sensit
ties of the formdY

dα . By superimposing these shape functions o
the baseline blade surface, smooth perturbations, that mimic
effect produced by geometric design variablesα, are introduced
in the grid. Normalizing the radial and axial coordinates with r
spect to the blade dimensions asRn = (R−Rhub)/(Rtip−Rhub)
andZn = (Z−ZLE)/(ZTE−ZLE), respectively, the bump func-
tion can be expressed by

δ(Rθ) = a[sin(πRlog(0.5)/log(Rc)
n )]Re[sin(πZlog(0.5)/log(Zc)

n )]Ze ,
(17)

wherea is the bump maximum height,Rc andZc are the coordi-
nates of the bump center, andRe andZe are the bump extension
in the radial and axial directions, respectively.

Figures 11 and 12 show the perturbation corresponding
a bump of amplitudea = 10−5, centered atRc = 0.5 andZc =
0.142, with extension parametersRe = 5.0 andZe = 5.0. The
horizontal axes are the radial and axial coordinates of the ro
blade and the vertical axis is the perturbation on the combin
variable(Rθ), whereθ is the circumferential angle defined in po
lar coordinates. This bump is centered at the same node used
10
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(a) dPR
dx (b) dη

dx

(c) dPR
dy (d) dη

dy

(e) dPR
dz (f) dη

dz

Figure 10. FUNCTION GRADIENT W.R.T. NODE COORDINATES.

the verification of the sensitivity with respect to the grid coordi
nates shown previously. When applied to the rotor blade, th
bump produced the perturbation shown in Fig. 13.

The sensitivity of different functions of interest, namely
mass flow,ṁ, efficiency,η and pressure ratio,PR, with respect to
Copyright c© 2009 by ASME
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Figure 11. HICKS-HENNE BUMP: 1D PARAMETRIZATION.

Figure 12. HICKS-HENNE BUMP: 2D PARAMETRIZATION.

Figure 13. HICKS-HENNE BUMP: APPLIED TO THE BLADE

the bump amplitude,a, were computed using the adjoint solver
The term dx

dα in Eqn. (8) was approximated by finite-difference
using the baseline and perturbed computational grids. Table
summarizes these results, together with the comparison using
finite-difference derivative approximation using a perturbatio
step ofh = 10−5 on the bump amplitude. As shown in Tab. 1
there is again an excellent agreement between the adjoint-ba
gradient and the finite-difference derivative approximation.
11
1
ll

ed

Table 1. COMPARISON OF FUNCTION GRADIENTS.

Adjoint Finite-difference ∆
dṁ
da 3.5540E+0 3.5550E+0 −0.03%
dη
da 2.9184E−2 2.9186E−2 −0.01%

dPR
da 4.5107E+0 4.5113E+0 −0.01%

At this point, the adjoint solver implementation was consid
ered successful and ready to be integrated in a gradient-ba
optimization framework.

CONCLUSIONS
A methodology for developing an adjoint solver for a legac

CFD solver that models the traditional flow governing equation
has been presented. The adjoint approach enables large comp
tional savings, at the expense of a more complex implementati
when compared to traditional sensitivity analysis methods su
as finite differences.

The issue of rapidly developing the adjoint solver was tac
led in this work. Instead of differentiating the entire flow solve
using automatic differentiation, the discrete adjoint solver wa
derived with the aid of an automatic differentiation tool that wa
selectively applied to the CFD source code to produce code t
computes the transpose of the flux Jacobian matrix and the ot
partial derivatives that are necessary to compute sensitivities
ing an adjoint method.

This approach has the advantages that it is applicable to a
trary governing equations and functions and it eliminates erro
that would have resulted from the necessary approximations
manual differentiation had been used for the derivation. Furth
more, because this approach is largely automatic, it accelera
development time considerably and makes an adjoint solver n
also accessible to the industry. These advantages come at the
of increased memory requirements for the discrete adjoint solv
Nevertheless, the memory penalty is regarded as small given
only the significant advantages enumerated but also the amo
of memory typically available in parallel high-performance com
puters.

The discrete adjoint solver developed was tested on a hig
pressure rotor blade passage and the adjoint-based gradien
some functions of interest with respect to blade node coordina
and high-level shape parameters were verified against fini
difference and complex-step derivative approximations. Fo
lowing the successful preliminary implementation of the adjoin
solver, future efforts will concentrate on expanding it to fully
support the flow solver capabilities and on integrating it int
a gradient-based optimization framework. Upon completion
Copyright c© 2009 by ASME
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such development tasks, the final framework should provide t
designer with a turbomachinery tuning tool that, given a set
baseline geometric parameters, re-shapes the blade and end
surfaces to meet or exceed the design goals. When such st
of-the-art tool is made available to the designers, an improv
understanding of the design space could lead to highly-tuned m
chines in a much quicker timeframe.

The authors believe that the proposed hybrid methodolo
to develop discrete adjoint solvers makes turbomachinery des
using gradient-based optimizers based on CFD analysis feas
in industrial environments.
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