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ABSTRACT

High-fidelity computational fluid dynamics (CFD) are com-
mon practice in turbomachinery design. Typically, several cases
are run with manually modified parameters based on designer
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expertise to fine-tune a machine. Although successful, a more ef-u,v,w Velocity Cartesian components.
ficient process is desired. Choosing a gradient-based optimiza- x Vector of grid coordinates.

tion approach, the gradients of the functions of interest need to

be estimated. When the number of variables greatly exceeds they Objective, cost or merit function.

number of functions, the adjoint method is the best-suited ap-
proach to efficiently estimate gradients. Until recently, the de-
velopment of CFD adjoint solvers was regarded as complex and
difficult, which limited their use mostly to academia. This paper
focuses on the problem of developing adjoint solvers for legacy
industrial CFD solvers. A discrete adjoint solver is derived with
the aid of an automatic differentiation tool that is selectively ap-
plied to the CFD code that handles the residual and function
evaluations. The adjoint-based gradients are validated against
finite-difference and complex-step derivative approximations.

NOMENCLATURE

Hicks-Henne bump amplitude.
Constraint function.

Total energy.

Unit vector.

Total enthalpy.

Perturbation step.

Mass flow.

Truncation error.

Pressure ratio.

ToISTIOMOD

Py
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p Pressure.
q Conservative variables, flow solution.
R Residual vector of the governing equations.
t Time.
X,¥,z Cartesian coordinates.
Greek symbols:
a Vector of design variables.
A Relative difference.
o Variation.
Isentropic efficiency.
Density.
Adjoint vector.
Subscripts:

i,j,k Computational indexes.
X, ¥,z Cartesian components.

INTRODUCTION

Turbomachinery design has changed significantly since its
inception and the use of high-fidelity computational fluid dy-
namic (CFD) simulations have become common practice. Since
the analysis tools have continued to mature in these industrial en-
vironments, the desire for efficient design tools has now emerged
as the next logical step. Without a numerical optimization tool,
a designer is left with the time consuming task of fine-tuning a
machine, which implies running several CFD cases for a set of
manually modified design parameters based on designer exper-
tise. Although this process has proven successful, the need for a
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more efficient design system is often desired. has limited their use mostly to academia. Because of that, some
The operations research field has produced a plethoric setmajor turbomachinery manufacturers decided to team up with
of optimization methods [1] that could be of potential use for universities in research projects involving design applications us-
optimal design. However, looking at the particular nature of a ing adjoint-based gradients [15-17].
turbomachinery design problem, where a single CFD simula- This paper focuses on the problem of rapidly developing an
tion can take hours, if not days, to perform, it is highly desired adjoint solver for a legacy CFD solver that models the traditional
that the number of evaluations of the function of interest to opti- flow governing equations. The methodology used to develop the
mize should be kept to a minimum. This fact rules out gradient- adjoint solver relies on a hybrid approach [18,19]. A discrete ad-
free methods, such as simulated annealing or evolutionary algo- joint solver is derived with the aid of an automatic differentiation
rithms, as these typically require a large number of function eval- tool that is selectively applied to the CFD source code that han-
uations. On the other hand, if a gradient-based optimization ap- dles the residual and function evaluations. This tool produces the
proach is chosen, a new problem arises to estimate the gradientsoutines that evaluate the individual entries of the adjoint system
of the functions of interest with respect to the design variables. of equations. This hybrid approach retains the accuracy of the
There are different approaches to evaluate derivatives [2]. adjoint methods, while it adds the ease of implementation of the
Calculus teaches how to analytically obtain the derivative of a automatic differentiation methods. This proposed methodology
single- or multi-variable function, there are even software tools is believed to be the most suitable to derive an adjoint solver for
that perform symbolic differentiation [3], but for the functions of  a legacy flow solver in a industrial design environment since it
interest in turbomachinery design and their highly non-linear de- allows a much faster development time.
pendence on the design variables of interest, a numerical method  This paper is divided into four main sections. The back-
is necessary. Finite-difference (FD) approximations have always ground section revises the generic optimization problem state-
been popular due to its simplicity but they rapidly become com- ment, introduces the flow governing equations and details the
putationally prohibitive when the number of variables greatly ex- derivation of the corresponding adjoint equations. Then, in the
ceeds the number of functions. In this case, an adjoint method is implementation section, the steps necessary to derive the ad-
the best-suited approach to efficiently estimate function gradients joint solver using the proposed hybrid approach are explained.
since the cost involved in calculating sensitivities using the ad- In addition, an integration plan of such tool in an engineer-
joint method is therefore practically independent of the number ing aerodynamic design framework is presented and discussed.
of design variables. While FD can be regarded as external differ- In the results section, the discrete adjoint solver derived using
entiation, adjoints are evaluated by internally differentiating the the proposed methodology is tested on a rotor blade passage of
function of interest. a high-pressure compressor and the adjoint-based gradients of
The adjoint methods have been used in the context of partial some functions of interest with respect to shape parameters are
differential equations context for a very long time. Its application computed and verified against finite-difference and complex-step
to CFD was pioneered by Pironneau [4] and it was later revis- derivative approximations. Finally, the paper ends with some re-
ited and extended by Jameson to perform airfoil [5] and wing [6] marks about the findings of the work presented in the conclusions
design. It has since been successfully used in constrained multi- section.
objective and multipoint aerodynamic shape optimization prob-
lems [7-9], and even in aerostructural design optimization [10]
involving the coupling between a CFD adjoint solver and a com- gaCcKGROUND

putational structural model adjoint solver. _ The methodology presented in this paper is developed in the
From a design perspective, an adjoint solver can improve the eyt of optimization. Thus, the different pieces necessary to

design space understanding since the adjoint-based sensitivitiespose and solve a design problem using a high-fidelity flow anal-
can be easily used for design space visualization. Besides aerovygis are presented next.

dynamic shape optimization, there are many other applications

of adjoint solvers: mesh sensitivity [11], mesh adaptation [12],

error estimation [13] or even magnetohydrodynamics flow con- Generic Design Problem

trol [14]. The same adjoint solver can be shared by any of these When some component of a turbomachine is to be tuned,

applications, as they only differ in the way to adjoint solution is several characteristics are used to monitor its performance, such

post processed. This clearly shows the enormous potential andas efficiency, pressure ratio or mass flow. In addition, there

benefit that an adjoint solver represents any CFD or design group. are several machine-defining parameters that can be adjusted to
The major drawback of using adjoint-based sensitivities has change those characteristics, such as blade stagger, camber an-

always been the necessity of an additional solver — the adjoint gle and thickness distributions, axial and radial stacking. In the

system of equations solver. The development of CFD adjoint context of optimization, the performance monitoring character-

solvers has been thought to be both complex and difficult, which istics are named objective functions (also cost function or figure
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Governing Flow Equations

Y As a proof-of-concept, the governing PDEs chosen in the

present work are the Euler equations. It is important to recall

Gradient that this choice is not limiting since the methodology presented to
Based derive the discrete adjoint solver is generic and can be applied to

dY  |Optimizer| any set of governing equations. In conservation form, the three-

dimensional Euler system of equations is

a

Flow Analysis

Sensitivity Analysis

Figure 1. GRADIENT-BASED OPTIMIZATION ALGORITHM. aj 6£ oF 0G .

ot ox  dy 2% “)

of merit), and the adjustable parameters are designated as design

variables. In mathematical terms, an objective function can be Whereq is the vector of conservative variables aadF andG
posed as are the (convective) inviscid fluxes in thxey andz directions,

respectively, defined as

Y =Y(a,q(a)), €y
. . : p pu
wherea is the vector of design variables agds the flow solu- pu o2+ p
tion, which is typically of function of the design variables. q=| pv . E= puv 7
From fluid mechanics, the flow solution is given by the so- pw puw
lution of a set of partial differential equations (PDESs) that model pE pHuU
the flow physics. In general, such governing equations can be (5)
expressed in the form ov ow
pvu pwu
R (a,q(a)) =0, @) F=|p¥+p| andG=| pw |,
pvw pw2 + p
o - . pHvV pHw
where the first instance af indicates the fact that the residual
of the governing equations may depend explicitly on design vari-
ables. wherep is the densityy, v andw are the Cartesian velocity com-
Therefore, a generic CFD design problem can be formally ponentspis the static pressure atlis the total enthalpy, which
described as is related to the total energy by = E + g.

In semi-discrete form, the governing equations (4) can be

Minimize Y (a,q(a)) expressed as
w.rt a, €) |
subjectto X (a1, a(a)) =0 S R (w) =0, (6)

N ) whereZR _is the residual described earlier with all of its compo-
whereC; = 0 representmadditional constraints that may ormay  npents (inviscid fluxes, boundary conditions, artificial dissipation,

not involve the flow solution. o ~etc.), and the triadijk represents the three computational direc-
When using a gradient-based optimizer to solve the design tions. The unsteady term of Eqn. (6) is dropped out since only
problem (3), the evaluation of the objective functiérand the the steady solution of the equation is of interest in this work.

constraintsC; values, their gradients with respect to the design

variablesa are also required, that i% and % have to be es-

timated. The corresponding optimization algorithm is schemati- Adjoint Equations

cally shown in Fig. 1. The adjoint equations for systems of PDEs have already
The main focus of present work is on the sensitivity module been well documented in the literature. A good reference is the

of such gradient-based optimization algorithm in the context of work by Giles [20], which provides details about the continuous

turbomachinery design using CFD tools. and discrete adjoint approaches and their derivations. Regardless
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of the derivation approach adopted, the adjoint equations can bethe full adjoint can result in incorrect sensitivities, particularly

expressed as

= @)

R 1" oy’
{Oq} v [Oq} ’
wherey is the adjoint vector.
Since a CFD solver, in general, does not handle the geo-
metric parameterst directly, but rather a computational mesh
defined by the coordinates of each nogé is convenient to use

the chain rule of differentiation to express the sensitivity of the
function of interest with respect to the design variables as

dy dY dx

do ok da” ®
The total sensitivity of the objective function with respect to

the grid coordinates, based on the adjoint solutiois given by

Qv _ov ok

dx  ox ox ©

In order to compute the sensitivity of each function of inter-
estY, either objective or constraint function in the optimization
problem (3), a new adjoint solution is required. This implies
solving Egn. (7) with a new right-hand side vector. On the other
hand, the computational cost of the total sensitivity (9) is almost
independent of the number of grid coordinatgesvhich is the
feature that makes the adjoint method so attractive for gradient-
based optimization involving a large number of variables and a
few functions of interest.

The simple mathematical form of Eqn. (7) can be very mis-
leading since, depending on the approach, their numerical imple-
mentation can be quite complex, if derived by manual differenti-
ation, or quite costly, if derived using finite-differences.

There are two distinct ways of deriving an adjoint solver.
The continuous adjoint approach forms a continuous adjoint
problem from the governing PDEs and then discretizes this prob-
lem to solve it numerically. The discrete adjoint approach first

discretizes the governing PDE and then derives an adjoint sys-

for viscous flow, as demonstrated by Dwight [22]. Another ad-
vantage of this formulation is that the boundary conditions are
handled seamlessly since the adjoint solver is derived from the
discretized flow residual equations that already implement them.
But the most interesting feature of the discrete approach is that
it allows the use of automatic differentiation (AD) tools in its
derivation, expediting considerably the process of obtaining the
differentiated form of the discretized governing equations nec-
essary to assemble the adjoint system of equations. This is the
reasoning behind the approach adopted to compute the partial
derivative matrice®R® /dq, dY/dq, dY/dx and0R /dx that is
presented in the implementation section.

Automatic Differentiation

Automatic differentiation (AD), also known as computa-
tional or algorithmic differentiation, is a sensitivity analysis
method based on the systematic application of the chain rule of
differentiation to computer programs.

The sequence of operations in any computational algorithm
can be cast in the form

t = fi(ty,tz,...,t21), i=n+1n+2....m, (10)

where each functiorf; is either a unary or binary operation.
t1,t2,...,t, are the independent variables, which in this work as-
sume the role of grid coordinatesandt,,1,th.2,...,tn are the
dependent variables, that include all the intermediate variables in
the algorithm, among which we can find the outputs of interest,
Y. Applying the chain rule to the algorithm (10) yields

i—1

2

AD tools can automatically generated new code that computes

user-specified derivatives as accurately as an analytic method.
There are two different modes of operation for AD. The for-

ward mode propagates the required sensitivity at the same time

as the solution is being computed. In terms of index notation, one

independent variable is selected, choosimad keeping it fixed,

and then the expression is worked forward in the indextil

a

ofi oty -
atj_ j=12

= .o, N.
atkatj’ = )

(11

tem for these discrete equations. There has been some studieshe desired derivative is obtained. Thus, this mode is well-suited

comparing these two distinct approaches [21] and, in general,
one approach does not always prevail over the other.
The discrete approach formulation has the advantage that it

when evaluating the sensitivity of many functions with respect
to one parameter. The reverse mode requires the function to be
computed first, with intermediate variable values stored. These

can be applied to any set of governing equations and it can treatintermediate variables are then used by the reverse version of the

arbitrary functions of interest. As such, and in contrast to the
continuous approach, no simplifications have to be made during
the derivation: the effects of the viscosity and heat transfer and

code to find the sensitivities. This mode works by fixingorre-
sponding to the desired output to be differentiated, and working
the way backward in the indeikall the way down to the inde-

the turbulence equations can easily by handled when deriving the pendent variables. As such, it is the desired mode to compute the

discrete adjoint. This is particularly important as not deriving

4

sensitivity of one function with respect to many parameters.
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There are two methods for implementing AD — source code derivative, obtained from the Taylor series expansion of function
transformation and operator overloading. The AD implementa- Y for a perturbation about a poirtis used. That is,
tion using source transformation requires the whole source code
to be processed by a parser. The parser introduces additional dY Y(x+h)—Y(x)
lines of code corresponding to the derivative calculations while ax_  h
generating the differentiated version of the source code. There-
fore, the resulting code is greatly enlarged and it becomes prac- wherex corresponds to each individual entry of the vector of grid
tically unreadable. The AD implementation using operator over- coordinatex,andh is the real perturbation step.
loading defines a new user-defined type that is used instead of  Asin FD approximation, this expression suffers from a large
real numbers. This new type includes not only the value of the sensitivity to the choice of step size. lifis chosen too large,
original variable, but the derivative as well. All the intrinsic op- the derivative estimate might be inaccurate because of the large
erations and functions have to be redefined (overloaded) for the truncation error; if it is made too small, then subtractive cancel-
new type in order for the derivative to be computed together with |ation might occur and the estimate is again inaccurate. Finding
the original computations. This results in a very elegant imple- the sweet spot di is often problem dependent so several values
mentation since very few changes are required in the original have to be tried.
code, but it is usually less efficient. The complex-step derivative approximation can also be de-
There are a number of software tools available for au- rived using a Taylor series expansion [28, 29], similar to the
tomatic differentiation, supporting different programming lan- finite-difference approximation, but instead of using a real per-
guages, such as Fortran 77/90 or C/C++, and implementing ei- turbation step, it uses a pure imaginary step,
ther the source code or the operator overloading methods. A
short comparison of some AD tools has been compiled by Cus- dY Im[Y(x+ih)]
din [23]. The AD tool chosen in this work was Tapenade [24—-26] 9 n_
because it supports Fortran 90, which was a requirement taking
into account the programming language used in the flow solver Comparing the CS approximation (13) to the FD approxima-
implementation, it uses source transformation and it can perform tjon (12), it can be seen that the former h&<-arder accuracy,
differentiation in either forward or reverse mode. even though it only requirds, -+ 1 function evaluations, and it is
In the context of CFD, the code that evaluates the function not subject to subtractive cancellation. This enables us to make
of interest is typically an iterative solver. It has been shown that much more conclusive comparisons when it comes to accuracy.
the direct application of AD tools to CFD solvers generates dif- To implement the CS method in a flow solver coded in a lan-
ferentiated code that requires too much memory to store the in- guage that supports complex-arithmetic, it is necessary to make a
termediate variable values for every iteration, and can take up to few changes to the code, namely substitute all real type variable
ten times longer to run [27]. declarations with complex declarations and define all functions
and operators that are not defined for complex arguments. This
Hybrid approach: AD adjoint was eas.ily accomplished by running a custom made script that
The approach used in this work is hybrid. On one hand, it automatlgally_ generated the transformed Forj[ran dee. A point
relies on the discrete adjoint method to compute the sensitivities, WOrth noting is that the complex-step method is equivalent to the

making use of the adjoint (7) and the total sensitivity (9) equa- forw_ard—mode of automatic differentiation using operator over-

tions to compute the gradients of the function of interest with 10ading [30].

respect to the grid coordinates. However, rather than using AD This method has already been proved to be very accurate,
to differentiate the entire source code of the CFD solver, AD is €Xtremely robust and surprisingly easy to implement in design
selectively applied to produce only the code that computes the in- problems [31]. Nevertheless, the cost of estimating the derivative

dividual entries in the flux Jacobian matrix and the other partial USing this method is still proportional to the number of design
e 5 5 & st e mcesy o compae s, W ' e e b o o vt e i
sensitivities using an adjoint method. P 9 P

longer to run when compared to the original real-valued code.

+0(h), (12)

+0(h?). (13)

Verification of Gradients
The adjoint-based gradients obtained using the proposed hy- IMPLEMENTATION
brid approach are verified against both finite-difference (FD) and Following the methodology outlined in the previous section,
complex-step (CS) derivative approximations. the development of the discrete adjoint solver and its integration
To minimize the necessary number of evaluations of the into a design system followed several well-defined steps, which
flow solver, the #-order forward-difference formula for the first  are described next.
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Figure 3. COMPUTATIONAL GRID STENCIL: 32 NODES.

Flow Solver

The implementation of the proposed hybrid adjoint solver
had a legacy flow solver as its starting point. This flow solver
is multi-block, three-dimensional, finite-volume, structured grid,
non-linear and linear, Euler/Navier-Stokes solver for turboma-
chinery blade rows. It is capable of efficiently performing three-
dimensional analysis for aeromechanics, aerodynamic design,
parametric studies, and robust design applications.

As typical for most iterative CFD flow solvers, the resid-
ual calculation is done in a subroutine that loops through the

are

o0R aY
g (Ngx Ng) , aq (Ny x Ng) ,
0R. aY
X (Ng x Ny) X (Ny x N) ,

where Ny is the number of functions of interedtl, the num-
ber of grid coordinates an, the size of the state vector. The
size of the vector depends on the number of governing equa-
tions, Ng, and the number of cells of the computational mesh,
N, that discretize the physical domain, according to the relation
Ng = Ne x N¢, which for the solution of a large, three-dimensional
problem involving a system of conservation laws, can be very
large. The size of the grid coordinates vectois given by di-
mensionality of the problem times the number of vertices corre-
sponding to the computational mesh used, thalis= 3 x Ny

for three-dimensional problems.

According to the proposed hybrid adjoint approach, auto-
matic differentiation tools are used to generate code that com-
putes the non-zero entries of these matrices of partial sensitivi-
ties.

Construction of the Jacobian ‘3,% If one would di-

rectly apply AD to the original nested-loop residual code, that
would translate into enormous computational inefficiencies. If
the forward mode were used, then the cost of Compu%%g
would be roughlyN; x Ny times the cost of the original residual
computation. If the reverse mode were used, then there would
be a large memory penalty associated with the storage of all the
intermediate variables generated by the series of nested loops,
which is exactly what needs to be avoided.

Therefore, to avoid the AD of nested loops over the whole
computational domain, a re-engineered set of routines that mimic
the original computation of the residual, but only at a given cell
location in the computational domain, was created. That code

three-dimensional domain and accumulates the several fluxeswas easily constructed from the original residual evaluation rou-

and boundary conditions contributions in the residRalHow-

ever, the residual at each cell only depends on the flow variables
at that cell and at the cells adjacent to it, which define the stencil
of dependence. This stencil is shown in Fig. 2 for the case of an
inviscid flow analysis. For this same case, the cell residual de-
pends only on grid metrics defined by the grid stencil shown in
Fig. 3.

Adjoint Solver

The gradients of the functions of interest with respect to the
grid coordinates are computed by first assembling the discrete
adjoint equations (7), solving them, and then using the sensitivity
equation (9). The sizes of the matrices involved in this process

6

tines in the flow solver by removing the loops over all the cells in
the domain and making necessary adjustments so that the bound-
ary conditions were handled properly. The new residual routine
computes thé\, residualsyAdj , at a specified celli,j,k) ,
getting contributions from aMe x Ngs flow variablesgAdj , and
from all 3x Nys grid variables in the stencikAdj ,yAd] ,zAdj ,
whereNgs denotes the number of cells of the flow stencil (see
Fig. 2), andNys denotes the number of vertices of the grid sten-
cil (see Fig. 3),
subroutine residualAdj(i,j,k,xAdj,yAdj,zAdj,qAd],rAd]).
(14)
There areNe x (Ne X Ngs) sensitivities to be computed for
each cell, corresponding té. rows in the Jacobian adjoint ma-

trix, %%, where each of these rows contains no more tianNgs

Copyright © 2009 by ASME



non-zero entries. Due to the way residuals are computed, the re-tained from Egn. (9).

verse mode is much more efficient in this case and, on this basis, Similarly to the partial derivatives with respect to the flow,

it was used to produce adjoint code for the set of residual eval- the terms%% and 9¢ were also computed using automatically
uation routines. All derivatives in the stencil can be calculated differentiated routines. The same re-engineered routines of the
from a single call to the differentiated residual routine at a given flow solver residual (14) and objective function (15) used earlier
computational cell. were again differentiated automatically, this time with respect

to the grid coordinatesAdj ,yAdj ,zAdj . This generated code

Construction of the vector %Y The RHS vector of the t_hat evaluated the entries of the mat%é( and vecto%, respec-
adjoint equations (7) (or matrix, in the case of multiple functions tively.
of interest) represents the direct effect of the flow variables on the Using these AD codes, it was possible to compute the non-
function of interest. Similarly to the residual evaluation, it was Z€ro entries of the matrix and vector of partial derivatives in the
necessary to obtain modified versions of the original functions to total sensitivity equation (9). After these had been assembled, the
use Tapenade to produce the AD code that computes the deriva-2djoint-based sensitivity of the function of interé&stvas then
tives. However, since the functions of interest were all global €valuated using the matrix-vector multiplication and the vector
parameters of some sort, the dependence on the flow (and grid)addition built-in operation routines provided in PETSc.
could not be reduced to a stencil. In this case, the whole compu-

tational domain was specified for both the flow varialgjéslj , Gradient-Based Optimization Framework

and grid coordinatesidj yAdj .zAdj , For the reasons enumerated in the introduction, an efficient
subroutine functionAdj(xAdj,yAdj,zAdj,qAdj,fyAdj). (15) turbomachinery design framework should be controlled by a

AD was used in reverse mode because the dimension of in- gradient-based optimizer. Such optimizer has to be provided with
putsgAdj , Ng, clearly outnumbered the dimension of the out- both the objective and constraint function values and gradients
putsfyAdj , Ny. As such, the whole RHS vector could be com- With respect to the design variables, as illustrated in Fig. 1.

puted from a single call to the differentiated function routine. From a design perspective, a turbomachine is geometrically
represented not by the surface nodes coordinates but rather by

some higher-level descriptors, such as stagger, camber angle dis-
tribution and thickness distribution. Latdenote the high-level
geometric parameters that form the set of design variables.

While the function values can easily be computed by post
processing the flow solution obtained from running the flow
solver, the corresponding gradients require an additional solver —
the adjoint solver. After the sensitivity of the objective function

| he Portable. E ible Toolkit for Scientific C . with respect to the grid coordinates is computed by Eqn. (9), it
em, the Portable, Extensible Toolkit for Scientific Computation ;¢ necessary to evaluate the sensitivity of the computational

(PETSC)_ [32,33] was used. PETSc is a sw_te of dat"." StTL_’C‘“feS mesh with respect to those high-level paramet%saccording
and routines for the scalable, parallel solution of scientific ap- to Eqn. (8)

plications modeled by PDEs. It employs the message passing
interface (MPI) standard for all interprocessor communication, it
has several linear iterative solvers and preconditioners available
and performs very well, provided that a careful object creation
and assembly procedure is followed.

All the adjoint and partial sensitivity matrices and vectors

Solution of the Adjoint System The adjoint linear
system of equations (7) has to be solvdd times becaused)
is valid for all grid coordinatex, but must be recomputed for
each functior¥. Each adjoint solver run requires the solution of
a system ofNy equations but both the Jacobian matrix and the
RHS vector in this system of equations are very sparse.

In order to solve this large sparse discrete adjoint prob-

Unless the source code of every tool involved in the grid
generation process is available, it is necessary to use an approx-
imation to estimateg%. In this work, a simple finite-difference
approximation was used to accomplish that. This meant that for
every design variable, it was necessary to re-grid the computa-

. p tional domain. However, since the grid topology was kept con-
— 9k o IR and 9 — were created as PETSc's data struc- g pology b

aq ' oq’ ox . - stant, it was possible to accelerate this process by means of grid
tures and, due to their structure, stored as sparse entities. Onc‘?norphing.

the sparse data structures were assembled, the adjoint system The computed final sensitivitgY is then used by the
da

of equations was solved using a PETSC built-in Krylov sub- g gient-hased optimizer to find the search direction and to de-
space (KSP) method, more specifically, a Generalized Minimum ;. ine the step size during the line search.

Residual (GMRES) method [34] was used.

The schematic of such adjoint-based optimization algorithm
is illustrated in Fig. 4.
Function Gradient Evaluation It is important to notice that if any of th€; constraints is
Once the adjoint solutionp, is found, the gradient of the  active in the design space during the optimization, then an addi-
function of interest with respect to the grid coordinates is ob- tional adjoint system has to be solved for each active constraint
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a
Grid Generation: x =x(a)
X
Y
Flow Solver: R (x,q(x)) =0
d Gradient
T T
Adjoint Solver: [%%] g= [g—m Ost?;?;er
W
anp- dY _ Y _ TR
Gradient: G =g — W' 5¢
dvy
o dv
da
Sensitivity: ¥ = d¥ &

Figure 4. SCHEMATIC OF THE ADJOINT-BASED OPTIMIZATION AL-
GORITHM.

function,C;, which includes the computation of a new right-hand
side (RHS) for the system (7).

In terms of computational cost, the flow solver and the ad-
joint solver are the two main blocks of the process, being that
the cost of solution of the adjoint equations is similar to that of
the solution of the governing equations since they are of simi-
lar size and complexity. The sensitivity block consists of some
linear algebra involving matrix-vector multiplication, thus rela-
tively cheap to evaluate.

The advantage of the adjoint approach can be seen from
Eqgn. (9), which is independent &f}, meaning that the gradient
of Y with respect to an arbitrarily large vector of grid coordinates
x can be determined without the need for additional solutions
of the governing flow PDE. This capability to effectively handle
design problems involving a large number of variables is what
makes the adjoint methods well known for.

RESULTS

A transonic blade passage of a high-pressure compressor

Z7

=
77

rFi
Y
O

Figure 5. ROTOR BLADE PASSAGE.

The flow solver implements the boundary conditions by
means of halo cells, that is, auxiliary cell layers that sit on the
exterior of the physical domain. The boundary conditions of the
case presented were made simple for demonstration purposes.
As such, the inlet boundary had the absolute tangential velocity
fixed and the pressure extrapolated from the interior. The exit
pressure was fixed and the total internal energy and the velocity
were extrapolated from the interior cells to the auxiliary cells at
the exit. All solid walls were considered inviscid, being the mo-
mentum vector mirrored so that the resulting flux was null. The
remaining faces were periodic, in which the state vector, trans-
ferred from the master to the slave faces, undergone a coordinate
transformation according to rotationally periodicity of the geom-
etry.

Figure 6 shows the contour of pressure and the momentum
vector of the flow on the hub and blade surface planes corre-
sponding to the baseline blade geometry. The values are given in
the absolute reference frame. In the relative reference frame, the
no-permeability condition is satisfied at the solid walls.

Having obtained the baseline flow solution, the correspond-
ing adjoint solution is computed using Egn. (7). Although an
adjoint solutionper seis of little use to a designer, for complete-
ness, the adjoint solution is shown in Fig. 7 for pressure ratio
(Y = PR). The contour plot corresponds to the adjoint of the
continuity equation and the vector plot is for the adjoint of the
momentum equation. As typical for the adjoint solution, the vec-
tor plot shows an adjoint flow some how reverse of the real flow.

The adjoint-based sensitivity of pressure ratio with respect

stage was used to demonstrate the capabilities of the discreteto the grid coordinates evaluated using Eqgn. (9) is illustrated in

adjoint solver developed using the proposed hybrid approach.

Fig. 8. The vector plot components correspond to the gradients

The rotor design pressure ratio is 1.5 at a mass flow rate of 145 of pressure ratio with respect to each coordinate component,

Ibm/s. The design rotational speed is 9,000 rpm. The rotor has

60 blades and an aspect ratio of 1.75 (based on average span/root

axial chord). The three-dimensional geometry is shown in Fig. 5,
where the casing wall has been removed for clarity.

dPR
dy
Copyright © 2009 by ASME

dPR

dPR _ dPR dPR
B dz

dx dx (16)



P

4.45E+01
4.30E+01
4.15E+01
4.00E+01
3.85E+01
3.70E+01
3.55E+01
3.40E+01
3.25E+01
3.10E+01
2.95E+01
2.80E+01
2.65E+01
2.50E+01
2.35E+01

N

ANENSS
TR

NN N

Figure 6. PRESSURE DISTRIBUTION AND MOMENTUM VECTOR. Figure 8. GRADIENT OF PRESSURE RATIO W.R.T. SURFACE

. dPR
NODES: =5~

PSI_1
2.80E+01
2.20E+01
1.60E+01
1.00E+01
4.00E+00

-2.00E+00
-8.00E+00
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Figure 7. ADJOINT SOLUTION OF THE CONTINUITY EQUATION

Y =PR. Figure 9. GRADIENT OF PRESSURE RATIO W.R.T. SURFACE

NODES: %{ AT MIDSPAN.

Each vector points into the direction of increased pressure
ratio and its magnitude is the improvement per unit change in the on the pressure side.
grid node coordinate. Consequently, a designer can easily infeer In the current implementation, the memory use was the
from Fig. 8 how to tune the blade and/or endwalls for increased largest because the full Jacobian ma%ﬁ( was pre-assembled.
PR, since those vectors tell him how the surface geometry should If an alternative free-matrix adjoint computations would have
change to accomplish it. The large vectors at the blade leading been used, this would considerably mitigated this issue, at the
and trailing edges reveal how sensitive the machine performanceexpense of larger runtimes, though. In addition, the coordinates
is relative to these regions. of every node of the whole three-dimensional grid were taken
A cross-section located at blade midspan is presented in as variables in the adjoint sensitivity computation. A change in
Fig. 9. The sensitivity of pressure ratio with respect to the blade the grid perturbation module to make it local to the nodes of the
shape is greater closer to the leading and trailing edges on theblade would also translate into memory savings.
suction side, and gradually increases towards the trailing edge To verify the adjoint-based gradients, the sensitivity of the

9 Copyright © 2009 by ASME



function of interest was compared to values obtained using both 8388528
finite-difference and complex-step derivative approximations, Gl
using Egn. (12) and Eqn. (13). While the adjoint approach al- 254 -2.56-2 +—+—+—+—+—+—+
lows for an efficient computation of the sensitivity with respect  2.4E-4 w‘\—‘—r 2682
to every grid coordinate, it would have been computationally pro- 23E-4 27E-2 ——3 —
hibitive to perform the same computation using either of the two  2.28-4 T — -2.8E-2 1= +;5>_omt
approximations because it would imply running the flow solver = 21E-4 1| — adjoint \ -29E-2 \ +C§
again for each node, for each coordinate component. Conse- 2.0E-4 71 CS -3.0E-2 =+
quently, only a few grid nodes were selected for verification. 1.9-4 ——t— 31E-2
Figure 10 shows an example of such verification study for the 53383528

poooood

grid node located on the suction side of the blade, at th2%4
chord, at the midspan plane. Two functions of interest are shown,
pressure ratio and isentropic efficiency. The vertical axis repre- (a) BR OF"
sent the gradient value and the horizontal axis the different step

sizesh used for the approximations.

As expected using finite-differences, the gradient value is F
highly dependent of the step size chosen. The best matches were
for h=10"°—-10"%. Values greater than that produced signif-
icant truncation errors, whereas smaller lead to subtraction can- 2653 4.9E-1 =,

. . . . . -3.7E-3 A 40E-1 +-X
cellation. The gradients estimated using the complex-step deriva- A8E3 ]’

1E-03
1E-04
1E-06
1E-20

1E-10

-3.5E-3 ——t—tt 5.0E-1

tive approximation showed a much better accuracy, and because 3.9E.3 +'FD N 3.9B-1 -FD |
the approximation expression Eqgn. (13) does not involved any , .. . { Adjoint| 208 +é%10mt
subtraction, it was possible to use extremely small perturbation _, ;¢ , +Cs 258 17 -
steps, in the order dfi = 10-2°. The agreement between gra- 20E-1 :v :m :(D :r\ :D :D:
dient values using the different sensitivity analysis methods is T30 000w
excellent, which proves the correct implementation of the adjoint T T T
method. Similar findings were obtained for every other grid node PR o
tested, and for different functions of interest. © & @ g
After the successful verification of the adjoint solver, Hicks-
Henne bump functions [35] were used to test the integration with o o oo~ o o
the grid generation module and compute higher-level sensitivi- AR
ties of the form%. By superimposing these shape functionson e W " " 7T
the baseline blade surface, smooth perturbations, that mimic the , ... 1, ~F - 10E+0 e *FD L
effect produced by geometric design varialdesre introduced 50E3 \ Adjoint| 9.0E1 \ Adjoint|
in the grid. Normalizing the radial and axial coordinates withre- 5 4 4 CS 5,051 4 CS
spect to the blade dimensions Rs= (R— Raub)/(Rip — Raub) 54E3 {4 \.\1_. — + OE-A
andZ, = (Z—Z.g)/(Zte — Z.e), respectively, the bump func- 56E.3 g 6jOE-1 | S o
tion can be expressed by 58E3 5 OE-A e
48338528
5(R9) _ a[Sin(TROQ(O'S)/IOQ(RC))}Re[Sin(TlZLOg(O'S)/IOQ(ZC))]Ze, wowwwm www
(17) dPR dn
wherea is the bump maximum heighi®; andZ; are the coordi- Oh2 U
nates of the bump center, aRd andZ. are the bump extension
in the radial and axial directions, respectively. Figure 10. FUNCTION GRADIENT W.R.T. NODE COORDINATES.

Figures 11 and 12 show the perturbation corresponding to
a bump of amplituder = 10>, centered aR. = 0.5 andZ. =
0.142, with extension parameteRs = 5.0 andZ, = 5.0. The the verification of the sensitivity with respect to the grid coordi-
horizontal axes are the radial and axial coordinates of the rotor nates shown previously. When applied to the rotor blade, the
blade and the vertical axis is the perturbation on the combined bump produced the perturbation shown in Fig. 13.
variable(R0), wheref is the circumferential angle defined in po- The sensitivity of different functions of interest, namely
lar coordinates. This bump is centered at the same node used formass flowm, efficiency,n and pressure rati®R, with respect to

10 Copyright (© 2009 by ASME
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Figure 11. HICKS-HENNE BUMP: 1D PARAMETRIZATION.
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Figure 12. HICKS-HENNE BUMP: 2D PARAMETRIZATION.
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Figure 13. HICKS-HENNE BUMP: APPLIED TO THE BLADE

the bump amplitudeg, were computed using the adjoint solver.

Table 1. COMPARISON OF FUNCTION GRADIENTS.

Adjoint Finite-difference A
dh  3554E+0  3555(E+0 —0.03%

‘da
M 2918€-2 2918E-2 -0.01%
R 4510E+0  4511F+0 —0.01%

At this point, the adjoint solver implementation was consid-
ered successful and ready to be integrated in a gradient-based
optimization framework.

CONCLUSIONS

A methodology for developing an adjoint solver for a legacy
CFD solver that models the traditional flow governing equations
has been presented. The adjoint approach enables large computa-
tional savings, at the expense of a more complex implementation,
when compared to traditional sensitivity analysis methods such
as finite differences.

The issue of rapidly developing the adjoint solver was tack-
led in this work. Instead of differentiating the entire flow solver
using automatic differentiation, the discrete adjoint solver was
derived with the aid of an automatic differentiation tool that was
selectively applied to the CFD source code to produce code that
computes the transpose of the flux Jacobian matrix and the other
partial derivatives that are necessary to compute sensitivities us-
ing an adjoint method.

This approach has the advantages that it is applicable to arbi-
trary governing equations and functions and it eliminates errors
that would have resulted from the necessary approximations if a
manual differentiation had been used for the derivation. Further-
more, because this approach is largely automatic, it accelerates
development time considerably and makes an adjoint solver now
also accessible to the industry. These advantages come at the cost
of increased memory requirements for the discrete adjoint solver.
Nevertheless, the memory penalty is regarded as small given not
only the significant advantages enumerated but also the amount
of memory typically available in parallel high-performance com-
puters.

The discrete adjoint solver developed was tested on a high-
pressure rotor blade passage and the adjoint-based gradients of

The termg—é in Egn. (8) was approximated by finite-differences some functions of interest with respect to blade node coordinates
using the baseline and perturbed computational grids. Table 1 and high-level shape parameters were verified against finite-
summarizes these results, together with the comparison using full difference and complex-step derivative approximations. Fol-
finite-difference derivative approximation using a perturbation lowing the successful preliminary implementation of the adjoint

step ofh = 107° on the bump amplitude. As shown in Tab. 1,

solver, future efforts will concentrate on expanding it to fully

there is again an excellent agreement between the adjoint-basedsupport the flow solver capabilities and on integrating it into

gradient and the finite-difference derivative approximation.

a gradient-based optimization framework. Upon completion of

Copyright (©) 2009 by ASME



such development tasks, the final framework should provide the

designer with a turbomachinery tuning tool that, given a set of
baseline geometric parameters, re-shapes the blade and endwall11]
surfaces to meet or exceed the design goals. When such state-

of-the-art tool is made available to the designers, an improved

understanding of the design space could lead to highly-tuned ma-

chines in a much quicker timeframe.

to develop discrete adjoint solvers makes turbomachinery design
using gradient-based optimizers based on CFD analysis feasible

The authors believe that the proposed hybrid methodology

in industrial environments.
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