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A significant amount of work in the analysis of high-speed magnetohydrodynamics
(MHD) has been carried out during the past decade. However, the fact remains that
very little effort has been devoted to design applications of these analysis tools. The main
reasons for this lack of design focus have been that the analysis tools were in the process
of maturing and that the cost of the simulations was sufficiently large that design applica-
tions were beyond the reach of existing computing resources. The absence of such a design
framework that provides automated multi-disciplinary optimization (MDO) capabilities for
this class of high-speed problems is the principal motivation for this work. This paper de-
velops the foundation of one of the components of such an MDO environment. Control
theory has already proved successful in dealing with both aerodynamic shape and aero-
structural optimization problems and in this work it is extended to MHD. The discrete
adjoint approach emerges as the best suitable option to deal with the complex equations
that govern MHD and with the nature of the cost and constraint functions that may be
used for relevant design problems. The equations governing the three-dimensional flow
of a compressible conducting fluid in a magnetic field using the low magnetic Reynolds
number approximation are used. At this stage, other simplifications are assumed, such as
a frozen chemical state, so that the soundness of the basic derivations can be established.
The details of the theory and implementation of the discrete adjoint solver for the MHD
equations are presented in this paper. The gradients obtained using the discrete adjoint
approach are validated against finite-difference approximations and shown to be very ac-
curate. A demonstration of the design capabilities is also included with a simple design
problem using several design variables and constraints.

I. Introduction

During the last few years, there has been renewed interest in hypersonic flight, leading to an extensive
number of conceptual studies.! However, it was not until November 2004 that the first successful hypersonic
flight of a vehicle with an air-breathing engine was accomplished.” Tt is clear that many technical and
scientific obstacles still remain in order to reach the stage where hypersonic flight enters our daily lives.

It is well known that when air flows at hypersonic speeds around blunt bodies, very strong detached shock
waves emerge in the regions of intense flow deceleration. There, much of the mean flow kinetic energy is
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converted into internal energy, namely translational and vibrational energy, which causes the temperature of
the air to increase dramatically. In turn, this temperature increase leads to the dissociation and ionization of
the air. Under certain conditions, the air is no longer in thermodynamic equilibrium, as the chemical processes
occur in a time scale comparable to the flow time scale. This thermal and chemical non-equilibrium makes
the analysis of such flows extremely complex and computationally expensive due to the high stiffness of the
chemical equations that need to span several time scales.

In order to cope with the extreme complexity of the full MHD analysis, several simplified models have been
developed. The problem can first be approached by ignoring viscous and heat transfer effects. In addition,
one can neglect the effects of the electrostatic force and the displacement current and resistivity. With these
simplifications, the MHD equations reduce to the ideal MHD formulation.?

If chemical reactions are taken into account, then the chemical model of the reacting gas has to be
included in the governing equations, which dramatically increases the computational cost. This has been
shown in Damevin and Hafmann work,* where a complete comparison of the ideal MHD and the Euler
solutions, considering frozen, equilibrium and non-equilibrium chemical states has been done. Another good
example of the increasingly added accuracy and difficulty in analyzing the flow at hypersonic speeds can
be seen from MacCormack’s work®%7® in which the ideal two-dimensional MHD approach evolved into
a three-dimensional method with chemical and thermal non-equilibrium, dealing with both external and
internal flows.

To date, accurate models have already been used to predict complex flows, such the one at the scram-jet
of an hypersonic vehicle,” and there has also been some work done trying to control the flow in scram-jet
inlets,'” but no true effort has come out to automate the control process.

Given that the analysis of MHD flows (with all the appropriate simplifications) has reached a certain level
of maturity, it is important that an efficient design framework is built around MHD prediction capabilities,
that can be used in multi-disciplinary optimization applications. The control theory approach, also called
the adjoint method since the necessary gradients are obtained through the solution of the adjoint equations
of the governing equations, emerges as an excellent candidate in achieving that goal.

This theory has been mathematically well documented'' and the method has already been extensively
applied to aerodynamic shape optimization problems governed by the Euler and Navier-Stokes equations
using multi-block structured and unstructured meshes in a parallel environment.'? '3 14,15

The adjoint formulation can be classified into continuous'? or discrete,'® depending on whether the
formulation is based on the continuous or the discretized form of the governing equations, respectively.
There have been some studies comparing these two approaches,'”'® but, in principle, none prevails over the
other in general, as their relative performance is problem dependent.

However, the continuous adjoint equations for sets of complex governing equations may be impossible
to derive without neglecting the variation of parameters such as the viscosity g and the heat conduction
coefficient x.'® When considering high-speed flows in the context of MHD, both turbulence and electromag-
netic effects play an important role, and the variation of y and &, as well as the magnetic permeability .,
and the electrical conductivity o, must be taken into account to accurately model the phenomena. Since
these variations can be naturally included in the discrete adjoint formulation, this approach seems to be
the most suitable for the problem at hand. Moreover, the discrete adjoint formulation can treat arbitrary
cost functions and constraints, whereas the continuous adjoint can only treat specific forms of integral func-
tions.'? 2% The discrete adjoint formulation might be harder to derive (although this can be automated),
but it produces more accurate gradients in the sense that they are consistent with the flow solver.

The goal of this work is to extend the discrete adjoint theory to the control of a hypersonic flow in the
presence of magnetic fields. Our main objective is to demonstrate the feasibility of this approach with a set
of simplified governing equations. The methodology and the design problem formulation have been chosen,
however, so that the extension to more complex forms of the governing equations and more realistic design
problems can be treated transparently.

2 of 17

American Institute of Aeronautics and Astronautics



In the following sections we describe the various components of the design method that we have created.
We start with the description of the physical model, in particular the governing equations of the hypersonic
flow under the influence of magnetic fields, and the discrete adjoint formulation. We then provide details of
the numerical methods used both for the flow solution and the adjoint solution. Next, a set of sensitivity
validation cases involving several types of design variables are shown. These range from a few up to several
thousand design variables. A sample design problem is also shown to demonstrate the capabilities of the
optimization framework built. Lastly, some remarks are made concerning steps that will by taken in the
future in order to achieve a more accurate and capable framework.

II. Physical Model

A. Governing Equations

The equations governing the three-dimensional flow of a compressible conducting fluid in a magnetic field
are obtained by coupling the Navier-Stokes equations to the Maxwell equations. Under certain assumptions,
this results in a set of equations stating the laws of conservation of mass, momentum and energy, and the
evolution of the magnetic induction vector known as the full MHD equations.’! Several non-dimensional
parameters are formed in this formulation, namely the magnetic force number

B2
Ry = S — , (1)
prerfeme,.ef
and the magnetic Reynolds number
Res = M UTerrefLref > (2)

in addition to the usual Re, M, etc, parameters found in the equations of fluid flow.

If the environment of interest is characterized by a low magnetic Reynolds number, then the magnetic field
induced by the current is much smaller than that imposed on the flow and therefore it can be neglected.' This
way there is no need to solve the three induction equations in the governing equations and the electromagnetic
forces and energy show up as straightforward source terms in the Navier-Stokes equations. Furthermore,
if the viscous effects and heat transfer are neglected, the Navier-Stokes equations can be simplified to the
so-called Euler equations. In this case, the non-dimensional equations governing the flow are, in conservation
form

oW ,
S tV-F=8, (3)

where W is the vector of conservative variables defined as

and F is the flux vector .
F =Eé, + Fé, + Geé, . (5)
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The inviscid fluxes E, F and G in the x, y and z directions, respectively, are given by

puU pv pw
pu2 +p puu pwy
E= puv , F= p112 +p and G = pwU , (6)
puw pow pw? +p
pHu pHv pHw

where p is the density, u, v and w are the Cartesian velocity components, p is the static pressure and H is
the total enthalpy, which is related to the total energy by H = E + %.

The source term S includes the magnetic field terms and is given by

0
Qo [B; (Ey + wB; —uB,) — By (E, + uBy — vB,)]
S = QU [Bw (Ez + UB?J - UBav - Bz (Ew + UBz - UJBy)] ? (7)
Qo [By (Ez + vB, —wBy) — By (Ey + wBg; — uB;)]
Qo [E; (Ey + vB, — wBy) + Ey (Ey + wB; —uB;) + E, (E, + uB, — vB;)]
where B is the magnetic field, E is the electric field, o is the electrical conductivity and @ is the magnetic

interaction parameter defined as

2
UrefBrefLref
=——— " = RyRe,. 8
@ prerref e ( )

Integrating (3) over an arbitrary volume Q and making use of the Gauss’ theorem yields

9/wcm+/ ﬁ-dﬁ:/scm, ©)
ot Jq a0 Q

which is the basis for the finite volume numerical discretization.

B. Thermodynamic Model

In this initial work, the gas is assumed to be in thermodynamic equilibrium and to be calorically perfect,
thus the equation of state for perfect gases p = pRT holds, and the internal energy and the enthalpy relate
to the gas temperature by e = C, T and h = C,,T, respectively.

C. Chemical Model

In the present work, the flow is assumed to be frozen, so chemical reactions are neglected. This is done, at
this initial stage, so that the soundness of the basic derivations could be established.

III. Adjoint Formulation

The control theory approach has been used extensively both aerodynamic shape optimization and aero-
structural design.'?'% !4 16 This approach is well known for its capability to effectively handle design
problems involving a large number of design variables and a few objective functions. The sensitivity of
the function with respect to an arbitrarily large number of parameters is obtained by solving a system of
equations of size equivalent to the governing equations of the flow. When compared to traditional finite-
difference methods, the adjoint approach enables large computational savings at the expense of a more
complex implementation.??
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Let W be the vector of all flow variables at discrete grid points arising from an approximate solution of
the governing equations, a the set of design variables which influence the flow, and J the scalar function
which approximates the desired cost function. Then, in the context of control theory, the PDE-constrained
design problem can be posed as

Minimize J(W,a)
w.r.t «a (10)
subject to RW,a)=0,

where R(W,a) = 0 represents the discrete flow equations and boundary conditions that must be satisfied.

The sensitivity of the cost function with respect to the design variables is required to solve the problem
using gradient-based optimization algorithms such as, for example, sequential quadratic programing (SQP).

Following the method of Lagrange multipliers for the solution of a constrained minimization problem, the
augmented cost function is defined as

I(W,a) = J(W,a) - ATR(W,a), (11)

where A is the vector of Lagrange multipliers, also called adjoint variables. From the definition of augmented
cost function, the constraints are naturally enforced by the optimal solution, thus the governing equations
are automatically satisfied. The sensitivity of the augmented cost function (11) is then

dI _dJ _ pdR

which can be expanded as
al (8] dW  8J o (ORdW OR
@%W%*%)‘A (W%+£)' (13)
Rearranging equation (13) results in
al (98] 8RN\ dW (8] ,OR
@‘(W‘Aw)w*“(a—a”a—a)- (14)

In order to eliminate the dependence on the flow variables, the term involving dW/da must vanish, which
is achieved by choosing A such that it satisfies the adjoint equation

A= [a%]T . (15)

Once ) is obtained by solving the system of equations (15), the sensitivity of the augmented cost function
is simply given by

0J /\Ta_R —

aw > aw

R
ow
ﬂ = y_/\Ta_R
da Oa Oa

This sensitivity can then be used to find the search direction of the gradient based optimization algorithm
as indicated in figure 1.

(16)

The advantage of the adjoint approach can be seen from equation (16), which is independent of W,
meaning that the gradient of I with respect to an arbitrary large vector of design variables a can be
determined without the need for additional flow-field evaluations.
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Flow Solver: R(W,a) =0
w SQP
. . 1or1Ty\ = 10277
Adjoint Solver: [§5]" A = [57] optimizer
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Sensitivity: 4L = 24 _ \T 2R

Figure 1. Schematic of the Adjoint-Based Optimization Algorithm.

If the design problem (10) includes m additional constraints to the governing equations, such as aerody-
namic or magnetic constraints, function of the flow solution W and the design variables «,

C;(W,a) =0 i=1,..,m, (17)

where C; is a scalar function, then the use of a gradient based algorithm also requires information about
their sensitivities, which in turn implies another m adjoint calculations.

IV. Numerical Model

A. MHD Solver

Several discretization schemes have been applied to hypersonic flows, ranging from explicit flux splitting
schemes such as Roe, Van Leer and Steger-Warming,?>?* as well as implicit schemes, using approximate
factorization procedures®® and higher-order compact schemes.?! For the present work, the Jameson-Schmidt-
Turkel (JST) explicit scheme’® is used. This scheme uses an artificial dissipation term, which is a blend
of first- and third-order-accurate terms to provide good numerical stability properties while keeping its
implementation relatively easy and computationally inexpensive.

A cell-centered finite volume spacial discretization scheme is applied on a body-fitted structured mesh of
hexahedral cells. The scheme reduces to a central difference scheme on a Cartesian grid and is second-order
accurate provided that the mesh is sufficiently smooth.

A set of coupled ordinary differential equations (ODESs) is then obtained by applying equation (9) sepa-
rately to each computational cell and since the cell volume V;j; is independent of time, it can be rewritten
in the form

dW i,
dt
where W is the vector of the flow variables at the cell centers, and R(W) is the vector of the residuals. The
residual

+R(W),;;, =0, (18)

1
Ry = V—(Qz’jk — Djjir — Miji) (19)
Wik
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consists of the inviscid flux terms Q;;x, together with the scalar artificial dissipation terms D;;; and the
magnetic source terms M;;, defined by the space discretization scheme as shown in figure 2.

F

14172

Figure 2. Fluxes.

Since the primary objective is to obtain a steady-state solution, the time marching scheme was selected
for its simplicity, stability and damping properties. Therefore, an explicit five-stage modified Runge-Kutta
scheme was used to integrate (18) in time, using the coefficient values were obtained from reference.”” In
addition, adaptive local time step®® is used to increase the convergence rate of the algorithm.

Using a body conforming mesh, the boundary condition implementation becomes greatly simplified. In-
flow and outflow are trivially imposed at hypersonic boundaries, as all the characteristics of the governing
equations (3) travel downstream. As such, the complete vector of conservation variables is fixed at the su-
personic incoming boundary, whereas the values at the supersonic outflow boundary are extrapolated from
the interior. As for the solid boundary defining the body surface, according to the impermeability condition,
the velocity vectors at the halo cells are set in such a way that the normal fluxes at the boundary are zero
and the pressure is linearly extrapolated from the interior cells.

B. Discrete Adjoint Formulation

The big conceptual difference between the continuous adjoint and the discrete adjoint is that the latter uses
the algebraic equations that result from the discretization of the governing equations, as opposed to the
continuous approach that formulates the adjoint equations from the continuous governing equations, and
only then discretizes them.

As such, the discrete adjoint system of equations (15) is constructed by differentiating all the numerical
fluxes that comprise the residual R;jr (19) of the discretized governing equations with respect to the flow
variables themselves. Because the residual applies to every computational cell, it follows that the matrix
% of the adjoint system of equations has dimensions (nic x n.fv)?2, where nic is the number of internal cells

and n fv the number of flow variables.

Since a structured computational mesh is used, the result is multi-diagonal matrix, whose entries are block
matrices of dimension nfv?, making the global matrix very sparse and thus easily stored. The number of
non-zero diagonals matches the dimension of the stencil used in the flow solver. For the present 3-D spatial
discretization, a stencil with thirteen cells is used.
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Even though a full three-dimensional adjoint solver was developed, a 1-dimensional case is shown here for
illustration purposes. The block matrices entries of the global adjoint matrix % for cell ¢ are computed as

() = OTalm) o ) = O
Di(m,n) = gy Bilman) = gy Almn) = oo
_ORy(m) Oft;(m)
Ci(m,n) = Wirr(n) €i(m,n) = g o - (20)

Recalling the different residual contributions expressed in equation (19), the adjoint matrix can be assembled
by adding up the contributions of each term.

The inviscid terms are due to the flux through both the west and east cell faces Q; = Qi11/2 — Qi—1/2-
Considering the i 4+ 1/2 face, the flux

Qunpp=(#:3) |, =5 (Fur-Si+7-8), where 5= EiSai+ FiSyi+Gisa,

2

contributes to the adjoint matrix as

0Qiy12 1 (OFE; OF; 0G;
i = =\ 3559%i + 555 5Yi + 557 | 21
A; o 5 ( . Sz; + 7 Syi + P Sz (21)
OQitr2 _ 1 (0B O0F;y1 0Gi11
¢ Wins (awms T W Y oW (22)
Similarly, the JST?S artificial dissipation flux through the i + 1/2 face, given by
Di+% = /\’H-% ( (2) AFW +8( ) AFABAFW)

= )\z-_,’_% I:Eg-‘r)%(Wi+l —W)+E()

i+i (Wi+2 - 3Wi+1 + 3W; — Wi,]_):l R

contributes to the adjoint matrix as

oD, 66(2) Oe (4)
B, = o2y [ e AW Cith ApApApW; —e® | ], (23)
6W,’71 2 6Wz 1 6sz i+3
(2) (4)
6Dz'+1/2 861—}-2 2 Ot H‘Q
A = el =y | gy AR - el s+ G ArABARW, +35“ , (24)
(2) (4)
OD; 12 O\ 1 @ 98 (1)
L= Tz 2 2, 2 ApApA SR 2
C 6Wi+1 ’\2+2 6W,+1A rW; +E +6Wz+1 rFABARW,; — 361_'_5 (5)
(2) (4)
611;'—{—1/2 e i+1 e i+i (4 )
& = —As 2 AW 2 ApApArWi : 2
OWita i aWie * Wiy TOBTF T (26)

neglecting the dependence of the spectral radius A, 1 on W.
Similar expressions are obtained for the fluxes through all the other cell faces.

As for the magnetic field contribution M; to the adjoint system, as it is only a volume and not a flux term,

it only contributes to
oM;

oW,

A; = (27)
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So far, only the left-hand side of the adjoint system of equations (15) has been considered. In order to
obtain the right-hand side, a cost function J has to be defined and its partial derivative with respect to
the conservative variables W has to be computed. Since the cost function is problem-dependent, several
functions may arise. For the present work, both the drag and lift coefficients were considered. The derivation
for the former is shown here as an illustration. From the definition of pressure (inviscid) drag coefficient

1 —
Cp = // whp - dS, 28
b QOoSref Sp b ( )

where —7ip is the direction of the flow, g is the dynamic pressure, p,, the wall pressure and S;.s the
reference area. Its discretization in the computational domain, assuming that the body surface occurs at

i = 1, can be expressed as
Z pr]k Ap - 'ka ) (29)

where gwjk is the body surface area of the (1, j, k) cell.
Using the drag coefficient (29) as the cost function, its sensitivity with respect to the conservative variables
can then be easily computed as

oJ 0Cp 8pwjk P
AW - aw 4oSrer ZZ Swip - (30)

Cp

doo ref

The pressure at the wall p,, is computed using the same boundary condition method as in the flow solver
to ensure consistency. If p,, is computed using a linear extrapolation approximation, then p,, = f(ps, p3)-
Consequently, the only nonzero terms are ¢ = 2 and ¢ = 3, which are given by

aJ 1 30p. a dJ 1 19ps . &

= - -5, and = - - -5,
aWi:Z QOoSref 2 8W2 o an aWz’:3 QOoSref 2 8VVS "o

(31)

This discrete adjoint formulation allows any cost function to be treated in a similar same fashion, inde-
pendently of its form (unlike the continuous adjoint formulation).

Special care is given at the boundaries, where the cells have stencils that extend outside the internal
computational domain, making necessary modifications according to the corresponding boundary condition
method used in the flow solver. This happens because the adjoint system is only solved for the interior cells
and so all the exterior boundary cell values have to be written as functions of the interior domain.

Given the adjoint matrix entries (20) and right-hand side entries (30), the discrete adjoint system of
equations is assembled as shown in equation (32).

_ T _ - - -
0 0 o o ... Moo 8J/6.Wi_2
0 Di—1 Bi—1 Aic1 Cica Ei—1 0 0 0 Ai—1 8J/0W;_1
0 0 D; B A G & o o0 ... Xi =| aJ/ew; (32)
0 0 0 Diy1 Bix1 A1 Cip1 Eipr o ... Ait1 8J/dW; 41
Aigo 8J/8Wita
0o o 0 0 ] ]
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In order to solve the large sparse matrix problem (32), the Portable, Extensible Toolkit for Scientific
Computation (PETSc)???° is used. Due to the structure of the matrix to be solved, a sparse storage is
selected and the system is solved using the Generalized Minimal Residual (GMRES) method in conjunction
with an incomplete LU factorization preconditioner.

Once the adjoint solution is found, the gradient of the function of interest is obtained from (16). The
terms g—i and g—g are approximated using finite-differences, but being partial derivatives, they are very cheap
to compute since no flow re-evaluation is necessary.

C. Gradient-Based Optimizer

The optimization problem is solved by feeding the cost and constraint function values, obtained by the
MHD solver, and their gradients, obtained by the adjoint solver, into a gradient-based optimizer. The
optimizer used in this work is SNOPT,*">*? which is a software package for solving large-scale optimization
problems (linear and nonlinear programs).

V. Blunt Body Configuration

The configuration used as a preliminary test case follows.>> The body is a blunt cylinder immersed in a
hypersonic incoming flow, at an arbitrary angle of attack and side-slip angle.

A. Magnetic Field

A collection of hypothetical electric circuits is placed inside the body which imposes a magnetic field on the
flow. Each elementary circuit is thought to produce a dipole-like magnetic field given by

_ pom s
B= o [2cosbé, + sinbéy], (33)

where 7 and 6 define the dipole orientation and m is the dipole strength.

It is important to guarantee that the imposed magnetic field satisfies the magnetic field equations, espe-
cially if a low magnetic Reynolds number approximation is used. Since the imposed field is obtained from a
collection of dipoles, the condition V - B = 0 is automatically satisfied.

B. Body Shape

A collection of bumps is located on the body nose so that shape control can be performed. These bumps
are given by Hicks-Henne functions,®* whose amplitude can be changed during the design process, and are
superimposed to the baseline nose radius. This leads to ring-type shape perturbations on the nose surface.
The bumps are equally distributed between the nose tip and the 45 degree angular location (with respect to
the body axis) and their location is fixed.

VI. Results

A. Effect of the Magnetic Field

The low magnetic Reynolds number MHD solver was validated by running a simulation of a hypersonic flow
over a blunt cylinder, similar to the one found in the literature.’® An incoming flow at Mach=>5 aligned
with the body axis was used, and a single dipole was located inside the body at the nose center point, also
aligned with body axis. Different magnetic field strengths were tested, ranging from @ = 0 to @ = 6.

The effect on the shock stand-off distance can be seen in figure 3. Being a simple MHD model, and being
impossible to compare the values of the non-dimensional parameter directly, one can only argue that the
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pressure

Figure 3. Stand-Off Distance at M=5.

values follow the expected qualitative trend. From table 1, it can be seen that the aerodynamic coeflicients
vary nonlinearly with the magnetic field. For weak magnetic fields, the drag increases with increasing @ mip,
but for stronger fields, it decreases, becoming even smaller than the non-magnetic reference case.

Qmip | Cp | CL
0 0.8542 0
1.5 0.8782 0
6.0 0.7912 0

Table 1. Aerodynamic Coefficients for Different Magnetic Interaction Parameters.

B. Sensitivity Verification

A validation study of the sensitivities obtained from the discrete adjoint formulation was performed with
finite-difference approximations computed using the MHD flow solver.

The results in figure 4 show the drag coefficient sensitivity with respect to the electrical conductivity o
on the body surface and mid plane locations. The mesh size used was 18x16x24, with a single dipole located
at the body nose center and oriented against a Mach 5 incoming flow at an angle of attack of 26.6 degrees.
The electrical conductivity was assumed to be a design variable in each computational cell, leading to a total
of 6912 design variables.

The results obtained using the discrete adjoint approach were matched against values obtained using a
finite-difference solution at three control cells located on the body surface (and shown on figure 4 with the
dots) and the results are summarized in table 2. The agreement is remarkably good and highlights the
potential of the adjoint procedure to be used in problems with a large number of design variables.

Figures 5 and 6 show the drag and the lift coefficient sensitivities with respect to some other design
variables. In these cases, the mesh size was 32x48x64, two dipoles were located inside the body, oriented
against a Mach 5 incoming flow at an angle of attack of 10 degrees and side-slip angle of 5 degrees. A
total of 18 design variables were considered - angle of attack, side-slip angle, bump amplitudes (10 in total)
and dipole strengths (2) and orientations (4). The sensitivity computed from the adjoint solution was also
compared against a finite-difference approach.
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dF(1)/d(Sigma)
8.0E-04
7.0E-04
6.0E-04
5.0E-04
4.0E-04
3.0E-04
2.0E-04
1.0E-04
0.0E+00
-1.0E-04
-2.0E-04
-3.0E-04
-4.0E-04
-5.0E-04
-6.0E-04

Figure 4. Drag Coefficient Sensitivity with respect to Electrical Conductivity o.

Cell index (i,j,k) Adjoint Finite-Differences | Difference
(8,2,19) -6.6314E-4 -6.5840E-4 0.72 %
(14,2,19) 2.9937E-4 2.9319E-4 211 %
(17,2,19) 5.8642E-4 5.8650E-4 -0.01 %

Table 2. Electrical Conductivity Sensitivity Verification.

0.2
1.21 DESIGN VARIABLES ] Adjoint 1 Adijoint
1 :Angle of attack 1 FD 1075 FD 1075
2 :Side slip angle
14 3-12 : Bump amplitude
13-14 : Dipole strength
15-16 : Dipole angle o 0.11
0.8 17-18 : Dipole angle
2 T 0 475 16] 17 18
8 8
3 0.41 o
0.24 .0.14|DESIGN VARIABLES
1 :Angle of attack
2 :Side slip angle
0 3-12 : Bump amplitude
1 2 3 4 5 6 7 8 9 10 11 12 13 13-14 : Dipole strength
Variable 15-16 : Dipole angle o
-0.21117-18 : Dipole angle B
-0.2+

Figure 5. Drag Coefficient Sensitivity. Figure 6. Lift Coefficient Sensitivity.

Once again, there is good agreement, with values within 1.5% for the drag coefficient sensitivity and 3%
for the lift coefficient sensitivity.
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C. Sample Design Problem

To demonstrate the design capabilities achieved by using the sensitivity information efficiently obtained by
the discrete adjoint approach, a simple design problem was solved.

The same blunt body was used, modeling the nose of a re-entry vehicle in the atmosphere. The design
problem intends to maximize the drag coefficient, while keeping the lift coefficient in a specified range
(0.04 < CL < 0.05).

A total of 21 design variables were used, representing three types of design variables as follows:

e Free-stream direction - angle of attack and side slip angle;
e Shape design variables - 4 Hicks-Henne bumps distributed on the body surface;
e Magnetic field characteristics - strength and orientation of 5 dipoles distributed inside the body, as

shown in figure 7.

z

® Dipole #1 Y\é/ X
®  Dipole #2
® Dipole #3
Dipole #4
Dipole #5
1
0.5
N
°
0o
Q
o
1 -0.5
0.5
Q.
2,0 -1
“ 1
-0.5 0.5

0
A 05 oordX

Figure 7. Dipole Locations.

In addition, a design was also done without the dipoles to investigate the importance and impact of
the latter in the problem solution. Figure 8 shows the convergence history of the design iterations for both
the case with and without dipoles. The initial optimization iterations employ primarily the free-stream and
shape design variables, but subsequent iterations perform a fine tuning of the dipole characteristics, which
result in a 2.5% improvement over the non-magnetic optimum solution. The optimal dipole strengths were
limited by their upper bound of m corresponding to B,y = 0.06 T = 600 Gauss.

Although the magnetic field imposed by the dipoles is weak, the pressure distribution on the surface body
changes significantly compared to the non-magnetic solution. Figure 9 shows this distribution along the
body centerline, in which the increase of pressure on both the upper and lower surfaces is the cause of the
optimal solution shown in figure 8.

It is interesting also to point out that, even though the shock stand-off distance change is barely noticeable,
the overall pressure distribution on the body surface changes considerably, with the pressure recovery from
the stagnation point taking longer to occur, as seen in figure 10.

The optimal magnetic field found is shown in figure 11, where a contour of its strength and its vector field

are illustrated on the body surface and the center plane.
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Figure 9. Pressure Distribution Along Centerline.

VII. Conclusions

In this paper we have presented an effective method for large-scale design problems involving high-speed
MHD flows.

We have constructed a proof-of-concept methodology that can be extended to treat more complex MHD
governing equations and more complex design problems and geometries. The discrete adjoint is the correct
approach to follow because of these advantages:

e Well defined procedure to derive adjoint equations independently of the complexity of the governing
equations;

o Ability to treat arbitrary cost functions and constraints (unlike continuous formulation that can only
deal with certain classes of integral functions).

The accuracy of the sensitivity of the cost functions of interest to variations of shape, orientation, electrical
conductivity and magnetic field strength and orientation was demonstrated to within 1-2%. In addition, the
design capabilities have been illustrated with a preliminary application.
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(a) without dipoles (b) with 5 dipoles

Figure 10. Pressure Distribution.

(a) side view (b) front view

Figure 11. Magnetic Field.

This work represents the first step toward an automatic design framework for problems involving hypersonic
flow control using electromagnetic effects. Future work includes the incorporation of the viscous Navier-
Stokes terms and the magnetic induction equations in the governing equations, corresponding to the full
MHD formulation. Once the flow analysis is extended, the discrete adjoint solver will be adapted accordingly.
Besides the derivation of the discrete adjoint equations, the investigation of meaningful design problems and
the definition of significant cost functions will also be tackled.
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