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ABSTRACT

The ADjoint method is applied to a three-dimensional
Computational Fluid Dynamics (CFD) solver to gen-
erate the sensitivities required for aerodynamic shape
optimization. The ADjoint approach selectively uses
Automatic Differentiation (AD) to generate the par-
tial derivative terms in the discrete adjoint equations.
By selectively applying AD techniques, the compu-
tational cost and memory overhead incurred by using
AD are significantly reduced, while still allowing for
the accurate treatment of arbitrarily complex govern-
ing equations and boundary conditions. Once formu-
lated, the discrete adjoint equations are solved using
the Portable Extensible Toolkit for Scientific compu-
tation (PETSc). With this approach, the adjoint vector
is used to compute the total sensitivities required for
aerodynamic shape optimization of a complete aircraft
configuration. The resulting sensitivities are compared
with finite difference derivatives to verify accuracy.

1 INTRODUCTION

Adjoint methods for sensitivity analysis involving par-
tial differential equations (PDE’s) have been known
and used for over three decades. They were first ap-
plied to solve optimal control problems and thereafter
used to perform sensitivity analysis of linear structural
finite-element models. The first application to fluid
dynamics is due to Pironneau [16]. The method was
then extended by Jameson to perform airfoil shape op-
timization [7]. This method was also used, in conjunc-
tion with a Newton-Krylov solver, for airfoil shape
optimization by Nemec and Zingg [15]. Since then,
the adjoint method has been developed for more com-
plex problems, leading to its application to the de-
sign optimization of complete aircraft configurations
considering aerodynamics alone [17, 18], as well as

aerodynamic and structural interactions [9]. The ad-
joint method has also been generalized for multidisci-
plinary systems [10]. However, because of the com-
plexity inherent in developing a manually differenti-
ated adjoint, these methods have not made their way
into widespread general use.

2 METHODOLGY

To remove this impediment, the ADjoint (Automatic
Differentiation Adjoint) method has been developed.
As described by Martins et al. [11, 12], the AD-
joint method uses reverse mode automatic differenti-
ation to accurately and efficiently compute the par-
tial derivative terms required by the discrete adjoint
equations. Once formulated from these partial deriva-
tives, the discrete adjoint equations are solved using
the Portable Extensible Toolkit for Scientific Compu-
tation (PETSc), which has several built-in capabilities
including a sparse matrix solver.

In this work, the ADjoint method is applied to NSSUS,
a flow solver developed at Stanford University through
the ASC turbomachinery program [1]. NSSUS is
a vertex-centered flow solver capable of solving the
Reynolds-averaged Navier-Stokes equations with a va-
riety of boundary conditions and turbulence models.
It has also been devolped to handle magnetohydrody-
namics (MHD) equations [8]. However, in this work
only the Euler and MHD equations have been consid-
ered. Total sensitivities will be developed for the force
coefficients CL and CD and the moment coefficients
CMx ,CMy and CMz with respect to the coordinates of the
volume grid. The sensitivities can then be combined
with geometry software to obtain the derivatives with
respect to a variety of geometric design variables in-
cluding sweep, span, twist and the wing surface shape.



3 MOTIVATION

Multidisciplinary Design Optimization (MDO) is a
method that can be used to find better design solutions
than those produced by existing design methods. In
2004, Martins et al. [9] showed that MDO can find
improve design solutions as compared to traditional
design methods. However, because of the computa-
tional cost of a multidisciplinary analysis, particularly
the aerodynamic portion thereof, efficient sensitivity
analysis is a necessary prerequisite for gradient based
optimization.

The usefulness of the adjoint method lies in the fact
that it is an extremely efficient approach to compute
the sensitivity of one function of interest with respect
to many parameters. However, as mentioned in the
introduction, the complexity of implementing an ad-
joint in CFD codes has prevented it from coming into
widespread use. In this research we show a method for
implemeting adjoint sensitivities that provides excel-
lent accuracy and significantly reduces the complexity
of such process. A method that will make the use of
adjoint methods accessibly to a larger range of users.

4 BACKGROUND

We will now derive the adjoint equations for the partic-
ular case of our flow solver. The governing equations
for the three-dimensional Euler equations are,
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It must be noted that this derivation is presented here
for the Euler equations, but since our approach is only
based on the existence of code that computes the resid-
ual of the governing equations, the procedure can be
extended to the full Reynolds-averaged Navier–Stokes
equations without modification. Note that the code
for the residual computation is assumed to include the
application of the required boundary conditions (how-
ever complex they may be) and any artificial dissipa-
tion terms that may need to be added for numerical
stability.

A coordinate transformation to computational coordi-
nates (ξ1,ξ2,ξ3) is used. This transformation is de-

fined by the following metrics,

Ki j =
[

∂Xi

∂ξ j

]
, J = det(K), (3)

K−1
i j =

[
∂ξi

∂X j

]
, S = JK−1, (4)

where S represents the areas of the face of each cell
projected on to each of the physical coordinate direc-
tions.

The Euler equations in computational coordinates can
then be written as,

∂Jw
∂t

+
∂Fi

∂ξi
= 0, (5)

where the fluxes in the computational cell faces are
given by Fi = Si j f j.

In semi-discrete form the Euler equations are,

dwi jk

dt
+Ri jk(w) = 0, (6)

where R is the residual described earlier with all of
its components (fluxes, boundary conditions, artificial
dissipation, etc.).

Thus, the adjoint equationscan be written for this flow
solver as, [

∂R
∂w

]T

ψ =− ∂I
∂w

, (7)

where ψ is the adjoint vector. The total sensitivity in
this case is,

dI
dx

=
∂I
∂x

+ψ
T ∂R

∂x
. (8)

We propose to compute the partial derivative matrices
∂R /∂w, ∂I/∂w, ∂I/∂x and ∂R /∂x using automatic dif-
ferentiation instead of using manual differentiation or
using finite differences. Where appropriate we will use
the reverse mode of automatic differentiation.

5 IMPLEMENTATION

To compute the desired sensitivities, we need to form
the discrete adjoint equations (7), solve them and then
use the total sensitivity equation (8). We will use au-
tomatic differentiation to generate code that computes
each of the partial sensitivity matrices present in these
equations.

For the purpose of demonstration in this paper, we
compute the sensitivity of the five force and moment
coefficients, CL ,CD, CMx ,CMy and CMz with respect to
the mesh coordinates, i.e., I = Ci and x = X(i, j,k).



The NSSUS solver is a new finite-difference, higher-
order solver that has been developed at Stanford Uni-
versity under the Advanced Simulation and Comput-
ing (ASC) program sponsored by the Department of
Energy [1]. It is a generic node-centred, multi-block,
multi-processor solver, currently only for the Euler
equations, but soon to be extended to the Reynolds-
averaged Navier–Stokes. The finite-difference opera-
tors and artificial dissipation terms follow the work by
Mattsson [13, 14] and the boundary conditions are im-
plemented by means of penalty terms, according to the
work by Carpenter [5, 6]. Addition magnetic source
terms were also included in this solver so that MHD
computations could be performed. Despite being capa-
ble of performing computations up to eight-order accu-
racy, the implementation of the adjoint solver was re-
stricted to second-order for simplicity. The extension
should be straightforward to accomplish. Also note
that the method described here does not depend on the
form or contents of the governing equations, it simply
requires that there be a code that computes the residual
of the governing equations. Therefore it will be rela-
tively straight forward to extend it to governing equa-
tions (such as the Reynolds-Averaged Navier-Stokes
equations).

5.1 Brief summary of the discretization

This section summarizes the spatial discretization.
Further details can be found in Mattsson [13, 14] and
Carpenter [5, 6]. The spatial part of equation (5) is
discretized on a block-by-block basis. The internal
discretization is straightforward and only requires the
first neighbours in each coordinate direction for the in-
viscid fluxes and the first and second neighbours for
the artificial dissipation fluxes, see figure 1. However
the boundary treatment needs to be explained in more
detail. As the finite-difference scheme only operates
on the nodes of a block, one-sided difference formulae
are used near block boundaries (be it a physical or an
internal boundary). Consequently, the nodes on the in-
terface of internal boundaries are multiply defined, see
figure 2.

These multiple instances of the same physical node are
driven to the same value by means of a penalty term,
i.e. an additional term is added to the residual R which
is proportional to the difference between the instances.
This reads

R i
blockA = R i

blockA + τ(wi
blockB−wi

blockA) (9)

and a similar expression for R i
blockB. In equation (9),

τ controls the strength of the penalty and is a combi-
nation of a user defined parameter and the local flow

Figure 1: Stencil for the vertex-centred residual com-
putation.

Figure 2: Block-to-block boundary stencil.

conditions, see Mattsson [13] for more details. Hence,
the residual of nodes on a internal block boundary is
a function of its local neighbours in the block and the
corresponding instance in the neighbouring block.

The boundary condition (BC) treatment is very similar
to the approach described above except that the penalty
state used in equation (9) is now determined by the
boundary conditions.

5.2 Computation of ∂R/∂w

To simplify the following discussion, we define the fol-
lowing numbers,

Nn: The number of nodes in the domain. For three-
dimensional domains where the Navier–Stokes
equations are solve, this can be O(106).

Ns: The number of nodes in the stencil whose vari-
ables affect the residual of a given node. In our
case, when considering inviscid and dissipation
fluxes, the stencil is as shown in Figure 1 and
Ns = 13.

Nw: The number of flow variables (and also residuals)



for each node. In our case Nw = 5.

The flux Jacobian, ∂R/∂w, is independent of the choice
of function or design variable: it is simply a function
of the governing equations, their discretization and the
problem boundary conditions. To compute it we need
to consider the routines in the flow solver that, for each
iteration, compute the residuals based on the flow vari-
ables, w. In the following discussion we note that the
residual computations are carried out within the con-
text of the NSSUS flow solver. The computation of
the residual in NSSUS can be summarized as follows,

1. Compute inviscid fluxes: For our inviscid flux
discretization the only flow variables, w, that in-
fluence the residual at a node are the flow vari-
ables at that node and at the six nodes directly
adjacent to the node.

2. Compute dissipation fluxes: For each of the Nn
nodes in the domain, compute the contributions
of the flow variables on the residual at that node.
For this portion of the residual, the solution at the
current node and the 12 adjacent nodes in each of
the three directions need to be considered.

3. (To be implemented) Compute viscous fluxes
(with similar stencil implications: only the nodes
directly surrounding the nodes in question need
to be considered).

4. Compute magnetic source terms: This only de-
pends on the flow variables in the current node.

5. Apply boundary conditions: Additional penalty
terms terms are added to enforce the BCs, see sec-
tion 5.1. Note that internal block boundaries are
also considered as boundaries.

Note that to compute the residuals over the domain,
three nested loops (in each of the three directions) are
used and that the correct value of the residual for any
given node is only obtained at the end, when all con-
tributions have been accounted for. Using Automatic
Differentiation (AD) on this original routine contain-
ing several loop would entail several unnecessary cal-
culations. Thus, to make the implementation of the
discrete adjoint solver more efficient, it was necessary
to re-write the flow residual routine such that it com-
puted the residual for a single specified node. The
re-engineered residual routine is a function with the
residuals at a given node, rAdj, returned as an output
argument and the stencil of flow variables, wAdj, that
affect the residuals at that node provided as an input
argument.

Now we have a routine that computes Nw residuals in
a given cell. These residuals get contributions from all
(Nw×Ns) flow variables in the stencil. Thus there are
Nw× (Nw×Ns) sensitivities to be computed for each
cell, corresponding to Nw rows in the ∂R/∂w matrix.
Each of these rows contains no more than (Nw×Ns)
nonzero entries. The analog in the forward mode
would be to consider all of the residuals affected by the
states in a single cell. Theoretically, one could com-
pute the derivatives of the Nw×Ns residuals affected
by a single state, thus for a single cell, one would
again obtain Nw× (Nw×Ns) derivatives. However, be-
cause of the one way dependence of the residual on the
states, this does not prove to be the case. In the reverse
mode, all of the derivatives in the stencil can be calcu-
lated from one residual calculation. All of the informa-
tion for that calculation is contained in a single stencil.
For the forward mode, one would need to calculate all
of the Nw×Ns residuals in the inverse stencil. This re-
quires the addition of all of the states in those stencils
as well. Thus, rather than having a single calculation
with Nw×Ns states involved to get Nw×Ns derivative
values, one requires Ns residual calculations and many
extra states to get the same number of derivative com-
ponents. Thus, it quickly becomes apparent that the
reverse mode is much more efficient in this case.

5.3 Computation of ∂Ci/∂w

The RHS of the adjoint equations (7) for the functions
of interest CD,CL, CMx ,CMy and CMz are easily com-
puted for this flow solver. Because this specific flow
solver works with primitive variables w = (ρ,u,v,w, p)
and since, for inviscid flow, CD, CL, CMx , CMy and
CMz are simple surface integrations of the pressure, the
derivatives ∂CD/∂w and ∂CL/∂w are always zero ex-
cept for w5(= p). Therefore, it became trivial to derive
analytically the expression for these partial derivatives
from the flow solver routine that calculated the func-
tions of interest.

5.4 Adjoint Solver

The adjoint equations (7) can be re-written for the ex-
ample case as follows,[

∂R
∂w

]T

ψ =−∂CD

∂w
. (10)

With the two partial derivatives in this equation com-
puted, the adjoint vector, ψ can now be computed. As
we have pointed out, both the flux Jacobian and the
right hand side in this system of equations are very



sparse. To solve this system efficiently, and having in
mind that we want to have a parallel adjoint solver,
we decided to use PETSc [3, 2, 4]. PETSc is a suite
of data structures and routines for the scalable, parallel
solution of scientific applications modeled by PDEs. It
employs the message passing interface (MPI) standard
for all interprocessor communication. Using PETSc’s
data structures, ∂R/∂w and −∂CD/∂w as sparse enti-
ties. Once the sparse matrices were setup, PETSc’s
built in, parallel, Krylov solver was used to compute
the adjoint solution.

5.5 Computation of ∂R /∂X(i, j,k)

The computation of the partial sensitivity of the
residuals with respect to the mesh coordinates,
∂R /∂X(i, j,k), was accomplished using an extension
of the method used to compute the flux jacobian,
∂R /∂w. The stencil based approach still applies, how-
ever in this situation, the metric transformations need
to be taken into account in the residual computation.
Once again the first two layers of adjacent nodes in
each of the three coordinate directions are required
for each nodal residual. This leads to the same size
and shape stencil that was present in the flux jacobian
computation. Therefore, the same code can be used
for both computations. Once again, the matrix is very
sparse, so the PETSc data structures are used to store
the matrix.

5.6 Computation of ∂Ci/∂X(i, j,k)

The final partial derivative term required for the total
sensitivity equation is the explicit effect of the mesh
coordinates on the force and moment coefficients. This
effect shows up as a change in direction of the normal
vectors and associated areas for the surface nodes in
the mesh. However, because the force and moment
coefficients are a sum over the entire grid, the small
stencil used to compute the flux jacobian is no longer
valid. In this case, the stencil must become the entire
mesh. On the other hand, this does provide some other
benefits. For example, now we have a situation where
a single reverse mode differentiation will return all of
the sensitivities required for one force or moment co-
efficient. While this does lead to slightly higher mem-
ory costs for this computation, it does lead to very fast
derivatives. Once again, due to the sparsity of the ma-
trix, the derivative values are stored in PETSc.

Figure 3: Hypersonic half-body

5.7 Total Sensitivity Equation

The total sensitivity (8) in this case can be written as,

dCi

dX(i, j,k)
=

∂Ci

∂X(i, j,k)
+ψ

T ∂R
∂X(i, j,k)

, (11)

where the objective function Ci represents the ith

coefficient of interest and the independent variable
X(i, j,k) represents the mesh coordinates at location
i, j,k. With all four of the partial derivatives matrices
computed, and the adjoint equation solved, all that re-
mains is to multiply the terms together as shown in
equation 11. This will leave us with a single vector of
length 3×Nn for each force or moment coefficient of
interest.

6 RESULTS

The following results are based on three distinct test
cases. The first test case, used to verify the sensitivity
results, is a half body model of simple hypersonic ve-
hicle (figure 3). This is a six block test case and has
been run at Mach=3.0. The remaining two test cases,
shown in figures 4 and 5 were used mostly for tim-
ing purposes. The first is a more complex hypersonic
vehicle, intended as an analog to the NASA X-43 test
plane, simulated at Mach = 5. While the last test case
is an oblique flying wing modeled at Mach = 1.5. All
cases use Euler wall boudary conditions for the wing
surface.



Figure 4: X-43 Analog

Figure 5: Oblique flying wing
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Figure 6: Mesh for hypersonic testcase

Table 1: Mesh coordinate sensitivity verification:
dI

dX(i, j,k) for hypersonic test case, block 3, index 2,7,13.

Control Cost Adjoint Finite-Diff. ∆

Node Fun. J (1×10−4)
1 CL -0.001015 -0.000910 13.7%

CD -0.000218 -0.000230 5.02%
Control Cost Adjoint Finite-Diff. ∆

Node Fun. J (1×10−3)
1 CL -0.001015 -0.001051 0.39%

CD -0.000218 -0.000222 1.37%

Figures 6 through 11, show the meshs and flow solu-
tions for the three test cases.

Accuracy results for the hypersonic test case are shown
in Table 1. This comparison to a forward finite differ-
ence shows acceptable accuracy. The relative error is
less than 1.5% for the larger step size. However, be-
cause of the sensitivity of the finite difference result
to step size, it is uncertain which of the two results is
more correct. We plan to compare these results against
complex step results in the near future and expect this
comparision to show an accuracy of 7 or more dig-
its. This expectation is based on the results of a previ-
ous comparison done with a single block version of the
ADjoint implemented on the SUmb flow solver [12].

The timing results for the oblique wing and X-43 test
cases are shown in Table 2. As can be seen for both
cases, the ADjoint solution is less expensive than the
flow solution, varying from 2/3 to 1/50 of the flow
solution time, depending on the test case.

When it comes to comparing the performance of the
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Figure 7: Contour plot of pressure

Figure 8: Mesh for hyperplane testcase
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Figure 10: Mesh for oblique wing testcase



Figure 11: Contour plot of pressure

Oblique Wing Hyperplane
No.Processors 1 2
No. Nodes 21820 50776
Flow solution 63.98 1771.29
ADjoint 40.17 46.58
Breakdown:
Setup PETSc Variables 0.08 0.07
Compute flux Jacobian 7.80 15.85
Compute grid partial 15.76 20.76
Compute RHS 0.00 0.00
Solve the adjoint equations 16.33 9.62
Compute the total sensitivity 0.20 0.28

Table 2: ADjoint computational cost breakdown
(times in seconds)

various components in the adjoint solver, we found
that most of the time was spent in the solution of the
adjoint equations and thus all the automatic differenti-
ation sections performed very well. The costliest of the
automatic differentiation routines are the computation
of the flux Jacobian and the computation of the mesh
partial,∂R /∂X(i, j,k). When one takes into consider-
ation the number of terms in these matrices, spending
less than 25% of the flow solution time in this compu-
tation is quite impressive.

Also, while we have not done rigorous testing on the
memory requirements of this code, preliminary obser-
vations indicate that the memory required for the AD-
joint code is approximatly ten times that required for
the orignal flow solver. Given the pattern of use on
most parallel computers, this is well within the accept-
able limits for an adjoint code.

The last set of results shown here are the lift and drag
sensitivities of the oblique wing case, shown in figures

Figure 12: Lift sensitivities

Figure 13: Drag Sensitivities

12 and 13.

As can be seen in the figures, there is a higher sensitiv-
ity to both lift and drag on the forward swept portion
of the wing. Also as we would expect, there is a high
sensitivity to drag along certain portions of the wing
leading edge. These are all characteristics that should
lead to interesting optimization results.

7 CONCLUSIONS

In this work we have applied the ADjoint method to
the NSSUS flow solver to generate the mesh coor-
dinate sensitivities required to perform aerodynamic
shape optimization. We have validated the resulting
sensitivites through comparison to finite difference re-
sults, though we expect to do a more thorough com-
parison of the results against results from the complex
step method in the near future. The implementation
has also been shown to be very efficent, with the total
ADjoint soultion taking less time than the flow solver.
Finally, we have shown some overall sensitivity dis-



tributions for the oblique wing case, as an example of
the results that the ADjoint implementation on NSSUS
can generate. These results also form the basis of the
sensitivities required for aerodynamic shape optimiza-
tion of an oblique wing.
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