
Towards Aerodynamic Shape Optimization of an Oblique Wing

using the ADjoint Approach

Charles A. Mader1, Joaquim R. R. A. Martins2

University of Toronto
Toronto, Ontario, Canada, M3H 5T6

Andre C. Marta3 Stanford University
Stanford, CA 94305, U.S.A.

June 8, 2007

1M.A.Sc. Candidate,(416)667-7747,mader@utias.utoronto.ca
2Assistant Professor, CASI Member
3Doctoral Candidate



Abstract

The ADjoint method is applied to a three-dimensional Computational Fluid Dynamics (CFD) solver to
generate the sensitivities required for aerodynamic shape optimization. The ADjoint approach selectively
uses Automatic Differentiation (AD) to generate the partial derivative terms in the discrete adjoint equations.
By selectively applying AD techniques, the computational cost and memory overhead incurred by using AD
are significantly reduced, while still allowing for the the accurate treatment of arbitrarily complex governing
equations and boundary conditions. Once formulated, the discrete adjoint equations are solved using the
Portable, Extensible Toolkit for Scientific computation (PETSc). With this approach, the computed adjoint
vector can be used to calculate the total sensitivities required for aerodynamic shape optimization of a
complete aircraft configuration. The resulting sensitivities are compared with finite-difference derivatives to
verify accuracy. Once formulated, these derivatives can then be used to perform gradient based aerodynamic
optimization.

1 Introduction

1.1 The Oblique Wing

The oblique wing concept has been around since the late 1950’s and was primarily developed by R. T.
Jones during the 1960’s and 1970’s. R. T. Jones was able to show that an elliptic oblique wing was an
optimum wing shape for supersonic flight [14]. However, despite this fact, the oblique wing configuration
has not been developed beyond a test aircraft - the most extensive test of this design was the NASA built
AD-1 test aircraft of the 1980’s [1]. One of the major reasons for this is that, because of the asymmetry
of the design, the flight dynamics of this configuration are problematic. In particular, some very prominent
pitch-roll coupling developed in the AD-1 test aircraft [1]. In addition, there are minimum size limitations
inherent to the oblique flying wing configuration. This limitation is caused by the combination of passenger
cabin size requirements and minimum thickness to chord ratio (t/c) requirements for supersonic flight [26].
In recent years, there has been a resurgence in interest in the oblique wing configuration. This is partly
because of the increased interest in more efficient, higher speed aircraft, but is also due in large part to the
improvement of computer controls and the improvement in, and increased use of, UAVs. Because UAVs
operate autonomously, two of the major issues with oblique wing configurations are removed. Because they
are computer controlled, active stability control is more easily integrated, thus reducing some of the dynamic
issues. Also, because the carrying capacity of a UAV is much smaller than a typical aircraft, an oblique wing
UAV can be much smaller than a passenger aircraft would have to be to maintain an acceptable t/c ratio for
supersonic flight. In this research we use the ADjoint method to develop the shape sensitivity information
required to perform gradient based aerodynamic shape optimization of a full aircraft configuration. We intend
to use aerodynamic shape optimization to find an improved oblique wing shape that takes advantage of the
aerodynamic benefits of the asymmetric design while minimizing the adverse flight dynamic characteristics.

1.2 Adjoint methods

Adjoint methods for sensitivity analysis involving partial differential equations (PDE’s) have been known
and used for over three decades. They were first applied to solve optimal control problems and thereafter
were used to perform sensitivity analysis of linear structural finite-element models. The first application to
fluid dynamics is due to Pironneau [23]. The method was then extended by Jameson to perform airfoil shape
optimization [13]. This method was also used, in conjunction with a Newton-Krylov solver, for airfoil shape
optimization by Nemec and Zingg [21]. Since then, the adjoint method has been developed for more complex
problems, leading to its application to the design optimization of complete aircraft configurations considering
aerodynamics alone [24, 25], as well as aerodynamic and structural interactions [15]. The adjoint method
has also been generalized for multidisciplinary systems [16]. However, because of the complexity inherent
in developing a manually differentiated adjoint, these methods have not made their way into widespread
general use.

1



2 Methodology

To remove this impediment, the ADjoint (Automatic Differentiation Adjoint) method has been developed.
As described by Martins et al. [17, 18], the ADjoint method uses reverse mode automatic differentiation to
accurately and efficiently compute the partial derivative terms required by the discrete adjoint equations.
Once formulated from these partial derivatives, the discrete adjoint equations are solved using the Portable
Extensible Toolkit for Scientific Computation (PETSc), which has several built-in capabilities including a
sparse matrix solver.

In this work, the ADjoint method is applied to NSSUS, a flow solver under development at Stanford
University through the ASC turbomachinery program [2]. NSSUS is a vertex-centered flow solver being
developed to solve the Reynolds-averaged Navier-Stokes equations with a variety of boundary conditions and
turbulence models. However, in this work only the Euler equations have been considered. Total sensitivities
have been developed for the force coefficients CL and CD and the moment coefficients CMx , CMy and CMz

with respect to the grid coordinates of the CFD Mesh. The sensitivities can be combined with the sensitivity
of the grid coordinates to a set of design variables such as sweep, span, twist and wing surface shape to provide
the total sensitivities required for aerodynamic shape optimization.With these sensitivities implemented, it
is a fairly simple step to proceed onto aerodynamic shape optimization and from there onto aerostructural
multidisciplinary design optimization.

3 Background

3.1 Semi-Analytic Sensitivity Analysis

For aerodynamic shape optimization, one must calculate the sensitivity of a function (or vector of functions)
with respect to a large number of design variables. Such functions depend not only on the design variables
themselves directly, but also on the state of the system that may result from the solution of a governing
equation, which may be a PDE. Thus we can write the vector-valued function to be differentiated, I, as

I = I(x,w), (1)

where x represents the vector of design variables and w is the state variable vector.
For a given vector x, the solution of the governing equations of the system yields a vector w, thus

establishing the dependence of the state of the system on the design variables. We denote these governing
equations by

R (x,w (x)) = 0. (2)

As a first step toward obtaining the derivatives that we ultimately want to compute, we use the chain
rule to write the total sensitivity of the vector-valued function I as

dI
dx

=
∂I

∂x
+
∂I

∂w

dw
dx

. (3)

It is important to distinguish the total and partial derivatives in these equations. The partial derivatives
can be directly evaluated by varying the denominator and re-evaluating the function in the numerator with
everything else remaining constant. The total derivatives, however, require the solution of the system’s
governing equations. Thus, all the terms in the total sensitivity equation (3) can be computed with little
effort except for dw/dx.

Since the governing equations must always be satisfied, the total derivative of the residuals (2) with
respect to any design variable must also be zero. Expanding the total derivative of the governing equations
with respect to the design variables we can write,

dR
dx

=
∂R
∂x

+
∂R
∂w

dw
dx

= 0. (4)

This expression provides the means of eliminating the total derivative dw/dx from the total sensitivity
computation for I. By rewriting equation (4) as

∂R
∂w

dw
dx

= −∂R
∂x

(5)

2



and substituting the solution into equation 3 we get equation 6

dI
dx

=
∂I

∂x
− ∂I

∂w

[
∂R
∂w

]−1
∂R
∂x

. (6)

Note that all of the terms in equation 6 are partial derivatives. However, there is now a series of linear
system solutions that need to be solved. One can either solve the system created by the last two terms,
which corresponds to the direct sensitivity method, or one can solve the system generated by the second and
third terms corresponding to the adjoint sensitivity method.

The most computationally intensive step for both of these problems is the solution of the respective
linear systems. In the case of the first problem — the direct method — we have to solve a linear system
of Nw equations Nx times. For the dual problem — the adjoint method — we solve a linear system of the
same size NI times. Thus the choice of which of these methods to use depends largely on how the number of
design variables, Nx, compares to the number of functions of interest NI . We are interested in the adjoint
method because we have several design variables, x, and few output variables, I. The adjoint equations are
written as shown in equation 7 and 8 [

∂R
∂w

]T

ψ = − ∂I
∂w

, (7)

and
dI
dx

=
∂I

∂x
+ ψT ∂R

∂x
, (8)

where ψ is the adjoint vector.
When it comes to implementation, there are two main ways of obtaining the discrete adjoint equations (7)

for a given system of PDEs. The continuous adjoint approach forms a continuous adjoint problem from the
governing PDEs and then discretizes this problem to solve it numerically. The discrete adjoint approach
forms an adjoint from the discretized PDEs. Each of these approaches results in a different system of linear
equations, but they will both, in theory, converge to the same result as the mesh is refined. However, the
discrete approach has certain advantages in that the sensitivities are consistent with those produced by the
discretized solver and that it can treat arbitrary cost functions (which is not the case in the continuous
approach). Furthermore, it is easier to obtain the appropriate boundary conditions for the adjoint solver in
a discrete fashion. In this work, we adopt the discrete approach. Although the program resulting from the
continuous approach can have lower memory requirements, in our opinion, all of the advantages mentioned
earlier outweigh the potential increase in memory requirements.

3.2 CFD Adjoint Equations

We will now derive the adjoint equations for the particular case of our flow solver. The governing equations
for the three-dimensional Euler equations are,

∂w

∂t
+
∂fi

∂xi
= 0, (9)

where xi are the coordinates in the ith direction, and the state and the fluxes for each cell are

w =


ρ
ρu1

ρu2

ρu3

ρE

 , fi =


ρui

ρuiu1 + pδi1
ρuiu2 + pδi2
ρuiu3 + pδi3

ρuiH

 . (10)

It must be noted that this derivation is presented here for the Euler equations, but since our approach
is only based on the existence of code that computes the residual of the governing equations, the procedure
can be extended to the full Reynolds-averaged Navier–Stokes equations without modification. Note that the
code for the residual computation is assumed to include the application of the required boundary conditions
(however complex they may be) and any artificial dissipation terms that may need to be added for numerical
stability.

3



A coordinate transformation to computational coordinates (ξ1, ξ2, ξ3) is used. This transformation is
defined by the following metrics,

Kij =
[
∂Xi

∂ξj

]
, J = det(K), (11)

K−1
ij =

[
∂ξi
∂Xj

]
, S = JK−1, (12)

where S represents the areas of the face of each cell projected on to each of the physical coordinate directions.
The Euler equations in computational coordinates can then be written as,

∂Jw

∂t
+
∂Fi

∂ξi
= 0, (13)

where the fluxes in the computational cell faces are given by Fi = Sijfj .
In semi-discrete form the Euler equations are,

dwijk

dt
+Rijk(w) = 0, (14)

where R is the residual described earlier with all of its components (fluxes, boundary conditions, artificial
dissipation, etc.).

The adjoint equations (7) can be re-written for this flow solver as,[
∂R
∂w

]T

ψ = − ∂I
∂w

. (15)

where ψ is the adjoint vector. The total sensitivity (3) in this case is,

dI
dx

=
∂I

∂x
+ ψT ∂R

∂x
. (16)

We propose to compute the partial derivative matrices ∂R/∂w, ∂I/∂w, ∂I/∂x and ∂R/∂x using auto-
matic differentiation instead of using manual differentiation or using finite differences. Where appropriate
we will use the reverse mode of automatic differentiation.

3.3 Automatic Differentiation

Automatic differentiation — also known as computational differentiation or algorithmic differentiation — is
a well known method based on the systematic application of the chain rule of differentiation to computer
programs. The method relies on tools that automatically produce a program that computes user specified
derivatives based on the original program.

We denote the independent variables as t1, t2, . . . tn, which are usually the same as the design variables,
x. We also need to consider the dependent variables, which we write as tn+1, tn+2, . . . , tm. These are all the
intermediate variables in the algorithm, including the outputs, I, that we are interested in.

We can then write the sequence of operations in the algorithm as

ti = fi (t1, t2, . . . ti−1) , i = n+ 1, n+ 2, . . . ,m. (17)

The chain rule can be applied to each of these operations and is written as

∂ti
∂tj

=
i−1∑
k=1

∂fi

∂tk

∂tk
∂tj

, j = 1, 2, . . . , n. (18)

Using the forward mode, we choose one j and keep it fixed. We then work our way forward in the index
i until we get the desired derivative.

4



The reverse mode, on the other hand, works by fixing i, the desired quantity we want to differentiate,
and working our way backwards in the index j all the way down to the independent variables. The two
modes are directly related to the direct and adjoint methods.

There are two main approaches to automatic differentiation: source code transformation and operator
overloading. Tools that use source code transformation add new statements to the original source code that
compute the derivatives of the original statements. The operator overloading approach consists in defining
a new user defined type that is used instead of real numbers. This new type includes not only the value
of the original variable, but the derivative as well. All the intrinsic operations and functions have to be
redefined (overloaded) in order for the derivative to be computed together with the original computations.
The operator overloading approach results in fewer changes to the original code but is usually less efficient.

There are automatic differentiation tools available for a variety of programming languages including
fortran, c/c++ and Matlab. ADIFOR [6], TAF [10], TAMC [11] and Tapenade [12, 22] are some of the
tools available for Fortran. Of these, only TAF and Tapenade offer support for Fortran 90, which was a
requirement in our case.

We chose to use Tapenade as it is the only non-commercial tool with support for Fortran 90. Tapenade
is the successor of Odyssée [9] and was developed at the INRIA. It uses source transformation and can
perform differentiation in either forward or reverse mode.

4 Implementation

To compute the desired sensitivities, we need to form the discrete adjoint equations (15), solve them and then
use the total sensitivity equation (16). We will use automatic differentiation to generate code that computes
each of the partial sensitivity matrices present in these equations. For the purpose of demonstration in this
paper, we compute the sensitivity of the five force and moment coefficients, CL ,CD, CMx

,CMy
and CMz

with respect to the mesh coordinates, i.e., I = Ci and x = X(i, j, k).
The NSSUS solver is a new finite-difference, higher-order solver that has been developed at Stanford

University under the Advanced Simulation and Computing (ASC) program sponsored by the Department of
Energy [2]. It is a generic node-centred, multi-block, multi-processor solver, tested for the Euler equations,
and currently being extended to the Reynolds-averaged Navier–Stokes. The finite-difference operators and
artificial dissipation terms follow the work by Mattsson [19, 20] and the boundary conditions are implemented
by means of penalty terms, according to the work by Carpenter [7, 8]. Despite being capable of performing
computations up to eight-order accuracy, the implementation of the adjoint solver was restricted to second-
order for simplicity. The extension to higher order should be straightforward to accomplish.

4.1 Brief summary of the discretization

This section summarizes the spatial discretization. Further details can be found in Mattsson [19, 20] and
Carpenter [7, 8].The internal discretization is straightforward and only requires the first neighbours in each
coordinate direction for the inviscid fluxes and the first and second neighbours for the artificial dissipation
fluxes, see Figure 1. However the boundary treatment needs to be explained in more detail. As the finite-
difference scheme only operates on the nodes of a block, one-sided difference formulae are used near block
boundaries (be it a physical or an internal boundary). Consequently, the nodes on the interface of internal
boundaries are multiply defined, see Figure 2.

These multiple instances of the same physical node are driven to the same value by means of a penalty
term, i.e. an additional term is added to the residual R which is proportional to the difference between the
instances. This reads

Ri
blockA = Ri

blockA + τ(wi
blockB − wi

blockA) (19)

and a similar expression for Ri
blockB. In equation (19), τ controls the strength of the penalty and is a

combination of a user defined parameter and the local flow conditions, see Mattsson [19] for more details.
Hence, the residual of nodes on a internal block boundary is a function of its local neighbours in the block
and the corresponding instance in the neighbouring block.

The boundary condition (BC) treatment is very similar to the approach described above except that
the penalty state used in equation (19) is now determined by the boundary conditions.

5



Figure 1: Stencil for the vertex-centred residual computation.

Figure 2: Block-to-block boundary stencil.

6



4.2 Computation of ∂R/∂w

To simplify the following discussion, we define the following numbers,

Nn: The number of nodes in the domain. For three-dimensional domains where the Navier–Stokes equations
are solve, this can be O(106).

Ns: The number of nodes in the stencil whose variables affect the residual of a given node. In our case,
when considering inviscid and dissipation fluxes, the stencil is as shown in Figure 1 and Ns = 13.

Nw: The number of flow variables (and also residuals) for each node. In our case Nw = 5.

The flux Jacobian, ∂R/∂w, is independent of the choice of function or design variable: it is simply a
function of the governing equations, their discretization and the problem boundary conditions. To compute
it we need to consider the routines in the flow solver that, for each iteration, compute the residuals based
on the flow variables, w. In the following discussion we note that the residual computations are carried out
within the context of the NSSUS flow solver. The computation of the residual in NSSUS can be summarized
as follows,

1. Compute inviscid fluxes: For our inviscid flux discretization the only flow variables, w, that influence
the residual at a node are the flow variables at that node and at the six nodes directly adjacent to the
node.

2. Compute dissipation fluxes: For each of the Nn nodes in the domain, compute the contributions of the
flow variables on the residual at that node. For this portion of the residual, the solution at the current
node and the 12 adjacent nodes in each of the three directions need to be considered.

3. (To be implemented) Compute viscous fluxes (with similar stencil implications: only the nodes directly
surrounding the nodes in question need to be considered).

4. Apply boundary conditions: Additional penalty terms terms are added to enforce the BCs, see sec-
tion 4.1. Note that internal block boundaries are also considered as boundaries.

Note that to compute the residuals over the domain, three nested loops (in each of the three directions)
are used and that the correct value of the residual for any given node is only obtained at the end, when
all contributions have been accounted for. Using Automatic Differentiation (AD) on this original routine
containing several loops would entail several unnecessary calculations. Thus, to make the implementation
of the discrete adjoint solver more efficient, it was necessary to re-write the flow residual routine such that
it computed the residual for a single specified node. The re-engineered residual routine is a function with
the residuals at a given node, rAdj, returned as an output argument and the stencil of flow variables, wAdj,
that affect the residuals at that node provided as an input argument.

Now we have a routine that computes Nw residuals at a given node. These residuals get contributions
from all Nw ×Ns flow variables in the stencil. Thus there are Nw × (Nw ×Ns) sensitivities to be computed
for each node, corresponding to Nw rows in the ∂R/∂w matrix. Each of these rows contains no more than
Nw×Ns nonzero entries. The analog in the forward mode would be to consider all of the residuals affected by
the states in a single node. Theoretically, one could compute the derivatives of the Nw×Ns residuals affected
by a single state, thus for a single node, one would again obtain Nw × (Nw × Ns) derivatives. However,
because of the one way dependence of the residual on the states, this does not prove to be the case. In the
reverse mode, all of the derivatives in the stencil can be calculated from one residual calculation. All of the
information for that calculation is contained in a single stencil. For the forward mode, one would need to
calculate all of the Nw × Ns residuals in the inverse stencil. This requires the addition of all of the states
in those stencils as well. Thus, rather than having a single calculation with Nw × Ns states involved to
get Nw ×Ns derivative values, one requires Ns residual calculations and many extra states to get the same
number of derivative components. Thus, it quickly becomes apparent that the reverse mode is much more
efficient in this case.

7



4.3 Computation of ∂Ci/∂w

The right-hand side (RHS) of the adjoint equations (15) for the functions of interest CD,CL, CMx
,CMy

and
CMz are easily computed for this flow solver. Because this specific flow solver works with primitive variables
w = (ρ, u, v, w, p) and since, for inviscid flow, CD, CL, CMx , CMy and CMz are simple surface integrations
of the pressure, the derivatives ∂CD/∂w and ∂CL/∂w are always zero except for w5(= p). Therefore, it
became trivial to derive analytically the expression for these partial derivatives from the flow solver routine
that calculated the functions of interest.

4.4 Adjoint Solver

The adjoint equations (15) can be re-written for the example case as follows,[
∂R
∂w

]T

ψ = −∂CD

∂w
. (20)

With the two partial derivatives in this equation computed, the adjoint vector, ψ can now be computed.
As we have pointed out, both the flux Jacobian and the right hand side in this system of equations are
very sparse. To solve this system efficiently, and having in mind that we want to have a parallel adjoint
solver, we decided to use PETSc [4, 3, 5]. PETSc is a suite of data structures and routines for the scalable,
parallel solution of scientific applications modeled by PDE’s. It employs the message passing interface (MPI)
standard for all interprocessor communication. Using PETSc’s data structures, ∂R/∂w and −∂CD/∂w are
stored as sparse entities, whose rows are split among the processors following the same distribution as the flow
data for optimal performance. Once the sparse matrices were setup, PETSc’s built in, parallel, Generalized
Minimum Residual (GMRES) Krylov solver was used to compute the adjoint solution.

4.5 Computation of ∂R/∂X(i, j, k)

The computation of the partial sensitivity of the residuals with respect to the mesh coordinates, ∂R/∂X(i, j, k),
was accomplished using an extension of the method used to compute the flux jacobian, ∂R/∂w. The stencil
based approach still applies, however in this situation, the metric transformations need to be taken into
account in the residual computation. Once again the first two layers of adjacent nodes in each of the three
coordinate directions are required for each nodal residual. This leads to the same size and shape stencil that
was present in the flux jacobian computation. Therefore, to streamline the code, the stencil based residual
routine discussed above was modified to include the metric transformations, making it a function of both the
states w and the grid coordinates X(i, j, k). The modified routine was then re-differentiated, simultaneously,
with respect to both w and X(i, j, k) allowing for the computation of both sets of derivatives. Once again,
the matrix is very sparse, so the PETSc data structures are used to store the matrix.

4.6 Computation of ∂Ci/∂X(i, j, k)

The final partial derivative term required for the total sensitivity equation is the explicit effect of the mesh
coordinates on the force and moment coefficients. This effect shows up as a change in direction of the normal
vectors and associated areas for the surface nodes in the mesh. However, because the force and moment
coefficients are a sum over the entire grid, the small stencil used to compute the flux jacobian is no longer
valid. In this case, the stencil must become the entire mesh. On the other hand, this does provide some
other benefits. For example, now we have a situation where a single reverse mode differentiation will return
all of the sensitivities required for one force or moment coefficient. While this does lead to slightly higher
memory costs for this computation, it does lead to very fast derivatives. Once again, due to the sparsity of
the matrix, the derivative values are stored in PETSc.

4.7 Total Sensitivity Equation

The total sensitivity (16) in this case can be written as,

dCi

dX(i, j, k)
=

∂Ci

∂X(i, j, k)
+ ψT ∂R

∂X(i, j, k)
, (21)

8



Table 1: Mesh coordinate sensitivity verification: dI
dX(i,j,k) for hypersonic test case, block 3, index 2,7,13.

Control Cost Adjoint Finite-Diff. ∆
Node Fun. J (1×10−4)

1 CL -0.001015 -0.000910 13.7%
CD -0.000218 -0.000230 5.02%

Control Cost Adjoint Finite-Diff. ∆
Node Fun. J (1×10−3)

1 CL -0.001015 -0.001051 0.39%
CD -0.000218 -0.000222 1.37%

where the objective function Ci represents the ith coefficient of interest and the independent variableX(i, j, k)
represents the mesh coordinates at location i, j, k. With all four of the partial derivatives matrices computed,
and the adjoint equation solved, all that remains is to multiply the terms together as shown in equation 21.
This will leave us with a single vector of length 3×Nn for each force or moment coefficient of interest.

5 Results

The following results are based on three distinct test cases. The first test case, used to verify the sensitivity
results, is a half body model of simple hypersonic vehicle (figure 3). This is a six block test case and has
been run at Mach=3.0. The remaining two test cases, shown in figures 4 and 5 were used mostly for timing
purposes. The first is a more complex hypersonic vehicle, intended as an analog to the NASA X-43 test
plane, simulated at Mach = 5. While the last test case is an oblique flying wing modeled at Mach = 1.5.
All cases use Euler wall boundary conditions for the wing surface. Figures 6 through 11, show the meshes
and flow solutions for the three test cases.

Accuracy results for the hypersonic test case are shown in Table 1. This comparison to a forward finite
difference shows acceptable accuracy. The relative error is less than 1.5% for the larger step size. However,
because of the sensitivity of the finite difference result to step size, it is uncertain which of the two results
is more correct. We plan to compare these results against complex step results in the near future and
expect this comparision to show an accuracy of 7 or more digits. This expectation is based on the results
of a previous comparison done with a single block version of the ADjoint implemented on the SUmb flow
solver [18].

The timing results for the oblique wing and X-43 test cases are shown in Table 2. As can be seen for
both cases, the ADjoint solution is less expensive than the flow solution, varying from 2/3 to 1/50 of the
flow solution time, depending on the test case. The large variation in this ratio come largely from the fact
that the flow solver is still under development and as such is not fully optimized. Also, the timing results
are affected by the fact that the code uses and explicit time integration scheme with the corresponding
limitations on CFL number.

When it comes to comparing the performance of the various components in the adjoint solver, we
found that most of the time was spent in the solution of the adjoint equations and thus all the automatic
differentiation sections performed very well. The costliest of the automatic differentiation routines are the
computation of the flux Jacobian and the computation of the mesh partial, ∂R/∂X(i, j, k). When one takes
into consideration the number of terms in these matrices, spending less than 25% of the flow solution time
in this computation is quite impressive.

Also, while we have not done rigorous testing on the memory requirements of this code, preliminary
observations indicate that the memory required for the ADjoint code is approximatly ten times that required
for the original flow solver. Given the pattern of use on most parallel computers, this is well within the
acceptable limits for an adjoint code.

The last set of results shown here are the lift and drag sensitivities of the oblique wing case, shown in
figures 12 and 13.

9



Figure 3: Hypersonic half-body

10



Figure 4: X-43 Analog

11



Figure 5: Oblique flying wing

12



X

Z

Y

Figure 6: Mesh for hypersonic test case

13



X

Z

Y

Figure 7: Contour plot of pressure

14



Figure 8: Mesh for hyperplane test case

15



6.06
5.56
5.06
4.56
4.06

Pressure Conto
Mach = 5, AoA =
14 Blocks, 5077
Euler equations

Figure 9: Contour plot of pressure

16



X

Z

Y

Figure 10: Mesh for oblique wing test case

17



Figure 11: Contour plot of pressure

18



Figure 12: Lift sensitivities

19



Figure 13: Drag Sensitivities

20



Oblique Wing Hyperplane
No.Processors 1 2
No. Nodes 21820 50776
Flow solution 63.98 1771.29
ADjoint 40.17 46.58
Breakdown:
Setup PETSc Variables 0.08 0.07
Compute flux Jacobian 7.80 15.85
Compute grid partial 15.76 20.76
Compute RHS 0.00 0.00
Solve the adjoint equations 16.33 9.62
Compute the total sensitivity 0.20 0.28

Table 2: ADjoint computational cost breakdown (times in seconds)

As can be seen in the figures, there is a higher sensitivity to both lift and drag on the forward swept
portion of the wing. Also, as we would expect, there is a high sensitivity to drag along certain portions of
the wing leading edge. These are all characteristics that should lead to interesting optimization results.

6 Conclusions

In this work we have applied the ADjoint method to the NSSUS flow solver to generate the mesh coordinate
sensitivities required to perform aerodynamic shape optimization. We have validated the resulting sensitiv-
ities through comparison to finite difference results, though we expect to do a more thorough comparison of
the results against the complex step method in the near future. The implementation has also been shown
to be very efficient, with the total ADjoint solution taking less time than the flow solver. Finally, we have
shown some overall sensitivity distributions for the oblique wing case, as an example of the results that
the ADjoint implementation on NSSUS can generate. These results also form the basis of the sensitivities
required for aerodynamic shape optimization of an oblique wing.

Acknowledgments

The first two authors are grateful for the funding provided by the Canada Research Chairs program and the
Natural Sciences and Engineering Research Council.

References

[1] W. Andrews, A. Sim, R. Monaghan, L. Felt, T. McMurtry, and R. Smith. Ad-1 oblique wing aircraft program.
SAE Technical Paper Series 801180, 1980.

[2] ASC. Advanced simulation and computing. http://www.llnl.gov/asc, 2007.

[3] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and
H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory,
2004.

[4] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang.
PETSc Web page, 2001. http://www.mcs.anl.gov/petsc.

[5] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient management of parallelism in object oriented
numerical software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

[6] A. Carle and M. Fagan. ADIFOR 3.0 overview. Technical Report CAAM-TR-00-02, Rice University, 2000.

[7] M. H. Carpenter, D. Gottlieb, and S. Abarbanel. Time-stable boundary conditions for finite-difference schemes
solving hyperbolic systems: Methodology and application to high-order compact schemes. Journal of Computa-
tional Physics, 111(2):220–236, Apr. 1994.

21



[8] M. H. Carpenter, J. Nordström, and D. Gottlieb. A stable and conservative interface treatment of arbitrary
spatial accuracy. Journal of Computational Physics, 148(2):341–365, Jan. 1999.

[9] C. Faure and Y. Papegay. Odyssée Version 1.6. The language reference manual. INRIA, 1997. Rapport Technique
211.

[10] R. Giering and T. Kaminski. Applying TAF to generate efficient derivative code of Fortran 77-95 programs. In
Proceedings of GAMM 2002, Augsburg, Germany, 2002.

[11] M. S. Gockenbach. Understanding code generated by TAMC. IAAA Paper TR00-29, Department of Computa-
tional and Applied Mathematics, Rice University, Texas, USA, 2000.

[12] L. Hascoët and V. Pascual. Tapenade 2.1 user’s guide. Technical report 300, INRIA, 2004.

[13] A. Jameson. Aerodynamic design via control theory. Journal of Scientific Computing, 3(3):233–260, sep 1988.

[14] R. T. Jones. The oblique wing - aircraft design for transonic and low supersonic speeds. Acta Astronautica, 4:99
– 109, 1977.

[15] J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther. High-fidelity aerostructural design optimization of a
supersonic business jet. Journal of Aircraft, 41(3):523–530, 2004.

[16] J. R. R. A. Martins, J. J. Alonso, and J. J. Reuther. A coupled-adjoint sensitivity analysis method for high-fidelity
aero-structural design. Optimization and Engineering, 6(1):33–62, March 2005.

[17] J. R. R. A. Martins, J. J. Alonso, and E. van der Weide. An automated approach for developing discrete
adjoint solvers. In Proceedings of the 2nd AIAA Multidisciplinary Design Optimization Specialist Conference,
Newport, RI, 2006. AIAA 2006-1608.

[18] J. R. R. A. Martins, C. A. Mader, and J. J. Alonso. Adjoint: An approach for rapid development of discrete ad-
joint solvers. In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Portsmouth, VA, 2006. AIAA 2006-7121.

[19] K. Mattsson and J. Nordström. Summation by parts operators for finite difference approximations of second
derivatives. Journal of Computational Physics, 199(2):503–540, Sept. 2004.

[20] K. Mattsson, M. Svärd, and J. Nordström. Stable and accurate artificial dissipation. Journal of Scientific
Computing, 21(1):57–79, Aug. 2004.

[21] M. Nemec and D. W. Zingg. Newton-krylov algorithm for aerodynamic design using the navier-stokes equations.
AIAA Journal, 40(6):1146–1154, 2002.

[22] V. Pascual and L. Hascoët. Extension of TAPENADE towards Fortran 95. In H. M. Bücker, G. Corliss,
P. Hovland, U. Naumann, and B. Norris, editors, Automatic Differentiation: Applications, Theory, and Tools,
Lecture Notes in Computational Science and Engineering. Springer, 2005.

[23] O. Pironneau. On optimum design in fluid mechanics. Journal of Fluid Mechanics, 64:97–110, 1974.

[24] J. Reuther, J. J. Alonso, A. Jameson, M. Rimlinger, and D. Saunders. Constrained multipoint aerodynamic
shape optimization using an adjoint formulation and parallel computers: Part I. Journal of Aircraft, 36(1):51–60,
1999.

[25] J. Reuther, J. J. Alonso, A. Jameson, M. Rimlinger, and D. Saunders. Constrained multipoint aerodynamic
shape optimization using an adjoint formulation and parallel computers: Part II. Journal of Aircraft, 36(1):61–74,
1999.

[26] A. J. D. Velden and I. Kroo. The aerodynamic design of the oblique flying wing supersonic transport. NASA
Contractor Report 177552, 1990.

22


