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Abstract  

The noise of jet and rocket engines involves the 

coupling of sound to swirling flows and to heat 

exchanges leading in the more complex cases 

of triple interactions to acoustic-vortical-

entropy (AVE) waves. The present paper 

presents as far as the authors are aware the 

first derivation of the AVE equation for 

axisymmetric linear non-dissipative 

perturbations of a compressible, non-

isentropic, swirling mean flow, with constant 

axial velocity and constant angular velocity. 

The axisymmetric AVE wave equation is 

obtained for the radial velocity perturbation, 

specifying its radial dependence for a given 

frequency and axial wavenumber. The AVE 

wave equation in the case of zero axial 

wavenumber has only one singularity at the 

sonic radius, where the isothermal Mach 

number for the swirl velocity is unity. The exact 

solution of the AVE wave equation is obtained 

as series expansions of Gaussian 

hypergeometric type valid inside, outside and 

around the sonic radius, thus: (i) covering the 

whole flow region; (ii) identifying the 

singularity at the sonic condition at the sonic 

radius; (iii) specifying near-axis and 

asymptotic solutions for small and large 

radius. Using polarization relations among 

wave variables specifies exactly the 

perturbations of: (i,ii) the radial and azimuthal 

velocity; (iii,iv) pressure and mass density; 

(v,vi) entropy and temperature. It is shown that 

the dependence of the AVE wave variables on 

the radial distance can be: (a) oscillatory with 

decaying amplitude; (b) monotonic with 

increasing amplitude. The case (b) of AVE 

wave amplitude increasing monotonically with 

the radial distance applies if the frequency 

times a function of the adiabatic exponent is 

less than the modulus of the vorticity (or twice 

the angular velocity). In the opposite case (a) 

the oscillatory nature of acoustic waves 

predominates over the tendency for monotonic 

growth of vortical perturbations. Associating 

sound with stable potential flows and swirl with 

unstable vortical flows suggests a criterion 

valid in non-isentropic conditions, that is in the 

presence of heat exchanges, that is a condition 

for stable combustion in a confined space: the 

peak vorticity (multiplied by a factor of order 

unity dependent on the adiabatic exponent) 

should be less than the lowest or fundamental 

frequency of the cavity. 

1  Introduction  

The noise of aircraft engines is a major 

limitation on airport operations, and the subject 

of ever more stringent certification rules, 

aiming to limit the total noise exposure as air 

traffic grows. The noise of the rocket engines 

of space launchers are sufficiently high to 

cause structural damage and require payloads 

like satellites to be tested in reverberant 

chambers. The literature on aircraft and rocket 

noise usually considers purely acoustic waves, 

although coupling with other modes occur in: 

(i) inlet ducts due to the shear flow in the wall 

boundary layers; (ii) in turbine exhausts due to 
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the downstream swirling flow; (iii) in the 

combustion chambers and other heat generation 

and exchange processes involving non-

isentropic flows. The simplest mean flow for 

which there are interacting acoustic, vortical 

and entropy perturbations is an axysymmetric 

non-isentropic flow with uniform axial velocity 

and rigid body swirl; this sample problem is of 

interest in itself relating to waves in nozzles 

with swirl and heat exchangers. 

 There are [1–3] three types of waves in 

 a fluid in the absence of external restoring 

forces [4, 5], namely: (i) sound waves that are 

longitudinal and compressive; (ii) vortical 

waves that are transversal, hence 

incompressible; (iii) entropy modes associated 

with heat exchanges, hence non-isentropic 

flow. 

The acoustic modes receive most 

attention because for an homogeneous uniform 

mean flow: (i) the acoustic modes satisfy the 

convected wave equation for uniform motion 

and the classical wave equation in a medium at  

rest [6–12]; (ii) by Kelvin circulation theorem 

the circulation along a loop convected with the 

mean flow is constant [13–17]; (iii) in 

homentropic conditions there are no entropy 

modes. The most general conditions for the 

existence of purely acoustic modes, decoupled 

from vortical-entropy modes, is a potential 

homentropic mean flow, that may be 

compressible, and leads to the high-speed wave 

equation [18–20] that reduces to the convected 

wave equation [21–23] in two cases: (i) 

uniform flow; (ii) low Mach number non-

uniform flow. The presence of vorticity leads to 

acoustic-vortical-waves [24–29], in a 

compressible sheared [30–43] or swirling [44–

51] mean flow. The present paper considers a 

further extension to acoustic-vortical-entropy 

waves that specify the stability of a 

compressible, vortical non-isentropic mean 

flow. The acoustic, vortical and entropy modes 

[1–3] are decoupled in a medium at rest and 

become coupled in sheared and/or swirling 

non-isentropic mean flows. The linearized 

Euler equations (LEE) contain all these modes, 

but consist of one vector (momentum) and 

three scalar (continuity, energy and state) 

equations with six variables (velocity vector, 

pressure, density and entropy). In this 

formulation, the ’wave operator’ is a 6×6 

matrix that cannot be readily compared to a 

scalar wave equation for one variable like the 

pressure perturbation. This paper presents a 

scalar wave equation for a single wave variable 

(the radial velocity) that generalizes the classic  

wave equation for sound and the acoustic-

vortical wave equation in a swirling flow. This 

derivation involves elimination among the 6 

LEE equations for one variable only, namely 

the radial velocity, that determines through 

polarization relations all other variables, 

namely the perturbations of the density, 

pressure, temperature, entropy and axial and 

azimuthal components of the velocity. There is 

substantial evidence in the literature of the 

presence of non-acoustic perturbations in 

nozzle flows, and the derivation of an acoustic-

vortical-entropy (AVE) equation aims to 

address this limitation of current wave 

equations, by allowing the interaction of all 

three effects. 

 The present paper: (i) is not about the 

generation of sound by small patches of 

vorticity [52, 53] or inhomogeneities [19, 20] 

convected in a potential flow, that is 

respectively ’vortex’ and ’entropy’ noise; (ii) it 

is about linear perturbations of a compressible,  

vortical, non-isentropic mean flow occupying  

all space, that may be designated acoustic-

vortical-entropy waves. These perturbations 

determine the stability of the mean flow [54–

60] in this case the stability of a compressible, 

vortical, non-isentropic flow. The paper 

considers what possibly is the simplest case of 

acoustic-vortical-entropy (AVE) waves: (i) 

linear non-dissipative perturbations of an 

axisymmetric mean flow with uniform axial 

velocity and rigid-body swirl; (ii) the mean 

flow is compressible, vortical and non-

isentropic allowing for the existence of AVE 

waves; (iii) the perturbations depend on time, 

axial and radial coordinates, but not on 

azimuthal angle; (iv) this allows for the 

fundamental axisymmetric mode, but excludes 

all non-axisymmetric azimuthal modes. The 

derivation of the acoustic-vortical-entropy 

wave equation (Section 2): (i) is based on the 

linearization of the equations of continuity, 
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inviscid momentum and energy (Subsection 

2.2), using the entropy and equation of state of 

a perfect gas (Subsection 2.1); (ii) the 

elimination for the radial velocity perturbation 

leads to the AVE wave equation, and the 

remaining wave variables, namely the pressure, 

mass density, entropy, temperature and 

azimuthal velocity are expressed in terms of its 

solution (Subsection 2.3). 

 The presence of swirl leads to a radial 

pressure gradient in the mean flow due to the 

centrifugal force, and thus the sound speed 

varies radially; since the mean flow is assumed 

to be non-isentropic there is an entropy 

parameter, in addition to the sound speed. The 

acoustic-vortical-entropy wave equation 

specifying the radial dependence of the radial 

velocity perturbation spectrum for a given 

frequency and axial wavenumber has a 

singularity at a sonic radius (Section 3) where 

the swirl velocity of the mean flow equals the 

isothermal sound speed, i.e. the ’sonic 

condition’ of isothermal swirl Mach number 

unity (Subsection 3.1). Thus there are two 

solutions: (i) an inner solution in ascending 

power series of the radius; (ii) an outer solution 

in descending power series of the radius. 

2  The acoustic-vortical-entropy wave 

equation 

The acoustic-vortical-entropy waves are 

considered as small axisymmetric perturbations 

of an axisymmetric compressible non-

isentropic mean flow (Subsection 2.1) with 

uniform axial velocity and rigid body swirl 

(Subsection 2.2). Elimination for the radial 

velocity perturbation leads to the acoustic-

vortical-entropy wave equation, whose 

solutions specifies also the perturbations of 

azimuthal velocity, pressure, mass density, 

temperature and entropy (Subsection 2.3). 

2.1 Compressible, vortical, non-isentropic 

flow of a perfect gas 

The fundamental equations of fluid mechanics 

are written in cylindrical coordinates (r, φ, z) in 

axisymmetric form without φ-dependence 

(∂/∂φ = 0): 

 

(i) mass conservation: 

 
(1) 

(ii) inviscid momentum: 

 (2a) 

 (2b) 
 

 (2c) 

(iii) energy neglecting dissipative effects, 

namely heat conduction and viscosity: 

 (3) 

(iv) state: 

 (4) 

where Γ is the mass density, P the pressure, V 

the velocity, T the temperature, S the entropy, 

the material derivative is denoted by 

 (5a,b) 

and the equation of state in the form (6a) 

specifies the coefficients in (4), 

 

(6a-c) 

namely the adiabatic sound speed (6b) and the 

non-isentropic coefficient (6c). Chemical 

reactions are not considered explicitly and 

appear through the entropy coefficient. 

 In the case of a perfect gas, the 

equations of state (7a) and entropy (7b), 

 (7a,b) 

involve the gas constant R and specific heats at 

constant volume CV and pressure CP that are 

related by (8a,c,d) involving the adiabatic 

exponent (8b), 

 

(8a,b) 

 
(8c,d) 

From the entropy equation (7b) it follows 

 
(9a) 
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that the adiabatic sound speed (9b) is given by 

(9c), 

 
(9b,c) 

The non-isentropic coefficient (6c) may be 

calculated (10b) from the specific heat at 

constant volume (10a), 

 

(10a) 

 

(10b) 

in the case of a perfect gas (7a) follows (11a,b), 

 

(11a-c) 

and also (11c) using (8c). 

2.2 Linear perturbation of a uniform flow 

with rigid body swirl 

The mean flow (subscript zero) is assumed to 

consist (12a) of a uniform axial velocity plus a 

rigid body swirl, 

 (12a,b) 

so that the vorticity (12b) is twice the angular  

velocity. The linearised material derivative (5a) 

for the axial mean flow (12a) is (13a): 

 (13a,b) 

and the mean flow velocity (12a) has zero 

divergence (13b). Applying the fundamental 

equations to the mean flow (12a) it follows 

that: (i-ii) the mass density (1) and entropy (3) 

can depend only on the radius (14a,b); (iii) 

there is a radial pressure gradient (2a) due to 

the centrifugal force (14c), 

 (14a-c) 

(iv) the mean flow is incompressible (13b) and 

the assumption of a constant mass density (15a) 

leads to the pressure (15c) where (15b) is the 

pressure on axis,  

 
(15a-c) 

The sound speed (9c) and non-isentropic 

coeficient (11b) are given in the mean flow 

respectively by (16b) and (16c), where (16a) is 

the sound speed on the axis,  

 
The entropy in the mean flow (17a),  

 
(17a) 

has radial gradient (17b),  

 
(17b) 

Thus the uniform axial flow with rigid body 

swirl (12a) and a constant mass density (15a) 

implies the radial dependences of the pressure 

(15b,c), sound speed (16a,b) and also the 

existence of an entropy gradient (17b). The 

linear perturbation of this mean flow is 

considered next. 

The total flow is assumed to consist of 

the mean flow plus a perturbation depending on 

time t, radial r and axial z coordinate, but not 

on the azimuthal coordinate φ,  

 
 

Since the mean flow properties, that appear as 

coeficients in the linearisation, depend on r but 

not (z; t), the Fourier transform is made (19) 

with frequency ω and axial wavenumber k,  

 

(19) 

for example the linearised material derivative 

for the axial flow (13a) leads (20a) to the 

frequency (20b) Doppler shifted by the axial 

mean flow, 

 (20a,b) 
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Substituting (18a{f) in (1,2a{c,3,4) and 

linearising leads to 

 
 

The last equation (21f) follows from 

linearization of (4), 

 (22) 

using (15a) and (17b). The energy equation (3) 

simplifies to (23a) for a perfect gas (7a), 

 

 
implying that: (i) the mean flow is isentropic 

(23b), that is consistent (13) with the entropy 

being a function of the radius (14b); (ii) 

subtracting the mean state (23b) from the exact 

energy equation (23a) leads to (23c) that is 

linearised (23d), 

 
(iii) from (23d) follows (23e), 

 
proving (23f)≡(21e).  

2.3 Wave equation for the radial velocity 

and polarization relations 

Of the six variables in (21a-f) four (𝑣𝑧̃; 𝑣𝜑̃; ̃;𝑠̃) 

are expressible (21d,c,e,a) in terms of (𝑝;𝑣𝑟̃),  

 

 
 

Substituting (24c,d) in (21f) leads to 

 (25) 

the pressure in terms of the radial velocity 

spectrum. Substituting (24b,d) in (21b) leads to 

a relation between 𝑝 and 𝑣𝑟̃ distinct from (25), 

namely 

 
(26) 

Substituting 𝑝 from (25) in (26) leads to the 

acoustic-vortical-entropy wave equation for the 

radial velocity perturbation spectrum, 

 
(27) 

with coefficients 

 
 

In conclusion the axisymmetric compressive, 

vortical, non-isentropic perturbations of a 

uniform axial flow with rigid body swirl (12a), 

with frequency ω and axial wavenumber k, lead 

(19) to the acoustic-vortical entropy wave 

equation (27) with coefficients (28a-c) satisfied 

by the radial velocity perturbation spectrum. 

The other wave variables are specified by the 

following polarization relations: (i-iii) the 

pressure (25), entropy (24c) and azimuthal 

velocity (24b) perturbation spectra; (iv-v) the 

axial velocity (24a) and mass density (24d) 

perturbation spectra lead, by (25), respectively 

to (29a) and (29b), 

 

 
The temperature perturbation spectrum follows 

from the equation of state (7a), 

 

 
using (29b) and (25).  

3  Monotonic and oscillatory inner and outer 

solutions 

The acoustic-vortical-entropy wave equation 

with zero axial wavenumber is solved exactly 
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as ascending (Subsection 3.2) and descending 

(Subsection 3.3) power series of the radius that 

converge respectively inside and outside a 

sonic radius, where the isothermal swirl Mach 

number is unity. This specifies the separation 

condition between oscillatory and monotonic 

dependence of the radius of the AVE wave 

perturbation of the compressible, vortical, non-

isentropic mean flow: (i) near the axis 

oscillatory solutions correspond to the 

frequency larger than the vorticity (Subsection 

3.1); (ii) at infinity the condition for oscillatory 

solutions is opposite, that is the vorticity must 

exceed the frequency (Subsection 3.3).  

3.1 Condition separating oscillatory from 

monotonic radial dependences 

If the axial wavenumber is not zero, the 

vanishing of (28a) introduces singularities in 

the AVE wave equation (27). The condition 

X=0 corresponding to ±kc0=ω*= ω-kU leads to 

a singularity of the wave equation similar to 

those that occur for acoustic-shear [30-43] and 

acoustic-vortical [44-51] waves and may be 

addressed in future work. The present paper 

concentrates on non-isentropic eects, in the 

simpler case of zero axial wavenumber (31a), 

that is neglecting axial dependence, when there 

is (20b) no Doppler shift (31b) and the 

coefficients of the wave equation (28a-c) 

simplify respectively to (31d-f), 

 

 
 

where the radial dependence of the sound speed 

(16c) was used (31c). Thus the acoustic-

vortical-entropy wave equation (27) for (31a-f) 

an axisymmetric mode of frequency ω 

simplifies to 

 (32) 

The radial dependence of the sound speed 

(16b) is quadratic (33a), 

 

 

with reference radius (33b). Substituting (33b) 

in the wave equation (32) leads to 

 

(34) 

Using (31a) and (33a,b), the remaining wave 

variables are the azimuthal velocity (24b), mass 

density (29b), temperature (30a), entropy (24c) 

and pressure (25) specified respectively by 

(35a-e), 

 
in terms of the radial velocity perturbation 

spectrum. 

 The adiabatic exponent for a perfect gas 

is given by (36b) where (36a) is the number of 

degrees of freedom of a molecule, 

 

(36a,b) 

namely: (i) three for monoatomic gas; (ii) five 

for a diatomic gas or polyatomic gas with 

molecules in a line; (iii) six for a three 

dimensional polyatomic molecule. The 

reference radius (33b) corresponds to a ratio of 

the azimuthal velocity of the mean flow to the 

sound speed on axis given by 

 

(37) 

that is of order unity and plays the role of swirl 

Mach number at the axis, bearing in mind that 

the sound speed (33a,b) is not constant. Using 

the sound speed (33a) at the sonic radius (38a) 

leads to (38b), 

 
(38a,b) 

showing that the sonic radius corresponds to 

azimuthal velocity equal to the isothermal 

sound speed, that is isothermal swirl Mach 

number unity. Since vortical modes are 

transversal and hence incompressible, the 

relevant sound speed and Mach number are 
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isothermal. If the radius is small compared with 

the reference radius (39a), that is for small 

swirl isothermal Mach number, the wave 

equation (34) simplifies to (39b), 

 (39a,b) 

in the passage from (32) to (39b) the 

approximation (39a) was made in the 

coefficient of 𝑣0𝑟̃, but not in the coefficient of 

𝑣𝑟̃, because the frequency (40c) could be large 

(40b) in the radial wavenumber (40a), 

 (40a-c) 

Thus the approximation of small radius (39a) 

leads to the Bessel equation (39b) where (40b) 

is the dimensionless radial wavenumber 

involving the dimensionless frequency (40c). 

 The Bessel equation has oscillatory 

solutions for real wavenumber and monotonic 

increasing solutions for imaginary 

wavenumber. Although the preceding result 

was obtained only for small radius (39a), it will 

be extended in the sequel (Subsections 3.2 and 

3.3) to all values of the radial distance. Thus 

the condition specifying wave fields with 

oscillatory dependence on the radius (41a) is 

expressed in terms of the dimensionless 

frequency (40b), 

 
Using (33b) the condition for radially 

oscillatory AVE waves is written in terms of 

the angular velocity, 

 
Using the sound speed (38a) at the reference 

radius the oscillatory condition (41b) becomes 

 
Bearing in mind that the modulus of the 

vorticity is twice the angular velocity (12b) the 

oscillatory condition (42) becomes 

 
 

Of the four forms of the oscillatory condition 

(41b), (42), (43) and (44) the last is 

independent of the geometry and may be the 

most general: a compressible, vortical, 

nonisentropic flow has perturbations with 

oscillatory dependence on the radial distance if 

the frequency is larger than the maximum of 

the modulus of the peak vorticity 𝜔̅ multiplied 

by the factor μ in (44). The spatial growth of 

perturbations of acoustic-vortical waves [49, 

50] is comparable to the temporal growth [51] 

as an indicator of instability. Thus the 

oscillatory condition excluding monotonic 

growth of perturbations could be equivalent to 

a stability condition for the mean flow. This 

conjecture can be applied (Figure 1) to 

combustion stability in a confined space: (i) if 

the natural frequencies exceed the product μ𝜔̅ 

there is (Figure 1a) stability, and only the 

fundamental frequency needs to be considered 

ω1 > μ𝜔̅; (ii) if the fundamental frequency and 

other modes lie below μ𝜔̅ those modes lead to 

instability (Figure 1b). 

 

 
Fig.1. The compressible, vortical, non-isentropic flow is 

stable if the peak vorticity multiplied by (44) is less than 

the fundamental frequency (Figure 1a) and unstable 

otherwise (Figure 1b). 

 

The passage from stable to the unstable case 

could be due to: (i) increasing the vorticity of 

the mean flow, e.g. to achieve better mixing for 

'lean' fuel saving combustion; (ii) increasing 

the size of the enclosure, so that the natural 

frequencies reduce, and fall below μ𝜔̅. The 

remark (i) agrees with the observation that lean 

combustion tends to be unstable; the remark (ii) 

agrees with the observation that larger rocket 

motors are more prone to large amplitude 

oscillations. The stability criterion 

ω1 > μ𝜔̅max, μ = 0:890; 0:908; 0:913, (40a-c) 
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that the fundamental frequency must be larger 

than the modulus of the peak vorticity times the 

factor (44) can be tested for more complex 

geometries using numerical codes. Similar 

conditions were obtained before for the 

stability of an inviscid boundary layer [56, 58] 

and for sound in vertical flows [59]. It has a 

simple interpretation: (i) acoustic modes with 

frequency ω are stable; (ii) vortical modes with 

vorticity 𝜔̅ are unstable; (iii) there is stability if 

the acoustic modes predominate ω>|𝜔̅|; (iv) 

there is instability if the vortical modes 

predominate |𝜔̅|>ω. The factor (44) involving 

the adiabatic exponent appears because the 

vertical modes are incompressible and the 

acoustic modes are adiabatic and thus the ratio 

of frequency to vorticity is close to but not 

exactly unity. The stability condition (45a,b) 

was established from the AVE wave equation 

(39b) for small radius (39a). It can be shown 

that the equivalent condition for AVE waves 

with oscillatory radial dependence is not 

restricted to small radius (39a) and applies to 

any radial distance smaller than the sonic 

radius. 

4 Further studies  

The AVE wave equation can be 

transformed to a Gaussian hypergeometric 

differential equation thus confirming the inner 

and outer solution as respectively ascending 

and descending power series of the radius, 

valid respectively inside and outside the sonic 

radius. The inner and outer solutions are 

matched by using a third solution valid around 

the sonic radius that overlaps with both; this 

third solution is valid over the whole space and 

shows that the wave field is finite at the sonic 

radius. 

The numerical solutions of the AVE wave 

equation resulted in the computation of the 

wave variables. Thus the divergence of the 

inner and outer solutions at the sonic radius is 

due to the failure of the power series to 

converge at their boundary of convergence and 

not to the wave field that is finite at the sonic 

radius. The inner and outer solutions may be 

used to describe the wave field respectively 

near the axis and asymptotically for large 

radius; they apply to waves in a cylinder or 

cylindrical annulus, respectively inside and 

outside the sonic radius; the solutions around 

the sonic radius still apply also when the sonic 

radius lies inside the cylindrical or annular 

duct. The solutions of the AVE wave equation 

that hold for all finite non-zero values of the 

radius are applied to a cylinder with rigid walls 

containing the sonic radius to determine:  (i) 

the eigenvalues for the radial wavenumber  and 

frequency; (ii) the corresponding 

eigenfunctions or waveforms for  the 

perturbations of the radial and azimuthal  

velocity, mass density, entropy, pressure and  

temperature as function of the radius. 

5 Conclusions 

The present paper may be the first to derive a 

scalar wave equation with a single variable 

combining the interactions of the three types of 

waves in a fluid not subject to external force 

fields, hence the designation acoustic-vortical-

entropy (AVE) waves. A deliberate choice was 

made of one of the simplest baseline flows that 

could support AVE waves, namely an 

incompressible nonisentropic uniform flow 

with rigid body swirl, leading to a mean flow 

pressure and sound speed varying radially due 

to the centrifugal force. The linear non-

dissipative perturbation of this mean flow leads 

in the axisymmetric case to the AVE wave 

equations (27;28a-c) first obtained here. The 

exact solution is obtained in terms of Gaussian 

hypergeometric functions in the case of zero 

axial wavenumber, when there are only 

temporal and radial dependences. The six wave 

variables in this case are the frequency spectra 

of the perturbations of the (i) radial and (ii) 

azimuthal velocity, (iii) mass density, (iv) 

entropy, (v) pressure and (vi) temperature. 
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