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Abstract

The noise of jet and rocket engines involves the coupling of sound to swirling flows and to heat exchanges leading in
the more complex cases of triple interactions to acoustic-vortical-entropy (AVE) waves. The present paper presents
the derivation of the AVE equation for axisymmetric linear non-dissipative perturbations of a compressible, non-
isentropic, swirling mean flow, with constant axial velocity and constant angular velocity. The axisymmetric AVE
wave equation is obtained for the radial velocity perturbation, specifying its radial dependence for a given frequency
and axial wavenumber. The AVE wave equation in the case of zero axial wavenumber has only one singularity at the
critical radius, where the isothermal Mach number for the swirl velocity is unity. The exact solution of the AVE wave
equation is obtained as series expansions of Gaussian hypergeometric type valid inside, outside and around the critical
layer. Using polarization relations among wave variables specifies exactly the perturbations of: (i,ii) the radial and
azimuthal velocity; (iii,iv) pressure and mass density; (v,vi) entropy and temperature. It is shown that the dependence
of the AVE wave variables on the radial distance can be: (a) oscillatory with decaying amplitude; (b) monotonic with
increasing amplitude. The case (b) of AVE wave amplitude increasing monotonically with the radial distance applies
if the frequency times a function of the adiabatic exponent is less than the vorticity (or twice the angular velocity). In
the opposite case (a) the oscillatory nature of acoustic waves predominates over the tendency for monotonic growth of
vortical perturbations. Associating sound with stable potential flows and swirl with unstable vortical flows suggests
a criterion valid in non-isentropic conditions, that is in the presence of heat exchanges, that is a condition for stable
combustion in a confined space: the peak vorticity (multiplied by a factor of order unity dependent on the adiabatic
exponent) should be less than the lowest or fundamental frequency of the cavity.

Keywords: aeroacoustics, absolute/convective instability, critical layers

1. INTRODUCTION

The noise of aircraft engines is a major limitation on
airport operations, and the subject of ever more strin-
gent certification rules, aiming to limit the total noise
exposure as air traffic grows. The literature on aircraft
usually considers purely acoustic waves, although cou-
pling with other modes occur in: (i) inlet ducts due to
the shear flow in the wall boundary layers; (ii) in tur-
bine exhausts due to the downstream swirling flow; (iii)
in the combustion chambers and other heat generation
and exchange processes involving non-isentropic flows.
In spite of the practical ubiquity of these phenomena,
the present paper may be one of the first to consider the
triple interaction of acoustic, vortical and entropy per-
turbations.

∗Corresponding author email: luis.campos@tecnico.ulisboa.pt

There are [1] three types of waves in a fluid in the ab-
sence of external restoring forces [2], namely: (i) sound
waves that are longitudinal and compressive; (ii) vor-
tical waves that are transversal, hence incompressible;
(iii) entropy modes associated with heat exchanges,
hence non-isentropic flow. The acoustic modes receive
most attention because for an homogeneous uniform
mean flow: (i) the acoustic modes satisfy the convected
wave equation for uniform motion and the classical
wave equation in a medium at rest [3]; (ii) by Kelvin cir-
culation theorem the circulation along a loop convected
with the mean flow is constant [4]; (iii) in homen-
tropic conditions there are no entropy modes. The most
general conditions for the existence of purely acous-
tic modes, decoupled from vortical-entropy modes, is
a potential homentropic mean flow, that may be com-
pressible, and leads to the high-speed wave equation
[5] that reduces to the convected wave equation [6] in
two cases: (i) uniform flow; (ii) low Mach number
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non-uniform flow. The presence of vorticity leads to
acoustic-vortical-waves [7], in a compressible sheared
[8] or swirling [9] mean flow. The present paper con-
siders a further extension to acoustic-vortical-entropy
waves that specify the stability of a compressible, vorti-
cal non-isentropic mean flow.

The present paper is about linear perturbations of a
compressible, vortical, non-isentropic mean flow oc-
cupying all space, that may be designated acoustic-
vortical-entropy waves. These perturbations determine
the stability of the mean flow [10, 11] in this case
the stability of a compressible, vortical, non-isentropic
flow. The paper considers what possibly is the sim-
plest case of acoustic-vortical-entropy (AVE) waves: (i)
linear non-dissipative perturbations of an axisymmetric
mean flow with uniform axial velocity and rigid-body
swirl; (ii) the mean flow is compressible, vortical and
non-isentropic allowing for the existence of AVE waves;
(iii) the perturbations depend on time, axial and radial
coordinates, but not on azimuthal angle; (iv) this allows
for the fundamental axisymmetric mode, but excludes
all non-axisymmetric azimuthal modes.

2. THE ACOUSTIC-VORTICAL-ENTROPY
WAVE EQUATION

2.1. Compressible, vortical, non-isentropic flow of a
perfect gas

The fundamental equations of fluid mechanics are
written in cylindrical coordinates (r, ϕ, z) in axisym-
metric form without ϕ-dependence (∂/∂ϕ = 0):
(i) mass conservation:

DΓ/dt = −Γ∇ · V = −Γ

r

∂

∂r
(rVr)− Γ

∂Vz
∂z

; (1)

(ii) inviscid momentum:

Γ
(
DVr/dt− r−1V 2

ϕ

)
+ ∂rP = 0 , (2a)

Γ
(
DVϕ/dt+ r−1VrVϕ

)
+ r−1∂ϕP = 0 , (2b)

ΓDVz/dt+ ∂zP = 0 ; (2c)

(iii) energy:
ΓT DS/dt = 0 ; (3)

(iii) state:

DP/dt = c2DΓ/dt+ βDS/dt ; (4)

where Γ is the mass density, P the pressure, V the ve-
locity, T the temperature, S the entropy, the material
derivative is denoted by

D/dt = ∂/∂t+ V · ∇ = ∂/∂t+ Vr∂r + Vz∂z , (5a,b)

and the equation of state in the form (6a) specifies the
coefficients in (4),

P = P (Γ, S) : c2 ≡
(
∂P

∂Γ

)
S

, β =

(
∂P

∂S

)
Γ

, (6a− c)

namely the adiabatic sound speed (6b) and the non-
isentropic coefficient (6c). Chemical reactions are not
considered explicitly and appear through the entropy co-
efficient.

In the case of a perfect gas, the equations of state (7a)
and entropy (7b),

P = RΓT , S = CV logP − CP log Γ , (7a, b)

involve the gas constantR and specific heats at constant
volume CV and pressure CP that are related by the adi-
abatic exponent (8b),

R = CP − CV , γ =
CP
CV

. (8a, b)

From the entropy equation (7b) it follows

dS = CV
dP

P
− CP

dΓ

Γ
, (9a)

that the adiabatic sound speed (9b) is given by (9c),

dS = 0 : c2 =

(
∂P

∂Γ

)
S

= γ
P

Γ
= γRT . (9b, c)

The non-isentropic coefficient (6c) may be calculated
(10b) from the specific heat at constant volume (10a),

CV = T

(
∂S

∂T

)
Γ

: β =
T

CV

(
∂P

∂T

)
Γ

; (10a, b)

in the case of a perfect gas (7a) follows (11a,b),

β =
T

CV
RΓ =

P

CV
=
γ − 1

R
P , (11a− c)

and also (11c) using (8a,b).

2.2. Linear perturbation of a uniform flow with rigid
body swirl

The mean flow is assumed to consist (12a) of a uni-
form axial velocity plus a rigid body swirl,

V 0 = ezU + eϕΩr , $ =∇× V 0 = ez2Ω , (12a, b)

so that the vorticity (12b) is twice the angular velocity.
The linearised material derivative (5a) for the mean flow
(12a) is

d/dt ≡ ∂/∂t+ V 0 · ∇ = ∂/∂t+ U∂/∂z . (13)

Applying the fundamental equations to the mean flow
(12a) it follows that: (i-ii) the mass density (1) and en-
tropy (3) can depend only on the radius (14a,b); (iii)
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there is a radial pressure gradient (2a) due to the cen-
trifugal force (14c),

ρ0 = ρ0(r) , s0 = s0(r) : p′0 ≡ dp0/dr = ρ0Ω2r ;
(14a− c)

assuming a constant mass density (15a) leads to the
pressure (15c) where (15b) is the pressure on axis,

ρ0 = const , p00 = p0(0) : p0(r) = p00 +
1

2
ρ0Ω2r2 .

(15a− c)
The sound speed (9c) and non-isentropic coefficient
(11b) are given in the mean flow respectively by (16b)
and (16c), where (9a) is the sound speed on the axis,

c200 = γ
p00

ρ0
: [c0(r)]2 = c200 +

γ

2
Ω2r2 , β0(r) =

p0(r)

CV
.

(16a− c)
The entropy in the mean flow (17a),

s0 = CV log p0 − CP log ρ0 , (17a)

has radial gradient (17b),

s′0 = CV
p′0
p0

=
p′0
β0

= CP
Ω2r

c20
. (17b)

The linear perturbation of this mean flow is considered
next.

The total flow is assumed to consist of the mean flow
plus a perturbation depending on time t, radial r and
axial z coordinate, but not on the azimuthal coordinate
ϕ,

Vr(r, z, t) = vr(r, z, t) , Vϕ(r, z, t) = Ωr + vϕ(r, z, t) ,
(18a, b)

Vz(r, z, t) = U + vz(r, z, t) , P (r, z, t) = p0(r) + p(r, z, t) ,
(18c, d)

Γ(r, z, t) = ρ0 + ρ(r, z, t) , S(r, z, t) = s0(r) + s(r, z, t) .
(18d− f)

Since the mean flow properties, that appear as coeffi-
cients in the linearisation, depend on r but not (z, t),
the Fourier transform is made (19) with frequency ω and
axial wavenumber k,

f(r, z, t) =

∫ +∞

−∞
dk

∫ +∞

−∞
dωei(kx−ωt)f̃(r, k, ω) ; (19)

for example the linearised material derivative (13) leads
(20a) to the frequency (20b) Doppler shifted by the axial
mean flow,

d/dt→ −iω∗ : ω∗ = ω − kU . (20a,b)

Substituting (18a–f) in (1,2a–c,3,4) and linearising

leads to

iω∗rρ̃− ρ0(rṽr)
′ − iρ0krṽz = 0 , (21a)

iρ0ω∗ṽr + 2Ωρ0ṽϕ + Ω2rρ̃− p̃′ = 0 , (21b)

iω∗ṽϕ − 2Ωṽr = 0 , (21c)

ρ0ω∗ṽz − kp̃ = 0 , (21d)

iω∗s̃ = s′0ṽr = CP
Ω2

c20
rṽr , (21e)

p̃ = c20ρ̃+ β0s̃ . (21f)

2.3. Wave equation for the radial velocity and polariza-
tion relations

Of the six variables in (21a–f) four (ṽr, ṽϕ, ρ̃, s̃) are
expressible (21d,c,e,a) in terms of (p̃, ṽr),

ṽz =
k

ρ0ω∗
p̃ , ṽϕ = −i

2Ω

ω∗
ṽr , s̃ = −iCP

Ω2

c20ω∗
rṽr .

(22a− c)

ρ̃ = −i
ρ0

ω∗r
(rṽr)

′ +
k2

ω2
∗
p̃ . (22d)

Substituting (22c,d) in (21f) leads to

ip̃
(
ω∗ − k2c20/ω∗

)
= ρ0

(
Ω2r + c20/r

)
ṽr + ρ0c

2
0ṽ
′
r , (23)

the pressure in terms of the radial velocity spectrum.
Substituting (22b,d) in (21b) leads to a relation be-

tween p̃ and ṽr distinct from (23), namely

iρ0

[(
ω2
∗ − 5Ω2) ṽr − Ω2rṽ′r

]
= ω∗p̃

′ − k2Ω2r

ω∗
p̃ . (24)

Substituting p̃ from (23) in (24) leads to the acoustic-
vortical-entropy wave equation for the radial velocity
perturbation spectrum,

c20ṽ
′′
r +Aṽ′r +Bṽr = 0 , (25)

with coefficients

X ≡ 1−k2c20/ω
2
∗ : A = c20/r+X

[
c20/X

]′
,

(26a, b)

B =
(
ω2
∗ − 5Ω2)X−k2Ω2 (Ω2r2 + c20

)
/ω2
∗+X

[(
Ω2r + c20/r

)
/X
]′
.

(26c)
In conclusion the axisymmetric compressive, vortical,
non-isentropic perturbations of a uniform axial flow
with rigid body swirl (12a), with frequency ω and ax-
ial wavenumber k, lead (19) to the acoustic-vortical-
entropy wave equation (25) with coefficients (26a–c)
satisfied by the radial velocity perturbation spectrum.
The other wave variables are specified by the following
polarization relations: (i–iii) the pressure (23), entropy
(22c) and azimuthal velocity (22b) perturbation spectra;
(iv–v) the axial velocity (22a) and mass density (22d)
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perturbation spectra lead, by (23), respectively to (27a)
and (27b),

ṽz = −ik
[(

Ω2r + c20/r
)
ṽr + c20ṽ

′
r

]
/
(
ω2
∗ − k2c20

)
,

(27a)
iρ̃/ρ0 = ṽ′r/ω∗+ṽr/(ω∗r)+k

2 [(Ωr + c20/r
)
ṽr + c20ṽ

′
r

]
/
(
ω3
∗ − k2c20ω∗

)
.

(27b)
The temperature perturbation spectrum follows from the
equation of state (7a),

RT̃ =
p̃

ρ0
−p0

ρ2
0

ρ̃ =
ic20
ω∗γ

(
ṽ′r + ṽr/r

)
−i
ω∗ − k2c20/γω∗
ω2
∗ − k2c20

[(
Ω2r + c20/r

)
ṽr + c20ṽ

′
r

]
,

(28a,b)

using (27b) and (23).

3. MONOTONIC AND OSCILLATORY INNER
AND OUTER SOLUTIONS

3.1. Condition separating oscillatory from monotonic
radial dependences

If the axial wavenumber is not zero, the vanishing of
(26a) introduces singularities in the AVE wave equation
(25). The present paper concentrates in the simpler case
of zero axial wavenumber (29a), that is neglecting axial
dependence, there is (20b) no Doppler shift (29b) and
the coefficients of the wave equation (26a–c) simplify
respectively to (29d–f),

k = 0 , ω∗ = ω , (c20)′ = γΩ2r ,X = 1 : A = c20/r+(c20)′ = γΩ2r+c20/r ,
(29a− e)

B = ω2−5Ω2+
(
Ω2r + c20/r

)′
= ω2−4Ω2+γΩ2−c20/r2 ,

(29f)
where the radial dependence of the sound speed (16c)
was used (29c). Thus the acoustic-vortical-entropy
wave equation (25) for (29a–f) an axisymmetric mode
of frequency ω simplifies to

c20ṽ
′′
r +

(
γΩ2r + c20/r

)
ṽ′r +

[
ω2 + (γ − 4)Ω2 − c20/r2

]
ṽr = 0 .

(30)
The radial dependence of the sound speed (16b) is

quadratic (31a),

[c0(r)]2 = c200

[
1 + (r/r0)2] , r0 = (c00/Ω)

√
2/γ ,
(31a, b)

with reference radius (31b). Substituting (31b) in the
wave equation (30) leads to

r2
(
1 + r2/r2

0

)
ṽ′′r+r

(
1 + 3r2/r2

0

)
ṽ′r+

{[
(ω/c00)2 + (1− 8/γ)/r2

0

]
r2 − 1

}
ṽr = 0 .

(32)
Using (29a) and (31a,b), the remaining wave variables

are the azimuthal velocity (22b), mass density (27b),
temperature (28a), entropy (22c) and pressure (23) spec-
ified respectively by (33a–e),

ṽϕ = −i
2Ω

ω
ṽr , ρ̃ = −i(ρ0/ω)

(
ṽ′r + ṽr/r

)
, (33a,b)

T̃ /T0 =
[
(γ/c20)p̃− ρ̃

]
/ρ0 , s̃ = −i

2

ω

CV rṽr
r2 + r2

0

,

(33c, d)

p̃ = −i
ρ0γΩ2

2ω

[(
r + 2r/γ + r2

0/r
)
ṽr +

(
r2 + r2

0

)
ṽ′r
]
,

(33e)

in terms of the radial velocity perturbation spectrum.

The adiabatic exponent for a perfect gas is given by
(34b) where (34a) is the number of degrees of freedom
of a molecule,

N = 3, 5, 6 : γ = 1 +
2

N
=

5

3
,

7

5
,

4

3
, (34a, b)

namely: (i) three for monoatomic gas; (ii) five for a di-
atomic gas or polyatomic gas with molecules in a line;
(iii) six for a three-dimensional polyatomic molecule.
The reference radius (31b) corresponds to a ratio of the
azimuthal velocity of the mean flow to the sound speed
on axis given by

r0Ω

c00
=

√
2

γ
=

√
2N

N + 2
=

√
6

5
,

√
10

7
,

√
3

2
, (35)

that is of order unity and plays the role of swirl Mach
number at the axis, bearing in mind that the sound speed
(31a,b) is not constant. Using the sound speed (31a) at
the critical radius (36a) leads to (36b),

c0(r0) = c00

√
2 : r0Ω =

c0(r0)
√
γ

=
√
RT0(r0) = c̄0(r0) ,

(36a, b)
showing that the critical radius corresponds to azimuthal
velocity equal to the isothermal sound speed, that is
isothermal swirl Mach number unity. Since vortical
modes are transversal and hence incompressible, the rel-
evant sound speed and Mach number are isothermal. If
the radius is small compared with the reference radius
(37a), that is for small swirl isothermal Mach number,
the wave equation (32) simplifies to (37b),

r2 � r2
0 : r2ṽ′′r + rṽ′r +

(
χ2r2 − 1

)
ṽr = 0 , (37a, b)

that is a Bessel equation of order unity with radial
wavenumber (38a),

χ ≡ κ/r0 , κ2 = ω̄2 + 1− 8/γ , ω̄ ≡ ωr0/c00 ,
(38a− c)

where (38b) is the dimensionless radial wavenumber in-
volving the dimensionless frequency (38c).

The Bessel equation has oscillatory solutions for real
wavenumber and monotonic increasing solutions for
imaginary wavenumber. Although the preceding result
was obtained only for small radius (37a), it will be ex-
tended in the sequel (Subsections 3.2 and 3.3) to all val-
ues of the radial distance. Thus the condition specify-
ing wave fields with oscillatory dependence on the ra-
dius (39a) is expressed in terms of the dimensionless
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frequency (38b),

κ2 > 0 :
ωr0

c00
>

√
8

γ
− 1 =

√
7N − 2

N + 2
=

√
19

5
,

33

7
, 5 .

(39a, b)
Using (31b) the condition for radially oscillatory AVE
waves is written in terms of the angular velocity,

ω >
c00

r0

√
8

γ
− 1 = Ω

√
γ

2

(
8

γ
− 1

)
= Ω

√
4− γ

2
= Ω

√
7

2
− 1

N
= Ω

√
19

6
,

33

10
,

10

3
.

(40)
Using the sound speed (36a) at the reference radius the
oscillatory condition (39b) becomes

ωr0

c0(r0)
=

ωr0

c00

√
2
>

√
4

γ
− 1

2
=

√
8− γ

2γ
=

√
7N − 2

2N + 4
=

√
19

10
,

33

14
,

5

2
.

(41)
Bearing in mind that the vorticity is twice the angular

velocity (12b) the oscillatory condition (40) becomes

ω

$
=

ω

2Ω
>

√
1− γ

8
=

√
7

8
− 1

4N
=

√
7N − 2

8N
=

√
19

24
,

33

40
,

5

6
≡ µ .

(42)
Of the four forms of the oscillatory condition (39b),

(40), (41) and (42) the last is independent of the ge-
ometry and may be the most general: a compressible,
vortical, non-isentropic flow has perturbations with os-
cillatory dependence on the radial distance if the fre-
quency is larger than the peak vorticity $ multiplied by
the factor µ in (42). The spatial growth of perturba-
tions of acoustic-vortical waves [12, 13] is comparable
to the temporal growth [9] as an indicator of instabil-
ity. Thus the oscillatory condition excluding monotonic
growth of perturbations could be equivalent to a stabil-
ity condition for the mean flow. This conjecture can be
applied (Figure 1) to combustion stability in a confined
space: (i) if the natural frequencies exceed the product
µ$ there is (Figure 1a) stability, and only the funda-
mental frequency needs to be considered ω1 > µ$; (ii)
if the fundamental frequency and other modes lie below
µ$ those modes lead to instability (Figure 1b). The pas-

(a)

(b)

Figure 1: The compressible, vortical, non-isentropic flow is stable
if the peak vorticity multiplied by (42) is less than the fundamental
frequency (Figure 1a) and unstable otherwise (Figure 1b).

sage from stable to the unstable case could be due to: (i)
increasing the vorticity of the mean flow, e.g. to achieve
better mixing for ’lean’ fuel saving combustion; (ii) in-

creasing the size of the enclosure, so that the natural
frequencies reduce, and fall below µ$. The remark (i)
agrees with the observation that lean combustion tends
to be unstable; the remark (ii) agrees with the observa-
tion that larger rocket motors are more prone to large
amplitude oscillations. The stability criterion

ω1 > µ$max , µ = 0.890, 0.908, 0.913 , (43a, b)

that the fundamental frequency must be larger than the
peak vorticity times the factor (42) can be tested for
more complex geometries using numerical codes. It
has a simple interpretation: (i) acoustic modes with fre-
quency ω are stable; (ii) vortical modes with vorticity$
are unstable; (iii) there is stability if the acoustic modes
predominate ω > $; (iv) there is instability if the vorti-
cal modes predominate $ > ω. The factor (42) involv-
ing the adiabatic exponent appears because the vortical
modes are incompressible and the acoustic modes are
adiabatic and thus the ratio of frequency to vorticity is
close to but not exactly unity.

3.2. Regular and logarithmic solutions inside the criti-
cal radius

The independent variable is chosen to be the square
of the radius divided by the reference radius (44a),

s ≡ (r/r0)2 =
Ω2γr2

2c200

=
Ω2γr2

[c0(r0)]2
=

Ω2r2

RT0(r0)
, ṽr(r, ω) = J(s, κ) ,

(44a, b)
that is unity at the radial distance of unit isother-
mal swirl Mach number. The acoustic-vortical-entropy
wave equation (32) becomes

s2(1 + s)J ′′ + s(1 + 2s)J ′ + [(κ2s− 1)/4]J = 0 , (45)

that involves as parameter only the radial wavenum-
ber (38b), that includes all compressibility, vorticity and
non-isentropic effects. The zero or infinite values of the
coefficient of the highest order derivative (46a) deter-
mine the singularities of the differential equation (45),
namely (46b),

s2(1+s) = 0 ,∞ : s = 0 ,∞ ,−1 , r = 0 ,∞ ,±ir0 .
(46a− c)

From the location (Figure 2) of the singularities (46c) it
follows that: (i) the singularities at the origin r = 0 and
infinity r = ∞ lead to a pair of solutions respectively
in ascending W± and descending W± powers of the
radius; (ii) the singularities at |r| = r0 imply that the
ascending series solution converges for |r| < r0 and
the descending series solution converges for |r| > r0;
(iii) even if either or both series do not converge at the
circle of convergence, a pair of solutions W1,2 around
the critical radius overlaps with the first two and allows
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their matching (Figure 2). In this way the exact solution
of the AVE wave equation can be obtained for all radial
distances, as shown next (Subsections 3.2 and 3.3 and
Section 4).

Figure 2: The AVE wave equation (32) rewritten (45) in terms of the
variables (44a,b) has singularities at (46a–c) implying that: (i) the pair
of solutions W± around the singularity at the origin are series of as-
cending powers of the radius that converge inside the critical layer
0 ≤ r < r0; (ii) the pair of solutions W± around the singularity
at infinity are series of descending powers of the radius that converge
outside the critical layer r0 < r ≤ ∞; (iii) the two pairs of solutions
(i) and (ii) are matched by a third pair W1,2 around the critical ra-
dius that are power series of (r/r0)2 − 1 with region of convergence
overlapping with those of W± and W±.

The origin is a regular singularity [14] of the differ-
ential equation (45), and thus at least one solution exists
as a Frobenius-Fuchs series of ascending powers of the
radius,

|s| < 1 : Jσ(s, κ) =

∞∑
n=0

an(σ)sn+σ , (47a,b)

with index σ and coefficients to be determined. Substi-
tuting (47b) in (45) leads to[
(n+ σ)2 − 1/4

]
an(σ) = −

[
(n+ σ − 1)(n+ σ) + κ2/4

]
an−1(σ) .

(48)
Setting (49a) leads to the indicial equation (49b) with

roots (49c),

n = 0 : (σ2 − 1/4)a0(σ) = 0 ⇒ σ = ±1/2 .
(49a− c)

The solution corresponding to the upper root (50a) has
recurrence formula (48) for the coefficients (50b),

σ = 1/2 : an(1/2) = −n
2 + (κ2 − 1)/4

n(n+ 1)
an−1(1/2) .

(50a, b)
This double recurrence formula specifies explicitly the
coefficients (51b),

a0(1/2) = 1 : an(1/2) =
(−)n

n!(n+ 1)!

n∏
m=1

[
m2 + (κ2 − 1)/4

]
≡ a+

n ,

(51a, b)

where the first coefficient may be set to unity (51a) be-

cause the solution is valid to within a multiplying con-
stant. Substitution of (50a;51b) in (47a,b;44a,b) speci-
fies the radial velocity perturbation,

r < r0 : W+(r, κ) =

∞∑
n=0

a+
n (r/r0)2n+1 = J1/2(s, κ) ,

(52a,b)

that vanishes at the origin like O(r), in agreement with
the Bessel function J1(κr) that is the solution of (37b)
for small radius.

The indexes (49c) differ by an integer (53a) and thus
the second solution [15] is given by (53b),

σ+−σ− = 1 : W−(r, κ) = Y−1/2(s, κ) = lim
σ→−1/2

∂

∂σ
[(σ + 1/2)Jσ(s, κ)] .

(53a, b)

The solution (53b) is a function of the second kind,

Y−(s, κ) = log s

∞∑
n=0

a+
n s

n−1/2 +

∞∑
n=0

a−n s
n−1/2 , (54)

that consists of a logarithmic singularity multiplied by
a function of the first kind plus a complementary func-
tion that has a power type singularity s−1/2. The no-
tation (J, Y ) is used for the solutions regular (47b) and
singular (54) at the origin, as for Bessel and Neumann
functions respectively, of which they are an extension
for (37a) to r < r0. The coefficients a−n follow by sub-
stitution in (53b) of (47b) with the recurrence formula
(48) leading to (55),

n ≥ 1 : a−n = a+
n [ψ(n+ 1 + ν/2) + ψ(n+ 1− ν/2)− ψ(n+ 2)− ψ(n)] ,

(55a, b)

where appears the ψ function [16, 4] and (56b),

ν ≡
√

1− κ2 ; a−0 = −(κ2 − 1)(κ2 − 3)/16 , (56a, b)

The exception to (55a,b) is the coefficient (56b) as can
be confirmed in Subsection 4.1. The solution of the sec-
ond kind,

r < r0 : W−(r, κ) = 2 log(r/r0)

∞∑
n=0

a+
n (r/r0)2n+1+

∞∑
n=0

a−n (r/r0)2n−1 ,

(57a, b)

consists of two terms: (i) the logarithmic singularity in
the first term on the r.h.s. of (57) is dominated by the
factor r/r0 as r → 0, so this term vanishes at the origin;
(ii) the second term on the r.h.s. of (57) has a singularity
r0/r at the origin with coefficient (56b). The general
integral is a linear combination of the two solutions:

0 ≤ r < r0 : ṽr(r, ω) = C+W+(r, κ) + C−W−(r, κ) ,
(58a, b)

where C± are arbitrary constants.

3.3. Asymptotic series outside the critical radius

The solution (58b) is valid inside the reference radius
(58a), and the solution valid outside is obtained using
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the inverse (59a) of the variable (44a),

ζ =
1

s
= (r0/r)

2 , ṽr(r, ω) = J(s, κ) = H(ζ, κ) ,

(59a,b)
leading from (45) to the differential equation

ζ2(ζ + 1)H ′′ + ζ2H ′ + [(κ2 − ζ)/4]H = 0 . (60)

The point at infinity r = ∞ corresponds to the ori-
gin ζ = 0 of (59a), that is a regular singularity of the
differential equation (60) implying the existence of a
Frobenius-Fuchs series solution,

ζ < 1 : Hϑ(ζ, κ) =

∞∑
n=0

bn(ϑ)ζn+ϑ , (61a, b)

that corresponds to a descending power series of the ra-
dius,

r > r0 : ṽr(r, ω) =
∞∑
n=0

bn(ϑ)(r0/r)
2n+2ϑ . (62a, b)

Substitution of (61b) in (60) leads to the recurrence for-
mula for the coefficients:[
(n+ ϑ)(n+ ϑ− 1) + κ2/4

]
bn(ϑ) = −

[
(n+ ϑ− 1)2 − 1/4

]
bn−1(ϑ) .

(63)
Setting (64a) leads to the indicial equation (64b),

n = 0 : (ϑ2−ϑ+κ2/4)b0(ϑ) = 0 ⇒ 2ϑ± = 1±
√

1− κ2 = 1±ν ,
(64a− c)

that has roots (64c) where appears (56a). The corre-
sponding recurrence formula for the coefficients is

bn(ϑ±) = −
(n± ν/2− 1/2)2 − 1/4

(n± ν/2 + 1/2)(n± ν/2− 1/2) + κ2/4
bn−1(ϑ±).

(65)
The double recurrence formula (65) allows explicit cal-
culation of the coefficients,

b0(ϑ±) = 1 : bn(ϑ±) = (−)n
n∏

m=1

(2m± ν)(2m± ν − 2)

(2m± ν)2 − 1 + κ2
.

(66a, b)
The corresponding solutions (62a,b) are

r > r0 : W±(r, κ) =
∞∑
n=0

b±n (r0/r)
2n+1±ν = Hϑ± (ζ, κ) ,

(67a, b)

are linearly independent for ν 6= 0 and will be checked
in Subsection 4.2. The general integral is their linear
combination,

r > r0 : ṽr(r, ω) = C+W+(r, κ) + C−W−(r, κ) ,
(68a,b)

involving the arbitrary constants C±. If ν > 1, that is
for κ2 < 0 or imaginary κ in (56a), the solution W−
diverges (67b) as r → ∞, and must be suppressed set-
ting C− = 0, leaving only the solution W+. The latter
would also diverge as r → ∞ if Re(ν) < −1, but this
is not possible since ν in (56a) is either imaginary for
κ2 > 1 or ν > −1 for κ2 ≤ 1. Thus the solution W+ is

always bounded at infinity. The two solutions (67b) are
oscillatory (69b) for κ2 > 1 or imaginary ν,

ν = i|ν| : (r0/r)
1±ν = (r0/r)

1±i|ν| = (r0/r) exp [±i|ν| log(r0/r)] ,
(69a, b)

and vanish at infinity. For 0 < κ2 < 1 then |ν±| < 1
in (56a) and both solutions (67a,b) converge. In con-
clusion: (i) for imaginary radial wavenumber κ2 < 0,
that is the opposite of (39a), there is monotonic radial
growth inside the critical radius, and outside the critical
radius W− in (67b) diverges as r →∞ since |ν| > 1 in
(56a); (ii) for κ2 > 1 that satisfies (39a) there is oscil-
lation inside the critical radius and since ν is imaginary
in (56a) the solutions outside the critical radius (69a,b)
are oscillatory and decaying; (iii) for 0 < κ2 < 1 the
radial oscillation inside the critical radius remains (39a)
and since |ν| < 1 in (56a) the solutions (67a,b) out-
side the critical radius are monotonic and decaying. The
oscillatory condition κ2 > 0 in (39a) corresponds to
(39b,40,41,42) and the monotonic condition κ2 < 0 to
the reverse. The condition (70a) of oscillatory waves at
infinity (69a,b) corresponds (38b,c) to (70b),

κ2 > 1 : ω̄ =
ωr0

c00
>

√
8

γ
=

√
8N

N + 2
=

√
24

5
,

40

7
, 6 .

(70a, b)

4. MATCHING OF INNER AND OUTER SOLU-
TIONS ACROSS THE CRITICAL LAYER

4.1. Transformation to a Gaussian hypergeometric dif-
ferential equation

The differential equation (45) was solved using di-
rectly the Frobenius-Fuchs method since this is the
quickest way to obtain the acoustic-vortical-entropy
wave field (52a,b;51a,b). The solutions can be obtained
alternatively in terms of Gaussian hypergeometric func-
tions by means of changes of dependent and indepen-
dent variables indicated next. The change of dependent
variable (71a) in (45) leads to (71b),

J(s) = sαK(s) :
(71a)

s2(1+s)K′′+s[1+2α+2(1+α)s]K′+[(α2+α+κ2/4)s+α2−1/4]K = 0 ,
(71b)

where the constant α may be chosen at will. Choosing
(72a) allows (71b) to be divided through s, depressing
the degree of the coefficients from three in (71b) to two
in (72b),

α =
1

2
: s(1 + s)K′′ + (2 + 3s)K′ + [(κ2 + 3)/4]K = 0 .

(72a, b)
A further change of independent variable (73a,b) leads
to (73c),

u = −s , K(s) = Q(u) : u(1−u)Q′′+(2−3u)Q′−[(κ2+3)/4]Q = 0 .
(73a− c)

The latter is a Gaussian hypergeometric differential
equation [17],

u(1− u)Q′′ + [C − (A+B + 1)u]Q′ −ABQ = 0 , (74)
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with parameters satisfying (75a-c),

C = 2 , A+B = 2 , AB =
κ2 + 3

4
: A,B = 1±

1

2

√
1− κ2 = 1±

ν

2
,

(75a− d)

and implying (75d).
Since C = 2, there is only one solution without log-

arithmic singularity at u = 0, namely the Gaussian hy-
pergeometric function of the first kind,

Q+(u) = F (A,B;C;u) = 1+

∞∑
n=1

un

n!

n∏
m=1

(A+m− 1)(B +m− 1)

(C +m− 1)
,

(76)
where was used the hypergeometric series. Substitution
of (75a-c,73a,72a,71a,44a) leads to

ṽ1
r =

r

r0
F

(
A,B; 2;−

r2

r2
0

)

=
r

r0

[
1 +

∞∑
n=1

(r/r0)2n

n!(n+ 1)!
(−)n

n∏
m=0

(
m2 +

κ2 − 1

4

)]
= W+(r, κ) ,(77)

that coincides with (52b,51b).

4.2. Power and logarithmic singularities of the func-
tions of the first and second kind

The solution with logarithmic singularity at the origin
is a function of the second kind [17],

Q−(u) = G(A,B; 2;u) = F (A,B; 2;u) log u+H(A,B; 2;u) ,
(78)

with the complementary functionH(A,B; 2;u), where
the ψ function [16, 4] is the logarithmic derivative of
the Gamma function. In the case of acoustic-vortical-
entropy waves, besides the first solution (77), the second
solution is

ṽ2
r(r, κ) = 2 log(r/r0)W+(r, κ) +W∗(r, κ) ≡W−(r, κ) , (79)

including: (i) the regular solution (77) multiplied by
a logarithmic singularity; (ii) plus the complementary
function that has an algebraic singularity,

W∗(r, κ) = − (κ2−1)(κ2+3)
16

r0
r

+
∑∞
n=1

(−)n

n!
(r/r0)2n

(n+1)!

[∏n
m=1

(
m2 + κ2−1

4

)]
{ψ(n+ 1 + ν/2) + ψ(n+ 1− ν/2)− ψ(n+ 2)− ψ(n)} .(80)

Thus the solution finite on axis consists only of the
function of the first kind (77) and holds |r| < r0 in-
side the critical radius. The solution (78) in terms of the
function of the second kind can be written

W−(r, κ) = 2 log(r/r0)W+(r, κ) +W∗(r, κ) , (81)

that coincides with (57b) because it consists of the sum
of: (i) the function of the first kind (77)≡(52b;51b) mul-
tiplied by a logarithmic singularity; (ii) the function of
the second kind (80) that coincides with the second term
of the r.h.s. of (57b) with coefficient (55b); (iii) the al-
gebraic term r/r0 in the function of the second kind,
corresponding to the first term of the r.h.s. of (80) has

coefficients

a−0 = A(A− 1)B(B − 1) =
κ2 + 3

4

κ2 − 1

4
, (82)

in agreement with (56b). This completes the pair of
solutions of the AVE wave equation inside the critical
radius (58a,b).

The wave fields outside the critical radius correspond
to the solutions of the hypergeometric equation around
the point at infinity [18].

4.3. AVE wave field at and around the critical layer
The parameters (75a,b) of the hypergeometric func-

tion satisfy C − A − B = 0, implying [19, 4] that:
(i) there is conditional convergence on the boundary of
convergence |s| = 1 or |r| = r0 excluding the point
s = −1 = r2/r20 or r = ±ir0; (ii) at this point
there is divergence. This shows that the radial veloc-
ity perturbation spectrum is finite at the critical radius,
as it will be confirmed subsequently (91a,b). This can
be confirmed by obtaining the solution of the acoustic-
vortical-entropy wave equation around the critical ra-
dius. The Gaussian hypergeometric differential equa-
tion (74) transforms into itself with different parameters
by the changes of independent variable in the Schwartz
group,

u, 1− u, 1

u
, 1− 1

u
,
u− 1

u
,

u

u− 1
, (83)

that interchange between themselves the three regular
singularities: u = 0, 1,∞. Since s > 0 in (44a) and
u < 0 in (73a), the variable (84a) does not exceed unity,

ξ ≡ u

u− 1
=

s

s+ 1
=

r2

r2 + r2
0

< 1 , |r − r0| < r0 ,

(84a, b)
and the corresponding series solution converges for
(84b) that is from the origin to twice the critical radius.
The solutions of the Gaussian hypergeometric differen-
tial equation in terms of the variable (84a) are [17, 18]

Q1(u) = (1− u)−AF (A,C −B;C;u/(u− 1)) , (85a)

Q2(u) = u1−C(1− u)C−A−1F (A− C + 1, 1−B; 2− C;u/(u− 1)) .(85b)

Substituting (75a,d), (84a) and (73a,b; 72a; 71a; 44a,b)
leads to

W1(r;κ) = (1 + r2/r2
0)−1−ν/2F (1 + ν/2, 1 + ν/2; 2; r2/(r2

0 + r2)) ,(86a)

W2(r;κ) = −(r2
0/r

2)(1 + r2/r2
0)−ν/2F (ν/2, ν/2; 0; r2/(r2

0 + r2)) .(86b)

The radial velocity perturbation spectrum is a linear
combination of (86a,b),

0 < r < 2r0 : W (r;κ) = C1W1(r;κ) + C2W2(r;κ) ,
(87a, b)

and is valid (84b) from the axis to twice the critical ra-
dius (87a). The value at the critical radius r = r0 cor-
responds to ξ = 1/2 and is finite. Since the AVE wave
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field has been determined exactly for all values of the ra-
dius, it is possible to consider AVE wavemodes in cylin-
drical or annular ducts for any values of the radii. For
example, the wave field up to two critical radii (87a) is
given by (87b) where (86b) is singular on axis and must
be excluded for a cylindrical duct setting (88a) and lead-
ing to (88b),

C2 = 0 : W (r;κ) = C1(1+r2/r2
0)−1−ν/2F (1+ν/2, 1+ν/2; 2; r2/(r2+r2

0)) .
(88a, b)

The application of rigid or impedance wall boundary
conditions then specifies the eigenvalues and eigenfunc-
tions of AVE modes (Section 5).

5. VELOCITY, PRESSURE, DENSITY, EN-
TROPY AND TEMEPRATURE PERTURBA-
TIONS

5.1. Divergence of the inner and outer wave fields at
the critical radius

The exact inner (outer) solutions of the AVE wave
equations converge respectively inside (outside) the crit-
ical radius thus specifying the acoustic (vortical) modes;
the critical layer, where mode conversion occurs, corre-
sponds to the boundary of convergence of both the in-
ner and outer series solutions. The convergence on the
boundary of convergence [4] is specified by the ratio of
successive coefficients (51b) [(66b)] in (89) [(90)],

a+
n+1

a+
n

= −n
2 + 2n+ (κ2 + 3)/4

n2 + 3n+ 2
, (89)

b±n+1

b±n
= − 4n2 + 4n(1± ν) + ν2 ± 2ν

4n2 + 4n(2± ν) + 4(1± ν)
. (90)

The limit as n→∞ is∣∣∣∣∣a+
n+1

a+
n

∣∣∣∣∣ = 1− 1

n
+ O

(
1

n2

)
=

∣∣∣∣∣ b±n+1

b±n

∣∣∣∣∣ . (91a, b)

The combined convergence test [20, 4, p.494] on the
boundary of convergence applies to a ratio of terms,∣∣∣∣un+1

un

∣∣∣∣ = 1− g

n
+ O

(
1

n2

)
, (92)

and is specified by the value of g. Thus g = 1 im-
plying that: (i) both series diverge for −(r/r0)2 = 1,
that is at the singular points r = ±ir0; (ii) at all other
points on the circle of | − (r/r0)2| = 1 or |r| = r0, the
series are conditionally convergent, that is: (ii-1) con-
verge if the order of the terms is not deranged; (ii-2) the
series of moduli diverges. Since r is real and positive,
the only point on the circle of convergence of physical
interest is the critical radius r = r0, where both the
inner and outer series for radial velocity perturbation
spectrum converge conditionally and can be matched

directly. However, the direct matching would also re-
quire the pressure perturbation (33e) to be continuous;
since it has been shown that ṽr is continuous across the
critical radius for the direct matching to be possible, ṽ′r
must also be continuous. From (52b) [(67b)] follows the
derivative of the radial velocity perturbation for acoustic
(vortical) modes inside (outside) the critical radius (93)
[(94)],

W ′+(r, κ) =
1

r0

∞∑
n=0

(2n+ 1)a+
n (r/r0)2n , (93)

[W±(r, κ)]′ =
1

r0

∞∑
n=0

(2n+ 1/2± ν/2)b±n (r/r0)2n±ν .

(94)
As n → ∞ both a+n (b±n ) → 1 tend to unity in (51b)

[(66a,b)] and thus the coefficients in (93) [(94)] are
O(n), implying divergence on the critical radius r = r0.
Thus the pressure perturbation is singular at the critical
radius, both for the acoustic and vortical modes, and
matching is not possible using directly the inner and
outer solutions. The matching can always be performed
using the middle solution valid around the critical layer,
where the AVE wave field is finite.

5.2. Waves inside or outside a cylinder or in a cylindri-
cal annulus

It has been shown that there are acoustic-vortical-
entropy waves finite over the whole range of radial dis-
tances leading to (Figure 3) six possibilities: (i–ii) the
interior (exterior) of a cylinder inside (outside) the crit-
ical radius (Figure 3a) that is using the inner (outer) so-
lution in a cylinder (cylindrical cavity); (iii–iv) a cylin-
drical annulus either inside or outside the critical radius
(Figure 3b); (v–vi) a cylinder (Figure 3c) or cylindrical
annulus (Figure 3d) containing the critical layer, using
the middle solution alone if the outer radius is less than
twice the critical radius, or otherwise matching to the
outer solution. The oscillatory or monotonic radial de-
pendence of the wave fields is specified by the inner and
outer solutions as indicated in the Table 1. Focusing on
case VI and the simplest boundary condition of a rigid
wall at r = a with zero radial velocity (95a),

ṽr(a, ω) = 0 : F (1+ν/2, 1+ν/2; 2; a2/(r2
0 +a2)) = 0 ,

(95a, b)
leads to (95b). The Gaussian hypergeometric function
in (95b) can be calculated most efficiently summing the
series (96a) with the recurrence formula for the succes-
sive terms (96c),

G(ξ; ν) ≡ F (1 + ν/2, 1 + ν/2; 2; ξ) = 1 +

∞∑
n=1

fn(ξ) ,

(96a)
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(a) (b)

(c) (d)

Figure 3: AVE wave equation solution in (a) a cylinder (cylindrical
cavity) not containing the critical layer, (b) annulus inside (outside)
the critical layer, (c) cylinder (cylindrical annulus) with (outer) radius
less than twice the critical layer radius; (d) cylinder (annulus) with
(outer) radius larger than twice the critical radius.

Case Radius Solution Bounded

Oscillatory Monotonic
I cylindrical

cavity r0 < r3 ≤ r <∞
C+W+(r) - κ2 < 0

C+W+(r) + C−W−(r) κ2 > 1 -

C+W+(r) + C−W−(r) - 0 < κ2 < 1
II vortical

annulus
r0 < r3 ≤ r ≤ r4 <∞ C+W+(r) + C−W−(r) κ2 > 1 κ2 < 1

III acoustic
annulus

0 < r1 ≤ r ≤ r2 < r0 C+W+(r) + C−W−(r) κ2 > 0 κ2 < 0

IV cylinder 0 ≤ r ≤ r4 < r0 C+W+(r) κ2 > 0 κ2 < 0
V cylindrical

annulus
0 < r1 ≤ r ≤ r2 C1W1(r) + C2W2(r) κ2 > 0 κ2 < 0
r1 < r0 < r2

VI cylinder 0 ≤ r ≤ r2 C1W1(r) κ2 > 0 κ2 < 0
r0 < r2 < 2r0

Note: there is no case of unbounded oscillation.

Table 1: Exact solutions of the acoustic-vortical-entropy wave equa-
tion indicating the six cases of the stability of the mean flow in the
four configurations in the Figure 3.

f0(ξ) = 1 , fn+1(ξ) = fn(ξ)
(n+ 1 + ν/2)2

(n+ 1)(n+ 2)
ξ .

(96b, c)
The eigenvalues for the radial wavenumber are the roots
of (97),

0 = G

(
1

1 + (r0/a)2
;
√

1− κ2

)
= G0

∞∏
l=1

(κ−κl) , (97)

whereG0 is a constant. To each eigenvalue corresponds
(86a;96a) an eigenfunction,

v̄l(r/r0) = (1+r2/r2
0)−1−ν/2G

(
1

1 + (r0/r)2
;
√

1− κ2

)
.

(98)
The eigenvalues κl for the radial wavenumber specify

the eigenfrequency ω̄l by (38b) with the adiabatic expo-
nent γ = 1.4 for a diatomic perfect gas.

5.3. Eigenvalues for the wavenumber and frequency
and eigenfunctions for six wave variables

The AVE waves are considered inside a cylinder with
radius (99a) for the fours cases (99b),

0 ≤ r ≤ a : a/r0 = 0.4, 0.8, 1.2, 1.6 , (99a, b)

of which the first (last) two do not (do) contain the crit-
ical layer. For each cylinder the roots of (95b) spec-
ify the first six eigenvalues κl of the radial wavenumber
ordered by non-decreasing modulus in the Table 2; the
corresponding dimensionless natural frequencies ω̄l fol-
low from (38b) and appear in the Table 3. To each pair
of dimensionless eigenvalues (κl, ω̄l) correspond six di-
mensionless eigenfunctions for distinct wave variables,
namely the dimensionless: (i) radial velocity (98) with
magnitude unity at the origin,

Dl ≡ G
(

1;
√

1− κ2
l

)
: v̄l(r/r0) =

ṽr(r, ω)

Dl
,

(100a, b)
that is plotted in the Figure 4; (ii) azimuthal (33a) ve-
locity (101),

w̄l(r/r0) ≡ c00

Ωr0

ṽϕ(r, ω)

Dl
= −i

2

ω̄l
v̄l(r/r0) , (101)

that is plotted in the Figure 5; (iii) the mass (33b) den-
sity (102),

ρ̄l(r/r0) ≡ c00

Dl

ρ̃

ρ0
= − i

ω̄l
[v̄′l + (r0/r)v̄l] , (102)

that is plotted in the Figure 6; (iv) the (33d) entropy
(103),

s̄l(r/r0) ≡ c00

Dl

s̃(r, ω)

CV
= − 2i

ω̄l

1

r/r0 + r0/r
v̄l , (103)
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that is plotted in the Figure 7; (v) the (33e) pressure
(104),

p̄l(r/r0) = −
i
ω̄l

{
[(1 + 2/γ) r/r0 + r0/r] v̄l +

(
1 + r2/r2

0

)
v̄′l
}
,

(104)
that is plotted in the Figure 8.

The temperature perturbation (33c) follows (106)
from those of the density (102) and pressure (104),

T̄l(r/r0) ≡
c00

Dl

T̃ (r, ω)

T0
= (105)

=
r2
0

2r2
[M(r)]2p̄l(r/r0)− ρ̄l(r/r0) ,

that is plotted in the Figure 9. It involves the isothermal
swirl Mach number,

γ
c200

[c0(r)]2
=

r2
0

2r2

γ2Ω2r2

[c0(r)]2
=

r2
0

2r2
[M(r)]2 , (106)

where were used (31a,b). In (102) and (104) appear the
derivative with regard to its argument (107) of the radial
velocity (100),

v̄′r(r/r0) ≡ d[v̄r(r(r0)]
d(r/r0)

=

= − 2+ν
Dl

r
r0

(
1 + r2/r2

0

)−2−ν/2
F (1 + ν/2, 1 + ν/2; 2; ξ)

+
(1+ν/2)2

Dl

r30r

(r20+r2)2
F (2 + ν/2, 2 + ν/2; 3; ξ) , (107)

where was used (108a) the derivative (108b) of the
Gaussian hypergeometric function in (96a),

dξ
d(r/r0)

=
2r3

0r

(r2
0 + r2)2

,

(108a)
d

dξ
[F (1 + ν/2, 1 + ν/2; 2; ξ)] =

(1 + ν/2)2

2
F (2 + ν/2, 2 + ν/2; 3; ξ) .

(108b)

The Gaussian hypergeometric series in (108b) is calcu-
lated as (96a–c) replacing ν by 1 + ν.

6. WAVEFORMS FOR THE FUNDAMENTAL
AND STABLE AND UNSTABLE HARMONICS

The radius of the cylindrical duct is taken as the
largest a/r0 = 1.6 of the values in (99b) to show the
variation of the AVE wave variables across the critical
layer. The modulus and phase of the six correspond-
ing eigenfunctions are plotted versus radial distance in
the Figure 4 for the radial velocity (100b), in the Fig-
ure 5 for the azimuthal velocity (101), in the Figure 6
for the mass density (102), in the Figure 7 for the en-
tropy (103), in the Figure 8 for the pressure (104) and in
the Figure 9 for the temperature (106); for all six wave
variables are considered as dimensionless perturbation
spectra using the amplitude Dl of the radial velocity
perturbation spectrum at the axis. For this reason, all

waveforms or eigenfunctions start with the value unity
on the axis in the Figure 4.

The dimensionless radial velocity perturbation spec-
tra in the Figure 4 all start with the value unity on axis
due to the normalization and all finish with zero at the
rigid wall at r = 1.6r0 = a. The fundamental mode
v̄1 has no other zero, and decays smoothly from the axis
to the wall. As typical of eigenvalue problems, the har-
monics v̄n of order n = 2, 3, 4 have n − 1 zeros of the
amplitude (Figure 4 top) between the axis and the wall,
corresponding to phase jumps of π (Figure 4 bottom).
The fifth and sixth harmonics n = 5, 6 have complex
radial wavenumbers in the Table 2, leading to radially
decaying or divergent modes; the divergent modes sig-
nal instabilities of the mean as can be seen from the in-
creasing amplitudes of v̄+5 and v̄+6 (Figure 4 top). The
dimensionless azimuthal velocity perturbation spectrum
(Figure 5) also vanishes at the rigid wall for the funda-
mental w̄1 and next three harmonics w̄2, w̄3, w̄4 (Fig-
ure 5 top), again with phase jumps of π at the zeros of
the amplitude or nodes (Figure 5 bottom). The fifth and
sixth harmonics w̄+

5 , w̄+
6 are unstable modes both for

the radial (Figure 4 top) and azimuthal (Figure 5 top)
velocity perturbations spectra. The amplitude of the di-
mensionless azimuthal velocity perturbation spectrum
on axis (Figure 5 top) decreases from the fundamental
to the higher harmonics.

The perturbation spectrum of the mass density (Fig-
ure 6) leads to eigenfunctions that are quite different
from those of the radial (Figure 4) and azimuthal (Fig-
ure 5) velocity perturbation spectra. The mass den-
sity perturbation spectra do not vanish at the rigid wall
(Figure 6 top) although their magnitude decreases from
the fundamental ρ̄1 to the next three stable harmon-
ics ρ̄2, ρ̄3, ρ̄4. The fundamental ρ̄1 almost vanishes at
r = 0.48r0 leading to rapid phase change of π (Figure 6
bottom). Whereas the fundamental ρ̄1 has one dip, the
next three n = 2, 3, 4 harmonics ρ̄n have n dips, and
the fifth and sixth harmonics ρ̄+5 , ρ̄+6 are unstable as be-
fore. The dimensionless entropy perturbation spectrum
(Figure 7) vanishes on axis for all harmonics , including
the unstable ones s̄+5 , s̄+6 , and vanishes also at the rigid
wall for the fundamental s̄1 and the first three stable har-
monics s̄2, s̄3, s̄4. The fundamental s̄1 has no zeros and
exhibits a single peak at r = 0.5r0 far from the critical
layer. The first three harmonics s̄n with n = 2, 3, 4 have
n peaks and n−1 nodes. The peaks are lower when: (i)
passing from the fundamental n = 1 to the harmonics
n = 2, 3, 4; (ii) for a given harmonic n, the successive
n peaks become lower farther from the axis.

The dimensionless pressure perturbation spectra
(Figure 8) are broadly similar to those of the mass den-
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sity (Figure 6), with similar features, such as a non-
zero pressure at the rigid wall with amplitude decreas-
ing from the fundamental p̄1 to the first three stable har-
monics p̄2, p̄3, p̄4. The fifth and sixth harmonics p̄+5 ,
p̄+6 remain unstable. The fundamental p̄1 has one dip of
the amplitude (Figure 8 top) broader than for the mass
density (Figure 6 top) and approximately at the same
location r = 0.48r0. The next three stable harmonics
p̄n with n = 2, 3, 4 have n dips and n peaks (Figure 8
top) with phase jumps (Figure 8 bottom) indicating that
the dips are actually zeros or nodes. The dimension-
less temperature perturbation spectra (Figure 9) have
eigenfunctions broadly similar to the entropy (Figure 7),
with: (i) zero on axis for all modes, stable T̄1 , T̄2, T̄3,
T̄4 or unstable T̄+

5 , T̄+
6 ; (ii) the stable modes are also

zero at the wall; (iii) the fundamental mode T̄1 has a
single maximum between the axis and the wall; (iv) the
stable harmonics n = 2, 3, 4 have n maxima and n − 1
zeros.

Thus besides the unstable diverging spectra, there are
three kinds of stable spectra for the fundamental mode
n = 1 (first three harmonics n = 2, 3, 4): (i) mono-
tonic (oscillatory) decay for the dimensionless radial
(Figure 4) and azimuthal (Figure 5) velocity perturba-
tion spectra, that are non-zero on axis and zero at the
wall; (ii) non-zero at the wall for the dimensionless
mass density (Figure 6) and pressure (Figure 8) pertur-
bation spectra with a single dip (n dips and n− 1 max-
ima); (iii) zero on axis and at the wall for the dimen-
sionless entropy (Figure 7) and temperature (Figure 9)
perturbation spectra with a single maximum (n maxima
and n− 1 zeros).

7. DISCUSSION

The present paper may be the first to combine the
interactions of the three types of waves in a fluid not
subject to external force fields, hence the designation
acoustic-vortical-entropy (AVE) waves. A deliberate
choice was made of one of the simplest baseline flows
that could support AVE waves, namely an incompress-
ible non-isentropic uniform flow with rigid body swirl,
leading to a mean flow pressure and sound speed vary-
ing radially due to the centrifugal force. The linear non-
dissipative perturbation of this mean flow leads in the
axisymmetric case to the AVE wave equations (25;26a-
c) first obtained here. The exact solution is obtained in
terms of Gaussian hypergeometric functions in the case
of zero axial wavenumber, when there is only temporal
and radial dependences.

An important feature of the problem is the existence
of a critical layer where the swirl velocity equals the

0 ≤ r ≤ r1 r1 = 0.4r0 r1 = 0.8r0 r1 = 1.2r0 r1 = 1.6r0
κ1 9.874 5.322 3.895 3.217
κ2 18.015 9.626 6.974 5.700
κ3 26.103 13.920 10.061 8.203
κ4 34.175 18.212 13.150 10.712
κ5 42.240 22.502 16.241 13.027±i14.338
κ6 50.302 26.791 18.195±i27.868 15.588±i7.640

Table 2: First six eigenvalues of the radial wavenumber for acoustic-
vortical-entropy waves in a cylinder 0 ≤ r ≤ r1 with rigid wall with
radius r1 a fraction of the critical radius.

0 ≤ r ≤ r1 r1 = 0.4r0 r1 = 0.8r0 r1 = 1.2r0 r1 = 1.6r0
ω̄1 10.110 5.748 4.460 3.881
ω̄2 18.145 9.868 7.304 6.100
ω̄3 26.193 14.089 10.293 8.485
ω̄4 34.244 18.341 13.329 10.930
ω̄5 42.296 22.606 16.386 13.109±i14.248
ω̄6 50.349 26.879 18.234±i27.809 15.710±i7.581

Table 3: As the Table 2 for the corresponding values of the dimen-
sionless frequency.

isothermal sound speed. It is shown that this condi-
tion of isothermal swirl Mach number unity corresponds
to a finite wave field, and thus is a singularity of the
AVE wave equation but not a singularity of the wave
field. The linear non-dissipative non-isentropic com-
pressible vortical perturbations of the non-isentropic
uniform flow with rigid swirl may be interpreted alter-
natively as (i) acoustic-vortical entropy (AVE) waves or
(ii) stability or instability modes of the mean flow. This
dual interpretation is demonstrated for a cylindrical duct
with rigid wall at the radius a = 1.6r0, that is 60%
larger than the critical layer, for: (a) the eigenvalues
for the wavenumber (Table 2) and frequency (Table 3);
(b) the eigenfunctions for the radial (Figure 4) and az-
imuthal (Figure 5) velocity, mass density (Figure 6), en-
tropy (Figure 7), pressure (Figure 8) and temperature
(Figure 9). These confirm that the wave field is finite
at the critical layer in this as well as in all other cases;
in this particular case, the fundamental and first three
harmonics are stable and the fifth and sixth harmonics
are unstable. The general theory applies to all cases of
cylindrical or annular ducts or cylindrical cavities con-
taining or not the critical layer.

ACKNOWLEDGEMENTS

This work was supported by FCT (Foundation
for Science and Technology) through IDMEC (Insti-
tute of Mechanical Engineering), under LAETA Pest-
OE/EME/LA0022.

12



(a)

(b)

Figure 4: Modulus (top) and phase (bottom) versus radial distance
normalized to the critical radius, for dimensionless radial velocity per-
turbation spectrum, of the first six modes of acoustic-vortical-entropy
waves in a rigid cylinder with radius equal to 1.6 of the critical radius.

(a)

(b)

Figure 5: As of Figure 4 for the dimensionless azimuthal velocity
perturbation spectrum.

(a)

(b)

Figure 6: As of Figure 4 for the dimensionless mass density perturba-
tion spectrum.

(a)

(b)

Figure 7: As of Figure 4 for the dimensionless entropy perturbation
spectrum.
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(a)

(b)

Figure 8: As of Figure 4 for the dimensionless pressure perturbation
spectrum.

(a)

(b)

Figure 9: As of Figure 4 for the dimensionless temperature perturba-
tion spectrum.
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