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Abstract

The noise of jet and rocket engines involves the coupling of sound to swirling flows and to
heat exchanges leading in the more complex cases of triple interactions to acoustic-vortical-
entropy (AVE) waves. The present paper presents as far as the authors are aware the first
derivation of the AVE equation for axisymmetric linear non-dissipative perturbations of a
compressible, non-isentropic, swirling mean flow, with constant axial velocity and constant
angular velocity. The axisymmetric AVE wave equation is obtained for the radial velocity
perturbation, specifying its radial dependence for a given frequency and axial wavenumber.
The AVE wave equation in the case of zero axial wavenumber has only one singularity at the
critical radius, where the isothermal Mach number for the swirl velocity is unity. The exact
solution of the AVE wave equation is obtained as series expansions of Gaussian hypergeometric
type valid inside, outside and around the critical layer, thus: (i) covering the whole flow
region; (ii) identifying the singularity at the sonic condition at the critical layer; (iii) specifying
near-axis and asymptotic solutions for small and large radius. Using polarization relations
among wave variables specifies exactly the perturbations of: (i,ii) the radial and azimuthal
velocity; (iil,iv) pressure and mass density; (v,vi) entropy and temperature. It is shown that
the dependence of the AVE wave variables on the radial distance can be: (a) oscillatory with
decaying amplitude; (b) monotonic with increasing amplitude. The case (b) of AVE wave
amplitude increasing monotonically with the radial distance applies if the frequency times a
function of the adiabatic exponent is less than the vorticity (or twice the angular velocity). In
the opposite case (a) the oscillatory nature of acoustic waves predominates over the tendency
for monotonic growth of vortical perturbations. Associating sound with stable potential flows
and swirl with unstable vortical flows suggests a criterion valid in non-isentropic conditions,
that is in the presence of heat exchanges, that is a condition for stable combustion in a confined
space: the peak vorticity (multiplied by a factor of order unity dependent on the adiabatic
exponent) should be less than the lowest or fundamental frequency of the cavity.

1 Introduction

The noise of aircraft engines is a major limitation on airport operations, and the subject of ever
more stringent certification rules, aiming to limit the total noise exposure as air traffic grows. The
noise of the rocket engines of space launchers are sufficiently high to cause structural damage and
require payloads like satellites to be tested in reverberant chambers. The literature on aircraft and
rocket noise usually considers purely acoustic waves, although coupling with other modes occur in:
(i) inlet ducts due to the shear flow in the wall boundary layers; (ii) in turbine exhausts due to the
downstream swirling flow; (iii) in the combustion chambers and other heat generation and exchange
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processes involving non-isentropic flows. In spite of the practical ubiquity of these phenomena, the
present paper may be one of the first to consider the triple interaction of acoustic, vortical and
entropy perturbations.

There are (I} 2} [3) three types of waves in a fluid in the absence of external restoring forces
(4 [Bl), namely: (i) sound waves that are longitudinal and compressive; (ii) vortical waves that are
transversal, hence incompressible; (iii) entropy modes associated with heat exchanges, hence non-
isentropic flow. The acoustic modes receive most attention because for an homogeneous uniform
mean flow: (i) the acoustic modes satisfy the convected wave equation for uniform motion and the
classical wave equation in a medium at rest (6} [7} 8} [9; 105 1T} [12); (ii) by Kelvin circulation theorem
the circulation along a loop convected with the mean flow is constant (I3} 14 [T5} [T6} [17); (iii) in
homentropic conditions there are no entropy modes. The most general conditions for the existence
of purely acoustic modes, decoupled from vortical-entropy modes, is a potential homentropic mean
flow, that may be compressible, and leads to the high-speed wave equation (I8} [19} [20]) that reduces
to the convected wave equation (21} 22 23) in two cases: (i) uniform flow; (ii) low Mach number
non-uniform flow. The presence of vorticity leads to acoustic-vortical-waves (24 25} 26} 27: 28: 29)),
in a compressible sheared (30} BI; B2} B3} B4 35, B6; B7 B8 B9; 405 41t 42} 43) or swirling
44y 45 [4o; (47 48 [49; B0; BI) mean flow. The present paper considers a further extension to
acoustic-vortical-entropy waves that specify the stability of a compressible, vortical non-isentropic
mean flow. This includes, as far as the authors are aware, the first derivation of an acoustic-
vortical-entropy (AVE) wave equation, as well as an exact solution.

The present paper: (i) is not about the generation of sound by small patches of vorticity (52 53))
or inhomogeneities (I9; [20) convected in a potential flow, that is respectively 'vortex’ and ’entropy’
noise; (ii) it is about linear perturbations of a compressible, vortical, non-isentropic mean flow oc-
cupying all space, that may be designated acoustic-vortical-entropy waves. These perturbations
determine the stability of the mean flow (54 555 56} 57 [58)) in this case the stability of a com-
pressible, vortical, non-isentropic flow. The paper considers what possibly is the simplest case of
acoustic-vortical-entropy (AVE) waves: (i) linear non-dissipative perturbations of an axisymmetric
mean flow with uniform axial velocity and rigid-body swirl; (ii) the mean flow is compressible,
vortical and non-isentropic allowing for the existence of AVE waves; (iii) the perturbations depend
on time, axial and radial coordinates, but not on azimuthal angle; (iv) this allows for the funda-
mental axisymmetric mode, but excludes all non-axisymmetric azimuthal modes. The derivation
of the acoustic-vortical-entropy wave equation (Section [2): (i) is based on the linearization of the
equations of continuity, inviscid momentum and energy (Subsection , using the entropy and
equation of state of a perfect gas (Subsection ; (ii) the elimination for the radial velocity per-
turbation leads to the AVE wave equation, and the remaining wave variables, namely the pressure,
mass density, entropy, temperature and azimuthal velocity are expressed in terms of its solution
(Subsection [2.3)).

The presence of swirl leads to a radial pressure gradient in the mean flow due to the centrifugal
force, and thus the sound speed varies radially; since the mean flow is assumed to be non-isentropic
there is an entropy parameter, in addition to the sound speed. The acoustic-vortical-entropy wave
equation specifying the radial dependence of the radial velocity perturbation spectrum for a given
frequency and axial wavenumber has a singularity at a critical radius (Section [3|) where the swirl
velocity of the mean flow equals the isothermal sound speed, i.e. the ’sonic condition’ of isothermal
swirl Mach number unity (Subsection [3.1)). Thus there are two solutions: (i) an inner solution in
ascending power series of the radius (Subsection ; (ii) an outer solution in descending power
series of the radius (Subsection [3.3). The AVE wave equation can be transformed to a Gaussian hy-
pergeometric differential equation (Section thus confirming the inner (Subsection and outer
(Subsection solution as respectively ascending and descending power series of the radius, valid
respectively inside and outside the critical radius. The inner and outer solutions are matched by
using a third solution valid around the critical layer that overlaps with both; this third solution
is valid over the whole space and shows that the wave field is finite at the critical layer (Subsec-
tion [4.3)). The solutions of the AVE wave equation are illustrated by the computation of the wave
variables (Section . Thus the divergence of the inner and outer solutions at the critical layer is
due to the failure of the power series to converge at their boundary of convergence (Subsection
and not to the wave field that is finite at the critical layer. The inner and outer solutions may
be used to describe the wave in a cylinder or cylindrical annulus, respectively inside and outside



the critical layer; the solutions around the critical layer still apply also when the critical layer lies
inside the cylindrical or annular duct (Subsection . The solutions of the AVE wave equation
(Figures [1] and [2| and Table are applied to a cylinder with rigid walls containing the critical
radius (Subsection to determine: (i) the eigenvalues for the radial wavenumber and frequency
(Tables [2 and [3)); (ii) the corresponding eigenfunctions or waveforms for the perturbations of the
radial and azimuthal velocity, mass density, entropy, pressure and temperature as function of the
radius (Figures 4] to E[) The discussion (Section [7]) concerns the wave fields (Section [5|) that are
solutions (Section [4)) of the acoustic-vortical-entropy wave equation (Section [2]) and their possible
relation with the stability of the compressible, vortical, non-isentropic mean flow (Section .

2 The acoustic-vortical-entropy wave equation

The acoustic-vortical-entropy waves are considered as small axisymmetric perturbations of an
axisymmetric compressible non-isentropic mean flow (Subsection with uniform axial velocity
and rigid body swirl (Subsection . Elimination for the radial velocity perturbation leads to
the acoustic-vortical-entropy wave equation, whose solutions specifies also the perturbations of
azimuthal velocity, pressure, mass density, temperature and entropy (Subsection [2.3)).

2.1 Compressible, vortical, non-isentropic flow of a perfect gas

The fundamental equations of fluid mechanics are written in cylindrical coordinates (r, ¢, z) in
axisymmetric form without (-dependence (0/0¢ = 0):
(i) mass conservation:

ro V.
DP/dt = TV -V = ———- (rV,) == (1)
(ii) inviscid momentum:
I (DV,/dt —r~'V2)+0,P = 0, (2a)
I (DVy/dt+r 'V, V) +r~'9,P = 0, (2b)
I'DV,/dt+0.P = 0; (2¢)
(iii) energy:
I TDS/dt =0; (3)
(iii) state:
DP/dt = ¢*DI'/dt + BDS/dt; (4)

where T is the mass density, P the pressure, V' the velocity, T the temperature, S the entropy, the
material derivative is denoted by

D/dt = 8/dt +V -V = 8/t + V,0, + V.0, , (5a, b)

and the equation of state in the form ) specifies the coefficients in ,

P=PT,9) : 02£<Z§>S, /3:(25)F, (6a — c)

namely the adiabatic sound speed @b) and the non-isentropic coefficient (]Elc) Chemical reactions
are not considered explicitly and appear through the entropy coefficient.
In the case of a perfect gas, the equations of state ) and entropy )7

P=RIT, S=CylogP—CplogT, (7a,b)

involve the gas constant R and specific heats at constant volume Cy and pressure Cp that are
related by ,c,d) involving the adiabatic exponent ),

R:CP—Cv, Y= Cvzi, szﬁ. (8a—d)



From the entropy equation ) it follows

dpP dr
dS—CV?ch?, (93:)

that the adiabatic sound speed (9p) is given by (F),

oP Cp P P
— . 2— — = —— T R
dS=0: ¢ _<8F>S Oy T 'yr—'yRT. (9b, c)

The non-isentropic coefficient (@:) may be calculated (10b) from the specific heat at constant
volume (L0h),

oS oP oS T (0P
Cy=T|=— : =| = — =— | = ; 10a,b
e=1(55),: o= (), (57). o (7). oeb)
in the case of a perfect gas ) follows (11h,b),
T P v—1
=~ RI=—-=1""p 11a —
= cv R (lla—c)

and also (L1k) using (8).

2.2 Linear perturbation of a uniform flow with rigid body swirl

The mean flow is assumed to consist (12p) of a uniform axial velocity plus a rigid body swirl,
Vo=eU+elr, w=VxVy=e,2Q, (12a,b)

so that the vorticity (12b) is twice the angular velocity. The linearised material derivative ) for

the mean flow ([2h) is
d/dt=0/0t+ V-V =0/0t+U0/0z. (13)

Applying the fundamental equations to the mean flow (12a) it follows that: (i-ii) the mass density
(1) and entropy can depend only on the radius (14h,b); (iii) there is a radial pressure gradient
(2h) due to the centrifugal force (14k),

po = po(r), so=so(r) : ph=dpo/dr = poQ3r; (14a —¢)
assuming a constant mass density (15h) leads to the pressure (15c) where (15p) is the pressure on
axis,
1
po = const, poo = po(0) :  po(r) = poo + §p092r2 . (15a —¢)

The sound speed (Ec) and non-isentropic coefficient (11p) are given in the mean flow respectively
by ([L6p) and (16k), where (Oh) is the sound speed on the axis,

B =72 ¢ o =2 =y Lo () = PUT (16—
Po Po 2 Cv
The entropy in the mean flow (17h),
so = Cy logpy — Cplog pg , (17a)
has radial gradient (17b),
! A 0% poS2%r 0%r O2%r
sy=Cyo =B _ P77 _ ¢ = Cyy—y = Cp—yp-. 17b
" Vo Bo Bo - v <5 e (17b)

Thus the uniform axial flow with rigid body swirl (12a) and a constant mass density (15p) implies
the radial dependences of the pressure ([15b,c), sound speed (16p,b) and also the existence of an
entropy gradient ) The linear perturbation of this mean flow is considered next.



The total flow is assumed to consist of the mean flow plus a perturbation depending on time ¢,
radial r and axial z coordinate, but not on the azimuthal coordinate ¢,

Vi(r, z,t) = vp(r,2,t), Vo(r,z,t) = Qr+u,(r,z,t), V.(r,zt)=U+uv,(rz21), (18 —c)

P(r,z,t) = po(r) +p(r,z,t), T(r,zt)=po+plrzt), S(rzt)=so(r)+s(rzt). (18d—1)

Since the mean flow properties, that appear as coefficients in the linearisation, depend on r but
not (z,t), the Fourier transform is made with frequency w and axial wavenumber k,

—+o0 —+oo ~
flr,z,t) = / dk/ dwei(kxf“’t)f(r, k,w); (19)

for example the linearised material derivative leads (20R) to the frequency (20b) Doppler
shifted by the axial mean flow,

d/dt — —iw, : we=w—kU. (20a, b)

Substituting (18p—f) in (1}2a—c)34) and linearising leads to

iw.rp — po(ro,) —ipokrv, =0, (21a)
ipow. 0, + 2Qpod, + V2rp— ' =0, (21b)
i, B, — 205, =0, (21c)
powsT, —kp =10, (21d)
Q2
iw,§ = 540, = Cp—5 710, (21e)
0]
P=chp+ Bos. (21f)
The last equation ) follows from linearisation of ,
i, (p — 3p — Bo3) = ¥, (py — copo — Bosp) =0, (22)
using (15p) and ) The energy equation simplifies to (23p) for a perfect gas (7h),
PDS dSO D(S + 80) dSO
——=0: — =0, 0= —— —po— 23a —
7 pog =0, (p+po) = Po gy (23a —c)

implying that: (i) the mean flow is isentropic (23p), that is consistent with the entropy being
a function of the radius (14b); (ii) subtracting the mean state (23b) from the exact energy equation

(23p) leads to (23kF) that is linearised (23[),

o Ds DSO DSO dSO - ds .
0 =po @ TP g TP Pg Sy +po(V - Vso) ; (23d)

(iii) from (23{) follows (23),

d
d—‘: = —(V-Vs), iwss=s)i,, (23e, 1)

proving )E (121k).

2.3 Wave equation for the radial velocity and polarization relations

Of the six variables in (21p—f) four (v,,7,, p, 5) are expressible (21d,c,e,a) in terms of (p, v,),

Uy = D, Up=—i—10., 5=—iCp 70y . (24a —c)



Po ;K
0D — —1 ~,,. D . 24d
p 1W*r(rv ) + wfp (24d)
Substituting (24f,d) in (21f) leads to
ip (we — k*cf/ws) = po (QPr + ¢ /r) By + pociin., (25)

the pressure in terms of the radial velocity spectrum.
Substituting (24b,d) in (21p) leads to a relation between p and o, distinct from , namely

202 _
D. (26)

ipo [(w? — 5Q2) &, — Q°rD,| = w.p — -

Substituting p from in leads to the acoustic-vortical-entropy wave equation for the radial
velocity perturbation spectrum,

2! + AVl + B, =0, (27)

with coefficients
X=1-kc/w?: A:cg/r+X[c(2)/X]/, (28a, D)
B = (w? —50%) X — K*Q* (V*r* + &) Jw? + X [(r +c§/r) /X]/ . (28¢)

In conclusion the axisymmetric compressive, vortical, non-isentropic perturbations of a uniform
axial flow with rigid body swirl )7 with frequency w and axial wavenumber k, lead to
the acoustic-vortical-entropy wave equation with coefficients 70) satisfied by the radial
velocity perturbation spectrum. The other wave variables are specified by the following polariza-

tion relations: (i-iii) the pressure (25)), entropy (24f) and azimuthal velocity (24b) perturbation
spectra; (iv—v) the axial velocity (24h) and mass density (24d) perturbation spectra lead, by (25)),

respectively to (29p) and (29b),
b, = —ik [(Pr + §/r) o + 0] [ (wF — K*c]) (29a)
i/po = U Jws + T/ (wir) + K [(Qr + ¢§ /1) T + GO [ (Wi — kP cfw,) - (29Db)
The temperature perturbation spectrum follows from the equation of state (7h),

~ Wy — k2c3 /yw
RT _ £O~ ~/ ~ et 0 *
o 3" T G g

using ([29b) and (25).

[(Q%r + & /r) 0, + cgon]
(30a, b)

3 Monotonic and oscillatory inner and outer solutions

The acoustic-vortical-entropy wave equation with zero axial wavenumber is solved exactly as as-
cending (Subsection and descending (Subsection power series of the radius that converge
respectively inside and outside a critical radius, where the isothermal swirl Mach number is unity.
This specifies the separation condition between oscillatory and monotonic dependence of the radius
of the AVE wave perturbation of the compressible, vortical, non-isentropic mean flow: (i) near the
axis oscillatory solutions correspond to the frequency larger than the vorticity (Subsection ;
(ii) at infinity the condition for oscillatory solutions is opposite, that is the vorticity must exceed
the frequency (Subsection .

3.1 Condition separating oscillatory from monotonic radial dependences

If the axial wavenumber is not zero, the vanishing of ) introduces singularities in the AVE
wave equation . The present paper concentrates in the simpler case of zero axial wavenumber
(B1p), that is neglecting axial dependence, there is (20p) no Doppler shift ) and the coefficients
of the wave equation fc) simplify respectively to (31d-f),

k=0, w.=w, () =y, X=1: A=c/r+ () =+ +c3/r, (3la—e)



B =w?—50% + (Q%*r + cg/r)/ =w? 42 + Q2 — 3 /r?, (31f)

where the radial dependence of the sound speed (|16¢) was used (31f). Thus the acoustic-vortical-
entropy wave equation for (31p—f) an axisymmetric mode of frequency w simplifies to

vl + (VP + g /r) U+ [w? + (v — Q% — ¢ /r?] 5, = 0. (32)
The radial dependence of the sound speed ) is quadratic ),
leo(r)]? = cgo [1+ (r/70)*] 70 = (con/V/2/7, (33a,b)
with reference radius ([33p). Substituting ) in the wave equation leads to
2 (L+r2/rg) o +r (1 +3r%/rd) o + {[(w/coo)® + (1 — 8/7)/rg] r* =1} 5, =0.  (34)

Using (31p) and (33p.,b), the remaining wave variables are the azimuthal velocity (24p), mass
(29p

density ), temperature (30R), entropy ) and pressure specified respectively by (35a—
e),
~ . 2Q ~ ~ . ~/ ~ jod 2\ ~ ~
Bo= i, p=—ilpofw) (¥ + /), T/To = [(v/ )~ 4] /o, (35— o)
2 Cyrio, _ . poY2? N .
5= —i;ﬁ , p= —1p0;w [(r+2r/y+13/r) 0+ (r* +75) 0L] . (35d, e)

in terms of the radial velocity perturbation spectrum.
The adiabatic exponent for a perfect gas is given by (36p) where (36R) is the number of degrees
of freedom of a molecule,

N=356: y=1+— =2, -, (36a, b)

w| ot
(AT RN |
W~

2
N
namely: (i) three for monoatomic gas; (ii) five for a diatomic gas or polyatomic gas with molecules in

a line; (iii) six for a three-dimensional polyatomic molecule. The reference radius (33p) corresponds
to a ratio of the azimuthal velocity of the mean flow to the sound speed on axis given by

Q 2 [ 2N 6 /10 3
TL: — = \/7’ ,\/7’ (37)
Coo Y N +2 5 7 2
that is of order unity and plays the role of swirl Mach number at the axis, bearing in mind that

the sound speed (33p,b) is not constant. Using the sound speed (33h) at the critical radius (38h)
leads to ([38b),

Co\To _
co(ro) = cooV2 : 1o = \(ﬁ) =/ RTy(ro) = &(r0) s (38a, D)
showing that the critical radius corresponds to azimuthal velocity equal to the isothermal sound
speed, that is isothermal swirl Mach number unity. Since vortical modes are transversal and hence
incompressible, the relevant sound speed and Mach number are isothermal. If the radius is small
compared with the reference radius (39k), that is for small swirl isothermal Mach number, the

wave equation simplifies to ),
< P+l + (X' —1)9, =0, (39a,b)
that is a Bessel equation of order unity with radial wavenumber ),
X=k/ro, K =@>+1-8/y, @=wre/co, (40a — ¢)

where (40p) is the dimensionless radial wavenumber involving the dimensionless frequency )

The Bessel equation has oscillatory solutions for real wavenumber and monotonic increasing
solutions for imaginary wavenumber. Although the preceding result was obtained only for small
radius ), it will be extended in the sequel (Subsections and to all values of the radial



distance. Thus the condition specifying wave fields with oscillatory dependence on the radius (41p)
is expressed in terms of the dimensionless frequency (40p),

K°>0: — >
€00

vy~ VN+2 V57

2 il \/8 1= N2 1908 (41a,b)

Using (33p) the condition for radially oscillatory AVE waves is written in terms of the angular

velocity,
coo /8 v(8 — _X_ Tl _ 19 33 10
w>r0,/ 1791/2( 1>7Q,/4 2791/2 NfQ’/6’10’3' (42)

Using the sound speed (38p) at the reference radius the oscillatory condition (41p) becomes

wrg wrp 4 1 88— TN —2 19 33 5
= >4/-—== = === = (43)
co(ro)  cooV2 voo2 2y ON + 4 107142

Bearing in mind that the vorticity is twice the angular velocity (12p) the oscillatory condition

becomes
w_w  [Ta_ [T 1 [iN-2_ [0 5_
= 20 \! 8_\/8 vV sy “Varwoe M (44)

Of the four forms of the oscillatory condition (#1p), ([42), and the last is independent
of the geometry and may be the most general: a compressible, vortical, non-isentropic flow has
perturbations with oscillatory dependence on the radial distance if the frequency is larger than
the peak vorticity @ multiplied by the factor p in . The spatial growth of perturbations
of acoustic-vortical waves (49 [50]) is comparable to the temporal growth (5I) as an indicator of
instability. Thus the oscillatory condition excluding monotonic growth of perturbations could be
equivalent to a stability condition for the mean flow. This conjecture can be applied (Figure 1))
to combustion stability in a confined space: (i) if the natural frequencies exceed the product pcw
there is (Figure ) stability, and only the fundamental frequency needs to be considered wy > pw;
(ii) if the fundamental frequency and other modes lie below pco those modes lead to instability
(Figure |1p). The passage from stable to the unstable case could be due to: (i) increasing the

| Stable | Unstable Stable

hd w
| H 23] Wa | wi wa M Wy Wy

(a) (b)

Figure 1: The compressible, vortical, non-isentropic flow is stable if the peak vorticity multiplied
by is less than the fundamental frequency (Figure [Th) and unstable otherwise (Figure [Ib).

vorticity of the mean flow, e.g. to achieve better mixing for ’lean’ fuel saving combustion; (ii)
increasing the size of the enclosure, so that the natural frequencies reduce, and fall below pww. The
remark (i) agrees with the observation that lean combustion tends to be unstable; the remark (ii)
agrees with the observation that larger rocket motors are more prone to large amplitude oscillations.
The stability criterion

Wi > fW0maz, # = 0.890,0.908,0.913, (45a,b)

that the fundamental frequency must be larger than the peak vorticity times the factor can
be tested for more complex geometries using numerical codes. It has a simple interpretation: (i)
acoustic modes with frequency w are stable; (ii) vortical modes with vorticity w are unstable; (iii)
there is stability if the acoustic modes predominate w > w; (iv) there is instability if the vortical
modes predominate w > w. The factor involving the adiabatic exponent appears because
the vortical modes are incompressible and the acoustic modes are adiabatic and thus the ratio
of frequency to vorticity is close to but not exactly unity. The stability condition ,b) was
established from the AVE wave equation ([39p) for small radius (39p). Next it will be shown that
the equivalent condition for AVE waves with oscillatory radial dependence is not restricted to small
radius (39p) and applies to any radial distance smaller than the critical radius.



3.2 Regular and logarithmic solutions inside the critical radius

The independent variable is chosen to be the square of the radius divided by the reference radius
(46p),
B 9 QQ,W,Q 92,},7.2 9272
s=(r/ro)" = 52 = 7= BT ,
Coo [co(ro)] o(ro)

that is unity at the radial distance of unit isothermal swirl Mach number. The acoustic-vortical-
entropy wave equation becomes

s2(1+8)J" +s(1+28)J" + [(k*s —1)/4]J =0, (47)

Op(r,w) = J(s, k), (46a,b)

that involves as parameter only the radial wavenumber (40p), that includes all compressibility,
vorticity and non-isentropic effects. The zero or infinite values of the coefficient of the highest
order derivative (48p) determine the singularities of the differential equation , namely (48p),

s2(145)=0,00 : s=0,00,—-1, r=0,00,=kirg. (48a — ¢)

From the location (Figure [2) of the singularities (48f) it follows that: (i) the singularities at the
origin r = 0 and infinity » = oo lead to a pair of solutions respectively in ascending Wi and
descending W powers of the radius; (ii) the singularities at |r| = 7o imply that the ascending
series solution converges for |r| < ro and the descending series solution converges for |r| > ro; (iii)
even if either or both series do not converge at the circle of convergence, a pair of solutions W o
around the critical radius overlaps with the first two and allows their matching (Figure . In this
way the exact solution of the AVE wave equation can be obtained for all radial distances, as shown

next (Subsections and and Section [4)).

A lm(s)
+i'f'u

[s| =1p]s—1] =1

> Re(s)

i

—iT'U

Figure 2: The AVE wave equation rewritten in terms of the variables 7b) has singu-
larities at 7(:) implying that: (i) the pair of solutions Wy around the singularity at the origin
are series of ascending powers of the radius that converge inside the critical layer 0 < r < ro; (ii)
the pair of solutions W* around the singularity at infinity are series of descending powers of the
radius that converge outside the critical layer 1o < r < oo; (iii) the two pairs of solutions (i) and
(ii) are matched by a third pair W 5 around the critical radius that are power series of (r/rg)? — 1
with region of convergence overlapping with those of W and W+.

The origin is a regular singularity (59) of the differential equation , and thus at least one
solution exists as a Frobenius-Fuchs series of ascending powers of the radius,

ls| <1 : Jo(s,5) = an(o)s"t, (49a, b)
n=0

with index o and coefficients to be determined. Substituting (49p) in leads to
[(n+0)?=1/4]an(0) == [(n+0—1)(n+0)+ K> /4] an_1(0). (50)



Setting (51h) leads to the indicial equation (51p) with roots (51k),
n=0: (0 —1/4)ag(c) =0 = 0 = +1/2. (5la—c)

The solution corresponding to the upper root (52h) has recurrence formula for the coefficients

(>2b),
(n—1/2)(n+1/2) + K2/4

(n+1/2)2—-1/4

P (kP -1)/4
nin+1)

This double recurrence formula specifies explicitly the coefficients ),

c=1/2: a,(1/2)=— an_1(1/2) =

an—1(1/2). (52a,b)

— . _ (_)TL . 2 2 _ +

ap(1/2) =1:  an(1/2) = mﬂgl [m? + (k* - 1)/4] = a}} (53a,b)
where the first coefficient may be set to unity (b3p) because the solution is valid to within a
multiplying constant. Substitution of (52 ) in (49 ,b,b) specifies the radial velocity per-
turbation,

r<ry: Wi(r,k) = Z af (r/ro)*" = J19(s, k), (54a,b)
n=0

that vanishes at the origin like O(r), in agreement with the Bessel function Ji(xr) that is the
solution of ([39p) for small radius. The differential equation can be transformed to the Gaussian
hypergeometric type, leading to the solution ,b) in an alternative way (Subsection .

The indexes (51k) differ by an integer (55p) and thus the second solution (60) is given by (55pb),

0
op—o_=1: W_(r,k) =Y_1/(s,K) = U_l}izr;/2 e [(0+1/2)J,(s,K)] . (55a,b)

The solution (55p) is a function of the second kind,
Y_(s,k) = logsZa;fs"_l/2 + Za;sn_lp, (56)
n=0 n=0

that consists of a logarithmic singularity multiplied by a function of the first kind plus a com-
plementary function that has a power type singularity s~/2. The notation (J,Y) is used for
the solutions regular ) and singular at the origin, as for Bessel and Neumann functions
respectively, of which they are an extension for ) to r < 1ro. The coefficients a,, follow by

substitution in (55p) of (@9b) with the recurrence formula leading to (57)),

n>1:  a, =af Pn+1+v/2) +9n+1-v/2) —¢(n+2) —p(n), (57a,b)
where appears the ¢ function (61; [17) and (58p),
v=v1-k2; a5 =—(k*—1)(x*—3)/16, (58a,b)

The exception to (57h,b) is the coefficient (58p) as can be confirmed in Subsection [£.1] The solution
of the second kind,

r<rg : W_(r,k) = 2log(r/ro) Z at(r/ro)*"t + Z a, (r/ro)* 1, (59a, b)
n=0 n=0

consists of two terms: (i) the logarithmic singularity in the first term on the r.h.s. of is
dominated by the factor r/r¢ as » — 0, so this term vanishes at the origin; (ii) the second term
on the r.h.s. of has a singularity ro/r at the origin with coefficient ) This can be
confirmed from the Gaussian hypergeometric function of the second kind (Subsection . The
general integral is a linear combination of the two solutions:

0<r<rg: Op(r,w) = CyWi(r, k) + C_W_(r, k), (60a, b)
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where C'y are arbitrary constants. In the case of a cylinder of radius vy > r > 0, the solution
finite on axis is obtained setting C_ = 0 in ), and consists only of the function of first kind
,b). The regular 7b) and singular 7b) solutions correspond to Gaussian hypergeometric
functions respectively of the first and second kinds (Subsection [4.1]).

3.3 Asymptotic series outside the critical radius

The solution ) is valid inside the reference radius ), and the solution valid outside is
obtained using the inverse (61p) of the variable (46h),

C=—=(o/rf, Br(rw) = (s, m) = H(G,r), (61a,b)
leading from to the differential equation
CC+DH" + CH +[(v* — ()/41H = 0. (62)

The point at infinity » = co corresponds to the origin ¢ = 0 of (61p), that is a regular singularity
of the differential equation implying the existence of a Frobenius-Fuchs series solution,

C<1: Z b (0)CHY (63a, b)
that corresponds to a descending power series of the radius,
T>T0 Z b (0) (ro/7)2 27 . (64a,b)

Substitution of (63p) in leads to the recurrence formula for the coefficients:

[(n+9)(n+9 — 1)+ K2 /4] by (9) = — [(n+ 9 — 1)% — 1/4] b,_1 () . (65)
Setting ) leads to the indicial equation ),
n=0: (02 =9+ K2 /Do) =0 = 20L =1+V/1—-K2 =14, (66a — c)

that has roots ) where appears (b8n). The corresponding recurrence formula for the coefficients
is

(ntv/2-1/2)2-1/4
(ntv/241/2)(n+v/2—-1/2)+ Kk2%/4

The double recurrence formula allows explicit calculation of the coefficients,

bp(91) = — bn—1(V+). (67)

Jn ﬁ (2m+v)(2m+v —2)

bo(¥4)=1: by ( b
0(0z) Cm+v)?—1+r2 (682, b)
m=1
The corresponding solutions (64h,b) are
>t Z bE(ro/r)*" T = Hy (¢ R), (69a, b)

are linearly independent for v # 0 and will be checked in Subsection The general integral is
their linear combination,

r>rg Op(r,w) = CTWT(r k) + C~ W™ (r, k), (70a,b)

involving the arbitrary constants C*. If v > 1, that is for 2 < 0 or imaginary & in (58h), the
solution W~ diverges ) as r — oo, and must be suppressed setting C~ = 0, leaving only the
solution W. The latter would also diverge as r — oo if Re(r) < —1, but this is not possible since

11



v in (58R) is either imaginary for 2 > 1 or v > —1 for k2 < 1. Thus the solution W is always
bounded at infinity. The two solutions ) are oscillatory (71p) for k2 > 1 or imaginary v,

v=iy| : (ro/m)' Y = (ro/r) I = (1o /1) exp [£i|v| log(ro/7)] (71a,b)

and vanish at infinity. For 0 < k2 < 1 then |v4| < 1 in ) and both solutions (69k,b) converge.
In conclusion: (i) for imaginary radial wavenumber x2 < 0, that is the opposite of )7 there
is monotonic radial growth inside the critical radius, and outside the critical radius W~ in )
diverges as r — oo since |v| > 1 in ); (ii) for k2 > 1 that satisfies ) there is oscillation
inside the critical radius and since v is imaginary in ) the solutions outside the critical radius
,b) are oscillatory and decaying; (iii) for 0 < x2 < 1 the radial oscillation inside the critical
radius remains ([41p) and since |v| < 1 in (58h) the solutions (69k,b) outside the critical radius are
monotonic and decaying. The oscillatory condition x2 > 0 in) corresponds to
and the monotonic condition k% < 0 to the reverse. The condition ) of oscillatory waves at

infinity (71p,b) corresponds (40b,c) to (72b),
wro o [8_ [ 8N \/24 40

K2>1: W=

> =4/ = 6. 72a,b
Coo Y N+2 ( & )

- 57

The comparison of the inner acoustically dominated and outer vorticity dominated solutions, re-
spectively in ascending and descending power series of the radius, valid inside and outside the
critical radius raises the questions (i) of convergence at (Subsection [5.1)) and (ii) of matching (Sec-
tion [4)) across the critical radius. This matching can be addressed via hypergeometric functions

(Section [d)).

4 Matching of inner and outer solutions across the critical
layer

The AVE wave equation (Section [3) can be transformed to the Gaussian hypergeometric type:
(i) confirming the inner (Subsection and and outer (Subsection and solutions
respectively inside and outside the critical layer; (ii) providing the matching of (i) accross the
critical layer thus specifying the AVE wave field in all space.

4.1 Transformation to a Gaussian hypergeometric differential equation

The differential equation was solved using directly the Frobenius-Fuchs method since this is
the quickest way to obtain the acoustic-vortical-entropy wave field 7b,b). The solutions
can be obtained alternatively in terms of Gaussian hypergeometric functions by means of changes
of dependent and independent variables indicated next. The change of dependent variable (73h)

in leads to (73p),
J(s) =s“K(s) : (73a)

21+ 8)K" +s[1+2a+2(1+a)s]K' + [(a® +a+ k*/4)s +a*> —1/4K =0, (73b)

where the constant « may be chosen at will. Choosing (74p) allows (73p) to be divided through s,
depressing the degree of the coefficients from three in (73p) to two in (74b),

=g s s)K" 4 (24 35)K 4 (67 + 3) /4K = 0. (742, )
A further change of independent variable (75p,b) leads to (75F),
u=—5,K()=Qu) : u(l—-u)Q"+(2-3u)Q —[(k*+3)/4Q =0. (75a — ¢)
The latter is a Gaussian hypergeometric differential equation (62),

uw(l—u)Q"+[C - (A+B+1)ulQ — ABQ =0, (76)
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with parameters satisfying (77h-c),

K243

1
C=2,A+B=2, AB = AB=1; 1—&2:112, (77a — d)

and implying (77d).
Since C' = 2, there is only one solution without logarithmic singularity at « = 0, namely the
Gaussian hypergeometric function of the first kind,

2w g (A+m—1)(B+m-—1)
F(A B;Ciu)=1+ — 78
Qulw) = FAB:C) =1+ 30 T T S oy (78)
where was used the hypergeometric series. Substitution of (77h —C) leads to
2
it = LF (A B;2;—— )
To 7’0
T r/70) - k2 +3
= —q1 )" -1
To{ +Zn'n+1 m—o[ +2Am—1)+ 4 ]}
r (r/rg)*™ o - R |
= — |1 =W 79
o *van+ ﬂo(m + 4 (k). (79)
that coincides with (| .lo . Since the Gaussian hypergeometric differential equation ) has

integer third parameter (77h ) the pair of linearly independent solutions consists of: (i) a function
of the first kind with leading power term; (ii) a functions of the second kind with logarithmic
singularity considered next (Subsection [4.2)).

4.2 Power and logarithmic singularities of the functions of the first and
second kind

The solution with logarithmic singularity at the origin is a function of the second kind (62} [63),
Q-(u) = G(A, B;2;u) = F(A, B;2;u)logu + H(A, B;2;u), (80)

with the complementary function

H(A, B;2u) = A(A_l)f(3—1>+z%’; H<A+m_7i)ﬁ+m_l)
{(Y(A+n) + (B +n) —p(n+2) —pn)}, (81)

where the ¢ function (61} [I7) is the logarithmic derivative of the Gamma function (64} [65]). In the
case of acoustic-vortical-entropy waves, besides the first solution , the second solution is

2 (r, k) = 2log(r/ro) W (r, &) + Wi (r, k) = W_(r, k), (82)

including: (i) the regular solution multiplied by a logarithmic singularity; (ii) plus the com-
plementary function that has an algebraic singularity,
(K =D +3)r0 <~ ()" (/0> |1 (2, K —1
W (r, = —— —
(r, %) 16 r+§ nl (n+ 1) ml—zll mt

{v(n+1+v/2)+dv(n+1-v/2) —¢(n+2) —¢Yn)} . (83)

Thus the solution finite on axis consists only of the function of the first kind and holds |r| < 7o
inside the critical radius. The solution in terms of the function of the second kind can be
written

W_(r,k) = 2log(r/ro)Wyi(r, k) + Wi(r, k), (84)
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that coincides with (59b) because it consists of the sum of: (i) the function of the first kind
E) multiplied by a logarithmic singularity7 (ii) the function of the second kind (| .
that coincides with the second term of the r.h.s. of (5 ) with coeflicient . (iii) the algebraic
term r/rg in the function of the second kind, corresponding to the first term of the r.h.s. of (83] .
has has coefficients
2 2 2
K +3(AB—A—B+1):K +3kK —17
4 4

in agreement with ) This completes the pair of solutions of the AVE wave equation inside the
critical radius (60k,b).

The wave fields outside the critical radius correspond to the solutions of the hypergeometric
equation around the point at infinity (606} [67), namely,

ag =A(A-1)B(B—-1) =

(85)

Qt(u)=uFA,A-C+1;A—B+1;1/u), (86)
and another @~ obtained interchanging (A, B), that is interchanging +wv,
Q*F(u) = (r/r) /?TVF(1 + v/2,4v/2;1+v;—(ro/7)?). (87)

The corresponding wave fields are

W (k) = (T)1/2iu{ Z ) (ro) ﬁ m:I:I//Zy)T(L:l:;1:|:1//2)}7 (88)

n=1 m=1
that coincide with ) since

ﬁ (2m +v)2m+v —2)
2m+trv)2—1+k2

2mtv)2m+tv—2)
2m(2m £+ 2v) + v2 — 14 K2

=

1

ﬁ (m+v/2)(m—-14+v/2)

m+tv

m=1

| = 3
Il

, , (89)

3

m=1
the coeflicients and ) are equal. The solutions of the AVE wave equation can be expressed
in terms of the Gaussian hypergeometric functions both inside and outside the critical layer (Sub-

sections and [4.11{4.2)) and also around the critical layer (Subsection showing that the

wave field is finite.

4.3 AVE wave field at and around the critical layer

The parameters ,b) of the hypergeometric function satisfy C — A — B = 0, implying (68; [17)
that: (i) there is conditional convergence on the boundary of convergence |s| = 1 or |r| = 7
excluding the point s = —1 = r?/r or r = irg; (ii) at this point there is divergence. This
shows that the radial velocity perturbation spectrum is finite at the critical radius, as it will be
confirmed subsequently ,b). This can be confirmed by obtaining the solution of the acoustic-
vortical-entropy wave equation around the critical radius. The Gaussian hypergeometric differential
equation transforms into itself with different parameters by the changes of independent variable

in the Schwartz group,
1 1 u—-1 U
U,].—?.L,f,].—*, ) )
U U U u—1
that interchange between themselves the three regular singularities: u = 0,1,00. Since s > 0 in
(46h) and u < 0 in (75h), the variable (91h) does not exceed unity,

(90)

U s r?

u—l_s+1:r2—|—r§

&=

<1, |r—rol<ro, (91a,b)

and the corresponding series solution converges for (91pb) that is from the origin to twice the critical
radius. The solutions of the Gaussian hypergeometric differential equation in terms of the variable
(91p) are (62} 66} [67)

Qi(w) = (1—-u) F(A,C-B;C;u/(u—-1)), (92a)
Q2(u) = w91 —-wAIFA-C+1,1-B;2—Ciu/(u—1)). (92b)
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Substituting ,d), ) and ,b; ; ; ,b) leads to
Wi(rig) = (L+r2/rg) 7 PFE( 4 v/2,1 4 v/22;0% ) (rf +17)) (93a)
Wa(riw) = —(rg/r) (1 +72/rg) P F(v/2,0/2;0;7% [ (r§ +17)). (93b)

The radial velocity perturbation spectrum is a linear combination of (93p,b),
0<r<2rg: W(rk)=C1Wi(r;k) + CoWsy(r; k), (94a,b)

and is valid (9Ip) from the axis to twice the critical radius (94h). The value at the critical radius
r = ro corresponds to £ = 1/2 and is finite. Since the AVE wave field has been determined exactly
for all values of the radius, it is possible to consider AVE wavemodes in cylindrical or annular
ducts for any values of the radii. For example, the wave field up to two critical radii ) is given

by (94p) where (93p) is singular on axis and must be excluded for a cylindrical duct setting (95p)
and leading to (95p)

Co=0: Wrir)=Ci(L+ /) PR+ /2,14 /%207 /(% +12).  (95a,D)

The application of rigid or impedance wall boundary conditions then specifies the eigenvalues and
eigenfunctions of AVE modes (Section [f]).

5 Velocity, pressure, density, entropy and temperature per-
turbations

All wave variables, namely the azimuthal velocity, mass density, pressure, temperature and entropy
perturbations can be calculated from the radial velocity perturbation (Section . The latter
satisfies the acoustic-vortical-entropy wave equation whose solution has been obtained (Section
as acoustic modes inside and vortical modes outside the critical radius where the isothermal swirl
Mach number is unity. It can be shown (Subsection that: (i) both solutions converge for the
radial velocity perturbation spectrum; (ii) neither solution converges for the pressure perturbation
spectrum. The solution around the critical layer (Subsection [4.3) shows that the radial velocity
perturbation is finite there and matches the inner and outer solutions (Subsections and .
Thus by using the appropriate set from the three pairs of (i) inner, (ii) outer and (iii) middle
solutions, the AVE wave fields can be considered inside cylindrical or annular ducts with any radii
(Subsection . The case of a cylinder with critical radius inside with rigid walls at a radius less
than twice the critical radius is used (Subsection to calculate the natural frequencies and plot
the waveforms of acoustic-vortical-entropy waves.

5.1 Divergence of the inner and outer wave fields at the critical radius

The exact inner (outer) solutions of the AVE wave equations converge respectively inside (outside)
the critical radius thus specifying the acoustic (vortical) modes; the critical layer, where mode
conversion occurs, corresponds to the boundary of convergence of both the inner and outer se-
ries solutions. The convergence on the boundary of convergence (I7) is specified by the ratio of

successive coefficients (53p) [(68b)] in [©97)],

A (1?4 (R -1/4  n’+2n+ (k*+3)/4

a  (+1)(n+2) B n2 + 3n + 2 ’ (96)
b, _ (n+2Ev)2ntrv) 4n? +4n(1 £ v) + 2 +2v (97)
bt 2n+2+v)2 -2 An2 +4n(2+ ) +4(1 )]
The limit as n — oo is
Ui 1 1Y b
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The combined convergence test (69 [I'7, p.494) on the boundary of convergence applies to a ratio

of terms,
g 1
= 1 —_ — _—
- + 0 (n2> , (99)

and is specified by the value of g. Thus g = 1 implying that: (i) both series diverge for —(r/rg)? = 1,
that is at the singular points r = +irg; (ii) at all other points on the circle of | — (r/rg)?| = 1 or
|r| = ro, the series are conditionally convergent, that is: (ii-1) converge if the order of the terms
is not deranged; (ii-2) the series of moduli diverges. Since r is real and positive, the only point on
the circle of convergence of physical interest is the critical radius » = rg, where both the inner and
outer series for radial velocity perturbation spectrum converge conditionally and can be matched
directly. However, the direct matching would also require the pressure perturbation ) to be
continuous; since it has been shown that v, is continuous across the critical radius for the direct
matching to be possible, 4. must also be continuous. From (54p) [(69b)] follows the derivative of
the radial velocity perturbation for acoustic (vortical) modes inside (outside) the critical radius
(T00) ((T01)),

Un+1
Up,

oo

Wi k) = == 3 (20 + Da (/o)™ (100)
n=0
(WE(r, k)] = % Z(2n +1/2 £ v/2)bE (r/ro) " EY . (101)
n=0

As n — oo both a; (bf) — 1 tend to unity in (53p) [(68k.,b)] and thus the coefficients in
[(101)] are O(n), implying divergence on the critical radius r = ro. Thus the pressure perturbation
is singular at the critical radius, both for the acoustic and vortical modes, and matching is not
possible using directly the inner and outer solutions. The matching can always be performed
using the middle solution valid around the critical layer, where the AVE wave field is finite. Thus
the failure of the inner and outer solutions to converge at the critical layer is a feature of the
representation and not of the wave field, that can be calculated from the alternative representation
around the critical layer. This allows the consideration of AVE waves in cylindrical ducts, cavities
or annulus with any radii (Subsection [5.2).

5.2 Waves inside or outside a cylinder or in a cylindrical annulus

It has been shown that there are acoustic-vortical-entropy waves finite over the whole range of
radial distances leading to (Figure [3)) six possibilities: (i-ii) the interior (exterior) of a cylinder
inside (outside) the critical radius (Figure[3p) that is using the inner (outer) solution in a cylinder
(cylindrical cavity); (ili-iv) a cylindrical annulus either inside or outside the critical radius (Fig-
ure Bp); (v—vi) a cylinder (Figure B) or cylindrical annulus (Figure Bd) containing the critical
layer, using the middle solution alone if the outer radius is less than twice the critical radius, or
otherwise matching to the outer solution. The oscillatory or monotonic radial dependence of the
wave fields is specified by the inner and outer solutions as indicated in the Table In the case
IA of the exterior of a cylinder outside the critical radius ) are considered ) monotonic
vortical modes (102f) that are stable, that is vanish at infinity (69pb) if v < 1 implying (102p),

ro<r3<r<oo;0<ki<l: B(r,w)=CTWT(r,k)+C W (r,r), (102a — c)

and arbitrary constants C* are determined by two boundary conditions at r = r3, e.g., pressure
and radial velocity. In the case IB of (103p,b), the solution W~ in ) is singular at infinity and

must be suppressed in (103k),
ro<rz<r<oo;k:<0: B(r,w)=CTWT(r k), (103a — c)

and the arbitrary constant C* is determined by one boundary condition at » = r3. The case IC
of an outward propagating vortical wave is possible (104p) for (104b) selecting W+ in (71p),

ro<r3<r<oo;k?>1: ¥(rw)=CTWT(rr), (104a — c)
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Figure 3: In the case of AVE waves in a cylinder (cylindrical cavity) not containing th critical layer
(a) the inner (outer) solution is sufficient; likewise in the case (b of an annulus inside (outside)
the critical layer. If the critical layer lies inside (c) a cylinder (cylindrical annulus) with (outer)
radius less than twice the critical layer radius, the middle solution is sufficient; if not, the outer
solution is also needed, that is for a cylinder (annulus) with (outer) radius larger than twice the
critical radius. In all cylindrical cases, the solutions W, and Wy that are singular on axis must be
excluded.

Case Radius Solution Bounded

Oscillatory  Monotonic
I o CTW(r) - ()
cylindrical
rg <13 <r<oo

cavity CTWH(r)+C~W~(r) K2 >1 -
CTWH(r)+C~W~(r) - 0<k?<1
I vortical ro<rg<r<ry<oo CTWT(r)+C W (r) k2> 1 K2 <1
annulus
III  acoustic O0<rm <r<rao<ry CWi(r)+C_W_(r) k2 >0 k2 <0
annulus
IV cylinder 0<r<rys<ry CLWi(r) k2 >0 k2 <0
i i <r<
Vv cyhniirl‘cal O0<ri <r<mry CLW (1) + CaWa(r) W20 W2 <0
annulus r < 1o < T
<r<
Vi cylinder Osrsr C1W4(r) k2 >0 k2 <0

ro < 19 < 219

Note: there is no case of unbounded oscillation.

Table 1: Exact solutions of the acoustic-vortical-entropy wave equation indicating the six cases of
the stability of the mean flow in the four configurations in the Figure [3]
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with the arbitrary constant C* determined by one boundary condition at r = r3.
The case II of an annulus outside the critical radius (105p) corresponds to a linear combination

of vortical modes (105b),
ro<r3<r<ry<oo: U(r,w)=CTWT(rk)+C W (rk), (105a, b)

with the arbitrary constants C* determined by two boundary conditions at r = r3,74. The case
IIT of an annulus inside the critical radius (106R) corresponds to a linear combination of acoustic

modes (106p),
O0<rm <r<ro<rg: o(rw) =CWi(rk)+C_W_(rk), (106a,b)

with the arbitrary constants C determined by two boundary conditions at » = r1,r2. The case IV
of a cylinder inside the critical radius (107h) excludes the acoustic mode (59h) with a logarithmic
singularity, and involves (107p) only the regular acoustic mode (54p),

oo

0<r<ra<ry: o (r,w)=D Z at (k) (r/re)* T, (107a,b)

n
n=0

where the coefficients (53p) depend on the radial wavenumber. In the case V of a cylindrical
annulus containing the critical layer (108a), the middle solution (94b) holds (108f),

0<rm <r<ry, r<rog<re<2rg: 0(r,w)=CWi(r,k)+ CoWs(r,x), (108a — ¢)

provided that the outer radius is smaller than twice the critical radius (108p). In the case VI of a
cylinder (109p), the solution W5 singular on the axis is excluded (109f),

0<r<ry, rog<re<2rg: (r,w)=CWi(rk). (109a — c)

In both cases V and VI, if the outer radius equals or exceeds twice the critical radius, matching to
the outer solution is needed to cover the whole annular flow region. Proceeding with case VI and
the simplest boundary condition of a rigid wall at » = a with zero radial velocity (110p),

Op(a,w)=0: F+4+v/2,14+v/2;2;0*/(rs +a*) =0, (110a, b)
leads to (110p). The Gaussian hypergeometric function in (110p) can be calculated most efficiently
summing the series (111p) with the recurrence formula for the successive terms (111f),

G(&v) = FUL+v/214+0/%2:0) =1+ £2(6), (111a)

n=1

n v/2)?
fol) =1, fat1(§) = fn(g)m

The eigenvalues for the radial wavenumber are the roots of (112)),

0:G(1+(12;\/1—H2> =G0l1;[1(ﬁ—m), (112)

¢. (111b,c)

ro/a)

where Gy is a constant. To each eigenvalue corresponds (93pil11h) an eigenfunction,

a(r/ro) = (L+72/r3)" 172G (1 2;@) . (113)

L+ (ro/7)

The eigenvalues k; for the radial wavenumber specify the eigenfrequency w; by (40p) with the
adiabatic exponent v = 1.4 for a diatomic perfect gas.
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5.3 Eigenvalues for the wavenumber and frequency and eigenfunctions
for six wave variables

The AVE waves are considered inside a cylinder with radius (114h) for the fours cases (114b),
0<r<a: a/ro=04,081216, (114a,b)

of which the first (last) two do not (do) contain the critical layer. For each cylinder the roots
of ) specify the first six eigenvalues k; of the radial wavenumber ordered by non-decreasing
modulus in the Table [2f the corresponding dimensionless natural frequencies w; follow from )
and appear in the Table To each pair of dimensionless eigenvalues (k;,@;) correspond six
dimensionless eigenfunctions for distinct wave variables, namely the dimensionless: (i) radial )
velocity with magnitude unity at the origin,

D =G (1; 1-— ,%12) : u(r/re) = v,«(gw) , (115a,b)
1
that is plotted in the Figure [d} (ii) azimuthal (35h) velocity (116)),
v 2
an(rfro) = S0 2 _ i 2y, (116)
that is plotted in the Figure [5} (iii) the mass (35p) density (117)),
_ coo P i, ~
_C0p _ 1 117
pu(r/ro) Dy 1o = [0 + (ro/T)01] (117)
that is plotted in the Figure[6} (iv) the (35{) entropy (118),
_ Coo §(7’, w) 21 1 _
_ Coo .2 b 118
Sl(T/TO) Dl CV a}l T/TO I TO/TUZ ) ( )
that is plotted in the Figure[7} (v) the (35k) pressure (119),
p(r, w i _ _
pi(r/ro) = prw) _ ——A{l@+2/y)r/ro +ro/r]v + (L +7?/r3) v]} , (119)
pocoo Dy Wi

that is plotted in the Figure
The temperature perturbation (35c) follows (121)) from those of the density (117)) and pressure

(19,

i = T -] -

2 r2
= 770021510/7"0) — pulr/ro) = S5 [M(r)*pi(r/ro) — pu(r/ro)
[co(r)] 2r

that is plotted in the Figure 0] It involves the isothermal swirl Mach number,

Gy 022 Lg72927ﬂ2 B L(z)QQT2 B ﬁ[M(r)F (121)
’y[co(r)]Q © 2[co(r)]2 2r2 [eo(r)]2 272 RTy  2r2 ’
where were used (33p,b). In (117) and (119) appear the derivative with regard to its argument
(1122)) of the radial velocity (115)),
_ d[o, (r(ro)] 24vr
l = r - _ — (1 2/,.2
’UT(’I"/T()) d(’l’/’f’o) Dl o ( +r /TO)
(1+v/2)%  rdr
D (g +7?)

—2—v/2

F(14+v/2,14v/2;2;¢)

sF(2+0v/2,24+v/2;3:€) (122)
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where was used (123p) the derivative (123p) of the Gaussian hypergeometric function in (111k),

g 27”3T a
drfre) ~ WR+ P (1252
d% (F(140/2,1 +1/2;2:€)] = %F (24 1/2,2 4 1/2;3;€) . (123b)

The Gaussian hypergeometric series in ) is calculated as fc) replacing v by 1 + v.
The fundamental and first five harmonics are plotted in the Figures [d] to [0 respectively for the
dimensionless radial (115 and azimuthal velocity, mass density , entropy , pressure
and temperatu perturbations, as basis for the following discussion (Section . The
radius of the cylindrical duct is taken as the largest a/ro = 1.6 of the values in ) to show the
variation of the AVE wave variables across the critical layer.

6 Waveforms for the fundamental and stable and unstable
harmonics

The Figures [ to [9] concern AVE wave modes in a cylindrical duct with rigid wall at a radius
a = 1.6r¢ that is 60% larger than the radius of the critical layer, thus containing in its interior the
radius of isothermal swirl Mach number unity, with subsonic (supersonic) swirl inside (outside).
Note that the mean flow is incompressible so there is no restriction on Mach number. The first
six modes are considered with dimensionless frequency ) indicated in the Table |3 and the
corresponding dimensionless radial wavenumbers (40p) on the Table The modulus and phase
of the six corresponding eigenfunctions are plotted versus radial distance in the Figure [4] for the

radial velocity (LI5p), in the Figure [5]for the azimuthal velocity (I16)), in the Figure[6 for the mass
density (L17]), in the Figure [7| for the entropy (118)), in the Figure [§| for the pressure (119) and in
9

the Figure [9| for the temperature ; for all six wave variables are considered as dimensionless
perturbation spectra using the amplitude D; of the radial velocity perturbation spectrum at the
axis. For this reason, all waveforms or eigenfunctions start with the value unity on the axis in the
Figure [4

The dimensionless radial velocity perturbation spectra in the Figure [] all start with the value
unity on axis due to the normalization and all finish with zero at the rigid wall at » = 1.6r9 = a. The
fundamental mode ¥, has no other zero, and decays smoothly from the axis to the wall. As typical
of eigenvalue problems, the harmonics ,, of order n = 2,3,4 have n — 1 zeros of the amplitude
(Figure top) between the axis and the wall, corresponding to phase jumps of = (Figure 4| bottom).
The fifth and sixth harmonics n = 5,6 have complex radial wavenumbers in the Table[2] leading to
radially decaying or divergent modes; the divergent modes signal instabilities of the mean as can
be seen from the increasing amplitudes of 17; and 178' (Figure 4| top). The dimensionless azimuthal
velocity perturbation spectrum (Figure [5)) also vanishes at the rigid wall for the fundamental w,
and next three harmonics ws, ws, Wy (Figuretop), again with phase jumps of 7 at the zeros of the
amplitude or nodes (Figure [5| bottom). The fifth and sixth harmonics w3 , wg are unstable modes
both for the radial (Figure [4] top) and azimuthal (Figure [5| top) velocity perturbations spectra.
The amplitude of the dimensionless azimuthal velocity perturbation spectrum on axis (Figure
top) decreases from the fundamental to the higher harmonics.

The perturbation spectrum of the mass density (Figure @ leads to eigenfunctions that are
quite different from those of the radial (Figure [4)) and azimuthal (Figure [5]) velocity perturbation
spectra. The mass density perturbation spectra do not vanish at the rigid wall (Figure |§| top)
although their magnitude decreases from the fundamental p; to the next three stable harmonics
P2, Pp3, ps. The fundamental p; almost vanishes at r = 0.48r( leading to rapid phase change of 7
(Figure |§| bottom). Whereas the fundamental p; has one dip, the next three n = 2, 3,4 harmonics
pn have n dips, and the fifth and sixth harmonics ﬁ;r, ﬁg are unstable as before. The dimensionless
entropy perturbation spectrum (Figure|7]) vanishes on axis for all harmonics , including the unstable
ones 57, 57, and vanishes also at the rigid wall for the fundamental 5; and the first three stable
harmonics 53, 53, S4. The fundamental 5; has no zeros and exhibits a single peak at r = 0.5rg far
from the critical layer. The first three harmonics §,, with n = 2, 3,4 have n peaks and n — 1 nodes.
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The peaks are lower when: (i) passing from the fundamental n = 1 to the harmonics n = 2,3, 4;
(ii) for a given harmonic n, the successive n peaks become lower farther from the axis.

The dimensionless pressure perturbation spectra (Figure are broadly similar to those of
the mass density (Figure @, with similar features, such as a non-zero pressure at the rigid wall
with amplitude decreasing from the fundamental p; to the first three stable harmonics ps, p3, Ps.
The fifth and sixth harmonics ;5:,)", pg‘ remain unstable. The fundamental p; has one dip of the
amplitude (Figure [§ top) broader than for the mass density (Figure |§| top) and approximately at
the same location r = 0.48ry. The next three stable harmonics p,, with n = 2, 3,4 have n dips and
n peaks (Figure [8| top) with phase jumps (Figure [8| bottom) indicating that the dips are actually
zeros or nodes. The dimensionless temperature perturbation spectra (Figure@ have eigenfunctions
broadly similar to the entropy (Figure , with: (i) zero on axis for all modes, stable T} , Ts, T,
T, or unstable T, T5"; (ii) the stable modes are also zero at the wall; (iii) the fundamental mode
Ty has a single maximum between the axis and the wall; (iv) the stable harmonics n = 2, 3,4 have
n maxima and n — 1 zeros.

Thus besides the unstable diverging spectra, there are three kinds of stable spectra for the
fundamental mode n = 1 (first three harmonics n = 2,3,4): (i) monotonic (oscillatory) decay for
the dimensionless radial (Figure [4)) and azimuthal (Figure |5) velocity perturbation spectra, that
are non-zero on axis and zero at the wall; (ii) non-zero at the wall for the dimensionless mass
density (Figure @ and pressure (Figure perturbation spectra with a single dip (n dips and
n — 1 maxima); (iii) zero on axis and at the wall for the dimensionless entropy (Figure [7)) and
temperature (Figure E[) perturbation spectra with a single maximum (n maxima and n — 1 zeros).

7 Discussion

The present paper may be the first to combine the interactions of the three types of waves in a fluid
not subject to external force fields, hence the designation acoustic-vortical-entropy (AVE) waves.
A deliberate choice was made of one of the simplest baseline flows that could support AVE waves,
namely an incompressible non-isentropic uniform flow with rigid body swirl, leading to a mean flow
pressure and sound speed varying radially due to the centrifugal force. The linear non-dissipative
perturbation of this mean flow leads in the axisymmetric case to the AVE wave equations —c)
first obtained here. The exact solution is obtained in terms of Gaussian hypergeometric functions
in the case of zero axial wavenumber, when there is only temporal and radial dependences. The
six wave variables in this case are the frequency spectra of the perturbations of the (i) radial and
(ii) azimuthal velocity, (iii) mass density, (iv) entropy, (v) pressure and (vi) temperature.

An important feature of the problem is the existence of a critical layer where the swirl velocity
equals the isothermal sound speed. It is shown that this condition of isothermal swirl Mach number
unity corresponds to a finite wave field, and thus is a singularity of the AVE wave equation but
not a singularity of the wave field. The linear non-dissipative non-isentropic compressible vortical
perturbations of the non-isentropic uniform flow with rigid swirl may be interpreted alternatively
as (i) acoustic-vortical entropy (AVE) waves or (ii) stability or instability modes of the mean
flow. This dual interpretation is demonstrated for a cylindrical duct with rigid wall at the radius
a = 1.6r¢, that is 60% larger than the critical layer, for: (a) the eigenvalues for the wavenumber
(Table [2) and frequency (Table [3)); (b) the eigenfunctions for the radial (Figure [4)) and azimuthal
(Figure velocity, mass density (Figure @, entropy (Figure , pressure (Figure and tempera-
ture (Figure E[) These confirm that the wave field is finite at the critical layer in this as well as in
all other cases; in this particular case, the fundamental and first three harmonics are stable and
the fifth and sixth harmonics are unstable. The general theory applies to all cases of cylindrical or
annular ducts or cylindrical cavities containing or not the critical layer.
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0<r<r; r=04r¢ 71 =038nrg r1 = 1.2rg r1 = 1.6rg

K1 9.874 5.322 3.895 3.217
Ko 18.015 9.626 6.974 5.700
K3 26.103 13.920 10.061 8.203
K4 34.175 18.212 13.150 10.712
K5 42.240 22.502 16.241 13.027+£114.338
K6 50.302 26.791 18.195£i27.868  15.588+17.640

Table 2: First six eigenvalues of the radial wavenumber for acoustic-vortical-entropy waves in a
cylinder 0 < r < r; with rigid wall with radius r; a fraction of the critical radius.

0<r<ry 7rr=04rg 7 =0.8r9 r1 = 1.2rg r1 = 1.6rg
w1 10.110 5.748 4.460 3.881
w9 18.145 9.868 7.304 6.100
w3 26.193 14.089 10.293 8.485
W4 34.244 18.341 13.329 10.930
ws 42.296 22.606 16.386 13.1094i14.248
we 50.349 26.879 18.2344i27.809  15.710+i7.581

Table 3: As the Table [2] for the corresponding values of the dimensionless frequency.
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Figure 4: Modulus (top) and phase (bottom) versus radial distance normalized to the critical
radius, for dimensionless radial velocity perturbation spectrum, of the first six modes of acoustic-
vortical-entropy waves in a rigid cylinder with radius equal to 1.6 of the critical radius.
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