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Center for Aerospace Science and Technology, Instituto Superior Técnico,
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The bending frequencies of a wing are calculated based on the model of a beam clamped
at the root and free at the tip; since the mass and the area moment of inertia (per unit
span) vary along the span, a non-uniform beam is considered. For a sweptback wing with
straight leading- and trailing-edges, the chord is a linear function of the span; the same
linear function of the span applies to thickness, in the case of constant thickness-to-chord
ratio. Thus, the bending modes of a non-uniform beam are considered, with mass and
area moment of inertia respectively quadratic and quartic functions of the span. There is
no exact solution expressible in finite terms using elementary functions, and thus power
series expansions are used. The boundary conditions, that the wing is clamped at the root
and free at the tip, lead to the natural bending frequencies. The fundamental bending
frequency is calculated for a delta wing, and compared with a rectangular wing, with the
same span, mean chord and thickness, mass density and Young modulus. It is shown that
the fundamental frequency is higher by a factor 4.96 for the delta wing., that is, it is
stiffer because it has a higher proportion of the mass near the root; it is also shown that
the case of the tapered wing is intermediate between the delta and the rectangular wing.
Lastly, the analytical results obtained are used to validate same numerical modal analyses
of rectangular and delta wing beams using high-fidelity finite-element model software.

I. Introduction

The representation of a wing as a beam of constant cross-section is adequate for a rectangular wing, with
airfoil section and material properties constant along the span. Retaining the latter case of an homogeneous
wing, but with non-uniform chord and/or thickness, the mass and moment of inertia of the section vary along
the span. Thus the model must be extended to a beam of non-uniform cross-section, e.g., for a sweptback
wing. This is particularly true for a delta wing, for which the mass and moment of inertia vanish at the tip.

The study of wing bending in general, and its natural vibration frequency in particular has been of interest
since many years and it is a standard topic of elasticity,1–3 vibrations4–6 and aeroelasticity.7–9 For example,
the analytical study of vibration modes of cantilever beams has already been well documented by Volterra.10

A detailed analytical study of natural vibration frequency of bending bars subject to different boundary
conditions has been made by Chen,11 including numerical results for a truncated conical bar. More recently,
Balakrishnan12 developed an aeroelastic analytical model for the bending-torsion dynamics of a slender
high aspect-ratio wing in inviscid subsonic airflow. It comprised of a cantilever beam model as structural
model, and a potential field model as linear aerodynamic model, and it studied the aeroelastic modes and
flutter instability in two-dimensions. The study of physical phenomena involving any combination of solid
mechanics, dynamics and fluid mechanics are becoming more and more recurrent in aerospace, namely in
the study of airplanes.

The knowledge of exact analytical solutions of dynamic response of rather simplistic wing structures
offers valuable data. It can be used as benchmark to validate high-fidelity computational fluid-structure
interaction models, that upon validation, can then be used to tackle complex wing configurations. The work
presented here intends to provide such reference data for tapered wings.

This paper is divided into six main sections. Section II lays out a few basic geometric and physical
function definitions for straight leading- and trailing-edges wings. The equation of transverse vibrations
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is applied to such wings and general expressions of amplitude and frequency of oscillation are derived in
Sec. III. The solutions for tapered wings are determined in Sec. IV, while the particular cases of rectangular
and delta wings are included in Sec. V and Sec. VI, respectively. In Sec. VII, the analytical solutions found
are used to verify some numerical finite-element models. Finally, the paper ends with some remarks about
the findings of the work presented.

II. Spanwise distribution of mass and area moment of inertia

The starting point for the representation of a wing with arbitrary planform and airfoil section as a
non-uniform beam, is to specify the mass and area moment of inertia (per unit span) as a function of the
spanwise coordinate y. In the case of Fig. 1 of a sweptback (or sweptforward) wing, with straight leading-
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Figure 1. Sweptback wing with straight leading- and trailing-edges.

and trailing-edges, the chord at spanwise section y is given by

c(y) = cr + (ct − cr)
y

L
, 0 ≤ y ≤ L , (1)

where L is the semi-span and cr, ct are the chord at the root and tip. The latter are related to the mean
chord, c̄ ≡ (cr + ct)/2, and taper ratio, λ ≡ ct/cr, by

cr =
2c̄

1 + λ
, ct =

2c̄λ

1 + λ
, (2)

and thus the chord (1) is given by

c(y) =
2c̄

1 + λ

[
1 + (λ− 1)

y

L

]
, (3)

as the function of the spanwise coordinate. If the wing sections have a constant thickness-to-chord ratio,
then (3) also applies to the thickness distribution along the span,

e(y) =
2ē

1 + λ

[
1 + (λ− 1)

y

L

]
, (4)

where ē is the mean thickness; in such case, the thickness-to-chord ratio is e(y)/c(y) = ē/c̄ = const. Using
the expressions (3),(4), results for the wing cross-sectional area,

A(y) = c(y)e(y) = A0

[
1 + (λ− 1)

y

L

]2
, A0 =

4c̄ē

(1 + λ)2
. (5)

Assuming that the section is homogeneous with mass density ρ, the mass per unit span is given by a
quadratic function (6) using the expression (5),

m(y) = ρA(y) = m0

[
1 + (λ− 1)

y

L

]2
, m0 ≡ m(0) = ρA0 =

4ρc̄ē

(1 + λ)2
, (6)

where m0 would be the constant value for a rectangular wing. Likewise, the moment of inertia per unit span
relative to the z-axis, for a rectangle with height equal to the mean thickness of the airfoil e(y) and length
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equal to the chord c(y), as illustrated in Fig. 2, is given by

I(y) =
1

12
c(y) [e(y)]

3
. (7)

Substituting (3) and (4) in (7) leads to a quartic function (8),

-

z

6
x

−c(y)/2 +c(y)/2

+e(y)/2

−e(y)/2

Figure 2. Arbitrary section at spanwise position y.

I(y) = I0

[
1 + (λ− 1)

y

L

]4
, I0 ≡ I(0) =

4

3

c̄ē3

(1 + λ)4
, (8)

where I0 would be the constant value for a rectangular wing.

III. Transverse vibrations of beam with non-uniform cross-section

The transverse or vertical displacement X(y, t) of an elastic beam, with Young modulus E(y), mass m(y)
and area moment of inertia I(y) per unit span, satisfies the equation of bending waves,13

−m(y)
∂2X(y, t)

∂t2
=

∂2

∂y2

[
E(y)I(y)

∂2X(y, t)

∂y2

]
. (9)

For a homogeneous wing, the Young modulus is constant, and for a swept wing with straight leading- and
trailing-edges and constant thickness-to-chord ratio, the substitution of the mass (??) and area moment of
inertia (8) in (9) leads to the linear partial differential equation with non-uniform coefficients,

−
[
1 + (λ− 1)

y

L

]2 ∂2X(y, t)

∂t2
=
EI0
m0

∂2

∂y2

{[
1 + (λ− 1)

y

L

]4 ∂2X(y, t)

∂y2

}
. (10)

Since the coefficients do not depend on time, there are sinusoidal oscillations with frequency ω expressed as

X(y, t) = F (y)cos(ωt) , (11a)

whose amplitude satisfies a linear ordinary differential equation with variable coefficients,

d2

dy2

{[
1 + (λ− 1)

y

L

]4 d2F (y)

dy2

}
− ω2m0

EI0

[
1 + (λ− 1)

y

L

]2
F (y) = 0 . (11b)

The change of independent variable, with λ 6= 1,

z ≡ 1 + (λ− 1)
y

L
, (12a)

F (y) ≡ G(z) , (12b)

which implies that d
dy = λ−1

L
d
dz and d2

dy2 =
(
λ−1
L

)2 d2

dz2 , transforms the coefficients in (11a) to powers in (13),

d2

dz2

[
z4
d2G

dz2

]
− Ω2z2G = 0 , (13)

where the only parameter is the dimensionless frequency,

Ω ≡ ωL2

(λ− 1)2

√
m0

EI0
=
ωL2

ē

√
3ρ

E

λ+ 1

(λ− 1)2
, (14)
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which involves the frequency of oscillation ω, material properties through the Young modulus E and density
ρ, and wing geometry through the semi-span L, mean thickness ē and taper ratio λ.

Upon the expansion of (13), the resulting linear fourth-order ordinary differential equation with power
coefficients (15),

z4G′′′′ + 8z3G′′′ + 12z2G′′ − Ω2z2G = 0 , (15)

has no exact solution which can be expressed in finite terms using only elementary functions. Since the only
singularities are z = 0,∞, and z = 0 is a regular singularity, there are solutions as Frobenius-Fuchs series:14

G(z) =

∞∑
n=0

an(σ)zn+σ , 0 ≤ λ < z ≤ 1 <∞ , (16)

which has infinite radius of convergence, 0 < z < ∞, and thus covers the region of interest λ ≤ z ≤ 1
in (12a) corresponding to 0 ≤ y ≤ L. Thus the solution (16) will be needed at most only in the unit interval
0 ≤ z ≤ 1, in the case of the delta wing with zero taper ratio (λ = 0) and tip chord (ct = 0). Substituting
the Frobenius-Fuchs series (16) in the differential equation (15), and equating to zero the coefficients of the
powers of z, leads to the recurrence formula:

(n+ σ)(n+ σ − 1)[12 + (n+ σ − 2)(n+ σ + 5)]an(σ)− Ω2an−2(σ) = 0 . (17)

Note that (17) implies that the coefficients decay like an ∼ o(n−4), ensuring the uniform and absolute
convergence of the series (16) for finite z <∞.15 Setting n = 0, 1 in (17), leads to

n = 0 : (σ − 1)σ(σ + 1)(σ + 2)a0(σ) = 0 , (18a)

n = 1 : σ(σ + 1)(σ + 2)(σ + 3)a1(σ) = 0 , (18b)

for the even and odd modes, respectively involving a2n and a2n+1. If a0(σ) = 0, then by (17) all a2n(σ) = 0,
and similarly if a1(σ) = 0, then by (17) all a2n+1(σ) = 0, and a trivial solution G(z) = 0 would result
from (16). Thus at least one of a0(σ) 6= 0 6= a1(σ) cannot vanish, implying from (18) that

a0(σ) 6= 0 : σm = 1, 0,−1,−2 , (19a)

a1(σ) 6= 0 : σm = 0,−1,−2,−3 . (19b)

For each of the four values of the index m corresponds a particular solution of (16) as a power series:

m = 1, 2, 3, 4 : Gm(z) =

∞∑
n=0

an(σm)zn+σm . (20a)

From the difference of the indices in (19a) and (19b), logarithmic solutions may occur.16–18

Since the four particular solutions (20a) are linearly independent, the general solution is given by their
linear combination:

a0(σm) = 1 : G(z) =

4∑
m=1

CmGm(z) , (20b)

where the arbitrary constants Cm are determined by boundary conditions and incorporate the coefficients
a0(σm), which can be put equal to unity.

IV. Clamped-free boundaries and natural frequencies

The general solution (20b) must satisfy boundary conditions, which will specify the natural frequencies.
The four boundary conditions are determined by setting the beam:

(i) clamped at the root y = 0, z = 1, i.e., zero displacement (21a) and slope (21b):

I : X(0, t) = 0 ⇒ F (0) = 0 ⇒ G(1) = 0 , (21a)

II :
∂X(0, t)

∂y
= 0 ⇒ F ′(0) = 0 ⇒ G′(1) = 0 ; (21b)
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where the definitions (11a) and (12) have been used.
(ii) free at the tip y = L, z = λ, i.e., zero bending moment (22a) and transverse force (22b):

III : M(y → L) = lim
y→L

EI(y)
∂2X(y, t)

∂y2
= 0 ⇒ lim

z→λ
h(z)G′′(z) = 0 , (22a)

IV : V (y → L) =
∂M

∂y
= lim
y→L

∂

∂y

[
EI(y)

∂2X

∂y2

]
= 0 ⇒ lim

z→λ

λ− 1

L

d

dz
[h(z)G′′(z)] = 0 , (22b)

where

h(z) = EI0z
4

(
dz

dy

)2

=
4µc̄ē3

3
E

(
z

1 + λ

)4(
λ− 1

L

)2

. (22c)

In addition to the definitions mentioned above, (8) has also been used.
The boundary conditions at the wing root (21) readily apply to (20b):

I : G(1) =

4∑
m=1

CmGm(1) = 0 , (23a)

II : G′(1) =

4∑
m=1

CmG
′
m(1) = 0 . (23b)

Concerning the boundary conditions at the wing tip z → λ (22), the case of the delta wing λ = 0 will be
excluded (it will be addressed subsequently in section VI), so that,

III : lim
z→λ

h(z)G′′(z) = h(λ)G′′(λ) = h(λ)

4∑
m=1

CmG
′′
m(λ) = 0 , (24a)

IV : lim
z→λ

λ− 1

L

d

dz
[h(z)G′′(z)] =

λ− 1

L
h(λ)

4∑
m=1

CmG
′′′
m(λ) = 0 ; (24b)

in the derivation of

lim
z→λ

d

dz
[h(z)G′′(z)] = h(λ)

4∑
m=1

CmG
′′′
m(λ) + h′(λ)

4∑
m=1

CmG
′′
m(λ) = 0 , (24c)

the last term vanishes by (24a), and thus (24c) reduces to (24b). The four boundary conditions (23) and (24)
form a linear homogeneous system of equations in (C1, C2, C3, C4) 6= (0, 0, 0, 0), which cannot be all zero.
Hence the determinant of coefficients must vanish:∣∣∣∣∣∣∣∣∣

G1(1) G2(1) G3(1) G4(1)

G′1(1) G′2(1) G′3(1) G′4(1)

G′′1(λ) G′′2(λ) G′′3(λ) G′′4(λ)

G′′′1 (λ) G′′′2 (λ) G′′′3 (λ) G′′′4 (λ)

∣∣∣∣∣∣∣∣∣ = H(Ω, λ) = 0 . (25)

For fixed variable z = 1 or z = λ, the particular solution (20a) depend though the coefficients (17) only on
the dimensionless frequency defined by (14). Thus, for each taper ratio λ, the roots of the determinant (25)
specify the natural frequencies Ωn(λ), of which the real root with smaller modulus is the fundamental
frequency Ω1(λ).

Before proceeding to calculate the natural frequencies, the case of the delta wing λ = 0, excluded
from (24), is considered. The following analysis is similar for even and odd modes, and the former will be
considered next for a delta wing. The two boundary conditions at the wing root (21) are unchanged (23) for
the delta wing, but at the wing tip, the condition of zero bending moment (22a) leads to

III : lim
z→0

h(z)G′′m(z) = lim
z→0

h(z)
d2

dz2

∞∑
n=0

an(σm)zn+σm

∼ lim
z→0

z4
d2

dz2
zσm = lim

z→0
σm(σm − 1)zσm+2 = 0 , (26a)
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where the leading term of (20a) was considered by setting n = 0, a0(σm) = 1, and h(λ) ∼ λ4 for z = λ
in (22c). Using (19a), this expression tends to zero for m = 1, 2, 3 or σm = 1, 0,−1, but to a finite value for
m = 4 or σm = −2, so the solution G4 must be excluded by setting C4 = 0; the condition of zero transverse
force (22b) leads to

IV : lim
z→0

λ− 1

L

d

dz
[h(z)G′′(λ)] = − 1

L
lim
z→0

d

dz

[
h(z)

d2

dz2

∞∑
n=0

an(σm)zn+σm

]

∼ lim
z→0

d

dz

[
z4
(
d2

dz2
zσm

)]
= lim
z→0

σm(σm − 1)2zσm+1 = 0 , (26b)

where the leading term of (20a) was considered as in (26a). Using (19a), this expression tends to zero for
σm = 1, 0 corresponding to m = 1, 2, to a finite value for σm = −1 corresponding to m = 3, and to infinity
for σm = −2 corresponding to m = 4, so the solutions G3 and G3 are excluded by setting C3 = 0 and C4 = 0;
Thus, in the case of a delta wing, (23) simplifies to

λ = 0 : C3 = 0 = C4,

[
G1(1) G2(1)

G′1(1) G′2(1)

][
C1

C2

]
= 0 , (27)

because there are at most two non-zero constants of integration (C1, C2) 6= (0, 0). They cannot both vanish,
so the determinant in (27) must vanish,

λ = 0 : G1(1)G′2(1)−G2(1)G′1(1) = H(Ω, 0) = 0 , (28)

and this is the condition that determines the natural frequencies Ωn(0) in the case of the delta wing.

V. Comparison with the corresponding rectangular wing planform

The particular case, distinct from the preceding, which is the simplest, is the rectangular wing (λ = 1),
with the same mean chord and thickness,

c̄ = c(y) = const , ē = e(y) = const , (29)

for which the mass per unit span and area moment of inertia are constant,

m̄ = ρc̄ē , Ī =
1

12
c̄ē3 . (30)

In this case, the equation of transverse vibrations (9) has constant coefficients,

− m̄∂2X

∂t2
= EĪ

∂4X

∂y4
, (31)

and in the case of constant frequency ω (11a), it leads to

d4F

dy4
− ω2m̄

EĪ
F = 0 . (32)

The change of independent variable

s ≡ y

L
, (33a)

F (y) ≡ H(s) , (33b)

which implies that d
dy = 1

L
d
ds and d2

dy2 = 1
L2

d2

ds2 , leads to

H ′′′′ − Ω̄2H = 0 , (34a)

where the dimensionless frequency,

Ω̄ ≡ ωL2

√
m̄

EĪ
=
ωL2

ē

√
12ρ

E
, (34b)
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replaces (14), which is not valid for λ = 1; note that the change of variable (12a) also does not apply for
λ = 1, and was replaced by (33a).

The case of the rectangular wing is the simplest because (34a) has elementary solutions:

α ≡
√

Ω̄ : H(s) = B1 cos(αs) +B2 sin(αs) +B3 cosh(αs) +B4 sinh(αs) . (35)

The boundary conditions of clamping at the root y = 0, s = 0 (21) can be expressed as

I : X(0, t) = 0 ⇒ F (0) = 0⇒ H(0) = B1 +B3 = 0 , (36a)

II :
∂X(0, t)

∂y
= 0 ⇒ F ′(0) = 0⇒ H ′(0) = α(B2 +B4) = 0 , (36b)

which leaves two out of four constants of integration independent:

H(s) = B1[cos(αs)− cosh(αs)] +B2[sin(αs)− sinh(αs)] . (37)

The boundary conditions at the tip y = L, s = 1 (22),

III :
∂2X(L, t)

∂y2
= 0 ⇒ F ′′(1) = 0⇒ H ′′(1) = −B1(cosα+ coshα)−B2(sinα+ sinhα) = 0 , (38a)

IV :
∂3X(L, t)

∂y3
= 0 ⇒ F ′′′(1) = 0⇒ H ′′′(1) = B1(sinα− sinhα)−B2(cosα+ coshα) = 0 , (38b)

form a linear homogeneous system, which has a non-trivial solution if the determinant of coefficients vanishes:

(B1, B2) 6= (0, 0) :

∣∣∣∣∣ cosα+ coshα sinα+ sinhα

sinhα− sinα cosα+ coshα

∣∣∣∣∣ = 2(1 + cosα coshα) = 0 . (39a)

Thus the natural frequencies for the rectangular wing are the roots of

λ = 1 : sech(
√

Ω̄) = − cos(
√

Ω̄) , (39b)

and are illustrated in Fig. 3.

Figure 3. Natural dimensionless frequencies Ω̄n = α2
n of rectangular wing determined by the intersections of

sechα and − cosα.

The fundamental dimensionless frequency and higher harmonics, solution of (39b), were computed nu-
merically and are summarized in Tab. 3. It yields for the dimensionless frequency of the fundamental mode
α1 = 1.87510, leading to Ω̄1 = α2

1 = 3.51602, which matches the well known values of long, thin, cantilevered
beams10 as expected.

VI. Fundamental natural frequency for delta wing

The calculation of the fundamental frequency of bending oscillations is less simple for a non-rectangular
wing because it involves the four non-elementary functions (20a), of which only two are needed in the
case (28) of a delta wing (λ = 0).

7 of 13

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

nd
re

 M
ar

ta
 o

n 
A

pr
il 

15
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
16

33
 

 Copyright © 2013 by L.M.B.C. Campos and A.C. Marta. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



The first fundamental G1(z) in (20a) corresponds to the index m = 1. For the coefficients of even
order (19a), this corresponds to σ1 = 1, thus the recurrence formula (17) yields

σ1 = 1 : an(1) =
Ω2an−2(1)

n(n+ 1)(n+ 2)(n+ 3)
. (40a)

This determines the coefficients of even order starting with a0(1) = 1:

a2n(1) =
Ω2n

2n(2n+ 1)(2n+ 2)(2n+ 3).(2n− 2)(2n− 1)(2n)(2n+ 1)...

=
2.3.Ω2n

(2n)!!(2n+ 1)!!(2n+ 2)!!(2n+ 3)!!
, (40b)

where the double factorial notation has been introduced: n!! = n(n − 2)(n − 4).... The coefficients of even
order (40b) lead to the solution

G1(z) =

∞∑
n=0

a2n(1)z2n+1 = a0(1)z + a2(1)z3 + a4(1)z5 + ...

= z +
Ω2z3

120
+

Ω4z5

100800
+O(Ω6z7) , (41)

whose first three terms have been written explicitly. For the coefficients of odd order (19b), substituting the
first index σ1 = 0 in the recurrence formula (17) leads to

σ1 = 0 : an(0) =
Ω2an−2(0)

(n− 1)n(n+ 1)(n+ 2)
. (42a)

This determines the coefficients of odd order starting with a1(0) = 1:

a2n+1(0) =
Ω2n

(2n)(2n+ 1)(2n+ 2)(2n+ 3).(2n− 2)(2n− 1)(2n)(2n+ 1)...

=
2.3.Ω2n

(2n)!!(2n+ 1)!!(2n+ 2)!!(2n+ 3)!!
, (42b)

The coefficients of odd order (42b) lead to the solution

G1(z) =

∞∑
n=0

a2n+1(0)z2n+1 = a1(0)z + a3(0)z3 + a5(0)z5 + ...

= z +
Ω2z3

120
+

Ω4z5

100800
+O(Ω6z7) , (43)

which reverts to the same solution as (41), since the indexes σ1 in (19a) and (19b) differ by unity and the
recurrence formula just replaces 2n by 2n+ 1.

The second fundamental G2(z) in (20a) corresponds to the index m = 2. For the coefficients of even
order (19a), this corresponds to σ2 = 0, thus the recurrence formula (17) yields

σ2 = 0 : an(0) =
Ω2an−2(0)

(n− 1)n(n+ 1)(n+ 2)
. (44a)

This determines the coefficients of even order starting with a0(0) = 1:

a2n(0) =
Ω2n

(2n− 1)2n(2n+ 1)(2n+ 2).(2n− 3)(2n− 2)(2n− 1)2n...

=
2Ω2n

(2n− 1)!!(2n)!!(2n+ 1)!!(2n+ 2)!!
. (44b)
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The coefficients of even order (44b) lead to the solution

G2(z) =

∞∑
n=0

a2n(0)z2n = a0(0) + a2(0)z2 + a4(0)z4 + ...

= 1 +
Ω2z2

24
+

Ω4z4

8640
+O(Ω6z6) , (45)

whose first three terms have been written explicitly. For the coefficients of odd order (19b), the substitution
of the second index σ2 = −1 in the recurrence formula (17) and the expansion of the particular solution
lead to a solution similar to (45) using the second root in (19b), for the same reasons explained for the first
fundamental.

For a delta wing (28), the functions (41) and (45) are needed, together with their derivative. Differenti-
ating (41) with respect to z and substituting the coefficients using (40b) results in

G′1(z) =

∞∑
n=0

(2n+ 1)a2n(1)z2n = a0(1) + 3a2(1)z2 + 5a4(1)z4 + ...

= 1 +
Ω2z2

40
+

Ω4z4

20160
+O(Ω6z6) , (46a)

and similarly, differentiating (45) with respect to z and substituting the coefficients using (44b) yields

G′2(z) =

∞∑
n=0

(2n)a2n(0)z2n−1 = 2a2(0)z + 4a4(0)z3 + ...

=
Ω2z

12
+

Ω4z3

2160
+O(Ω6z5) . (46b)

The condition (28) that specifies the natural frequencies of the delta wing can then be used.
The simplification of condition (28) is detailed in Appendix A for even modes, since the study of even (19a)

and odd (19b) modes is similar, and its numerical evaluation is included in Appendix B. The higher order
approximations are calculated in Tab. 4 and lead to the fundamental frequency for the delta wing:

0 ≤ λ ≤ 1 : 3.51602 = Ω̄1 = Ω1(1) ≤ Ω1(λ) ≤ Ω1(0) = 8.71926 , (47)

which is higher than for the rectangular wing, because the delta wing is stiffer, i.e., it has a larger fraction of
the mass near the root. The result (47) can be converted from dimensionless Ω to dimensional ω frequency
using (14) and (34b):

λ = 1 : ω̄1 =
Ω̄1 ē

L2

√
E

12ρ
=

3.51602× 0.1

62

√
70× 109

12× 2700
= 14.356 rad/s = 2.2848Hz , (48a)

λ = 0 : ω1 =
Ω1(0) ē

L2

√
E

3ρ
=

8.71926× 0.1

62

√
70× 109

3× 2700
= 71.201 rad/s = 11.332Hz , (48b)

0 < λ < 1 : ω1 =
Ω1(λ) ē

L2

√
E

3ρ

(λ− 1)2

λ+ 1
, (48c)

where the values (48a) and (48b) were calculated for an aluminum wing with Young modulus E = 70 GPa,
density ρ = 2700 kg/m3, semi-span L = 6 m and mean thickness ē = 0.1 m. The fundamental frequency
varies most between the delta and rectangular wing,

Ω1

Ω̄1
=

Ω1(0)

Ω1(1)
= 2.4799 , (49a)

ω1

ω̄1
= 2

Ω1

Ω̄1
= 4.9598 , (49b)

and for a swept wing with intermediate taper ratio,

λ = 1/2 : ω =
Ω ē

L2

√
E

108
, (50)

lies in the range (50).
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VII. Verification of numerical models

To illustrate the value of analytical solutions in the benchmark of numerical models, the two extreme
cases of tapered wing spar geometries were modeled using finite element model ANSYS,19 a rectangular and
a delta beam, replicating the conditions used in (48a) and (48b).

The 3-D linear finite strain beam beam188 element type20 is used due to its capability to model both
constant (uniform) and varying (tapered) cross-sections, required for the rectangular and delta wings, re-
spectively.

Figure 4 shows the rectangular beam model and Tab. 1 summarizes the results for different number of
finite elements. The solution for the first mode, corresponding to the fundamental frequency, converges to

Figure 4. ANSYS model of the rectangular wing using beam188 element type.

f [Hz] # elements

mode 5 10 20 40 80 160

1 2.2914 2.2862 2.2847 2.2844 2.2843 2.2843

2 11.396 11.370 11.363 11.361 11.361 11.361

3 15.582 14.611 14.375 14.316 14.301 14.297

4 48.786 42.578 40.586 40.104 39.984 39.954

5 51.446 48.636 48.599 48.590 48.587 48.587

Table 1. First five frequencies of the rectangular wing using beam188 elements.

the expected value (48a).
Similarly to the rectangular wing, the delta wing was modeled using the beam188 element type.20 Figure 5

shows a representation of such model and Tab. 2 summarizes the results for different number of finite elements.
Again, the solution for the fundamental frequency converges to the expected value (48b).

Figure 5. ANSYS model of the delta wing using beam188 element type.
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f [Hz] # elements

mode 5 10 20 40 80 160

1 10.287 11.108 11.270 11.307 11.316 11.319

2 18.923 25.160 27.096 27.356 27.406 27.417

3 38.266 38.631 47.572 49.511 49.739 49.783

4 50.406 54.179 54.924 55.095 55.137 55.147

5 88.998 63.546 68.039 77.227 78.271 78.407

Table 2. First five frequencies of the delta wing using beam188 elements.

VIII. Discussion and conclusions

The natural bending frequency of a tapered wing was derived using the governing differential equation for
the unsteady deflection of a beam. The frequencies were obtained by casting the problem in the form of an
eigenvalue problem, which translated into a root finding problem, H(Ω, λ) = 0, once the proper expressions
were derived for the tapered wing.

As expected, for wings with the same span and mean chord (and thus area) and material, the fundamental
natural bending frequency is higher for a delta planform, when compared to a rectangular planform, by a
factor of 4.96. A tapered planform exhibits a frequency that lies within these two cases.

Two representative numerical simulations, using state-of-the art finite element model software, were
successfully verified using the derived analytical solutions as benchmarks. This demonstrated the importance
of having exact analytical solutions in the verification of numerical methods.

The results shown were restricted to wings with straight leading- and trailing-edges but a generalization
is possible at the expense of a more complex derivation.
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A. Calculation of eigenvalues for the delta wing

This appendix presents a method of calculating not only the fundamental but also the higher-order modes of a
delta wing, by finding the roots of (28), where the factors are given by (41), (45), (46a) and (46b),[

∞∑
n=0

a2n(1)

][
∞∑

m=0

(2m)a2m(0)

]
=

[
∞∑

n=0

a2n(0)

][
∞∑

m=0

(2m+ 1)a2m(1)

]
, (51)

where a0(0) = 1 = a0(1). Since the series are uniformly convergent, the rule of multiplication,15,21(
∞∑

n=0

bn

)(
∞∑

m=0

cm

)
=

∞∑
n=0

n∑
m=0

bmcn−m , (52)

applies to both sides of (51) resulting

∞∑
n=0

n∑
m=0

[
a2m(1)(2n− 2m)a2n−2m(0)− a2m(0)(2n− 2m+ 1)a2n−2m(1)

]
= 0 . (53)

Substituting (40b) and (44b) in (53) yields a series of powers of Ω2,

P∞(Ω2) ≡ 2.2.3.
∞∑

n=0

dnΩ2n = 0 , (54)

with coefficients

dn ≡
n∑

m=0

{
1

(2m)!!(2m+ 1)!!(2m+ 2)!!

1

(2n− 2m)!!(2n− 2m+ 1)!!(2n− 2m+ 2)!![
2n− 2m

(2m+ 3)!!(2n− 2m− 1)!!
− 2n− 2m+ 1

(2m− 1)!!(2n− 2m+ 3)!!

]}
, (55)

whose roots ±Ωn are the natural frequencies.
The successive approximations to the eigenvalues can be obtained by considering the series (54) truncated after

N + 1 terms, which is a polynomial of degree N in Ω2:

PN (Ω2) ≡ 2.2.3.

N∑
n=0

dnΩ2n = dNΠN
m=1

[
Ω2 − (Ω(N)

m )2
]

= 0 , (56)

whose roots ±Ω
(N)
1 , ...,±Ω

(N)
N are approximations to the first 2N eigenvalues. By increasing the degree of the

polynomial, N = 1, 2, ..., more eigenvalues are found, and better approximations are obtained, e.g., the successive
approximations to the fundamental frequency are Ω

(1)
1 ,Ω

(2)
1 ,Ω

(3)
1 , ..., which tend to the exact value:

Ω1 ≡ lim
N→∞

Ω
(N)
1 . (57)

This process of successive approximations is illustrated in Tab. 4, for the fundamental frequency and next five
harmonics. For a given N , the estimate is more accurate for the fundamental frequency Ω

(N)
1 than for the higher

harmonics.

B. Calculation of natural frequencies

α1 α2 α3 α4 α5

1.87510 4.69409 7.85476 10.99554 14.13717

Ω̄1 Ω̄2 Ω̄3 Ω̄4 Ω̄5

3.51602 22.03449 61.69721 120.90192 199.85953

Table 3. Fundamental dimensionless frequency and higher harmonics Ω̄n of a rectangular wing, where Ω̄n =
α2
n : f(αn) = sechαn + cosαn = 0.
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N ±Ω
(N)
1 ±Ω

(N)
2 ±Ω

(N)
3 ±Ω

(N)
4 ±Ω

(N)
5

1 7.74597 - - - -

2 8.84309 16.0561 - - -

3 8.71594 - - - -

4 8.71931 20.9397 - - -

5 8.71926 21.1558 36.1744 - -

6 8.71926 21.1454 38.8344 51.0467 -

7 8.71926 21.1457 38.4351 - -

8 8.71926 21.1457 38.4544 60.2461 -

9 8.71926 21.1457 38.4538 60.7098 83.9925

10 8.71926 21.1457 38.4538 60.6789 105.026

11 8.71926 21.1457 38.4538 60.6802 87.7921

12 8.71926 21.1457 38.4538 60.6801 87.8361
...

20 8.71926 21.1457 38.4538 60.6801 87.8340
...

100 8.71926 21.1457 38.4538 60.6801 87.8340

Table 4. Calculation of the fundamental dimensionless frequency and higher harmonics Ωn of a delta wing, to
successively higher orders in Ω(2N).
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