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ABSTRACT

A structural Topology Optimization (TO) of the cross-
section of a wing-box is carried out using an Ant Colony
Optimization (ACO) method. ACO is a meta-heuristic
biologically influenced algorithm that has been proven to
be useful to solve NP-hard combinatorial optimization
problems in an expedite way. Its application to solve
topology optimization has been introduced recently.

The algorithm is first used with a cantilever beam
example and the results compared with the literature.
The algorithm is then coupled with an external finite
element solver to perform a topology optimization of the
cross-section of a wing box. The external aerodynamic
loads are computed from a CFD analysis for a specific
flight condition and applied to the structural model.

The advantages of using ACO to discrete TO pro-
blems are demonstrated and the results of the optimiza-
tion are discussed.
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INTRODUCTION

Ant Colony Optimization (ACO) is a combinatorial op-
timization method inspired by the foraging behavior of
ants. When exploring the surrounding environment and
upon finding food, ants leave behind a trail of pheromo-
nes to mark the path. If other ants find such path, they
are likely to follow it and stop travelling at random. Co-
lorni, Dorigo, and Maniezzo [2] developed the Ant System
(AS) as a novel nature-inspired metaheuristic algorithm
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to solve combinatorial optimization problems. Different
variations of the AS algorithm were developed, such as
Elitist Ant System (EAS) [3],MAX−MIN Ant System
(MMAS) [9, 10], and Rank-based Ant System (RAS) [1].
The implementation of the AS is listed in Algorithm 1.

A common combinatorial optimization problem is the
Travelling Salesman Problem (TSP) that requires the Ha-
miltonian cycle with the least total distance a salesman
can take through each city. To apply ACO to the TSP
problem, ants are simulated moving around a graph of
connected nodes such that
• the ant (agent) can choose one city to travel to at a
time. Each city is chosen according to a probability
function that considers the town distance and the
amount of pheromones on the path connecting the
towns;
• previously visited towns cannot be visited again by
the agent, to guarantee a Hamiltonian cycle;
• upon completing a tour, the agent lays down a
pheromone trail on the path travelled according to
the pheromone update rule. [4]

When applied to Topology Optimization (TO) pro-
blems, metaheuristic methods, such as the ACO method,
present advantages when compared to gradient-based al-
gorithms. One of these is the ability to use a wider va-
riety of objective functions. A metaheuristic algorithm
does not require the objective function to be differentia-
ble, as the search process is stochastic and not based on
the gradient-based. Additionally, the discrete nature of
a TO problem makes the ACO method straightforward
to implement and no modifications need to be made to
the problem. In contrast, a gradient-based algorithm re-
quires the optimization variables to be continuous and
modification to the TO problem.



Algorithm 1 Ant System algorithm
1: initialize Ant System:

• create na ants (colony dimension);
• distribute ants randomly across the towns;
• deposit an initial amount of pheromones, τij , on
the graph edges;
• define the maximum number of iterations nt;

2: for n = 1, . . . , nt do
3: for k = 1, . . . , na do
4: while not Hamiltonian tour do
5: choose next town, using the transition pro-

bability rule;
6: end while
7: end for
8: distribute pheromones τij on the edges;
9: end for

Gradient-based algorithms, however, are faster and
require less computational work. In ACO, multiple fi-
nite element analysis need to be performed at the end of
each iteration, which can be problematic if the domain
under analysis is large and complex. Furthermore, with
the increase in the number of optimization variables, fin-
ding a solution using a metaheuristic algorithm can be
challenging, as a result of the stochastic search process.

Successful sizing optimization problems have been sol-
ved using ACO methods, including AS and its variant
EAS [5, 6]. ACO has also been successfully used in TO
problems [7], and has been found useful in the search for
innovative solutions to structural problems [8].

TOPOLOGY OPTIMIZATION USING ACO
ALGORITHM

In order to use the ACO method to solve a TO problem,
some changes need to be made to the original algorithm.
The optimization problem can be stated as

minimize: U(u)

subjected to: Vs(u)
V s

≤ 1, and physical constraints,
(1)

where U is the strain energy, u is the displacement field,
Vs(u) is the available material volume and V s is the total
material volume.

The physical constraints require the element where
the load is applied to and the support elements to be
present in the final design, and that the structure must be
a connected structure, i.e a continuous path that connects
all the elements with the physical constraints must be
present in the final design.

The objective function to be minimized is the strain
energy U(u). It needs to be discretized so it can have a
representation across the discrete domain. After discreti-
zation of the domain, the strain energy function becomes

U(u) = 1
2

N∑
e=1

∫
Ve

εT (u)Deε(u)dV, (2)

where Ve is the element volume, ε is the element strain,
De is the element constitutive matrix and N is the num-
ber of finite elements.

The optimization process starts with the initializa-
tion of the AS, which requires a finite element analysis
of the structure. Afterwards, the solution search process
starts. A finite element analysis is performed at the end
of each solution and the pheromone matrix is updated.
The solution search process ends when the maximum vo-
lume fraction defined has been achieved and the boun-
dary conditions have been met.

Unlike the TSP, where the ACO method used a tran-
sition probability, there is now an element transition rule
instead. This rule corresponds to the probability of an
element being selected as the next move for an ant [7].

Pi = [τi(t)]α
N∑
j=1

[τj(t)]α
, (3)

where τi(t) is the pheromone trail in element i at iteration
t and τj(t) is the pheromone trail of a neighbor element
j at the same iteration t. Element j must be a neighbor
element in order to be used in the next iteration of the
optimization process. Parameter α is used to control the
relative weight of the pheromone trail. Care should be
taken when choosing its value as it can lead to premature
convergence to non-optimal solutions.

In 2D, a neighbor is defined as any element that shares
one edge with another element and can have a maximum
of 4 neighbors. In 3D, a neighbor is any element that
shares one face with another element and can have a
maximum of 6 neighbors. Irrespective of the problem
dimension, an ant can only contain neighbor elements in
its path.

The pheromone intensity ∆τki laid by ant k on ele-
ment i is given by

∆τki = (Uki )λ
N∑
j=1

(Ukj )λ
, (4)

where Uki is the strain energy of element i of the solution
obtained by ant k, λ is a parameter used to tune the
influence of the strain energy in the algorithm, helping
with its convergence.

After determining the increment in pheromones for
every element from all ants’ solutions, the pheromone
matrix can be updated. The pheromone matrix is upda-
ted according to the pheromone update rule [8]

τij(t+ n) = ρ τij(t) +
na∑
k=1

∆τij , (5)

where ρ is the evaporation rate and na is the dimension
of the colony.

In order to improve the results generated by the ACO
method in the TO problem, a noise cleaning filter is intro-
duced during the pheromone update process [7] to pre-
vent the formation of small members in the structure.



The noise cleaning filter modifies the strain energy of the
element with the strain energy of the neighbor elements.
The modified strain energy is

Ûi =

ni∑
e=1

HeUe

ni∑
e=1

He

, (6)

where He is given by

He = Ve[rmin − r(i, e)], e ∈ {1, 2, . . . , ni}, (7)

with Ve being the volume of element e, rmin the mini-
mum allowed structure member size, r(i, e) the distance
between element i, whose strain energy is being modi-
fied, and element e, a neighbor element that satisfies
r(i, e) ≤ rmin, and ni the number of elements that sa-
tisfy the last condition.

OPTIMIZATION OF CANTILEVER BEAM

An example TO problem was used to benchmark the
ACO algorithm. The example is a 2D cantiliver beam
subjected to a point load in its extremity and constrained
at two points. The results were compared with the re-
sults obtained by Kaveh et al. [7]. The values of Young’s
modulus and Poisson’s ratio for each element were chosen
to be the same as used by the authors, 7.9× 109 Pa and
0.30, respectively. Table 1 summarizes the parameters of
the algorithm, which were chosen to minimize the strain
energy of the final structure.

Table 1: Parameters used in the ACO algorithm.

Parameter na nt ρ α λ rmin
Value 15 30 0.3 1 2.2 1.2

The best solution of the ones depicted in Figure 1 re-
sulted in a strain energy of 4.875 J, compared to 4.89 J
for the the best solution found by Kaveh et al. [7], with
a volume fraction of 0.45. The solution displays some
resemblances, such as the overall shape and the central
structural member, which increases the stiffness of the
structure. However, the solution obtained does not dis-
play symmetry.

Figure 1: Beam topologies found by a colony of 15 ants.

OPTIMIZATION OF WING CROSS-SECTION

An optimization of a wing box cross-section was perfor-
med in this section. The finite element analysis was con-
ducted for the entire wing box domain, while the optimi-
zation was carried out for the cross-section only, whose
topology is repeated along the spanwise dimension.

A pressure distribution calculated from a CFD ana-
lysis was applied to the external surfaces of the wing.
The top and bottommost layer of elements were constrai-
ned to be always contained in the optimization solutions.
Also, at least one path connecting the upper and lower
surfaces was requied to be present in the final topology
so that a contiguous body was present at all times.

Aluminium was selected for the wing box material
with a density, Young’s modulus and Poisson’s ratio of
2.81 g cm−3, 71.7 GPa and 0.33, respectively.

The finite element mesh of the wing box contained
1152 elements at the cross-section, repeated in 26 span-
wise layers for a total of 29 952 elements. These values
were determined after a mesh convergence analysis.

During the solution process, the ant’s path defines
the shape of the cross-section at the wing root. Each
cross-section element chosen by the ant aggregates a set
of structural elements with it. This set correspondes to
the spanwise elements behind the selected element. If an
element does not belong to the ant’s path, the correspon-
ding spanwise row of elements disappears as well.

The pheromone update rule is given by Equation 5.
A relation between the strain energy of a cross-section
element i, U2D

i (u), and each element j of the aggregate,
U3D
ij (u), is given by

U2D
i (u) =

N∑
j=1

U3D
ij (u), (8)

where N is the number of spanwise elements.
The optimization of the wing box cross-section was

performed using the parameters listed in Table 1. Two
volume fractions of 0.35 and 0.45 were compared. The
evolution of strain energy with the optimization process
is presented in Figure 2 for the two volume fractions.
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Figure 2: Minimum strain energy evolution throughout
the wing cross-section optimization process.



Figure 3a depicts the topology of the wing box cross-
section created by the ants’ solution for a volume fraction
of 0.35. It can be seen that the ant’s path contains
mainly the elements closer to the bottom right and upper
left corners. In the middle area of the wing box cross-
section, few elements are active. On both sides of the
wing box the majority of solutions displays a connection
between the upper and lower skin, resulting in a lower
strain energy for these solutions.

The solutions obtained using a volume fraction of 0.45
present one or two members that connect the bottom and
upper skin approximately at the mid-chord. The accu-
mulation of elements in the upper left and lower right cor-
ners is more evident with the increased volume fraction.
This is depicted in Figure 3b. The presence of elements
in these regions stiffens the structure in torsion and is a
consequence of the aerodynamic torsional moment. The
lower and upper skins have also been reinforced in many
of the solutions found, displaying usually two layers of
elements close to the skin.

(a) Vs

V s
= 0.35

(b) Vs

V s
= 0.45

Figure 3: Wing cross-section topologies found by a colony
of 15 ants for two volume fraction values.

Figure 4a depicts the solution with the lowest strain
energy, 14.783 J, for a volume fraction of 0.35. With the
increase of the volume fraction to 0.45, the strain energy
decreased to 11.617 J, 21.42 % lower. This is depicted in
Figure 4b.
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Figure 4: Best wing cross-section topologies found for
two volume fraction values.

CONCLUSIONS

A topology optimization using an ant colony optimiza-
tion method was first conducted for a cantilever beam
example and later for the cross-section of a wing box.

The cantilever beam example served as a benchmark
of the algorithm and the strain energy values agreed well
with the ones presented by Kaveh et al. [7].

For the wing box cross-section optimization, a finite
element model of the wing was created and an aerody-
namic load case was computed using CFD. A constant
cross-section topology along the spanwise direction of the
wing was considered for the optimization problem. Two
volume fractions of 0.35 and 0.45 were studied which re-
sulted in minimum strain energy values of 14.783 J and
11.617 J, respectively.

It was possible to observe an accumulation of elements
in the upper left and lower right corners of the cross-
section that stiffened the structure as a consequence of
the aerodynamic torsional moment.

This work demonstrated the advantages of the ACO
method, including its flexibility to deal with discrete pro-
blems as well as its ability to work with non-differentiable
objective functions, making it a good candidate for TO
problems.
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